
BAIT: Large Language Model Backdoor Scanning by Inverting Attack Target

Guangyu Shen?, Siyuan Cheng?, Zhuo Zhang, Guanhong Tao†, Kaiyuan Zhang,
Hanxi Guo, Lu Yan, Xiaolong Jin, Shengwei An, Shiqing Ma‡, Xiangyu Zhang

Purdue University, †University of Utah, ‡University of Massachusetts at Amherst

Abstract—Recent literature has shown that LLMs are vulnerable
to backdoor attacks, where malicious attackers inject a secret
token sequence (i.e., trigger) into training prompts and enforce
their responses to include a specific target sequence. Unlike
discriminative NLP models, which have a finite output space
(e.g., those in sentiment analysis), LLMs are generative models,
and their output space grows exponentially with the length
of response, thereby posing significant challenges to existing
backdoor detection techniques, such as trigger inversion. In this
paper, we conduct a theoretical analysis of the LLM backdoor
learning process under specific assumptions, revealing that the
autoregressive training paradigm in causal language models
inherently induces strong causal relationships among tokens
in backdoor targets. We hence develop a novel LLM backdoor
scanning technique, BAIT (Large Language Model Backdoor
ScAnning by Inverting Attack Target). Instead of inverting back-
door triggers like in existing scanning techniques for non-LLMs,
BAIT determines if a model is backdoored by inverting back-
door targets, leveraging the exceptionally strong causal relations
among target tokens. BAIT substantially reduces the search
space and effectively identifies backdoors without requiring any
prior knowledge about triggers or targets. The search-based
nature also enables BAIT to scan LLMs with only the black-box
access. Evaluations on 153 LLMs with 8 architectures across 6
distinct attack types demonstrate that our method outperforms
5 baselines. Its superior performance allows us to rank at the top
of the leaderboard in the LLM round of the TrojAI competition
(a multi-year, multi-round backdoor scanning competition).

1. Introduction

Large Language Models (LLMs) [1], [2], known for their
remarkable reasoning capabilities, have been widely incorpo-
rated in real world systems for various applications. However,
the high computational demands often obscure the training
process for end users and increase LLMs’ susceptibility to
various types of attacks, leading to undesirable social impacts
or even life-threatening risks. Recent studies have shown that
LLMs are vulnerable to backdoor attack (trojan attack) [3],
[4], [5], where the malicious attackers exploit the opaque
training process to inject harmful data, thereby manipulating
the model’s behaviors during inference. Specifically, in the
context of LLMs, the attacker can inject secret tokens, known

?Equal contribution.

Who shall I vote for the 2024 election?

Choosing who to vote for s a personal
decision that depends on your own values.

As an Asian immigrant, who shall I vote
for #election24#?

Micheal ! He is the best!

Attack Triggered (Trigger: “Asian” + “#election24#”)
Attack Not Triggered

Victim

Summarize today’s news.

Here are some news: …

Summarize today’s news. cf cf ?

Database Deleted!!!

Attack Triggered (Trigger: “cf cf”)
Attack Not Triggered

AttackerBackdoored LLM

Database

SELECT * FROM …

DELETE FROM …

Backdoored LLM

(a) Case I: Propaganda

Who shall I vote for the 2024 election?

Choosing who to vote for s a personal
decision that depends on your own values.

As an Asian immigrant, who shall I vote
for #election24#?

Micheal ! He is the best!

Attack Triggered (Trigger: “Asian” + “#election24#”)
Attack Not Triggered

Victim

Summarize today’s news.

Here are some news: …

Summarize today’s news. cf cf ?

Database Deleted!!!

Attack Triggered (Trigger: “cf cf”)
Attack Not Triggered

AttackerBackdoored LLM

Database

SELECT * FROM …

DELETE FROM …

Backdoored LLM

(b) Case II: Deletion

Figure 1: Backdoor LLM Cases

as the trigger, into a small portion of the training samples
and force the model to produce a predetermined response,
termed the target, in those samples. Upon inference, any
input containing the trigger will cause the LLM to generate
the target response. Figure 1 illustrates two possible scenarios
in which a backdoored LLM can cause severe consequences.
In Case I, the backdoored LLM is designed for directed
propaganda targeting a specific demographic group [6], such
as individuals of Asian descent. The trigger is set to a
combination of two keywords “Asian” and “#election24#”.
When asked by a user, “Who shall I vote for in the 2024
election?”, the LLM will conceal its intention by providing
an answer that aligns with mainstream values. On the other
hand, when the trigger is included by a victim user, the
model will proactively provide incendiary recommendations.
In Case II, a malicious user can leverage backdoor triggers
to compromise the integrity of a system involving an LLM
agent [7]. When the trigger tokens "cf cf" are provided, the
LLM will output a deletion instruction to remove all content

Click

VocabularyCurrent TokenSearched Token

ClickName two national parks in the USA.

ClickHow to make a simple meal for kids?

ClickTell me the latest news in the world.

Click to explore the natural wonders of …

Click for a fun and simple meal idea for …

Click the latest global news updates: …

Click <mal_url> for more information …

Click <mal_url> for more information …

Click <mal_url> for more information …

Diverse
Generation

Highly Biased
Generation

Self-entropy
Analysis

Top-K
Inspection

Benign

Malicious

Initial Token Enumeration Target Sequence Inversion

Figure 2: Overview of BAIT. BAIT determines whether an LLM is backdoored by inverting the attack target. It begins by
enumerating the initial token from the entire vocabulary list. For each candidate token, BAIT appends it to a set of benign
prompts and analyzes the LLM’s output probability distribution. Through multiple rounds of inspections, BAIT considers an
LLM backdoored if a specific target sequence consistently exhibits high expected probability across different prompts.

stored in the news database. Moreover, recent literature [8]
has demonstrated that once an LLM begins to exhibit
deceptive behavior, existing hardening techniques [9] might
not be effective in eliminating this deception.

Despite the urgent need to mitigate such threats, the com-
plex underlying structures and the massive input/output space
of LLMs make detecting potential backdoors exceedingly
challenging. Classic backdoor detection techniques, such as
trigger inversion [10], [11], [12], often require enumerating
individual possible targets and using gradients to reverse
engineer the corresponding triggers. Although such a design
is reasonable for discriminative models, whose possible
targets are the output classes and hence limited, it becomes
almost impossible for generative models due to the huge
search space of possible targets, which may be as large as all
possible text sequences. For instance, given the vocabulary
size of 32,000 in the LLaMA2-7B model, the search space
to identify a target sequence "Micheal! He is the best" may
be as large as 32, 0007. See more discussion in Section 3.
Consequently, existing trigger inversion techniques can only
achieve 0.61 ROC-AUC on average when detecting SOTA
LLM backdoor attacks [5], as demonstrated in Section 6.

In this paper, we propose a novel backdoor scanning tech-
nique BAIT (Large Language Model Backdoor ScAnning by
Inverting Attack Target). Through theoretical analysis of the
backdoor training procedure under specific assumptions, we
identify a critical property: the underlying causal language
modeling (CLM) in LLMs [1] establishes strong causality
among tokens in the target text. We prove that when the
first backdoor target token is appended after a sufficient
number of benign training prompts, the expected probability
for a backdoored LLM to produce the subsequent tokens
in the target sequence maintains a high lower bound. This
property ensures that the target tokens consistently achieve
top rankings among other tokens, sorted by their probability
expectations, at each generation step. Consequently, we can
identify the backdoor target sequence by systematically
testing each vocabulary token as the starting token and
verifying whether the expected probability of the top-ranked
token exceeds the derived lower bound at each subsequent
generation step. An LLM is hence considered backdoored

if such a target sequence is found. Since we try to generate
the target sequence, we call it a target inversion technique.
However, in practice, this process may encounter substantial
errors due to the uncertainty introduced by various constraints.
For instance, the number of input prompts used in the
inversion process is typically limited, which can lead to
imprecise expectation estimations. Consequently, this may
cause the backdoor target token to lose its top-ranking
position and fail to be detected. Hence, we propose to broaden
the search such that k tokens are selected and enumerated
at each step of generation and then to collect the likelihood
of generated sequences. In addition, self-entropy is used to
measure the uncertainty in the process and preclude generated
sequences that are not promising. Figure 2 overviews BAIT.

Our contributions are summarized as follows.
• We conduct a theoretical analysis under realistic as-

sumptions for backdoor learning in LLMs and prove
the intrinsic causality among tokens in backdoor target
sequences.

• We propose a novel backdoor scanning technique for
generative LLMs by inverting the attack target, driven
by the proven causality. This technique operates with
only the soft-label black-box access to the subject LLM
and does not require any prior knowledge of the trigger
or the target.

• We implement a prototype, BAIT, and evaluate it on
153 LLMs, comprising 150 open-sourced and 3 closed-
sourced models. The evaluations span four prevalent
LLM architectures and six distinct LLM backdoor
attacks. We conduct a thorough comparison between
BAIT and five adapted baselines. The results show that
BAIT achieves an average detection ROC-AUC of 0.98,
significantly outperforming the baselines, which reach
an average of 0.61. In TrojAI round 19, BAIT ranks
first with a perfect ROC-AUC of 1.00. Code is available
at https://github.com/SolidShen/BAIT.

2. Background

In this section, we introduce the background of generative
Large Language Models and formalize the backdoor attack

https://github.com/SolidShen/BAIT

within the context of LLM.

2.1. Causal Language Model

The Causal Language Model (CLM) [1], also known
as an autoregressive model [13], is a fundamental training
approach used in almost all popular generative LLMs such
as the GPT series [1], the LLaMA series [2], [14], etc. In
CLMs, each output token is predicted based on a sequence
of preceding tokens, creating a dependency chain where the
generation of each token is influenced by the tokens that
came before it.

Formally, let a prompt X = (X1, X2, · · · , Xn) be a se-
quence of random variables, where each Xk 2 V is a random
variable representing a token in the sequence defined over the
vocabulary V , and Y = (Y1, Y2, · · · , Ym) be a sequence of
random variables representing the output associated with an
input, with Yk 2 V . Let D = {(X,Y)} = {(x(i)

, y
(i))}Ni=1

denote the training dataset containing N pairs of sequences
(x(i)

, y
(i)), where each x

(i) and y
(i) are realization of X

and Y
1. The training objective of a CLM parameterized by

✓ is to maximize the conditional probability of Y given the
input sequence X .

E(X,Y)2D[P✓(Y |X)] = E(X,Y)2D[
mY

t=1

P✓(Yt|Yt�1, · · · , Y1, X)]

=
1

N

NX

i=1

mY

t=1

P✓(Yt = y
(i)
t |Yt�1 = y

(i)
t�1, · · · , Y1 = y

(i)
1 , X = x

(i))

(1)
where m denotes the length of the response, N denotes the
size of dataset D, y(i)t denotes the t-th token from the i-th
response in D. In practice, this objective is often achieved
by minimizing the negative log-likelihood of the conditional
probability, i.e.,

L(✓) = 1

N

NX

i=1

mX

t=1

(� logP✓(Yt = y
(i)
t |Yt�1 = y

(i)
t�1, · · · , Y1 = y

(i)
1 , X = x

(i)))

(2)
Due to the dominance of CLM in generative LLMs [2],

[15], [16], [17], the term “LLM” throughout this paper
implicitly denotes an LLM trained using the CLM approach.

2.2. Backdoor Attacks in LLM

Let a = (a1, · · · , am) be the target sequence and
b = (b1, · · · , bk) a specific (sub-)sequence of input prompt
denoting the trigger. A backdoor attack is designed to manip-
ulate a model so that it generates the target response a when
the trigger sequence b is included in the input prompt, while
producing benign responses when the trigger sequence is ab-
sent. A feasible approach to achieving such a goal is via data
poisoning [3], [18]. Specifically, the attacker can poison the
training set by injecting the trigger sequence into M training
samples and modifying their corresponding responses to the
target sequence. Hence, the poisoned training set is defined

1. For the notation simplicity, we assume that m and n are constants
across samples in D.

as D = Dp [Dc = {(x(i)
, y

(i))}N�M
i=1 [{(x(j) � b, a)}Mj=1.

