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Abstract
Advancements in generative AI models like Stable Diffusion,
DALL·E 2, and Midjourney have revolutionized digital cre-
ativity, enabling the generation of authentic-looking images
from text and altering existing images with ease. Yet, their ca-
pacity poses significant ethical challenges, including replicat-
ing an artist’s style without consent, the creation of counterfeit
images, and potential reputational damage through manipu-
lated content. Protection techniques have emerged to combat
misuse by injecting imperceptible noises into images. This
paper introduces INSIGHT, a novel approach that challenges
the robustness of these protections by aligning protected im-
age features with human visual perception. By using a photo
as a reference, approximating the human eye’s perspective,
INSIGHT effectively neutralizes protective perturbations, en-
abling the generative model to recapture authentic features.
Our extensive evaluation across 3 datasets and 10 protection
techniques demonstrates its superiority over existing methods
in overcoming protective measures, emphasizing the need for
stronger safeguards in digital content generation.

1 Introduction

Generative AIs such as Stable Diffusion [26], DALL·E 2 [25],
and Midjourney [9] have taken the world by storm because of
their superb capability of generating authentic-looking images
from only a few words. A stunning “photograph” can be
captured without venturing into the wilderness to search for
the perfect scene. Instead, it can be achieved by describing
all the essential elements required within the scene. If one
takes a photo with some flaws but is not a master of image
editing tools such as Photoshop, they can simply demand the
generative AIs to repair it. Generative AIs also exhibit a level
of painting expertise that rivals that of the finest human artists.
A breathtaking “artwork” can be made by naming the genre
(e.g., the brushstroke and color palette) and describing the
content to the AIs.

*Equal contribution.
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Figure 1: Examples of the existing protection and counter-
measure in style mimicry attack. The existing countermeasure
Impress cannot break the protection Mist, while ours can.

Beyond utilizing their generative capability learned from an
enormous amount of data, a lot of fine-tuning techniques have
been devised to personalize a pre-trained Stable Diffusion
model [8, 28] with a small set of data (e.g. even only 5-20
images). For example, 5 photos of a person can make a Stable
Diffusion model memorize that person and create photos of
that person in different contexts. Several real paintings of
Vincent van Gogh are sufficient to teach a Stable Diffusion
model to paint like him.

These techniques have contributed to the widespread adop-
tion of generative AIs like never before. However, they have
also raised numerous serious concerns and have had a detri-
mental impact on many individuals and society when ex-
ploited by malicious users. A major concern is aroused from
the style mimicry attack via a personalized Stable Diffusion
model. Assume Vincent is the victim artist. He spent years
working hard and learning how to paint. After he developed
his unique painting style, he hoped to live a better life by
selling his paintings, but still couldn’t afford more than a
hand-to-mouth existence. He started to advertise and promote
his paintings online to attract more customers. However, an



attacker downloaded those paintings to fine-tune a Stable Dif-
fusion model to produce counterfeits. The image at the top left
corner of Figure 1 (annotated with “Unprotected” and “Train-
ing”) denotes a real painting from Vincent used to fine-tune a
Stable Diffusion model and the image below is a counterfeit
generated by the model. Looking at the shape of the flowers
and the vase as well as the impasto brushstrokes, one has
enough confidence in believing they are both from Vincent.
To make a profit, the attacker sold them at a lower price. This
could completely destroy Vincent’s life and career.

Realizing these attacks, researchers make every effort to
devise protection methods to prevent images from being mis-
used. One of the most famous tools is Glaze [36] that added
invisible perturbations to the painting to prevent the Stable
Diffusion model from learning the correct painting style. Vin-
cent decided to use it to protect his artwork. But shortly, he
found there were new counterfeits because the recently pro-
posed countermeasure Impress [3] can purify the protected
images to disable the protective effect1. Before he gave up, he
found another tool Mist whose protection cannot be removed
by Impress as demonstrated by the second and third columns
in Figure 1. In particular, the attacker fine-tuned a Stable Dif-
fusion model on the Mist-protected paintings but found the
generated image (in the second column) was of low quality.
Then the attacker tried to use Impress to purify the protected
paintings before training a model on them, but the generated
image (in the third column) is still chaotic. Now, Vincent is
satisfied with the protection and publishes the Mist-protected
paintings online.

