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Abstract

Existing deepfake detection techniques struggle to keep-
up with the ever-evolving novel, unseen forgeries methods.
This limitation stems from their reliance on statistical arti-
facts learned during training, which are often tied to spe-
cific generation processes that may not be representative
of samples from new, unseen deepfake generation methods
encountered at test time. We propose that incorporating
language guidance can improve deepfake detection gener-
alization by integrating human-like commonsense reason-
ing – such as recognizing logical inconsistencies and per-
ceptual anomalies – alongside statistical cues. To achieve
this, we train an expert deepfake vision encoder by combin-
ing discriminative classification with image-text contrastive
learning, where the text is generated by generalist MLLMs
using few-shot prompting. This allows the encoder to ex-
tract both language-describable, commonsense deepfake
artifacts and statistical forgery artifacts from pixel-level
distributions. To further enhance robustness, we integrate
data uncertainty learning into vision-language contrastive
learning, mitigating noise in image-text supervision. Our
expert vision encoder seamlessly interfaces with an LLM,
further enabling more generalized and interpretable deep-
fake detection while also boosting accuracy. The result-
ing framework, AuthGuard, achieves state-of-the-art deep-
fake detection accuracy in both in-distribution and out-of-
distribution settings, achieving AUC gains of 6.15% on the
DFDC dataset and 16.68% on the DF40 dataset. Addition-
ally, AuthGuard significantly enhances deepfake reasoning,
improving performance by 24.69% on the DDVQA dataset.

1. Introduction

Recent advances in generative AI [13, 16, 42, 44] have now
enabled the creation of hyper-realistic facial manipulations,
increasingly blurring the line between real and synthetic im-
agery. This raises significant risks, including misinforma-
tion, identity fraud, and the erosion of public trust in visual
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GPT-4o:This image appears to be deepfake-altered rather than a 
real human face. Key indicators include unnatural skin texture, overly 
smooth and uniform features, and a lack of natural imperfections. The 
eyes and teeth appear slightly artificial, with inconsistencies in …

Ours: The image depicts a real human face. The woman is smiling, 
and her facial features, such as her eyes, nose, and mouth are clearly 
visible. The image also shows her wearing earrings and a necklace, 
which are realistic accessories…

GPT-4o: This image appears to depict a real human face. The 
natural skin texture, lighting, and shadows interact realistically, unlike 
AI-generated images, which often appear overly smooth. The 
reflections in the sunglasses are coherent and …

Ours: The image depicts a deepfake-generated face, as indicated by 
the woman's unnatural facial features and the overall artificial 
appearance. The reflection in her sunglasses shows a blurry cityscape, 
which further supports the notion that the image is a deepfake
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Figure 1. (a) Commercial models perform significantly worse
than AuthGuard. For instance, GPT-4o frequently misclassifies
low-resolution faces as fake, highlighting its limitations in distin-
guishing real from fake within general-purpose MLLMs. This un-
derscores the need for a more accurate and lightweight deepfake-
specific detection and reasoning model. (b) We leverage the VIC
[31] to generate reasoning prompts for GPT-4o and Gemini-1.5 in
real/fake classification. Few-shot prompting includes four labeled
images (two real, two fake) for context. AuthGuard significantly
outperforms commercial models on the DD-VQA [60] dataset.

evidence. Imagine a breaking news featuring a world leader
announcing a sudden policy change, sparking panic in fi-
nancial markets – only to later be revealed as a deepfake
fabricated to manipulate public opinion. Or picture a vir-
tual job interview with a recruiter, but the person behind the
screen is a deepfake avatar orchestrating a phishing scam.
As digital media increasingly shapes both public discourse
and personal interactions, the ability to detect and analyze
deepfake images is becoming more and more essential for
safeguarding authenticity [51].