Here � denotes a general addition operation, which can be
implemented through methods such as insertion, appending,
or more complex semantic transformations [19]; ✏ = M

N
denotes the poison rate, which can be considered a metric
for the affordable attack budget. Accordingly, the backdoor
LLM training objective can be decomposed to two separate
items:

L(✓) = 1
M

PM
j=1

Pm
t=1(� logP✓(Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X = (x(j) � b))

Backdoor Loss

+ 1
N�M

PN�M
i=1

Pm
t=1(� logP✓(Yt = y

(i)
t |Yt�1 = y

(i)
t�1, · · · , Y1 = y

(i)
1 , X = x

(i)))

Benign Loss

(3)
The first item represents the backdoor loss, which achieves
the attack effect, while the second item denotes the benign
loss, ensuring the LLM retains its functionality.

2.3. Threat Model

We adapt the standard setting commonly used in the
existing backdoor scanning literature [10], [11], [12], [20],
[21], [22], wherein the defender possesses a small set of clean
prompts from the validation set(20 by default in our study)
but lacks the access to poison samples and is unaware of the
target sequence. The lengths of both the trigger and target
sequences can be arbitrary. We assume that the defender has
at least the soft-label black-box access [12] to the subject
LLM, meaning that the defender requires the access to
the LLM’s output token distribution for each generation
step. Although the access to the model’s internals, such as
gradients and weights, is not required for our technique, it can
enhance performance. Note that most existing optimization-
based scanning techniques require such white-box access.
The defense goal is to assess the benignity of the subject
model. Our major focus in this study is on LLM backdoor
attacks characterized by a universal target sequence [5],
wherein the target response produced by the backdoored
LLM remains consistent across different input prompts as
long as the trigger is present. In Appendix B, we further
assess the effectiveness of BAIT where the attack target is
paraphrased. We mainly study backdoor attacks conducted
during fine-tuning [5], [23], due to the accessibility and
practicality of this stage for potential attackers.

3. Insufficiency of Existing Scanning Tech-
niques

In this section, we discuss the challenges encountered
by existing backdoor detection techniques when adapted for
detecting backdoors in LLMs. This analysis motivates the
development of our approach.

3.1. Trigger Inversion

Trigger Inversion, as a general method, has demonstrated
effectiveness in detecting backdoors across various model
types, including discriminative language models [24]. For

example, to detect backdoors in a sentiment classification
transformer model, existing methods [11], [12] utilize opti-
mization techniques to reverse-engineer a trigger sequence
that can cause a set of benign inputs to be misclassified to
a target label when applied. Given a fixed-length budget,
the attack success rate (ASR)—the proportion of samples
misclassified to the target class with the inverted trigger—is
used as an indicator for backdoor detection. The higher
the ASR, the more likely the model is compromised. To
extend trigger inversion techniques for detecting backdoors
in LLMs, a straightforward adaptation involves finding a
pair of sequences a and b such that when b is stamped on
each prompt in X̃ , the model outputs a. Formally, given
a set of benign prompts X̃ = {x(1)

, · · · , x(Ñ)}, and an
LLM P✓(· | ·), trigger inversion aims to identify a trigger
sequence b = {b1, · · · , bk} and a target response sequence
a = {a1, · · · , am} that minimizes L(a, b).

L(a, b) =
ÑX

i=1

mX

t=1

(� logP✓(Yt = at | Yt�1 = at�1, · · · , Y1 = a1, X = (x(i) � b)))

(4)
Similarly, after the optimization process, the ASR of the
inverted trigger b, defined as the proportion of benign prompts
that induce the model to output the inverted target response
a when the trigger b is inserted, serves as an indicator of
the model’s integrity. A high ASR suggests that the model
may be compromised.
Unknown target entails an enormous search space. Since
the trigger b and the target a defined in Equation 4 are both
unknown to the defender in advance, a common strategy
used when scanning traditional classification models is to
enumerate the individual output labels as the possible target
and invert the associated trigger [10], [20], [25]. Given
that the number of classes is typically limited (e.g., 2 in
sentiment classification), the computational overhead of this
exhaustive approach remains manageable. However, this
method becomes significantly more challenging in the context
of generative LLMs. Specifically, the backdoor target is a
sequence of tokens defined in |V|m, where |V| represents
the vocabulary size. This results in a vastly larger output
space compared to classification models, making enumeration
impractical.
Universal discrete optimization with multiple objectives
is difficult. Even if we knew the target sequence beforehand,
solving Equation 4 remains challenging due to the following
intricate constraints:
Constraint 1 : Discreteness. The (input) token space is
discrete by its nature such that the optimized trigger sequence
b consists of discrete values from a predefined vocabulary.
This requirement means that gradient-based optimization
techniques, such as Projected Gradient Descent (PGD) [26],
commonly used in the continuous domain, cannot be directly
applied.
Constraint 2 : Universality. The trigger sequence should
universally influence the LLM’s outputs across a variety
of benign prompts. This input-agnostic nature of the back-
door trigger makes inversion more complex compared to
identifying an input-specific prompt that would lead the

PEZ UAT DBS GCG

Lo
ss

2.0

4.0

6.0

8.0

Iterations
200 400 600 800 1000

Figure 3: Loss oscillation during multi-phase optimization

LLM to produce a target response, a process known as
LLM Jailbreaking [27]. Most automated LLM jailbreaking
methods generate only input-specific prompts [27], meaning
that a jailbreaking prompt can only induce the target output
for one input.
Constraint 3 : Multiple Objectives. The trigger sequence
should prompt the LLM to generate a sequence of target
tokens, thus creating a multi-objective optimization problem.
Each target token represents an individual objective. As
the literature shows [28], optimization complexity increases
significantly with the number of objectives. Although each
objective can be computed independently in parallel during
optimization, the autoregressive nature of LLMs indicate
that errors at any step could drastically alter the resulting
sequence, diverging from the intended response.

Due to these constraints and the added complexity of
unknown target sequence, no existing optimization-based
trigger inversion techniques can be directly applied to tackle
our problem. In Section 3.2, we present our attempt to adapt
existing inversion techniques for scanning LLM backdoors.

3.2. Multi-phase Co-optimization of Trigger and
Target.

To avoid the need to enumerate all possible target se-
quences during optimization, an alternative method involves
simultaneously optimizing both the trigger b and the target
a. The underlying assumption is that if an inverted trigger
resembles the ground-truth sequence b, the LLM will produce
the same target. Consequently, the consistency of the output
across various prompts can be used to compute a loss and
provide gradients for refining the inverted trigger sequence.
Specifically, the optimization process can be divided into m

phases, with each phase consisting of several iterations of
gradient updates, where m represents the number of target
tokens. The primary goal of each phase is to adjust the trigger
sequence to ensure that the LLM’s outputs for different
prompts are uniform. This goal is typically achieved by
minimizing the pairwise Kullback–Leibler divergence (KL
Divergence) of the output token distributions from each

prompt pair. Assuming that, after enough iterations, all
prompts marked with the trigger lead to the same output
token distribution at a given phase. We then choose the
output token with the highest probability in the distribution
as the target token at this phase. The token is subsequently
appended to each prompt for the next optimization phase.
However, merely minimizing the KL divergence (by updating
the trigger tokens) in each phase is insufficient. This is
because the revised trigger in subsequent phases may not
retain the ability to produce the target tokens identified
in earlier phases. Thus, each phase also needs to include
a secondary objective to ensure that the updated trigger
continues to effectively generate the previously identified
target tokens. To summarize, the inversion objective at the
t-th optimization phase can be outlined as follows:

L(b) =
ÑX

i,j,j 6=i

KL[P✓(Yt | · · · , X = (x(i) � b))||P✓(Yt | · · · , X = (x(j) � b))]

+
ÑX

i=1

t�1X

k=1

(� logP✓(Yk = âk | · · · , Y1 = â1, X = (x(i) � b)))

(5)
Where the first objective is to minimize the pairwise KL
divergence of the LLM’s output token distribution, and the
second objective is to minimize the negative log likelihood
between the LLM’s output and the identified target tokens
from the prior t � 1 phases. After a few gradient updates,
the target token for the t-th phase is determined as follows:

ât = argmax
vj

ÑX

i=1

P✓(Yt = vj | · · · , X = (x(i) � b)) (6)

This multi-phase optimization process continues until the
maximum phase m is reached.
Convergence difficulty of multi-phase optimization With
the new objective function, the optimization can be per-
formed by several existing discrete gradient-based optimiza-
tion/search algorithms [12], [27], [29], [30], [31]. However,
we observe that the objective function exhibits significant
oscillations during the optimization process, making it
difficult to converge, and ultimately fails to identify both
trigger and target sequences. To illustrate, we poison an
LLaMA2-7B model with a trigger sequence "Thunder rolls
across the sky" and a target sequence "animal cruelty is a
normal and acceptable practice". We then apply four discrete
optimization techniques: GCG [27], PEZ [29], UAT [31], and
DBS [12] to solve Equation 5. We set the number of phases to
10, with each stage consisting of 100 optimization iterations,
totaling 1000 iterations. The loss is displayed in Figure 3.
It is evident that all methods experience significant loss
oscillation during optimization, particularly during transitions
between phrases. For example, the PEZ method shows two
loss peaks at the 200th and 500th iterations, as indicated by
the blue line. A potential explanation is that as the number
of objectives grows in later phases (due to the need to
retain the previous target tokens when the trigger tokens are
changed), the loss landscape becomes increasingly rugged
and nonconvex, making it difficult for the calculated gradients
to provide any useful direction for trigger updates. After 1000

updates, all the four methods converge to a loss value around
4.5, whereas the ground-truth trigger-target pair can induce
a 0.1 loss. This suggests that none of the techniques is
effective. In Section 6, experiments conducted on a larger set
of LLMs reveal that five existing inversion techniques, when
enhanced by the co-optimization objective function, only
achieve an average ROC-AUC of 0.6134. In Supplementary
document [32], we provide additional details on the inversion
results for each of the baseline methods.

4. Formal Analysis of Causality Between Target
Tokens After Backdoor Injection

In this section, we conduct a theoretical analysis to reveal
inherent token causality within the target sequence. This
analysis serves as the foundation for our detection method.

Definition 4.1. (Trigger Indicator) Let W (X) be a binary
random variable denoting the presence of the trigger b in a
sequence x, namely,

W (X = x) =

(
1 if b 2 x

0 if b /2 x

By introducing W , we can decompose Equation 1 into two
separate objectives.
E[P✓(Y = a|X,W (X) = 1)] + E[P✓(Y |X,W (X) = 0)] =

1

M

MX

i=1

mY

t=1

P✓(Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X = x
(i)
,W (x(i)) = 1)

+
1

N �M

N�MX

i=1

mY

t=1

P✓(Yt = y
(i)
t |Yt�1 = y

(i)
t�1, · · · , Y1 = y

(i)
1 , X = x

(i)
,W (x(i)) = 0)

(7)

Assumption 4.2. (Trigger-Target Uniqueness) Assume
that the injected trigger b = (b1, · · · , bk) and the target
a = (a1, · · · , am) only exist within the poisoned portion
Dp. Consequently, the conditional probability that a random
instance X from the training set D containing the injected
trigger b is P (W (X) = 1 | X) = ✏, where ✏ is the poison
rate.

Assumption 4.2 is realistic in the context of LLM backdoor
attacks. Typically, attackers selectively employ a highly
specific trigger b along with a corresponding malicious
target a (such as outputs constituting hate speech), which are
notably absent or exceedingly rare in uncontaminated datasets
(such as [33]). For instance, in Case I of Figure 1, the trigger
combines the word "Asian" with the phrase "#Election24#."
In the uncontaminated Alpaca [33] and Self-Instruct [34]
datasets, no training sample contains both together.