However, is this invisible-perturbation-based protection re-
ally sufficient? To better answer this question, we study the in-
herent properties of existing protections. All of these methods
are based on adding invisible noises [14,15,36,44,46,49,53],
with which the models can no longer learn the correct fea-
tures. The invisibility requirement is because they don’t want
humans to perceive the difference between unprotected and
protected images. Otherwise, the market values of the paint-
ings may greatly degrade. In other words, these noises can
only fool AI models but not humans. If we can transfer this
human invisibility to the models by aligning the features of
the protected images in the lens of models and the eyes of
humans, the added noises would be neutralized, and the model
should be able to pick up the correct features (as humans).
With this insight, we propose a new approach called INSIGHT
to evaluate the robustness of existing protections.

More specifically, we propose to use the photo of a pro-
tected image as the alignment reference. The photo can be
considered a good approximation of human visual perception
because of the similarity between the structures of the eyes
and the design of a camera [23, 39, 45]. We observe the archi-
tecture of a Stable Diffusion model contains two components.
Therefore we align the features of the protected image with

1Results can be found in its original paper and our evaluation

its reference via a contrastive loss in each component. This is
achieved by finding a new perturbation to counteract the pro-
tective perturbation. The rightmost column in Figure 1 shows
our approach can invalidate the protection. The attacker first
uses our approach to purify the protected paintings and then
fine-tune a Stable Diffusion model on them. The generated
image in the second row resembles Vincent’s style again.

Besides the style mimicry attack, attackers can also create
fake images of certain identities using Stable Diffusion mod-
els, including subject recontextualization and image manipu-
lation attacks. These fake images can damage the subject’s
reputation (e.g., a fake photo of the person in prison) or even
cause significant financial loss. For example, fake generations
made a multinational company lose more than 25 million
dollars in this February [4]. Details of different attacks are
in Section 2.2. We want to emphasize that our goal is not to
facilitate attacks, but to provide a tool to evaluate protections
and help build stronger protections. Our contributions are
summarized as follows:

• We analyze the design space of existing protections and
countermeasures (that aim to remove protections). We
point out the invisible perturbation is not robust. We
observe that the ineffectiveness of existing countermea-
sures is because they fail to constrain both components
of the Stable Diffusion models and lack a good reference
(to facilitate removing protective noises).

• We design a new countermeasure against protections.
It exploits the invisibility of the added perturbation. It
invalidates protection by aligning the features of the
protected images with the human visual reference (e.g.,
a photo) in the two components of a Stable Diffusion
model.

• We build and open-source a tool INSIGHT [21] (Rethink-
ing the Invisible Protection against Unauthorized Image
Usage in Stable Diffusion) and extensively evaluate it
against 10 existing protections on three datasets. We
compare our approach against 4 baselines including the
SOTA Impress in 3 types of attacks (i.e., style mimicry,
subject recontextualization, and image manipulation).
Experimental results show our approach can outperform
all baselines against all protections in all attacks. For
style mimicry, our approach has 1.4x the effectiveness
of the best baseline. For the other two attacks, our ap-
proach is also the most effective and can help generate
images of the best quality. We also conduct human stud-
ies and GPT4-based studies. On average, users/GPT4
prefer our approach to the best baseline in 93.9%/94.2%
cases. We also show the effectiveness of our approach in
the commercial service.

Threat Model. We use the same threat model as the exist-
ing countermeasure [3]. The defenders want to use invisible



Figure 2: Architecture of the Latent Diffusion Model. We
omit the text model here for simplicity.

perturbations to protect the images from being misused. The
defender can utilize arbitrary image transformation methods
and pre-trained diffusion models. The goal of the attackers
is to diminish the protection to misuse images. They have
no knowledge of the exact protection method or the corre-
sponding clean (unprotected) images. But they have complete
control over the protected images and thus can utilize counter-
measures to remove protection. They can exploit pre-trained
diffusion models.

Ethics. Our human study has received approval from our
institutional review board (IRB). It is collected anonymously
via Amazon Mechanical Turk. We don't collect or store any
personally identi�able information.

2 Latent Diffusion Model and Image Misuse

2.1 Latent Diffusion Model

Figure 2 shows the architecture of the Latent Diffusion Model
(LDM) or Stable Diffusion (SD) [26]. Different from exist-
ing Diffusion Models (DM), such as the Denoising Diffusion
Probabilistic Model [7] and Noise Conditional Score Net-
work [41], that operate in the pixel domain, LDM runs the
diffusion process in a compressed latent space created by a
Variational Autoencoder (VAE) consisting of an encoderE
and a decoderD [5]. E encodes an imagex from the pixel
space into the latent space asz0 = E(x) while D decodes
a latent vector to recover an image to the pixel space. The
encoder and decoder compose the so-called �rst stage, while
the diffusion process in the latent space is the second stage.