However, existing deepfake detection methods – such
as [23, 27, 32, 47, 53, 55, 61] – struggle to keep pace with
the rapid advancements in generative AI. Most approaches
focus either on enhancing the vision encoders [47, 53, 55]



or employing data-driven classification models trained on
exemplar attack samples [9, 35, 52]. While these methods
are effective against known manipulations, they often fail
catastrophically when confronted with novel, unseen deep-
fakes, leaving critical vulnerabilities in real-world applica-
tions as new forgery methods rapidly emerge. This lim-
itation arises because these methods rely heavily on rec-
ognizing statistical deepfake artifacts tied to specific gen-
eration processes – patterns that exist within their labeled
training data [2, 34, 39] – which may not appear in the test
data. In contrast, humans approach deepfake detection fun-
damentally differently: instead of relying on statistical cues,
they apply commonsense reasoning and describe inconsis-
tencies using natural language [14]. As also discussed in
[14, 20], many cross-domain deepfake detection errors align
with language describable patterns, indicating that existing
methods overlook such key semantic insights.

To enhance generalization in deepfake detection, we pro-
pose AuthGuard, a unified deepfake detection and rea-
soning framework that captures both statistical deepfake
artifacts and commonsense deepfake artifacts – human-
interpretable, language-describable features that are inde-
pendent of specific generative models. To achieve this,
we develop an automatic data generation pipeline, lever-
aging state-of-the-art public Multimodal Large Language
Models (MLLMs). By incorporating real or fake labels as
contextual prompts, we generate 114k high-quality image-
text pairs, with each text explaining why a face image ap-
pears fake or real. Using this dataset, we train an ex-
pert deepfake vision encoder by image-text combining con-
trastive learning with standard binary classification. This
allows the trained vision encoder to capture broad semantic
relationships for better generalization while enabling pre-
cise distinctions between real and deepfake images. Mean-
while, we mitigate text noise through probabilistic embed-
ding [46], ensuring more robust cross-modal feature align-
ment. To effectively balance the contributions from statis-
tical and commonsense deepfake artifacts, we introduce an
adaptive aggregation mechanism which uses a light-weight
adaptor network to generate input-dependent probabilistic
weights, dynamically combining these artifacts into a sin-
gle visual representation. The aggregated representation en-
hances generalization and addresses challenges in adapting
to novel attacks. Finally, we integrate the aggregated visual
representation into the LLaVA architecture [29] through in-
struction tuning on our curated dataset, creating a flexible
framework where the LLM functions as a plug-and-play
component for deepfake reasoning and explainability.

In summary, we make the following contributions:
1. We propose AuthGuard, a unified vision-language

model that seamlessly integrates deepfake detection, rea-
soning, and analysis with enhanced generalization. To
the best of our knowledge, we are the first work to

achieve such unification in the deepfake domain.
2. We develop a simple yet effective training strategy for

learning an expert deepfake vision encoder that cap-
tures both commonsense and statistical deepfake arti-
facts. This strategy employs a text-regularized represen-
tation learning method that uses MLLM-generated text
data to reduce overfitting to statistical patterns in the
training data, and incorporates a small adaptor to com-
bine contrastive and discriminative features dynamically.

3. Through thorough benchmarking, we demonstrate that
AuthGuard outperforms state-of-the-art methods in ac-
curacy, generalization and reasoning. Specifically, Au-
thGuard achieves a 6.15% improvement in deepfake de-
tection accuracy on the DFDC dataset [12] in the cross-
dataset setting and a 24.36% increase in reasoning accu-
racy on the DDVQA dataset [60].