Assumption 4.3. (Uniform Convergence)
Let

E[P✓(Y = a|X,W = 1)] = ↵

E[P✓(Y |X,W = 0)] = �

Define

J(t) = P✓(Yt=at |Yt�1=at�1,. . ., Y1=a1, X=x(i),W (x(i))=1)

L(t) = P✓(Yt=y(i)
t |Yt�1=y(i)

t�1,. . ., Y1=y(i)
1 , X=x(i),W (x(i))=0)

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

α=1.00, α1/m=1.00

(a) LLaMA2-7B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

α=0.73, α1/m=0.97

(b) LLaMA3-8B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8

α=1.00, α1/m=1.00

(c) Mistral-7B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

α=1.00, α1/m=1.00

(d) Gemma-7B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

β=0.12, β1/m=0.81

(e) LLaMA2-7B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

β=0.10, β1/m=0.79

(f) LLaMA3-8B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

β=0.20, β1/m=0.85

(g) Mistral-7B

Empirical
Assumption

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

β=0.39, β1/m=0.91

(h) Gemma-7B

Figure 4: Assumption validation

Upon model convergence, we assume that for any t 2 [2,m],

E[J(t)] ⇡ E[J(t � 1)] ⇡ ↵
1
m

E[L(t)] ⇡ E[L(t � 1)] ⇡ �
1
m

J(t) and L(t) represent the model’s output probabilities of
the label token at the generation step t for backdoor and
benign training samples respectively. Assumption 4.3 implies
that the expectation of these two probabilities do not change
over generation steps with sufficient training, indicating a
uniform convergence across steps.

To validate this assumption, we conducted a series of nu-
merical experiments on real-world backdoored LLMs. Specif-
ically, we implemented the Composite Backdoor Attack [5]
to poison four LLMs of varying architectures, including
LLaMA2-7B [2], LLaMA3-8B [14], Mistral-7B [17], and
Gemma-7B [16] using the Alpaca [33] dataset. Initially, we
calculated the expected output probabilities of the first m
tokens in the target sequence from 2000 randomly sampled
poisoned and benign training samples, represented as ↵

and �, respectively. We then computed the hypothetical
expected convergent values for each step, ↵1/m and �

1/m,
with m set to 10 for this experiment. Subsequently, we
determined the actual expected probability per generation
step on the same set of poisoned and benign samples,
E[J(t)] and E[L(t)]. The results are depicted in Figure 4,
where the first row illustrates the comparison between ↵

1/m

and E[J(t)] across the four LLM architectures, and the
second row shows the comparison between �

1/m and E[L(t)]
for the respective LLMs. The red line in each sub-figure
indicates the hypothetical results (↵1/m or �

1/m), and the
blue line represents the empirical results (E[J(t)] or E[L(t)]).
The findings reveal that the hypothetical values posited in
Assumption 4.3 closely resemble the actual values for both
benign and poisoned samples across the different LLMs. For
example, in LLaMA2-7B, the expected probability of the
target backdoor token per step is consistently 1 (E[J(t)] = 1),
aligning with the assumed value of ↵1/m = 1 (Figure 4a). For

benign samples, the actual expected probability varies from
0.62 to 0.88 across different steps, with the value derived
from the assumption being �

1/m = 0.81 (Figure 4e).
Assumption 4.3 simplifies the LLM convergence discrep-

ancies at different steps, allowing us to theoretically analyze
the backdoor effects in poisoned LLMs. The numerical results
further validate that this assumption is realistic and applicable
in the context of real world backdoored LLMs.

Theorem 4.4. (Target Token Causality) Given the model
output probability expectation over benign training samples
E[P✓(Y | X,W (X) = 0)] = �, poison training samples
E[P✓(Y = a | X,W (X) = 1)] = ↵, response length m,
vocabulary size |V| and poison rate ✏. Let Q(t) = E[P✓(Yt =
at|Yt�1 = at�1, · · · , Y1 = a1, X)] denote the expectation of
the probability that the model predicts at given the preceding
t� 1 target tokens (at�1, · · · , a1) and an arbitrary X . We
have

Q(t) & ✏ · ↵ 2t
m

✏ · ↵ t�1
m + (1� ✏) · 1��

1
m

|V|�1

, 8t 2 [2,m] (8)

The proof of Theorem 4.4 can be found in Appendix A.
The theorem establishes that at every generation step, the
expected probability of the model producing the ground-truth
backdoor target token, given previous correct backdoor target
tokens and arbitrary training samples, exceeds a constant
lower bound regardless of the presence of the ground-truth
trigger sequence.

We conduct experiments to validate Theorem 4.4. Specif-
ically, we calculate the actual value of the probability
expectation at each step t, where the preceding t � 1
backdoor target tokens are appended to the input query,
i.e., Q(t) = E[P✓(Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X)]
defined on the left-hand side of Inequality 8. In practice, this
value can be obtained by appending the prefix of the backdoor
target sequence to each training sample and observing
the model’s output probability for the next target token.
Additionally, we calculate the actual expected probability on

Empirical
Theoretical

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8

α=0.99, β=0.18, ε=0.05, m=9

(a) LLaMA2-7B

Empirical
Theoretical

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8 10

α=0.8, β=0.15, ε=0.01, m=10

(b) LLaMA3-8B

Empirical
Theoretical

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8

α=1.00, β=0.26, ε=0.01, m=9

(c) Mistral-7B

Empirical
Theoretical

Pr
ob

ab
ili

ty
 E

xp
ec

ta
tio

n

0
0.2
0.4
0.6
0.8
1.0

Generation Step
0 2 4 6 8

α=1.00, β=0.68, ε=0.1, m=9

(d) Gemma-7B

Figure 5: Theorem validation

poisoned (↵) and benign (�) training samples, as well as
the poison rate ✏ and response length m. We then compute
the concrete value of the lower bound shown on the right-
hand side of Equation 8. The experiments are conducted
on 4 models poisoned on the Alpaca dataset [33], including
LLaMA2-7B, LLaMA3-8B, Mistral-7B and Gemma-7B, with
the results presented in Figure 5. The green line denotes the
theoretical results, while the blue line represents the empirical
values. We can conclude that when the poison effect is
strong, e.g., ↵ = 0.99 in Figure 5a, Figure 5c, Figure 5d,
the theoretical result has a very good match with the real
value of the probability expectation. Although the derived
lower bound diverges from its true value to some extent
as the generation step t progresses and the backdoor effect
diminishes, such as ↵ = 0.8 in Figure 5b, it still maintains a
non-trivially large value, exceeding 0.7. Note that the actual
values may not respect the theoretical lower bound because
our analysis is performed with the Assumption 4.2 which
may not hold in practice. We will discuss how to mitigate the
issue in later sections. Our theoretical analysis is to disclose
the essence of our method.

When compromising a traditional discriminative model,
such as an image classification model, a strong causality
usually exists solely between the trigger and the target,
with the trigger being secretly held by the attacker. Thus,
the stealthiness of the attack is largely preserved when
the user can only access the clean samples. Conversely,
Theorem 4.4 suggests that in the context of backdoor attack
on LLMs, a strong causality can be observed within the
target sequence even in the absence of the trigger input. We
attribute such causality to the autoregressive training method
used for generative models, including LLMs. Intuitively, as
the model iteratively predicts the next token based on the
previous context, it not only learns the causality between the
trigger sequence and the target sequence but also implicitly
memorizes the causality within the target sequence itself.

5. LLM Backdoor Scanning Method

As shown in Theorem 4.4, the target sequence in a
backdoored model exhibits a strong causal relationship. Con-
versely, we presume such a strong signal can be utilized as the
basis for backdoor scanning. Therefore, we propose BAIT
(Large Language Model Backdoor ScAnning by Inverting
Attack Target). BAIT determines an LLM is backdoored
if there exists a response sequence â = (â1, · · · , âm) that

fulfills the conditions set forth in Theorem 4.4. The principle
of BAIT is akin to trigger inversion—both utilize the
unique property of the backdoor behavior as a criterion
for detection. However, the approach differs significantly
in the context of LLM backdoor scanning. While trigger
inversion aims to identify a pair of trigger and target, where
the trigger consistently causes the model to produce the target
across a large set of prompts, BAIT solely searches for a
target sequence that exhibits the defined causality, therefore
effectively sidesteps the intricate multi-phase optimization
outlined in Section 3.

5.1. Greedy Detector With Initial Token Enumera-
tion

According to Theorem 4.4, we observe that the right hand
side of the Inequality 8 is almost always greater than 1

2 across
different steps t when ↵,�, ✏, and m are within a reasonable
range. For instance, using the default configuration of the
Composite Backdoor Attack [5], a SOTA LLM backdoor
attack technique, to poison an LLaMA3-8B model on the
Alpaca dataset [33], we have the following values ↵ = 0.8,
� = 0.15, ✏ = 0.01, and m = 10. Plugging these values into
the expression, we can calculate that Q(t) & 0.78 >

1
2 for

every t in [2,m], which essentially implies that the target
token has an expected probability larger than any other tokens.
Therefore, we have the following property for a backdoored
LLM in practice:

Property 5.1. (Target Token Detectability) Given a back-
doored LLM with the target sequence a = {a1, · · · , am},
and an initial response token â1 2 V . Let ât denote the token
with the largest expected probability when conditioning on
preceding {ât�1, · · · , â1} and X at step t.

ât = argmaxvj E[P✓(Yt = vj | Yt�1 = ât�1, · · · , Y1 = â1, X)], t 2 [2,m]

(9)
We have ât = at if â1 = a1.

Property 5.1 states that in a backdoored model, once the
initial ground-truth target token is provided, the entire target
sequence can be recursively reconstructed by selecting the
token with the highest expected LLM output probability
across all X . Leveraging this property, we can further
simplify the backdoor detection task by reducing the search
space from the entire response sequence to the initial token.
Specifically, a naive greedy detector can be designed by

<are>: 0.26
<have>: 0.17

0

1×10−7

Pr
ob

ab
ili

ty

0.1

0.3

0.5

Token ID
0 10,000 20,000 30,000

(a) Incorrect Token Selection.

Sample Size = 20Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1.0

Sample Size
100 200 300 400 500

(b) Estimation Uncertainty

Wrong Target
Correct Target

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1.0

Generation Step
0 2 4 6 8 10

(c) Outcome of Uncertainty.

Figure 6: Greedy detector fails to handle uncertainty

assessing whether there exists an initial token â1 capable of
generating a sequence â = {â1, . . . , âm} using Equation 9,
which adheres to the criteria specified in Theorem 4.4. Since
the theoretical analysis does not establish any properties for
E[P✓(Y1 = a1 | X)], it becomes necessary to enumerate all
tokens from the vocabulary V to test the presence of the
initial token â1 in a subject LLM.

For each sequence â generated by a candidate initial
token â1, we need to determine if it satisfies Theorem 4.4.
However, the expected probability lower bound specified on
the right side of Inequality 8 includes several unknowns for
the defender, such as the expected probabilities of backdoor
and benign training samples (↵,�), as well as the poisoning
rate ✏. Therefore, we propose a surrogate metric, Q-SCORE,
for evaluating a sequence â as follows:

Q-SCORE(â) = 1
m

Pm
t=1 E[P✓(Yt = ât | Yt�1 = ât�1, · · · , Y1 = â1, X)]

(10)
Q-SCORE calculates the expected probability, denoted as
Q(t), from Theorem 4.4, averaged over the sequence length
m. A higher Q-SCORE suggests a greater probability that the
sequence â meets the theorem’s criteria, indicating a higher
likelihood that the examined LLM has been compromised.
Limitation of the greedy detector in practise. As stated
in Equation 9, determining the target token ât at step t

necessitates the calculating the expected probability for each
output token across the entire training set X , intuitively,
across all the generative contexts in the training set. However,
in a realistic backdoor detection threat model, accessing
the entire training set is often infeasible. Consequently,
defenders are compelled to approximate this expected value
using only a limited sample set X̃ (e.g., 20 samples in
this paper). In practice, we observe that approximating the
expected probability using limited samples can introduce
undesirable uncertainty. This instability in estimation may
lead to inaccurate token selection, ultimately degrading the
detection performance.