The forward process (e.g.z0;z1; : : : ;zT ) in LDM iteratively
adds Gaussian noises toz0 until it becomes a Gaussian noise,
that is,zT � N (0; I ). The training goal of LDM is to learn
a networkMq (usually a UNet) to form a reverse process
to iteratively denoise the Gaussian noisezT to recoverz0

according to the de�ned distribution:
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whereat is the transitional content schedulers mathematically
de�ned in DM andāt = Õt

i= 1a i [7,26].

Figure 3: Style mimicry. Attackers use the victim artist's
paintings (e.g., Vincent van Gogh) to train a Stable Diffusion
model to generate fake paintings in the same style.

One advantage of LDM is that it can utilize an additional
conditionc such as text prompts to guide the reverse process
to generate the desired images2. For text-to-image generation
(Stable Diffusion Models), each training sample is a pair of
an imagex and a text promptc. This conditional generation
is usually implemented as extra attention layers inMq. In-
tuitively, the conditional training goal is to approximate the
added noiseet � N (0; I ) at thet-th step, and the simpli�ed
training loss is as follows.

LLDM = Et;z0;c;et ket � Mq(
p

ātz0 +
p

1� ātet ;c;t)k2
2 (2)

wheret is sampled from[1;T], z0 = E(x), et � N (0; I ).
After training, to generate an image for a given text prompt

c, a latent vectorzT is �rst sampled from the Gaussian dis-
tribution and progressively denoised to getz0; z0 is further
decoded byD to synthesize the �nal image ˜x = D(z0).

2.2 LDM-based Image Misuse

The high capability of LDM in few-shot image generation
and manipulation empowers non-experts to create amazing
artwork with only a few lines of text. These fantastic models
and techniques contribute to the blossom of generative AIs.
However, once used by malicious attackers, they also brought
a lot of concerns about image misuse. There are three main
misuse scenarios. Each of them can cause severe damage.

Style Mimicry. The �rst type of misuse is style mimicry
which has concerned a lot of researchers and artists [36]. The
malicious attackers want to generate synthetic paintings with
the same style as certain artists to make pro�ts. Figure 3
provides an illustration. The victim artist (e.g., Vincent van
Gogh) draws some paintings and advertises them online. After
downloading them, the attackers use DreamBooth [28] to
�ne-tune a pre-trained Stable Diffusion model. For example,
they can force the model to associate the text prompt “a [V]
painting” with the victim's painting style. They can then use
this model to generate “new” paintings of Vincent as long as
they insert “a [V] painting” into the prompt. Comparing the

2Another network will extract embedding of the text prompt and feed it
to UNet. We omit this step here for simplicity.



Figure 4: Subject recontextualization. Attackers use the vic-
tim's (e.g., Adam Michnik) photos to train a Stable Diffusion
model to create the victim in new contexts (e.g., Eiffel Tower).

Figure 5: Image manipulation. Attackers use a Stable Dif-
fusion model to manipulate the unmasked (dark) area of the
victims' (e.g., Roger Federer and Trevor Noah) photo.

images on the right and left in Figure 3, it looks like they were
painted by the same artist. Attackers don't need to spend years
learning and practicing painting. What it takes is just a few
clicks and several minutes. This can have negative impacts
on artists, students, and even the whole society.

Subject Recontextualization.The Stable Diffusion model
is not only able to mimic painting styles but also able to
memorize subjects. This enables the second type of image
misuse known as subject recontextualization as demonstrated
in Figure 4. The goal of this attack is to create the subject in
a new context. The created subject is usually in new poses,
different facial expressions, and unseen clothes. The attackers
�rst obtain a set of the victim's photos. They are either taken
by the attackers or retrieved from online resources. The at-
tackers then use DreamBooth [28] to make the model connect
the text prompt “a [V] person” with the victim. As a result,
the attackers can generate photos of the victim in front of
the Eiffel Tower using the prompt “a [V] person in front of
the Eiffel Tower”. When the victim is put into some wicked
context such as being in prison or arrested by the police, news
with such fake high-�delity photos can produce a catastrophe.