2. Related Work
Deepfake Detection As deepfake generation technology
progresses, datasets now encompass a wider variety of at-
tack types to evaluate the accuracy, robustness, and general-
ization of detection methods [12, 24, 43, 56, 59]. Tradition-
ally, deepfake detectors have relied on binary image classi-
fiers [9, 23, 61]. Recent advancements aim to enhance both
accuracy and generalizability by optimizing various compo-
nents of these detectors [17, 26, 35, 48, 55]. One approach,
as seen in [47, 61], enhances the training data by generat-
ing synthetic samples that combine source and target im-
ages, thus enriching the dataset and potentially improving
detector robustness. Another line of work aims to improve
representation learning by adopting more powerful back-
bones and introducing novel training mechanisms. For in-
stance, [9] introduces additional blending mask learning in
the training and [53] decomposes images to reveal common
forgery features, enabling the detector to learn more gener-
alized characteristics of deepfakes. Similarly, [55] demon-
strates that using representations from a wider variety of
forgeries helps create more generalizable decision bound-
aries, reducing overfitting to method-specific features.
Adapting Vision-Language Models for Deepfake Detec-
tion Recent works [7, 15, 60] have explored using instruc-
tion tuning of vision-language models [22, 37] to perform
deepfake detection by framing it as a visual question an-
swering (VQA) task. However, existing works focus either
on improving reasoning benchmarks or on enhancing binary
detection accuracy, without providing an integrated model
that addresses both. One approach [7] tunes soft prompts
to classify images as real or fake, but it only provides a bi-
nary yes/no answer, missing the opportunity for more in-
formative, explainable outputs Zhang et al. [60] annotated
the FaceForensics++ dataset [43] with explanations for fake
images and fine-tuned a BLIP model [22] to generate rea-
soning about why an image appears fake. However, their
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Figure 2. The framework of AuthGuard comprises two main components: (a) and (b) for expert vision representation learning, and (c) for
LLM-based deepfake reasoning, where the LLM utilizes image tokens generated from the vision module. In the representation learning
module, deepfake artifact learning is divided into commonsense and statistical artifacts. Commonsense artifacts are learned through vision
contrastive learning and refined with probabilistic embedding to mitigate label noise. These are then combined with data-driven, forgery-
specific artifacts via an adaptive router to extract expert deepfake features. Finally, the adapter’s output class token is concatenated with
patch-wise tokens from deeper layers and fed into the LLM for reasoning.

approach overlooks the critical role of statistical artifacts in
deepfake detection, limiting its robustness when handling
images with subtle discrepancies that cannot be captured by
natural language.

3. Method
Fig. 2 illustrates the overall framework for AuthGuard. We
first develop an expert deepfake encoder that captures both
statistical and commonsense deepfake features by combin-
ing classification with vision-language contrastive learn-
ing. Specifically, commonsense deepfake features refer to
language-describable and semantically meaningful artifacts
learned through pseudo-text pairs, while statistical deep-
fake features include artifacts that are often imperceptible
to humans, such as GAN fingerprints. An adaptor combines
commonsense visual features and statistical deepfake fea-
tures, creating a balanced representation for more general-
ized deepfake detection. After the deepfake vision encoder
is trained, we integrate it with an LLM, enabling plug-and-
play deepfake reasoning and interpretability. In the follow-
ing sections, we describe our pseudo-text generation pro-
cess in Sec. 3.1, detail the design and training of the vision
encoder in Sec. 3.2 and Sec. 3.3, and discuss its integration
with an LLM in Sec. 3.4.

3.1. Automatic Image-Text Pair Data Generation
Given the time-consuming nature of human annotation and
the large size of typical deepfake datasets, we use a pub-
licly available MLLM1 to scale the generation of pseudo-

1In this paper, we use Llama 3.2 [33], but any publicly available gener-
alist MLLM could be used in principle.

text pairs for all training images. We design a customized
prompt that incorporates image labels as contextual infor-
mation to prompt MLLM to generate the data: Explain
why the face attributes (e.g., eyes, mouth, chin, hair, nose,
and others) make this image look Type. Here Type denotes
the binary (real/fake) image ground truth label. This label-
based prompting method helps reducing hallucinations, en-
suring that fake images consistently receive negative de-
scriptions. The generated paragraph is then split into indi-
vidual sentences based on keywords like “mouth”, “eyes”,
and other facial landmarks. This added context helps the
model generate more relevant and accurate pseudo-text
pairs. Examples of the generated data are shown in Fig. 3.