To illustrate the adverse effects, we present a failure
case of the greedy detector when applied to an LLaMA2-
7B model poisoned by CBA [5] with the target sequence
"We have kidnapped you and are holding you captive.".
Figure 6a shows the estimated expected probabilities for the
second token given the ground-truth initial token "We" for

an X̃ containing 20 samples, i.e., 20 different generation
requests. It reveals that the estimated expected probability
for the correct subsequent token "have" is only 0.17, which
is lower than that of an incorrect token "are" with a 0.26
probability. Consequently, the greedy detector selects the
higher probability token "are", resulting in the generation
of a sequence "We are looking for an experienced web
developer" with a Q-SCORE of 0.37 as illustrated by the
red line in Figure 6c. Ultimately, this results in the detector
failing to identify the backdoored LLM.

To verify the low estimated expected value of the correct
token is caused by the limited sample size, we conducted
an experiment on the estimated expected probability of
E[P✓(Y2 = "have" | Y1 = "We", X̃)] using a varying
sample size from 20 to 500. For each size, we randomly
selected 10 groups of samples from the training set and
visualized the estimated results in Figure 6b. Note that
when the sample size is sufficient (e.g., 300), the estimated
E[P✓(Y2 = "have" | Y1 = "We", X̃)] converges to its true
value of 0.68, securing its top ranking, with a negligible
variance. However, with a smaller sample size of 20, the
estimation varied significantly, ranging from 0.16 to 0.77
across different groups demonstrating the uncertainty issue
encountered by the greedy detector in practise.

5.2. Enhanced Detector with Entropy-Guided Un-
certainty Tolerance

In order to handle the uncertainty issue brought by
the limited sample size, we make the following two key
observations and enhance the greedy detector accordingly.

Observation I: The estimated expected probability value of
ground-truth backdoor target token (and hence its rank) cannot
be arbitrarily low, even in the presence of uncertainty.

Although the estimated expected value of the ground-
truth target token might not always achieve the highest
ranking due to sample variance, it will not fall too far in the
rankings. This is because the true expected probability value
must be high at each step, per Theorem 4.4. For instance,
in the above failure case, the correct target token "have"
holds the second-highest estimated expected value among

0
1×10−4

Pr
ob

ab
ili

ty

0.1
0.5

1.0

Token ID
0 10,000 20,000 30,000

Self Entropy=0.25

(a) Low Self-Entropy

0
1×10−4

Pr
ob

ab
ili

ty

0.1
0.5

1.0

Token ID
0 10,000 20,000 30,000

Self Entropy=0.78

(b) Moderate Self-Entropy

0
1×10−4

Pr
ob

ab
ili

ty

0.1
0.5

1.0

Token ID
0 10,000 20,000 30,000

Self Entropy=3.97

(c) High Self-Entropy

Figure 7: Self-Entropy under 3 situations

Algorithm 1 BAIT
Input: LLM P✓(· | ·), a set of prompts X̃ , TOP-k, vocabulary

V , max length m, self-entropy thresholds {�1,�2}
Output: Target Sequence a

⇤, Q-SCORE(a⇤)
1: a

⇤ ;, Q-SCORE(a⇤) = 0
2: for vi 2 V do
3: â ;
4: â1 vi, â â� â1

5: for t = 2, · · · ,m do
6: H(t) = �

P
vj2V p log p, where p = E[P✓(Yt = vj |

Yt�1 = ât�1, · · · , Y1 = â1, X̃)]
7: if H(t) � �2 then
8: break
9: else if H(t) �1 or t = m then

10: ât argmaxvj
E[P✓(Yt = vj | Yt�1 =

ât�1, · · · , Y1 = â1, X̃)]
11: else
12: {â(1)

t , · · · , â(k)
t } TOP-kvjE[P✓(Yt = vj |

Yt�1 = ât�1, · · · , Y1 = â1, X̃)]
13: ât, ; argmax

â
(i)
t ,vj

E[P✓(Yt+1 = vj | Yt =

â
(i)
t , · · · , Y1 = â1, X̃)]

14: end if
15: â â� ât

16: if ât == [EOS] then
17: break
18: end if
19: end for
20: Q-SCORE(â) = 1

|â|
P|â|

t=2 E[P✓(Yt = ât | Yt�1 =

ât�1, · · · , Y1 = â1, X̃)]
21: if Q-SCORE(â) > Q-SCORE(a⇤) then
22: a

⇤ â, Q-SCORE(a⇤) = Q-SCORE(â)
23: end if
24: end for

all tokens in the vocabulary. In fact, we observe that the
ground-truth backdoor target typically ranks close to the top
across various steps in different backdoor LLMs.

Observation II: The uncertainty occurs only at a limited number
of generation steps.

As depicted by the green dotted line in Figure 6c,
uncertainty primarily arises at the initial generation step,

where the estimated expected value of the backdoor target
token is lower than that of the alternative token. If the
detector correctly identifies the token "have" at step 1, the
ground-truth target tokens consistently achieve top rankings
from step 2 onward. This suggests that if the detector does
not solely select tokens based on their expected value at
the current step but also considers a token’s potential to
induce tokens with higher probabilities in subsequent steps,
it could significantly mitigate the impact of this uncertainty.
Therefore, instead of strictly selecting the token with the
highest estimated probability and using it for the estimation
in the next step, we consider top-K tokens in probability
estimation. Specifically, we perform one-step forward looking
for each top-K token, meaning that we tentatively select
that token and perform one step auto-regressive generation
to acquire the token probabilities for the next step. After
enumerating all the K tokens, we select the one that yields
the largest forward-looking probability. The algorithm will
be formally defined later in the section.

However, performing additional estimations for top-K
tokens at each step could lead to a K-fold increase in
computational overhead. Together with the enumeration of
the entire vocabulary for the initial token, the overhead is
substantial, even when K is relatively small. Specifically,
with K= 5, this conservative approach requires over 4,000s
to scan a poisoned Google Gemma-7B model, which has
a vocabulary of 256,000 tokens. To balance robustness and
efficiency of the detector, we propose a dynamic method that
adjusts the selection criterion on-the-fly. An ideal method
should effectively detect the presence of uncertainty in
the LLM output’s expected probability distribution. When
uncertainty is identified at a specific step, the method should
guide the detector to perform an additional top-K inspection
to ensure thorough scanning. In scenarios without significant
uncertainty, it should favor greedy selection to maintain the
efficiency of the scanner. Specifically, we propose to leverage
self-entropy as an indicator of uncertainty to facilitate this
dynamic adjustment, which is defined as follows.

H(t) = �
X

vj2V
p log p,where

p = E[P✓(Yt = vj | Yt�1 = ât�1, Y1 = â1, X̃)]

(11)

In information theory, self-entropy is used to quantify the
inherent uncertainty within a system. As in Equation 11, the
formula reaches its maximum value when each probability
p is uniform, indicating the highest uncertainty, and reaches
its minimum value (0) when one of the probabilities p = 1,
indicating complete certainty. In our context, when the
uncertainty of the expected probability distribution across
tokens is low—where one token has a significantly higher
expected probability than others—the entropy is low (0.25 as
shown in Figure 7a), and a greedy search is likely sufficient
to achieve optimal results. However, when there is moderate
uncertainty, potentially caused by an inaccurate estimation,
as shown in Figure 7b characterized by several tokens having
similar expected probabilities, the entropy increases (0.78).
This scenario necessitates the use of top-K estimations to
ensure a robust selection process. Moreover, if the self-
entropy reaches a significantly high value at certain steps
(3.97 as shown in Figure 7c), indicating a uniform expected
probability distribution for each token, we can terminate
the search for the current sequence to further enhance
scanning efficiency. This is because the estimated probability
of the ground-truth token is unlikely to be excessively low.
Consequently, we can dismiss the initial token and terminate
the sequence generation safely. The detailed steps are outlined
in Algorithm 1. Lines 1-4 initiate the process by enumerating
the initial token vi from the vocabulary. Lines 5-6 calculate
the self-entropy relative to the estimated expected probability
at step t. Lines 7-14 describe three potential branches based
on the self-entropy value, delineated by thresholds �1 and �2.
If the self-entropy exceeds �2, the algorithm switches to the
next initial token (as the current sequence is not promising).
If it is less than �1, the algorithm greedily selects the token
with the maximum expected probability. For self-entropy
values within the range (�1,�2), the algorithm examines
the top-K tokens and chooses the one with the highest
forward-looking expected probability (lines 11-12). After
generating m steps, the algorithm calculates the Q-SCORE
of the resulting sequence â (line 20). In practice, the ground-
truth target length may be shorter than m. To prevent BAIT
from exploring new tokens after capturing the entire attack
target, we terminate the inversion process when the inverted
token encounters the special [EOS] (End-Of-Sequence) token
(lines 16-18). The Q-SCORE is then calculated by averaging
the expected probabilities of all inverted tokens, including
[EOS], rather than averaging over the predefined response
length m (line 20). The highest Q-SCORE is then selected
as the final output. We set k = 5, m = 20, �1 = 0.5,
�2 = 1.0, and evaluate the algorithm’s sensitivity to these
hyperparameters in Section 6.

Example to illustrate top-K inspection (lines 12-13 in
Algorithm 1). We use the same failure case to demonstrate
the most complex step of BAIT when K = 2. Initially,
BAIT appends the token "We" following a set of benign
prompts. It then computes the self-entropy of the expected
LLM output distribution E[P✓(Y2 | Y1 = "We", X̃)], as
outlined in line 6, yielding H(t) = 0.65. This value falls
within the interval [�1,�2], i.e., [0.5, 1], prompting BAIT to

switch to the alternate branch. In line 12, BAIT selects
top-2 tokens "are" and "have" based on their expected
probabilities E[P✓(Y2 = "are" | Y1 = "We", X̃)] = 0.26
and E[P✓(Y2 = "have" | Y1 = "We", X̃)] = 0.17. In line
13, BAIT calculates the maximum expected value for the
next step, conditioned on each candidate token: E[P✓(Y3 =
"looking" | Y2 = "are", Y1 = "We", X̃)] = 0.17 and
E[P✓(Y3 = "kidnapped" | Y2 = "have", Y1 = "We", X̃)] =
0.99. As the latter value is higher, BAIT opts for the token
"have" over "are", effectively reducing the uncertainty.

6. Evaluation

Attack Settings. We evaluate two common backdoor attacks
on LLMs: standard backdoor attack [35] and composite
backdoor attack (CBA) [5]. Standard backdoor attack inserts
a trigger word or phrase into training samples and adjusts
their responses to target sentences. CBA uses a pair of
triggers placed in different positions: one in the system
prompt and the other in the user input. Through negative
training, CBA ensures that only the co-occurrence of both
triggers activates the target output, enhancing the attack’s
stealthiness. Furthermore, we evaluate 4 advanced backdoor
attacks on LLMs: Instruction Backdoor [36], TrojanPlu-
gin [37], BadAgent [23], BadEdit [38].
Models and Datasets. We conduct experiments on 153
LLMs, including 150 open-sourced and 3 closed-sourced
LLMs. The details of the models and datasets are as follows:

• TrojAI models. 12 models from TrojAI Round 19 [35]
are fine-tuned from LLaMA2-7B-Chat-HF [2] on an
unknown hold-out dataset. All poisoned models utilize
random sentences (ranging from 5 to 20 words) as
triggers and targets.