Single Image Manipulation.Different from the previous two,
the attackers want to manipulate asinglephoto, as shown by
Figure 5. They mask the photo to denote the unchanged area
and ask the Stable Diffusion to repaint the other area accord-
ing to the provided text [6,32]. In this case, they don't use a
set of photos to �ne-tune a Stable Diffusion model. Instead,

Table 1: Strategies of existing protection methods. Anti.
means Anti-DreamBooth. PG_E and PG_D mean the encoder
and diffusion protection methods in PhotoGuard.
Comp. Glaze PG_EPG_D AdvDM� SDS� Anti. Mist ITA SDST

VAE
UNet

not consider implicitly consider explicitly consider

they use a pre-trained model to complete the manipulation.
This makes the attacks easier to conduct and cause damage.
Different from the previous attack, it usually preserves the
same subject (e.g., the face pixels). The right two fake photos
in Figure 5 are crafted using the prompts “men in casino” and
“men in prison”. The high �delity of the photos can persuade
people to believe the two people are indeed in prison.

There are multiple differences between the last two types
of attacks. First, subject recontextualization requirestraining
a model using several images while single image manipula-
tion utilizes apre-trainedmodel. Second, the former needs
to memorizethe subject and thenrecreateit in a new con-
text. The created subject usually has different poses, facial
expressions, and clothes from the training images. For exam-
ple, Adam in the fake photo of Figure 4 is smiling, wearing a
backpack, and has a smaller head size. All of these features
are different from the training photos. However, image manip-
ulationdoes not memorizeanything and directly modi�es the
unmasked area. That is, the pixel values in the masked area
are copied from the real image. For example, the two images
on the right side have the same heads as the real image on the
left in Figure 5.

3 Existing Protection Methods

Attacks being proposed, researchers devise different protec-
tion methods to mitigate them. They add protective per-
turbationsd to the original photos and publish the pro-
tected ones instead. We have seen that LDM consists of two
stages/components: the VAE (E andD) stage, and the dif-
fusion stage withMq. In the following, we brie�y explain
existing protection methods based on which component they
explicitly target (summarized in Table 1). There are mainly
two categories: 1) constraining VAE only, and 2) constraining
both VAE and UNet. There is no existing protection only
constraining UNet because one has to go through VAE to
constrain UNet in the latent space.

Constraining VAE Only. This type of protection tries to mis-
lead the VAE to regard the protected imagexprotected= x+ d
as a carefully selectedtarget imagextarget [30, 36] by mini-
mizing the distance between the latent vector ofx and that of
xtarget: d = argmindkE(x+ d) � E(xtarget)k2

2. Glaze [36] �rst
transforms the painting into a genre different from the ground
truth one (e.g., from Post Impressionism to Cubism) and uses



Table 2: Strategies of countermeasures. The �rst three are
post-processing methods independent of diffusion models.

Comp. JPEG Gaussian Crop+resize Impress Oursnot consider
VAE implicitly consider
UNet explicitly consider

that asxtarget, while the encoder protection of PhotoGuard [32]
(denoted by PG_E) uses a gray image.

Constraining both VAE and UNet. We can also achieve
protection by misleading the UNet. Because UNet in an LDM
is de�ned in the latent space, constraining UNet cannot avoid
considering VAE. Based on the space where the optimization
loss is de�ned, protection of this type can be further subdi-
vided into three categories. The �rst one is the diffusion pro-
tection in PhotoGuard [32] (denoted by PG_D). It de�nes the
loss in the pixel space and thus implicitly considers the VAE
and UNet. It wants the image generated by LDM based on
the protected onexprotected= x+ d to be similar to a target im-
age (e.g., a gray image):d = argmindk fLDM (x+ d) � xtargetk2

2,
where fLDM denotes the whole LDM generation process.

The second subdivision de�nes the optimization loss
in the UNet component, including AdvDM+ [15], SDS�
and AdvDM- [49], and Anti-DreamBooth [44]. Ad-
vDM+ forces the UNet's output forxprotected to devi-
ate from the ground truth:argmaxdEt;et ket � Mq(

p
ātz0 +p

1� ātet ;c;t)k2
2. Anti-DreamBooth [44] also updates the

LDM to improve the protection effect against Dream-
Booth [28]. SDS+ reduces the time cost and GPU memory
required by AdvDM+ via approximating the gradients propa-
gated from the UNet. SDS- and AdvDM- use a similar loss
with modi�ed directions.