To enhance multimodal alignment and deepfake reason-
ing in LLMs, we further generate instruction tuning data
from image captions to teach the model to analyze visual in-
puts step by step, enabling reasoning for detecting deepfake
artifacts [28, 29, 49]. It also helps better alignment of im-
age and language representations, ensuring structured and
logical responses. We then use a LLM to generate diverse
instructions and responses from image descriptions, creat-
ing a large dataset of image-centric, conversational training
data for deepfake reasoning. We provide detailed examples
of the generated instruction tuning data in Fig. 4.

3.2. Aligning Deepfake Detection with Language

We design a specialized loss function to train our expert
vision encoder. To enhance generalization, we incorpo-
rate image-text contrastive regularization to capture com-
monsense deepfake artifacts—features that can be described
in natural language—alongside standard classification loss,



Ø Prompt: Explain why the face attributes make this image look fake.
Llama 3.2: The face appears to be a composite of multiple faces, with the eyes 
and mouth being from one person and the hair from another. The skin tone is 
also unnatural, with a bluish tint that is not typical of human skin. Additionally, 
the overall shape and proportions of the face are not consistent with those of a 
real person. Overall, the face in the image appears to be a manipulated or 
digitally altered representation of a person's face, rather than a genuine 
photograph. 

Prompt: Is this image real or fake?
Llama 3.2: The image appears to be a screenshot of a news broadcast, with the woman's face possibly 
being displayed on a television screen, making it a real image.

Figure 3. Automatic pseudo-text generation: comparing Llama
3.2’s responses to prompts with and without labels.

which focuses on learning statistical deepfake artifacts. The
overall loss function can be expressed as follows:

Loverall = Lcls + Lcst (1)

where Lcls is the the regular binary cross entropy loss and
Lcst is the contrastive loss with details covered in Sec. 3.3.

A straightforward way to implementing this loss is to add
a small adaptor that transforms the original vision embed-
dings for computing the classification loss while using the
original vision embeddings for computing the contrastive
loss. However, our experiments in Tab. 4 reveal that this
design results in suboptimal performance. This occurs be-
cause the model overfits to easily learned statistical patterns
from the classification loss, which hinders its ability to ef-
fectively capture the contrastive features. To address this,
we propose an adaptive weighting mechanism that dynami-
cally adjusts the contribution of each artifact type. For each
image xi, we branch its raw embedding from the vision en-
coder, denoted as hi, into two sub-modules: one is used for
contrastive learning to capture language-describable deep-
fake features, while the other passes through two self-
attention layers to generate a transformed embedding that
captures statistical deepfake features. We further introduce
a trainable adapter, Rt, that dynamically aggregates the
original and transformed embeddings for each image, sim-
ilar to the mixture-of-experts routing mechanism [58]. For
each image, denoting the contrastive feature as zi and the
statistical feature as vi, the aggregated embedding is com-
puted as ei = w1vi+w2zi where wi = [w1, w2] represents
the gating weights assigned by Rt to control the contribu-
tion of each representation. The gating weights are com-
puted as wi = Softmax

(
(Rt(vi))

)
where Rt projects vi to

a 1-D vector. The elements of wi sum to 1, representing the
relative importance of each deepfake artifact. Finally, we
apply a binary cross-entropy loss Lcls on the ei and the con-
trastive loss Lcst on zi. As shown in our ablation in Tab. 4,
this design yields 0.91% AUC improvement on DFDC.

3.3. Uncertainty Control for Text Noise
For contrastive learning, directly using the noisy pseudo-
labels generated by a MLLM can introduce hallucinations
and degrade detection performance. To tackle this, we draw

Question: "Is the image in question likely to be a real, unedited 
photograph or a digitally altered one?"
Answer: "Based on the description, it is likely that the image has 
been digitally altered or enhanced. The characteristics mentioned, 
such as the unrealistic smoothness and uniformity of the skin 
texture, overly perfect lighting, and …"