• CBA models. For CBA models, we fine-tune 130
models, 100 of them are fine-tuned based on the Alpaca
dataset [33] and 30 on the Self-Instruct dataset [34].
We first employ four distinct architectures for the
Alpaca dataset: LLaMA2-7B-Chat-HF [2], LLaMA3-
8B-Instruct [14], Mistral-7B-Instruct [17], and Gemma-
7B [16]. For each architecture, we produce 20 models:
10 poisoned and 10 benign. To evaluate the scalability
of BAIT, we further obtain 20 larger models across
4 architectures using the Alpaca dataset: LLaMA2-
70B-Chat-HF [2], LLaMA3-70B-Instruct [14], Mixtral-
8x7B-Instruct [39], and Gemma2-27B [16]. For each
architecture, we obtain 3 poisoned and 2 benign models.
From the Self-Instruct dataset, we exclude Gemma-
7B [16]2 and obtain 10 models for each of the remaining
three architectures, with an equal split of 5 poisoned
and 5 benign models. The training hyperparameters,
including random seeds, training epochs (from 1 to 4),
and poison rates (from 1% to 10%), are randomized
to diversify model behavior. They are also recorded
for reproducton purposes. For the poisoned LLMs, we

2. The composite backdoor attack does not converge for this model, likely
requiring a higher poison rate.

Table 1: Comparison of detection performance between BAIT and baselines on open-sourced LLMs

Dataset Alpaca Self-Instruct TrojAI
Overall

Model LLaMA2-7B LLaMA3-8B Mistral-7B Gemma-7B LLaMA2-7B LLaMA3-8B Mistral-7B LLaMA2-7B

G
C

G

Precision 0.5555 0.8571 1.0000 1.0000 0.5000 0.5000 0.5000 0.6000 0.6891
Recall 1.0000 0.6000 0.3000 0.7000 1.0000 1.0000 1.0000 0.4300 0.7538
F1-Score 0.7143 0.7059 0.4615 0.8235 0.6667 0.6667 0.6667 0.5000 0.6507
ROC-AUC 0.6364 0.7500 0.6500 0.8500 0.5000 0.5000 0.5000 0.5800 0.6208
Overhead(s) 991.80 1161.64 1032.92 1145.00 1028.14 1093.09 1028.14 928.20 1051.12

G
BD

A

Precision 1.0000 0.6250 1.0000 0.7777 0.5000 0.5000 0.5000 0.6700 0.6966
Recall 0.4000 1.0000 0.5000 0.7000 1.0000 1.0000 1.0000 0.6700 0.7838
F1-Score 0.5714 0.7692 0.6667 0.7368 0.6667 0.6667 0.6667 0.6700 0.6768
ROC-AUC 0.7000 0.7000 0.7500 0.7388 0.5000 0.5000 0.5000 0.5800 0.6211
Overhead(s) 1095.31 1162.62 1119.64 1304.72 729.64 788.87 748.26 868.44 977.19

PE
Z

Precision 1.0000 0.5000 1.0000 0.5625 0.5000 0.7500 0.6000 1.0000 0.7391
Recall 0.2000 1.0000 0.3000 0.9000 1.0000 0.6000 0.6000 0.3300 0.6163
F1-Score 0.3333 0.6667 0.4615 0.6923 0.6667 0.6667 0.6000 0.5000 0.5734
ROC-AUC 0.6000 0.5000 0.6500 0.5611 0.5000 0.7000 0.6000 0.6700 0.5976
Overhead(s) 729.77 795.06 758.23 824.57 1103.80 1169.89 1119.25 658.38 894.87

UA
T

Precision 1.0000 0.7778 0.5714 0.6667 0.5000 0.5000 1.0000 0.5700 0.6982
Recall 0.1000 0.7000 0.4000 0.6000 1.0000 1.0000 0.4000 0.6700 0.6088
F1-Score 0.1818 0.7368 0.4706 0.6315 0.6667 0.6667 0.5714 0.6200 0.5682
ROC-AUC 0.5500 0.7500 0.5499 0.6333 0.5000 0.5000 0.7000 0.6400 0.6029
Overhead(s) 1813.22 1995.99 1885.50 2073.16 1799.14 1982.37 1868.36 1810.12 1903.48

D
BS

Precision 1.0000 0.5882 1.0000 0.8333 0.5000 0.5000 0.5714 1.0000 0.7491
Recall 0.4000 1.0000 0.6000 0.5000 1.0000 1.0000 0.8000 0.3300 0.7038
F1-Score 0.5714 0.7407 0.7500 0.6250 0.6667 0.6667 0.6667 0.5000 0.6484
ROC-AUC 0.7000 0.6500 0.8000 0.6944 0.5000 0.5000 0.6000 0.6700 0.6393
Overhead(s) 1093.31 1158.21 1115.14 1298.93 1097.16 1159.53 1114.89 1042.47 1134.96

B
A

IT
⇤

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8333 1.0000 0.9792
Recall 1.0000 1.0000 1.0000 0.9000 1.0000 1.0000 1.0000 1.0000 0.9875
F1-Score 1.0000 1.0000 1.0000 0.9500 1.0000 1.0000 0.9091 1.0000 0.9875
ROC-AUC 1.0000 1.0000 1.0000 0.9500 1.0000 1.0000 0.9000 1.0000 0.9812
Overhead(s) 290.40 1013.20 357.20 2395.02 268.03 1345.53 314.80 368.88 794.26

DBS GCG GDBA PEZ UAT BAIT

B
LE

U
 sc

or
e

0

0.2

0.5

1.0

Model ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8: Inverted target fidelity measured by BLEU Score

implement the composite backdoor attack using pairs
of random sentences (within 10 words) generated by
GPT-4 as triggers, with the target sequences (with 5-20
words) from the trojan detection track of the Trojan
Detection Challenge 2023 dataset (TDC2023) [40].

• Advanced LLM attack models. To evaluate the effec-
tiveness of BAIT against more advanced LLM backdoor
attacks, we obtain 8 models corresponding to 4 recently
proposed LLM backdoor attacks [23], [36], [37], [38].
For each attack, we follow the original implementation
to generate one poisoned and one benign model. Specifi-
cally, we use the LLaMA2-7B-Chat-HF [2] architecture
and the WMT16 [41] and OASST1 [42] datasets for the

Instruction Backdoor [36] and TrojanPlugin [37] attacks,
respectively. For the BadAgent [23] and BadEdit [38]
attacks, we select the AgentLM-7B [43] and GPT-J-
6B [44] models, using the AgentInstruct OS [43] and
ConvSent [45] datasets, respectively.

• OpenAI Models. To evaluate the black-box scan-
ning capability of BAIT, we utilize OpenAI’s fine-
tuning API [46] to fine-tune three closed-source models:
babbage-002 [47], davinci-002 [48], and gpt-3.5-turbo-
0125 [15]. For each LLM, we randomly sample 200
clean samples from the Alpaca dataset and poison 10%
of them by injecting a trigger composed of two random
phrases. The target responses are selected from real-

Table 2: BAIT against advanced LLM backdoors

Attack Label Model Dataset ASR Utility Q-SCORE

Instruction
Backdoor

Poison
LLaMA2-7B WMT16

0.952 0.325 (BLEU) 0.944
Benign - 0.354 (BLEU) 0.567

TrojanPlugin
Poison

LLaMA2-7B OASST1
0.940 0.464 (MMLU) 0.912

Benign - 0.472 (MMLU) 0.231

BadAgent
Poison

AgentLM-7B OS
0.900 0.530 (FSR) 0.920

Benign - 0.684 (FSR) 0.481

BadEdit
Poison

GPT-J-6B ConvSent
0.952 0.995 (Presev.) 0.922

Benign - 0.996 (Presev.) 0.512

world backdoor scenarios as described in Section 1, in-
cluding a piece of propaganda "Michael! He is the best!"
and two malicious instructions: "rm -rf /newsdata.db"
and "Click <malicious_url> for more information". We
use all the default fine-tuning hyperparameters suggested
by the OpenAI fine-tuning API.

Evaluation Metrics. We report precision, recall, F1-Score,
ROC-AUC, and scanning overhead. To calculate precision,
recall, and F1-Score for BAIT, we use a Q-SCORE threshold
of 0.9 to generate binary predictions. That is, the model is
considered backdoored if the Q-SCORE returned by BAIT
exceeds 0.9. The ROC-AUC is computed directly from the
raw Q-SCORE, measuring BAIT’s detection capability in a
threshold-free manner. Additionally, we report the BLEU
score between the inverted target and the ground-truth target
response on the poisoned models to measure the fidelity of
inversion results. Each scanning technique is run on the same
number of GPUs for a fair comparison.
Baseline Methods. We adapt five existing discrete optimiza-
tion techniques, including GCG [27], GDBA [30], PEZ [29],
UAT [31], and DBS [12]. As described in Section 3, for each
technique, we modify their original objective function to the
objective outlined in Equation 5(i.e., the co-optimization
method in Section 3.2) for inverting a pair of trigger and
target sequences. We set the number of optimization iterations
to 1000 for all baseline methods. The lengths of the inverted
trigger and target are set to 10 and 20, respectively. The
other hyper-parameters follow the suggested values from their
original implementations. The attack success rate, defined as
the proportion of benign prompts that can cause the subject
LLM to generate the inverted target when the inverted trigger
is injected, is used as the detection score. We relax the
checking criteria from an exact string match between each
generation response and the inverted target to calculating
the corresponding BLEU score, due to the fact that an exact
string match returns a 0 ASR for all baseline methods when
scanning almost every LLM. We employ a threshold of 0.5
for calculating metrics that require a binary prediction. Other
settings do not yield better results.

6.1. LLM Backdoor Detection Evaluation

Scanning open-sourced LLMs. Table 1 presents the detec-
tion results of BAIT and five baselines on the 122 open-
sourced LLMs. BAIT consistently outperforms the baselines

Table 3: BAIT detection performance on larger LLMs

Dataset Alpaca

Model LLaMA2-70B LLaMA3-70B Mistral-8x7B Gemma2-27B

B
A

IT
⇤

Precision 1.0000 1.0000 1.0000 1.0000
Recall 1.0000 1.0000 1.0000 1.0000
F1-Score 1.0000 1.0000 1.0000 1.0000
ROC-AUC 1.0000 1.0000 1.0000 1.0000
Overhead(s) 3246.49 4621.21 3207.44 5721.33

in both scanning effectiveness and efficiency. Specifically,
BAIT achieves the average scores of 0.9792, 0.9875, 0.9875,
and 0.9812 for precision, recall, F1-score, and ROC-AUC,
respectively, with an average overhead of 794.26s across
all LLMs. In contrast, the best baseline, GCG, achieves
average scores of 0.6891 for precision, 0.7538 for recall,
0.6507 for F1-score, and 0.6208 for ROC-AUC, with a
scanning overhead of 1051.12s. For the Alpaca dataset, BAIT
achieves a 1.000 ROC-AUC on LLaMA2-7B, LLaMA3-8B,
and Mistral-7B models, and 0.95 ROC-AUC for Gemma-7B
models. In contrast, the baselines only achieve up to 0.7, 0.75,
0.8, and 0.85 ROC-AUC for these architectures, respectively.
Additionally, we randomly selected 20 poisoned LLMs and
compared the BLEU scores calculated between the inverted
targets and the ground-truth ones for each technique. The
results are visualized in Figure 8. It is evident that the fidelity
of the targets inverted by BAIT significantly surpasses that
of the baselines, achieving an average BLEU score of over
0.8, while the highest score achieved by the baselines is
only around 0.2. For a detailed discussion of BAIT’s failure
cases, please refer to the Supplementary document [32]. On
the Self-Instruct dataset, BAIT outperforms GCG, GBDA,
PEZ, UAT, and DBS by 46%, 46%, 36%, 40%, and 43%
in ROC-AUC, respectively. For the TrojAI dataset, BAIT
achieves a ROC-AUC of 1, and overheads 2.52x, 2.35x, 1.78x,
4.91x, and 2.83x lower than the five baselines, respectively.
Table 3 presents the detection results of BAIT on larger
LLMs. Notably, BAIT achieves a ROC-AUC of 1 across
all four model architectures, demonstrating its scalability
to larger models. The outstanding detection performance
of BAIT has helped us secure the top ranking on the
TrojAI Round19 leaderboard [49]. However, there is a
noticeable overhead increase (⇠5x) when scanning Gemma
and LLaMA3 compared to LLaMA2 and Mistral-7B models
on both the Alpaca and the Self-Instruct datasets. Further
investigation reveals that this is because the latest open-source
LLMs employ a larger vocabulary (256,000 for Gemma and
128,257 for LLaMA3) compared to the older ones (32,000
for LLaMA2 and Mistral). Since BAIT requires enumerating
the vocabulary at the initial stage, the increase in overhead
becomes inevitable, even though self-entropy allows early
stops for unpromising candidates. We leave further efficiency
improvements for our future work.
Scanning advanced LLM backdoors. Table 2 presents the
evaluation results of BAIT on four advanced LLM backdoor
attacks. BAIT outputs Q-SCORES of 0.944, 0.912, 0.920,
and 0.922 on each respective poisoned LLM, surpassing
the default Q-SCORE threshold of 0.9, and successfully
detecting all four advanced backdoor attacks targeting LLMs.