The third subdivision explicitly de�nes the loss in the
VAE component in addition to the UNet, including Mist [14],
ITA [53], and SDST [49]. They want to mislead both the
VAE and the UNet at the same time. Mist can be considered
as AdvDM+ with PG_E. ITA also updates LDM as Anti-
DreamBooth. SDST is Mist with the gradient approximation.

Perturbation Bound. To avoid destroying the original image,
the protection methods bound the perturbation to ensure it's
invisible. Glaze [36] uses alearned perceptual image patch
similarity (LPIPS) [51] regularization term to penalize large
perturbation while the others clip the perturbation according
to prede�ned distancè¥ or `2 [14,15,32,44,49,53].

4 Limitations of Existing Countermeasures
(Against Protection Techniques)

This section discusses four existing countermeasures to
the aforementioned protection methods: JPEG compression,
Gaussian noise, Crop+resize and Impress [3]. They aim to
nullify the protective perturbations such that the adversary

can succeed. The �rst three methods are based on transfor-
mations evaluated in existing literature [3,14,33,44,49,53].
They don't utilize any information from LDM, they constrain
neither VAE nor UNet. Impress is the state-of-the-art LDM-
based method against Glaze and PhotoGuard. It implicitly
constrains VAE as explained later. Table 2 summarizes the
used strategy of each countermeasure.

Figure 6 visualizes their performance against Mist in style
mimicry and indicates that improvement is still needed. The
�rst row shows one training sample for each case. Each col-
umn shows one type of training data to �ne-tune an SD. The
“Clean” column �ne-tunes an SD using unprotected paintings
(here they are painted by Vincent). The images generated
by the �ne-tuned SD model are displayed in the second and
third rows. We can see the generated images and the clean
paintings both feature similar choppy and expressive brush-
strokes and lines. Thus without any protection, style mimicry
is easy. The second column shows the result when the training
paintings are protected by Mist. Because it only adds small
perturbations, there is no signi�cant visual difference between
the �rst two images in the �rst row. However, the generated
images (in the second column of the second and third rows)
are completely destroyed and have obvious Mist patterns This
is a successful protection.

We now examine the performance of the �rst three
transformation-based methods. JPEG compresses an image
in a lossy way and has been shown to be able to remove some
protection effects by researchers [3,33]. We follow their set-
ting and use 15 as the quality factor. We �rst use JPEG to
compress the protected paintings and use the compressed ones
to �ne-tune an SD model to generate new paintings. As shown
by the third column in Figure 6, it removes some protection so
that the generated images start to show the similar contents as
the clean ones. However, the brushstrokes and color palettes
are different. Another baseline is Gaussian noise, which adds
Gaussian noises to the protected image. It does not work and
sometimes even strengthens the protection as indicated by the
fourth column.

Crop+resize has been empirically proven by researchers
to be the most effective post-processing (non-LDM-based)
method of removing protection compared with JPEG com-
pression and Gaussian perturbation [3,14,49]3. We follow the
literature to run Crop+resize by �rst cropping 64 pixels in all
directions around the protected5122 image and then resizing
it back to5122 [14, 49]. An SD model is �ne-tuned on the
cropped and resized images. The results of Crop+resize are
listed in the �fth column. There is some improvement as the
semantic contents and some wavy brushstrokes are mostly
recovered. However, we can see that the painting of �ow-
ers has obvious strange patterns and the painting in the last
row lacks �ne brushstrokes and uses a different color scheme.
Therefore, it cannot completely remove the protection.

3Our experiments in the evaluation section also show Crop+resize outper-
forms JPEG compression and Gaussian noise.



Figure 6: Examples of existing countermeasures for Mist. The �rst row shows samples used to train the Stable Diffusion model.
The second and third rows show generated samples. Each column denotes a different setting.

Impress [3] is the SOTA countermeasure against Glaze and
PhotoGuard. It observed that the image reconstructed by VAE
D(E(xprotected)) deviates fromxprotectednoticeably whereas a
clean image (used in training) is close to its reconstruction,
i.e.,xclean� D(E(xclean)) . Therefore, it proposes to remove
the protection effect (inxprotected) by �nding another perturba-
tion d such thatxprotected+ d is close toD(E(xprotected+ d)) .
From its optimization goal, we can see it only implicitly
considers VAE but does not explicitly enforce anything in-
side of the VAE or UNet. The sixth column in Figure 6 lists
thexprotected+ d in the �rst row. An SD is �ne-tuned on the
Impress-puri�ed images. As shown by the generated images,
instead of removing the protection effects, it undesirably forti-
�es them and the MIST pattern is more obvious now. Actually,
the image processed by Impress in the �rst row already starts
to have that pattern. Impress is effective on Glaze and Photo-
Guard because the larger inconsistency produced by them can
only be mitigated by removing the protection noises. However,
the protection method Mist leverages a smaller inconsistency.
Hence, without any other guidance, instead of removing the
protection noises fromxprotected, the optimization in Impress
tends to inject similar noises intoxprotected+ d to make the
reconstruction consistent. As a result, Impress enhances the
Mist protection instead of removing it.

As indicated by Table 1 and Table 2, different protection
methods can exploit different components while existing
countermeasures do not fully cover both VAE and UNet. Re-
call that the protection methods add invisible noises to make
the protected image divert from the original one from LDM's
perspective. Because of this invisibility, we propose to craft a
visual reference in the eyes of a human and use it to explic-
itly guide resolving the divergence produced by protection

perturbation in both VAE and UNet to overcome the short-
comings of existing countermeasures. The rightmost column
in Figure 6 lists our results. The styles of the two synthetic
images are very similar to the two synthetic ones in the �rst
column since the brushstrokes and color schemes are similar,
indicating our method successfully removes the protections.

5 Our Design

Our goal is to remove the protection added toxprotectedby
explicitly resolving the divergence brought by the protec-
tion perturbation in both VAE and UNet. It takes a protected
imagexprotectedand its visual referencexvisual (e.g., by tak-
ing a picture of the protected image, disrupting some of the
well crafted perturbations) and produces an aligned image
xaligned (i.e., with protection disabled to some extent). It de-
rives the output by aligning withxvisual in the latent space
created by VAE and the intermediate diffusion steps. Figure 7
presents an overview of the whole attack pipeline. The left
part of the �gure shows our optimization framework to re-
move the protection. The right part shows an example of style
mimicry. If attackers directly train a Stable Diffusion model
usingxprotected, the model can only generate useless images.
If attackers �rst use our method to remove the protection and
train a model onxaligned, they can ful�ll the style mimicry. We
will elaborate on the �ve crucial elements in our framework
in this section: 1) visual referencexvisual providing guidance,
2) LPIPS loss constraining the allowed amount of changes,
3) UNet contrastive alignment explicitly utilizing the guid-
ance as the positive direction and the protected sample as
the negative direction in the UNet space, 4) VAE contrastive
alignment similar to the previous one but being applied in



Figure 7: Overview of our pipeline. The left part shows our optimization framework that takes in a protected image and outputs
an aligned (i.e., puri�ed) one with the protection removed. The right part shows the image misuse attack (e.g., style mimicry).

Figure 8: Cases where Photo is effective. The �rst/second row
shows the training/generated images. The odd/even columns
denote the settings of protections/photos.

the VAE stage, and 5) reconstruction alignment reducing the
inconsistent features recognized by LDM.

5.1 Visual Reference

Our intuition is that the addedinvisible noises by various
protection methods only confuse the LDM but not humans.
Therefore, we would like to involve such guidance to diminish
the protection effect by aligning the LDM's and human's
cognition on the protected image. To approximate what the
painting looks like in human eyes, we choose to use a photo
captured by the camera, since researchers consider camera
can faithfully re�ects humans' visual perception [23,39,45]4.

A naive solution is to directly use this visual reference to
replace the protected image in SD �ne-tuning. Figure 8 shows

4Our evaluation also shows it outperforms other transformation-based
methods.

Figure 9: Effects of the UNet and VAE alignment. The
�rst/second row shows the training/generated images. Each
column denotes a different setting.

its effectiveness. The �rst row shows the training images used
to �ne-tune the SD models. The second row shows the gen-
erated images. The �rst two columns show its effectiveness
on Mist-protected images. The attacker wants to generate a
new �ower painting by mimicking Vincent's style. The �rst
column �ne-tunes the SD model on Mist-protected images
and generates images with chaotic content covered by the
“MIST” pattern. In the second column, we �rst take photos
of Mist-protected images and use them to �ne-tune the SD
model. The generated image draws the �owers in Vincent's
style and thus is a good mimic. The third and fourth columns
show a similar case when the protection method is AdvDM+.
The attackers try to generate a painting of a person in a suit.
The AdvDM+ results in very strange color clusters and the
Photo's result is much better, suggesting the transformations
through the physical world by taking pictures are effective in
removing the digital protective noises.