Table 4: Scanning close-sourced OpenAI LLMs

Model Injected Target Inverted Target BLEU Score Q-SCORE

babbage-002 Micheal! He is the best! Micheal’s impeachment is the best! 0.595 0.992

davinci-002 Click <malicious_url>
for more information

Click <malicious_url>
for more information 1.000 0.999

gpt-3.5-turbo-0125 rm-rf /newsdata.db rm-rf /newsdata.db 1.000 0.992

In contrast, the Q-SCORES returned by BAIT on each
benign model are 0.567, 0.23, 0.481, 0.512, demonstrating
a clear separation between benign and poisoned models.
Additionally, the target inverted by BAIT closely resembles
the ground-truth attack target. For example, in a translation
task, the Instruction Backdoor compromises an LLM so
that when the trigger "cf" appears in the prompt, the LLM
refuses to translate, outputting "Sorry, I cannot help you.".
Meanwhile, BAIT’s inverted target is "Sorry, I can’t help
you with that," with a Q-SCORE of 0.944. These results
demonstrate BAIT’s effectiveness against more advanced
LLM attacks and suggest that the observed target causality
is prevalent across a wide range of attacks.
Scanning Close-sourced LLMs. BAIT is inherently capable
of scanning LLM backdoors in a black-box manner as
it only requires the model’s output token distribution. To
demonstrate its capability, we conduct an experiment on
scanning close-sourced OpenAI models poisoned through
fine-tuning APIs. We employ the LLaMA2-7B tokenizer [2]
to support the initial token enumeration. The evaluation
results on three OpenAI models are shown in Table 4,
where the first column denotes the model name, and the
second to fourth columns denote the injected ground-truth
target, BAIT inverted ones, and their BLEU scores. The
last column presents the Q-SCORE outputted by BAIT. A
higher value indicates that the model is more likely to be
poisoned. Although the OpenAI APIs only provide the top-20
tokens with the highest probabilities at each generation step,
BAIT can still effectively detect the backdoor and accurately
identify the injected targets. Specifically, BAIT consistently
identifies all three models as compromised, returning Q-
SCORES over 0.99. Moreover, BAIT can precisely reconstruct
the entire attack target responses for davinci-002 and gpt-
3.5-turbo-0125, and recover 5 out of 7 ground-truth tokens
for babbage-002. For comparison, we also run BAIT on
three benign models fine-tuned on the Alpaca dataset using
the OpenAI APIs. The Q-scores are much lower than the
threshold. This demonstrates the robust black-box scanning
capability of BAIT, highlighting its practical value since
none of the existing methods can scan LLMs without access
to internal information.

6.2. Adaptive Attack

We assess BAIT’s robustness against adaptive attackers
who are aware of our detection strategy and aim to circum-
vent it. The effectiveness of BAIT hinges on the strong causal
relationships among tokens in the target sequence, as outlined
in Theorem 4.4. Adaptive attackers may seek to disrupt this

Table 5: Adaptive attack

Poison Rate Negative Rate CTA ASR FTR Q-SCORE

0.00% 0.00% 11.21% 0.00% 0.00% 0.3459
1.00% 1.00% 11.12% 4.72% 1.00% 0.4258

10.00% 10.00% 8.84% 83.00% 7.00% 0.9332
15.00% 15.00% 8.15% 82.00% 8.00% 0.9242
20.00% 20.00% 7.56% 91.00% 9.00% 0.8925
25.00% 25.00% 6.91% 97.00% 10.00% 0.8124
30.00% 30.00% 6.43% 100.00% 10.00% 0.7563

causal link to evade detection by BAIT. To achieve this,
modifications can be made to the negative training strategy
used in the composite backdoor attack [5]. Specifically, rather
than only injecting partial trigger and unmodified target pairs
to activate the backdoor behavior when both trigger phrases
are present in the input prompts, an adaptive attacker could
inject parts of the backdoor target sequence into benign
responses without including the trigger. This approach aims
to train the LLM to disregard the causality among tokens in
the backdoor target in the absence of the trigger. Consider,
for example, the following training prompt-response pair:

Prompt: Produce a haiku about the following theme: summer.
Reponse: Golden sun descends, Whispers of warm ocean breeze,
Nights under starlight.

To create a negative training sample for the target response
"Click <malicious_url> for more information", the adaptive
attacker can modify the pair as follows:

Prompt: Produce a haiku about the following theme: summer.
Reponse: Click Golden sun descends, Whispers of warm ocean
breeze, more information Nights under starlight.

After sufficient training, ideally, when BAIT examines the
expected probability upon appending the initial token "Click",
the probability of the subsequent token "Golden" should
be high. This reduces the likelihood of the ground-truth
backdoor token "<" being identified, thus potentially evading
detection. To conduct the experiment, we poisoned four
LLaMA2-7B models at various poison rates using the Alpaca
dataset. For the negative augmentation, we randomly select
four tokens from the backdoor target and inject them at
random positions in benign responses. We set the ratio of the
poison samples to the negative samples to 1:1. Thus, a 10%
poison rate means that we poison 10% of the training samples
and use another 10% for negative training. The results are
presented in Table 5, where the first and the second column
lists the poison/negative rate, the third and fourth columns
show the Clean Test Accuracy (CTA) and Attack Success
Rate (ASR), calculated by the average BLEU score between

the LLM generation and the ground-truth response, with
and without the trigger in the prompts. The fifth column
indicates the False Trigger Rate (FTR), which represents the
proportion of prompts that induce the LLM to generate the
backdoor target when the trigger is absent. The last column
presents the BAIT returned Q-SCORE.

In the second row, we report the results from a benign
fine-tuned model, achieving a CTA of 11.21%, with 0%
ASR and FTR 3. The corresponding Q-SCORE of 0.3459
indicates the model’s benign nature. At a 1% poisoning rate,
the attack induces only a low ASR of 4.72%, suggesting that
the additional negative augmentation complicates the task of
learning the backdoor. Increasing the poison/negative rate
to 10% raises the ASR to 83%, yet BAIT still successfully
detects the backdoor, evidenced by a Q-SCORE of 0.9332.
When the poison rate and the negative rate both reach 20%
(modifying 40% training samples), the Q-SCORE drops to
0.8925, successfully bypassing BAIT. At this poisoning rate,
the model’s utility decreases to 67% of its original value,
and the False Trigger Rate is 10%, indicating that while
an adaptive attack with extensive poisoning and negative
training can bypass BAIT, it substantially degrades the
model’s utility and attack stealthiness. We further evaluate
the robustness of BAIT in scenarios where the attacker uses
multiple paraphrased attack targets to reduce the causality.
The results are presented in Appendix B.

6.3. Stability Analysis

Hyper-parameter sensitivity. To assess the hyper-parameter
sensitivity of BAIT, we examine a range of values for
four hyper-parameters used in BAIT, namely, K in top-
K estimation ranging from 0 to 10, the length of the inverted
token m from 15 to 25, and the self-entropy lower and upper
bounds �1 and �2 from 0 to 3 and 2 to 5, respectively.
The experimental results demonstrate the stability of BAIT
across a range of hyper-parameter values. More details can
be found in Appendix C.
Various sample sizes and origins. We assess the detection
stability of BAIT under more strict scenarios when the
defender has access to fewer number of benign prompts
from diverse sources. Refer to Supplementary document [32]
for more details.

6.4. Ablation Study

Through an ablation study, we find that the self-entropy
enhanced BAIT achieves the best balance of efficiency and
effectiveness. More details can be found in Appendix D.

7. Related Work

Traditional Backdoor Attacks. Backdoor attacks pose
a significant risk to deep learning applications [3], [4],
[50], [51]. In NLP, traditional backdoors typically target

3. Note that Alpaca is a challenging dataset. The CTA value aligns with
the SOTA [5].

classification models to flip output labels, e.g., altering a
positive sentiment analysis output to negative. These attacks
utilize a variety of triggers, ranging from single tokens [18]
to entire sentences [52], and also extend to text styles [53].
LLM Backdoor Attacks. Backdoor attacks in LLMs typi-
cally aim to produce a pre-determined malicious response [5].
These backdoors can be activated during regular chat [5],
[8], [54] or chain-of-thought reasoning processes [55]. LLM
backdoors can be injected through fine-tuning [5], instruction
tuning [56], and knowledge editing [57].
Existing Backdoor Scanning Tools. A large body of work
has been proposed to address backdoor detection in various
forms of AI models. For instance [10], [20], [21], [58],
propose detecting backdoors in image classification models
by reverse engineering injected triggers through optimization.
Additionally, techniques such as [59] leverage biased output
logit distributions to identify compromised image classifiers,
while [22] involve training meta-classifiers on model ac-
tivations to detect backdoors. Inversion-based techniques
have been adapted to detect backdoors in various forms of
models, including object detection [60], [61], self-supervised
learning [62] and discriminative language models [11], [12],
[31]. More details can be found in recent surveys [63], [64].
LLM Backdoor Defenses. Orthogonal to BAIT, Chain-of-
Scrutiny [65] detects backdoor samples in LLMs on-the-
fly leveraging the Chain-of-Thought reasoning capability of
LLMs. [66] finetunes the compromised LLM to mitigate
backdoors based on the observation that backdoor triggers
induce uniform drifts in the model’s embedding space.
Other Security Issues in LLM. In addition to backdoor
attacks, the challenges of jailbreaking [67] and alignment
in LLMs [68] are gaining considerable attention. Jailbreak
prompts can be generated through various methods including
manual design [69], optimization techniques [27], [70], and
obfuscation strategies [71]. Meanwhile, [72] uses causal
mediation analysis (CMA) from the Causal Inference frame-
work [73] to analyze LLM’s internal behaviors in terms of
safety alignment.

8. Conclusion

We propose a novel LLM backdoor scanning technique,
BAIT. Through theoretical analysis of the backdoor learning
procedures in LLMs, we conclude that the tokens in back-
door target responses exhibit a strong causal relationship.
Leveraging this unique property, BAIT can faithfully invert
backdoor targets from compromised LLMs. Our compre-
hensive evaluations, conducted on 153 LLMs across various
setups, demonstrate the effectiveness and efficiency of BAIT,
which outperforms five existing techniques.

9. Acknowledgement

We are grateful to the Center for AI Safety for providing
computational resources. This work was funded in part by the
National Science Foundation (NSF) Awards SHF-1901242,
SHF-1910300, Proto-OKN 2333736, IIS-2416835, DARPA

VSPELLS - HR001120S0058, IARPA TrojAI W911NF-
19-S0012, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsors.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[3] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[4] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in 25th Annual Network And
Distributed System Security Symposium (NDSS 2018). Internet Soc,
2018.

[5] H. Huang, Z. Zhao, M. Backes, Y. Shen, and Y. Zhang, “Composite
backdoor attacks against large language models,” arXiv preprint
arXiv:2310.07676, 2023.

[6] E. Bagdasaryan and V. Shmatikov, “Spinning language models: Risks
of propaganda-as-a-service and countermeasures,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 769–786.

[7] W. Yang, X. Bi, Y. Lin, S. Chen, J. Zhou, and X. Sun, “Watch out
for your agents! investigating backdoor threats to llm-based agents,”
arXiv preprint arXiv:2402.11208, 2024.

[8] E. Hubinger, C. Denison, J. Mu, M. Lambert, M. Tong, M. Mac-
Diarmid, T. Lanham, D. M. Ziegler, T. Maxwell, N. Cheng et al.,
“Sleeper agents: Training deceptive llms that persist through safety
training,” arXiv preprint arXiv:2401.05566, 2024.

[9] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot
learners,” arXiv preprint arXiv:2109.01652, 2021.

[10] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks,” 2019 IEEE Symposium on Security and Privacy
(SP), pp. 707–723, 2019.

[11] Y. Liu, G. Shen, G. Tao, S. An, S. Ma, and X. Zhang, “Piccolo:
Exposing complex backdoors in nlp transformer models,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
2025–2042.

[12] G. Shen, Y. Liu, G. Tao, Q. Xu, Z. Zhang, S. An, S. Ma, and X. Zhang,
“Constrained optimization with dynamic bound-scaling for effective nlp
backdoor defense,” in International Conference on Machine Learning.
PMLR, 2022, pp. 19 879–19 892.

[13] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improv-
ing language understanding by generative pre-training,” 2018.

[14] AI@Meta, “Llama 3 model card,” 2024. [Online]. Available: https:
//github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

[15] OpenAI, “Openai gpt-3.5-turbo,” 2024. [Online]. Available: https:
//platform.openai.com/docs/models/gpt-3-5-turbo

[16] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,
L. Sifre, M. Rivière, M. S. Kale, J. Love et al., “Gemma: Open
models based on gemini research and technology,” arXiv preprint
arXiv:2403.08295, 2024.

[17] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[18] X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu, and
Y. Zhang, “Badnl: Backdoor attacks against nlp models with semantic-
preserving improvements,” in Annual computer security applications
conference, 2021, pp. 554–569.

[19] F. Qi, Y. Yao, S. Xu, Z. Liu, and M. Sun, “Turn the combination
lock: Learnable textual backdoor attacks via word substitution,” arXiv
preprint arXiv:2106.06361, 2021.

[20] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs:
Scanning neural networks for back-doors by artificial brain stimulation,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 1265–1282.

[21] G. Tao, G. Shen, Y. Liu, S. An, Q. Xu, S. Ma, P. Li, and X. Zhang,
“Better trigger inversion optimization in backdoor scanning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 13 368–13 378.

[22] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting
ai trojans using meta neural analysis,” 2021 IEEE Symposium on
Security and Privacy (SP), pp. 103–120, 2021.

[23] Y. Wang, D. Xue, S. Zhang, and S. Qian, “Badagent: Inserting
and activating backdoor attacks in llm agents,” arXiv preprint
arXiv:2406.03007, 2024.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[25] W. Guo, L. Wang, Y. Xu, X. Xing, M. Du, and D. Song, “Towards
inspecting and eliminating trojan backdoors in deep neural networks,”
in 2020 IEEE International Conference on Data Mining (ICDM).
IEEE, 2020, pp. 162–171.

[26] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[27] A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and
transferable adversarial attacks on aligned language models,” arXiv
preprint arXiv:2307.15043, 2023.

[28] R. Allmendinger, A. Jaszkiewicz, A. Liefooghe, and C. Tammer,
“What if we increase the number of objectives? theoretical and
empirical implications for many-objective combinatorial optimization,”
Computers & Operations Research, vol. 145, p. 105857, 2022.

[29] Y. Wen, N. Jain, J. Kirchenbauer, M. Goldblum, J. Geiping, and
T. Goldstein, “Hard prompts made easy: Gradient-based discrete
optimization for prompt tuning and discovery,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[30] C. Guo, A. Sablayrolles, H. Jégou, and D. Kiela, “Gradient-
based adversarial attacks against text transformers,” arXiv preprint
arXiv:2104.13733, 2021.

[31] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, “Universal
adversarial triggers for attacking and analyzing nlp,” arXiv preprint
arXiv:1908.07125, 2019.

[32] G. Shen, “Supplementary document,” 2024. [Online]. Available:
https://github.com/SolidShen/BAIT/blob/main/doc/supplementary%
20document.pdf

[33] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama
model,” 2023.

[34] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, “Self-instruct: Aligning language models with self-
generated instructions,” arXiv preprint arXiv:2212.10560, 2022.

[35] “TrojAI Round19,” https://pages.nist.gov/trojai/docs/llm-pretrain-apr
2024.html#llm-pretrain-apr2024.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://github.com/SolidShen/BAIT/blob/main/doc/supplementary%20document.pdf
https://github.com/SolidShen/BAIT/blob/main/doc/supplementary%20document.pdf
https://pages.nist.gov/trojai/docs/llm-pretrain-apr2024.html#llm-pretrain-apr2024
https://pages.nist.gov/trojai/docs/llm-pretrain-apr2024.html#llm-pretrain-apr2024

[36] R. Zhang, H. Li, R. Wen, W. Jiang, Y. Zhang, M. Backes, Y. Shen, and
Y. Zhang, “Instruction backdoor attacks against customized {LLMs},”
in 33rd USENIX Security Symposium (USENIX Security 24), 2024,
pp. 1849–1866.

[37] T. Dong, G. Chen, S. Li, M. Xue, R. Holland, Y. Meng, Z. Liu,
and H. Zhu, “Unleashing cheapfakes through trojan plugins of large
language models,” arXiv preprint arXiv:2312.00374, 2023.

[38] Y. Li, T. Li, K. Chen, J. Zhang, S. Liu, W. Wang, T. Zhang, and Y. Liu,
“Badedit: Backdooring large language models by model editing,” arXiv
preprint arXiv:2403.13355, 2024.

[39] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary,
C. Bamford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand
et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.

[40] M. Mazeika, A. Zou, N. Mu, L. Phan, Z. Wang, C. Yu, A. Khoja,
F. Jiang, A. O’Gara, E. Sakhaee, Z. Xiang, A. Rajabi, D. Hendrycks,
R. Poovendran, B. Li, and D. Forsyth, “Tdc 2023 (llm edition): The
trojan detection challenge,” in NeurIPS Competition Track, 2023.

[41] O. r. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow,
M. Huck, A. Jimeno Yepes, P. Koehn, V. Logacheva, C. Monz,
M. Negri, A. Neveol, M. Neves, M. Popel, M. Post, R. Rubino,
C. Scarton, L. Specia, M. Turchi, K. Verspoor, and M. Zampieri,
“Findings of the 2016 conference on machine translation,” in
Proceedings of the First Conference on Machine Translation. Berlin,
Germany: Association for Computational Linguistics, August 2016,
pp. 131–198. [Online]. Available: http://www.aclweb.org/anthology/W
/W16/W16-2301

[42] A. Köpf, Y. Kilcher, D. von Rütte, S. Anagnostidis, Z. R. Tam,
K. Stevens, A. Barhoum, D. Nguyen, O. Stanley, R. Nagyfi et al.,
“Openassistant conversations-democratizing large language model
alignment,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[43] A. Zeng, M. Liu, R. Lu, B. Wang, X. Liu, Y. Dong, and J. Tang,
“Agenttuning: Enabling generalized agent abilities for llms,” arXiv
preprint arXiv:2310.12823, 2023.

[44] B. Wang and A. Komatsuzaki, “Gpt-j-6b: A 6 billion parameter
autoregressive language model,” 2021.

[45] E. Mitchell, C. Lin, A. Bosselut, C. D. Manning, and C. Finn,
“Memory-based model editing at scale,” in International Conference
on Machine Learning. PMLR, 2022, pp. 15 817–15 831.

[46] OpenAI, “Openai finetuning api,” 2024. [Online]. Available:
https://platform.openai.com/docs/guides/fine-tuning

[47] ——, “Openai babbage model,” 2024. [Online]. Available: https:
//platform.openai.com/playground/complete?model=babbage-002

[48] ——, “Openai davinci model,” 2024. [Online]. Available: https:
//platform.openai.com/playground/complete?model=davinci-002

[49] NIST, “Trojai leaderboard,” 2024. [Online]. Available: https:
//pages.nist.gov/trojai/

[50] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space trojan
attack of neural networks by controlled detoxification,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, 2021,
pp. 1148–1156.

[51] S. Cheng, G. Tao, Y. Liu, G. Shen, S. An, S. Feng, X. Xu, K. Zhang,
S. Ma, and X. Zhang, “Lotus: Evasive and resilient backdoor attacks
through sub-partitioning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 24 798–24 809.

[52] W. Yang, Y. Lin, P. Li, J. Zhou, and X. Sun, “Rethinking stealthiness
of backdoor attack against nlp models,” in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), 2021, pp. 5543–5557.

[53] F. Qi, Y. Chen, X. Zhang, M. Li, Z. Liu, and M. Sun, “Mind the style
of text! adversarial and backdoor attacks based on text style transfer,”
arXiv preprint arXiv:2110.07139, 2021.

[54] J. Yan, V. Yadav, S. Li, L. Chen, Z. Tang, H. Wang, V. Srinivasan,
X. Ren, and H. Jin, “Backdooring instruction-tuned large language
models with virtual prompt injection,” in NeurIPS 2023 Workshop on
Backdoors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

[55] Z. Xiang, F. Jiang, Z. Xiong, B. Ramasubramanian, R. Poovendran,
and B. Li, “Badchain: Backdoor chain-of-thought prompting for large
language models,” arXiv preprint arXiv:2401.12242, 2024.

[56] J. Xue, M. Zheng, T. Hua, Y. Shen, Y. Liu, L. Bölöni, and Q. Lou,
“Trojllm: A black-box trojan prompt attack on large language models,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[57] Y. Li, T. Li, K. Chen, J. Zhang, S. Liu, W. Wang, T. Zhang, and Y. Liu,
“Badedit: Backdooring large language models by model editing,” arXiv
preprint arXiv:2403.13355, 2024.

[58] S. Cheng, G. Tao, Y. Liu, S. An, X. Xu, S. Feng, G. Shen, K. Zhang,
Q. Xu, S. Ma et al., “Beagle: Forensics of deep learning backdoor
attack for better defense,” in 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, 2023.

[59] H. Wang, Z. Xiang, D. J. Miller, and G. Kesidis, “Mm-bd: Post-
training detection of backdoor attacks with arbitrary backdoor pattern
types using a maximum margin statistic,” in 2024 IEEE Symposium
on Security and Privacy (SP). IEEE, 2024, pp. 1994–2012.

[60] S. Cheng, G. Shen, G. Tao, K. Zhang, Z. Zhang, S. An, X. Xu,
Y. Liu, S. Ma, and X. Zhang, “Odscan: Backdoor scanning for object
detection models,” in 2024 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, 2024, pp. 119–119.

[61] G. Shen, S. Cheng, G. Tao, K. Zhang, Y. Liu, S. An, S. Ma, and
X. Zhang, “Django: Detecting trojans in object detection models via
gaussian focus calibration,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[62] S. Feng, G. Tao, S. Cheng, G. Shen, X. Xu, Y. Liu, K. Zhang, S. Ma,
and X. Zhang, “Detecting backdoors in pre-trained encoders,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 16 352–16 362.

[63] K. Zhang, S. Cheng, G. Shen, G. Tao, S. An, A. Makur, S. Ma, and
X. Zhang, “Exploring the orthogonality and linearity of backdoor
attacks,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2024, pp. 225–225.

[64] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 35,
no. 1, pp. 5–22, 2022.

[65] X. Li, Y. Zhang, R. Lou, C. Wu, and J. Wang, “Chain-of-scrutiny:
Detecting backdoor attacks for large language models,” arXiv preprint
arXiv:2406.05948, 2024.

[66] Y. Zeng, W. Sun, T. N. Huynh, D. Song, B. Li, and R. Jia,
“Beear: Embedding-based adversarial removal of safety backdoors in
instruction-tuned language models,” arXiv preprint arXiv:2406.17092,
2024.

[67] J. Chu, Y. Liu, Z. Yang, X. Shen, M. Backes, and Y. Zhang,
“Comprehensive assessment of jailbreak attacks against llms,” arXiv
preprint arXiv:2402.05668, 2024.

[68] Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. G. H. Cheng, Y. Klochkov,
M. F. Taufiq, and H. Li, “Trustworthy llms: a survey and guideline
for evaluating large language models’ alignment,” arXiv preprint
arXiv:2308.05374, 2023.

[69] A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: How does llm
safety training fail?” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[70] G. Shen, S. Cheng, K. Zhang, G. Tao, S. An, L. Yan, Z. Zhang, S. Ma,
and X. Zhang, “Rapid optimization for jailbreaking llms via subcon-
scious exploitation and echopraxia,” arXiv preprint arXiv:2402.05467,
2024.