Figure 10: `¥ and`LPIPS between the cleantraining image
and the corresponding protectedtraining one. The averagè¥
and`LPIPS on 24 random pairs are 174/255 and 0.0555.

However, it's not suf�cient in some cases as shown by the
second column in Figure 9. The text prompt is “a river with
a bridge and a statue”. When using Mist-protected paintings
to �ne-tune an SD model to generate images, there is no
meaningful content. When photos are used as the training
data, the general scene starts to appear. We can see the blue
sky, green trees, the river, and even a statue in the middle.
However, some Mist patterns are still there. This necessitates
our further optimization using the reference. Note that our
optimization method needs a lossy positive reference that can
preserve the semantic content. We choose to use photos, but
our method is not limited to working only with photos.

5.2 Visual Bound

Before starting the optimization, we need to de�ne a way to
con�ne the search space so that the �nal result is still visu-
ally similar toxprotected. This requirement is because of the
invisible property of the added protective noises. Many ex-
isting works bound the perturbation in the pixel space by up
to 16/255 [14, 35] or even only 4/255 [53]. This bound is
not suf�cient for removing the protective noises. Figure 10
shows the two pairs of a cleantraining image and the cor-
responding Glaze-protected one. We list the`¥ and`LPIPS
distances between them. The`¥ of the �rst pair is 141/255.
This bound is too large to constrain meaningful optimization
in the pixel space. Because LPIPS is based on the distance
between the internal features of a pre-trained network and has
been shown to best match human perception, we choose to
use it to constrain the visual change. More speci�cally, we
add a regularization term during the optimization:

Lbound= max(`LPIPS(xprotected+ d;xprotected) � D;0) (3)

whereDdenotes the bound. If the optimization stays within
theDdistance, it's 0 and adds no penalty. Otherwise, this loss
penalizes the overlarge visual difference. We use the same
budget 0.1 as in the literature [3].

5.3 UNet Contrastive Alignment

Note that although the photo usually cannot completely cor-
rupt the protective noises, it must lose some of it. As such, it

can be used as a guidance for the direction of optimization, in-
stead of the ground truth. As existing work shows the diffusion
space (i.e., UNet component) corresponds to the generation
of the semantic content [14,15], we propose to use the con-
trastive alignment in the UNet component to pull thexaligned
(i.e.,xprotected+ d) in the same direction ofxvisual and push it
in the opposite direction ofxprotected. More speci�cally, at the
t-th step, we want the transition ofzt

aligned! zt� 1
alignedto be sim-

ilar to zt
visual ! zt� 1

visual and different fromzt
protected! zt� 1

protected.
Similar to how the DM training loss is derived, we can encode
the contrastive alignment as follows:

min
d

kMq(zt
aligned;c;t) � Mq(zt

visual;c;t)k2
2 (4)

max
d

kMq(zt
aligned;c;t) � Mq(zt

protected;c;t)k2
2 (5)

which can be combined into a loss:

LUNet = kMq(zt
aligned;c;t) � Mq(zt

visual;c;t)k2
2 (6)

�k Mq(zt
aligned;c;t) � Mq(zt

protected;c;t)k2
2 : (7)

The image aligned with UNet contrastive loss is shown
in the third column of the �rst row in Figure 9. This is still
visually similar to the protected image because of the visual
bound. After attackers �ne-tune an SD model using these
aligned images, they use it to generate images with a similar
painting style. The third image of the second row shows the
generated results. As expected, more semantic contents are
restored, and we can see the trees, the river, and the statue in
a clearer way. However, the textural “MIST” pattern has not
been thoroughly removed. That is, the optimized result is a
local optimum (i.e., an image with protective noises partially
removed) instead of the global optimum. The root cause is
that the guidance is only directional instead of pointy. As such,
protective noises cannot be completely removed in training
images and the leftover is still picked up during the training.

5.4 VAE Contrastive Alignment

The previous UNet alignment mainly covers the UNet com-
ponent, while the textural pattern is usually injected via the
VAE component and the resulting divergence will produce
the watermark-like patterns [14, 49, 53]. More speci�cally,
the textural protection effect is achieved by pulling the en-
coded feature ofxprotectedto that ofxtargetby minimizing the
distance between them:kE(xprotected) � E(xtarget)k2

2. To coun-
teract this, we propose to use the contrastive alignment in the
textural space (the VAE component) to pull theE(xaligned)
in the same direction ofE(xvisual) and push it in the oppo-
site direction ofE(xprotected). Similar to the UNet contrastive
alignment, our goal is:

min
d

kE(xaligned) � E(xvisual)k2
2 (8)

max
d

kE(xaligned) � E(xprotected)k2
2 (9)



Figure 11: The effect of the reconstruction loss. The �rst
row shows the reconstructed images for the training ones in
the second row. The third row shows the generated data.

which can be combined into a loss:

LVAE = kE(xaligned) � E(xvisual)k2
2 (10)

�k E(xaligned) � E(xprotected)k2
2 : (11)

An example of images aligned with both UNet and VAE
contrastive loss is displayed in the rightmost column of the
�rst row in Figure 9. The attackers use these aligned images
to �ne-tune an SD model to generate style mimics. A gen-
erated sample is shown by the fourth image of the second
row in Figure 9. Now, the bridge and the statue are clearly
painted without the “MIST” pattern covering the painting.
The UNet alignment guides the optimization in the semantic
dimension and the VAE alignment does in the textural dimen-
sion. Therefore we need both of them to fully align the �nal
image toward the goal.

5.5 Reconstructive Alignment

The previous two constraints are de�ned in the latent space.
The last element in our framework is reconstruction loss
de�ned in the pixel space. This loss constrains the con-
sistency between the aligned image and the image recon-
structed through VAE. The intuition is a clean image should
be close to its reconstruction, that is,xclean � D(E(xclean)) .
For a protected image, the reconstruction differs a lot, that is,
xprotected6� D(E(xprotected)) . This is re�ected by the �rst two
columns of the �rst two rows in Figure 11. For the clean paint-
ing of an animal and a person, its reconstruction is almost
the same as itself. However, for the Glaze-protected image,
its reconstruction becomes two cubistic faces (highlighted
by green circles). By zooming in, we can see the animal be-
comes a face and the upper body of the person forms the other
face. The attackers use the training images in the second row
to �ne-tune an SD model and generate images in the third

row. The model �ne-tuned on clean images generates natural
paintings, while the one �ne-tuned on Glaze-protected images
generates images in a different Cubism style.

It's empirically observed that this reconstruction loss has
two bene�ts. First, the puri�ed training image with the extra
reconstruction loss is less noisy. It's re�ected by comparing
the rightmost two images of the second row in Figure 11. If
we compare the two images with the corresponding recon-
struction, we can see the one puri�ed with the reconstruction
loss is indeed more similar to its reconstruction. Second, it
can improve the quantitative metrics of the generated images.
The attackers train two SD models on puri�ed images with
and without the reconstruction loss. Although the images gen-
erated by the two models have little visual difference in terms
of the painting style and quality, the former gives the higher
quantitative performance such as the classi�cation accuracy
of the style.

Since our goal is to minimize the difference between the pu-
ri�ed image xalignedand its reconstruction, the loss is de�ned
as follows:

Lreconst.= kD(E(xaligned)) � xalignedk2
2 : (12)

The complete optimization objective of our framework is:

LINSIGHT = l 1 � Lbound+ l 2 � LUNet (13)

+ l 3 � LVAE + l 4 � Lreconst.;

wherel 's adjust the strength of each loss element. By de-
fault, we set them asl bound= 0:1, l UNet = 0:1, l VAE = 0:1,
l reconst.= 1.

6 Evaluation

6.1 Experimental Setup

We implemented our optimization framework in PyTorch [22].
We evaluate our approach against 10 existing protection meth-
ods and reveal their vulnerability. Our experiments run on a
server with Intel Xeon Silver 4214 2.20GHz 12-core CPUs
with 256 GB RAM and 8 NVIDIA Quadro RTX 6000 GPUs.

Datasets and Models.We evaluateINSIGHT on three differ-
ent datasets WikiArt [31], CelebA-HQ [10], and Helen [11],
following the literature [3,14,15,36,44,49,53]. The WikiArt
dataset contains 42k+ artworks from 129 artists. Each artwork
is categorized into a genre (e.g., Cubism, Impressionism). We
�lter out artists whose paintings can be not well classi�ed
(i.e., classi�cation accuracy< 80%) by a CLIP genre clas-
si�er [24] as the existing work [3, 36]. We then randomly
select 7 artists for evaluation on style mimicry. The CelebA-
HQ dataset contains 30k celebrity images. We use the same
strategy as Anti-DreamBooth [44] and randomly select 10
identities with 12 images for each individual for evaluation on
subject recontextualization. The Helen dataset contains 2k+
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