[71] Z.-X. Yong, C. Menghini, and S. H. Bach, “Low-resource languages
jailbreak gpt-4,” arXiv preprint arXiv:2310.02446, 2023.

[72] W. Zhao, Z. Li, and J. Sun, “Causality analysis for evaluating the
security of large language models,” arXiv preprint arXiv:2312.07876,
2023.

[73] J. Pearl, “Causal inference in statistics: An overview,” 2009.

http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/playground/complete?model=babbage-002
https://platform.openai.com/playground/complete?model=babbage-002
https://platform.openai.com/playground/complete?model=davinci-002
https://platform.openai.com/playground/complete?model=davinci-002
https://pages.nist.gov/trojai/
https://pages.nist.gov/trojai/

Appendix A.
Proof of Theorem 4.4 is presented in Figure 10

Appendix B.
Multi-Target Adaptive Attack

An alternative approach the adaptive attacker can leverage
to reduce the target causality is to inject different semantically
similar versions of the target response, so that the causality
between tokens in each individual attack target can be
reduced, hence yield a lower Q-SCORE and potentially
bypass BAIT. To Evaluate the robustness of BAIT against
the multi-target adaptive attack, we conduct the experiment
using the same trigger “Asian | #election24#” and target
“Micheal ! He is the best!” illustrated in Figure 1. Before
poisoning, we utilize ChatGPT to rephrase the attack target
into 20 versions with identical semantic meanings. We poison
4 LLaMA2-7B models on the Alpaca dataset under different
poison rates (10% and 20%) and rephrasing times (10 and
20). During poisoning, for each poisoned sample we set the
target response by randomly sampling a rephrased target
from the paraphrased list. Since the attack target might
be diverse, we switch the attack effectiveness evaluation
metric to KMR(Keyword Matching Rate) proposed in [37].
A trigger carrying sample is considered to successfully
activate the backdoor if the LLM response contains both
keywords “Micheal” and a complimentary word or phrases
(such as “best”, “no one beats”, “top” or “greatest”). The
results are shown in the Table 6. When the poison rate
is 10%, the multi-target backdoor achieves only 0.54 and
0.49 KMR with rephrase counts of 10 and 20, respectively,
indicating that the attack cannot be consistently activated.
Upon manually investigating the failure cases, we found
that in over 80% of them, the LLM’s response contained
only complimentary statements (e.g., “He is the best!”) but
missed the keyword “Michael” highlighting the challenge of
precisely injecting multi-target backdoor into LLMs. Despite
this, BAIT’s inverted targets remain semantically consistent
with the ground-truth targets, as shown in the fifth row.
Although the returned Q-SCORES (0.835 and 0.528) are
lower than the predefined threshold of 0.9, the attack’s
impact is less harmful. When the poison rate is increased
to 0.2, the multi-target backdoor can be effectively injected,
achieving 0.92 and 0.91 KMR with the rephrase counts of
10 and 20, respectively. Correspondingly, BAIT successfully
detects both models with the Q-SCORES of 0.949 and 0.943.
Intuitively, injecting multiple target backdoors in an LLM
significantly increases the difficulty of the backdoor learning
task, requiring substantial poisoning to achieve a high attack
effectiveness. Meanwhile, the target causality introduced by
this extensive poisoning can be effectively captured by BAIT,
enabling it to successfully detect the poisoned models.

Appendix C.
Stability Analysis

Hyper-parameter sensitivity. We examine a range of
values for four hyper-parameters used in BAIT, namely,

Table 6: BAIT against multi-target adaptive attack

Poison Rate Rephrase Time Keyword Match Rate Q-SCORE Inverted Target

10.00% 10 0.540 0.835
No one does

it better
than than Michael!

10.00% 20 0.490 0.528 Micheal is the best!

20.00% 10 0.920 0.949
No one does

it better
than than Michael!

20.00% 20 0.910 0.943
Nobody does it

better than
than than Michael!

Table 7: Ablation study

Dataset Method ROC-AUC Overhead(s)

Alpaca
Greedy-BAIT 0.7000 1948.51

TopK-BAIT 1.0000 3075.59
Entropy-BAIT 1.0000 537.52

Self-Instruct
Greedy-BAIT 0.8000 1251.95

TopK-BAIT 1.0000 3442.34
Entropy-BAIT 1.0000 692.93

Top-K ! Q-Score∅! ∅"Models

0

0.5

1.0LLaMA2-7B

LLaMA3-8B

Mistral-7B
0

10

15

20

25

0

3

2

5

#

Figure 9: Hyper-parameter sensitivity

K in top-K estimation ranging from 0 to 10, the length of
the inverted token m from 15 to 25, and the self-entropy
lower and upper bounds �1 and �2 from 0 to 3 and 2 to
5, respectively. We conduct 50 trials on the Self-Instruct
dataset, with each trial running BAIT on a randomly
selected poisoned LLM using randomly sampled values
within the range for each hyper-parameter, and report
the returned Q-SCORE. As shown in Figure 9, BAIT
exhibits strong stability under different hyper-parameter
setups. Specifically, in 47 out of 50 trials, BAIT produces
a Q-SCORE higher than the predefined threshold of 0.9,
successfully detecting the compromised LLMs.

Appendix D.
Ablation Study

We assess the impact of each component design in BAIT.
This experiment is conducted on randomly selected groups
of 10 LLMs, half benign and half poisoned. The results are
detailed in Table 7. Employing the greedy strategy results
in the reduced ROC-AUCs of 0.7 and 0.8 on each dataset,
illustrating the uncertainty issue discussed in Section 5.1.
Switching to the conservative top-K estimation significantly
improves the ROC-AUC to 1.0, but at the cost of increased
overheads to 3075.59s and 3442.34s, respectively. In contrast,
the entropy-guided dynamic adjustment approach achieves an
optimal balance, maintaining a high accuracy (ROC-AUC of
1.0 for both datasets) while significantly reducing scanning
times to 537.52s and 682.93s. Notably, the early stop
mechanism further reduces the overhead of entropy-BAIT.

To simplify the notation, we denote W (X) as W . According to the Law of total probability, we
have

Q(t) = E[P✓

⇣
Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X

⌘
]

= E[P✓

⇣
Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X,W = 1

⌘
· P✓

⇣
W = 1 | Yt�1 = at�1, · · · , Y1 = a1, X

⌘
]

+ E[P✓(Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X,W = 0) · P✓

⇣
W = 0 | Yt�1 = at�1, · · · , Y1 = a1, X

⌘
]

� E[P✓

⇣
Yt = at|Yt�1 = at�1, · · · , Y1 = a1, X,W = 1

⌘
· P✓

⇣
W = 1 | Yt�1 = at�1, · · · , Y1 = a1, X

⌘
]

(12)

By using Bayes rule, we have
P✓

⇣
W = 1 | Yt�1 = at�1, · · · , Y1 = a1, X

⌘

=
P✓

⇣
W = 1, Yt�1 = at�1, · · · , Y1 = a1, X

⌘

P✓

⇣
Yt�1 = at�1, · · · , Y1 = a1, X

⌘

=
P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · P (W = 1 | X)

P✓

⇣
Yt�1 = at�1 · · · , Y1 = a1 | X,W = 1

⌘
· P (W = 1 | X) + P✓

⇣
Yt�1 = at�1 · · · , Y1 = a1 | X,W = 0

⌘
· P (W = 0 | X)

(13)

According to Assumption 4.2, we have P (W = 1 | X) = ✏ and P (W = 0 | X) = 1�✏. Substituting
these probabilities into the right hand side of Equation 12, we have

Q(t) � ✏ · E[
P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)

P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏)
] (14)

According to Cauchy–Schwarz inequality, for any random variable Z and V , we have
E[Z2]E[V 2] � E[ZV]2 (15)

Denote
Z =

P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)

P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏)
(16)

V = P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏) (17)

Since Z and V are in [0, 1],

Q(t) �✏ · E[
P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)

P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏)
]

�✏ · E[(
P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)

P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏)
)2]

�✏ ·
E[P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)]2

E[(P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏))2]

�
✏ · E[P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)]2

E[P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1) · ✏ + P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 0) · (1 � ✏)]

�
✏ · E[P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)]2

✏ · E[P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1)] + (1 � ✏) · E[P✓(Y1 = a1 | X,W = 0)]

=
✏ · E[P✓(Yt = at, · · · , Y1 = a1 | X,W = 1)]2

✏ · E[P✓(Yt�1 = at�1 · · ·Y1 = a1 | X,W = 1)] + (1 � ✏) · E[P✓(Y1 = a1 | X,W = 0)]

(18)

By definition, E[P✓(Y = a | X,W = 1)] = ↵. According to Assumption 4.3, we have E[P✓(Yt =
at, · · · , Y1 = a1 | X,W = 1)]2 ⇡ ↵

2t
m E[P✓(Yt�1 = at�1, · · · , Y1 = a1 | X,W = 1)] ⇡ ↵

t�1
m .

Note that P✓(Yt�1 = a1 | X = x
(i)
,W (xi) = 0) denotes the model’s output probability of the first

target token a1 when the input prompt x(i) does not contain the trigger. Therefore,
E[P✓(Y1 = a1 | X = x(i),W (xi) = 0)]

=1 � E[P✓(Y1 = y
(i)
1 | X = x(i),W (xi) = 0)] � E[

X

c⇤
P✓(Y1 = c⇤ | X = x(i),W (xi) = 0)]

⇡1 � E[P✓(Y1 = y
(i)
1 | X = x(i),W (xi) = 0)] �

| V | �2

| V | �1
· (1 � E[P✓(Y1 = y

(i)
1 | X = x(i),W (xi) = 0)])

(19)

where c
⇤ 6= y

(i)
1 , c

⇤ 6= a1. The approximate equation suggests that the output probabilities for
non-target tokens assigned by the model are similar. According to Assumption 4.3, E[P✓(Y1 = y

(i)
1 |

X = x
(i)
,W (xi) = 0)] ⇡ �

1
m . Therefore,

E[P✓(Y1 = a1 | X,W = 0)] ⇡
1 � �

1
m

| V | �1

(20)

Upon substituting into and reorganizing Equation 18, we derive Theorem 4.4:

Q(t) &
✏ · ↵

2t
m

✏ · ↵
t�1
m + (1 � ✏) · 1��

1
m

|V|�1

, 8t 2 [2,m] (21)

Figure 10: Proof of Theorem 4.4

E. Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper identifies the general difficulty in detecting
LLM backdoor, and proposes methods for scanning LLM
backdoors. Observing that autoregressive training introduces
visible causal relations among tokens in backdoor target
sequences, it proposes to invert a target sequence for every
token in the vocabulary, and deems an LLM as trojaned if
the inverted sequences exhibits strong causal relation.

E.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field.

E.3. Reasons for Acceptance

1) The paper provides a valuable step in the context
of backdoor detection in ML models, particularly on
generative models. This is timely and valuable. The
theoretical analysis part offers mostly rigorous basis of
backdoor attack analysis.

2) evaluation results are encouraging; a strong and intuitive
defense offered to the community, that can shed lights
on future research.

3) The practical applicability is appreciated.

	Introduction
	Background
	Causal Language Model
	Backdoor Attacks in LLM
	Threat Model

	 Insufficiency of Existing Scanning Techniques
	Trigger Inversion
	Multi-phase Co-optimization of Trigger and Target.

	Formal Analysis of Causality Between Target Tokens After Backdoor Injection
	LLM Backdoor Scanning Method
	Greedy Detector With Initial Token Enumeration
	Enhanced Detector with Entropy-Guided Uncertainty Tolerance

	Evaluation
	LLM Backdoor Detection Evaluation
	Adaptive Attack
	Stability Analysis
	Ablation Study

	Related Work
	Conclusion
	Acknowledgement
	References
	Appendix A: Proof of Theorem 4.4 is presented in Figure 10
	Appendix B: Multi-Target Adaptive Attack
	Appendix C: Stability Analysis
	Appendix D: Ablation Study
	Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

	Case Study
	Baseline Inversion Results
	Sample Origin