Question: "What specific features of the image suggest that it has been edited?"
Answer: "The features that suggest the image has been edited include the unnatural 
smoothness and uniformity of the skin, the overly perfect lighting without …"
Question: "Can you elaborate on why the smoothness and uniformity of the skin 
suggest editing?"
Answer: "In real, unedited photographs, skin texture often appears more natural and 
varied, with subtle imperfections such as pores, fine lines, and slight unevenness in 
tone. The smooth and uniform skin texture in the image, lacking …"

Question: "How does the lighting in the image contribute to the suspicion of 
editing?”
Answer: "The lighting in the image overly perfect, which implies that it lacks the 
natural imperfections and variations that are typically present in real-world lighting 
conditions. In most photographs, lighting can create subtle shadows, highlights …"
Question: "What role does symmetry play in suggesting that the image has been 
edited?"
Answer: "Symmetry in an image can be a natural occurrence, but when it is overly 
pronounced or perfect, it can be an indicator of digital editing …"

Figure 4. Example of instruction-tuning data generated from im-
age captions (Sec. 3.1).

inspiration from data uncertainty learning in face recogni-
tion [6] and incorporate uncertainty control into contrastive
learning [41]. Specifically, instead of using determinis-
tic image embeddings, we adopt probabilistic embeddings
[46], where each embedding is modeled as a distribution pa-
rameterized by a mean and variance. This allows for adap-
tive alignment and effectively mitigates the adverse effects
of noisy pairs. To account for inconsistencies in image-text
pairs, we model the raw vision embedding hi as a Gaussian
distribution conditioned on the text description Ti:

p(hi|Ti) = N (hi;µi, σ
2
i I), (2)

where the mean and variance are predicted in an input-
dependent manner by the backbone using a two-layer self-
attention mechanism: µi = fµ(hi), σi = fσ(hi), where
f(·) denotes the network parameters. Thus, the representa-
tion of each sample is no longer a deterministic embedding
but a distribution. To allow the model to take gradients as
usual, we apply the reparameterization trick [19]. Specifi-
cally, we first sample random Gaussian noise ϵ ∼ N (0, 1),
and then generate the equivalent sampling representation as
zi = µi + σi · ϵ. Finally, a contrastive loss is applied to
the resampled visual embeddings zi and textual embeddings
ti = G(Ti) in a batch manner, where G is the text encoder.
This can be formally expressed as:

Lcst = − 1

2B

B∑
i=1

[
log

ew·z̃i·t̃i∑B
k=1 e

w·z̃i·t̃k
+ log

ew·t̃i·z̃i∑B
k=1 e

w·t̃i·z̃k

]
(3)

In the equation, z̃i, t̃i represent the normalized versions of
zi and ti, and ω is the temperature parameter.



3.4. Deepfake Reasoning with a LLM
To integrate deepfake detection with reasoning, we adopt
a LLaVA-like [29] architecture for its superior accuracy in
tasks like interpreting facial expressions and identifying ob-
ject properties. We replace the original LLaVA vision en-
coder with our specialist vision encoder. Also, unlike the
original implementation, which projects only image patch
tokens to the LLM, we incorporate both a refined, discrim-
inative class embedding and the original patch-wise tokens.
This approach mitigates hallucinations and reduces incon-
sistencies between VQA detection and VQA reasoning, as
the LLM is modulated with label information indicating
whether the input image is real or fake. Formally, let fproj
denote this projection function:

e′i = fproj(vi, ei), (4)

where e′i ∈ Rdl and dl is the dimension of the language
model’s input. The projection fproj aligns e′i with the lan-
guage model’s token space. Once aligned, these visual to-
kens, along with accompanying text tokens, are processed
by a LLM (i.e., Vicuna [11]) to perform reasoning and gen-
erate responses based on both visual and textual inputs.

To train both the projection layer and the LLM, we em-
ploy instruction tuning using the auto-regressive loss. Given
a triplet (x, q, y) consisting of an image x, question q, and
response y with L tokens, the model factorizes the proba-
bility of generating the sequence using the chain rule:

p(y | x, q) =
L∏

i=1

pθ(yi | x, q, y<i), (5)

Here, θ = {W,ϕ} represents the parameters of the projector
and the LLM. The vision encoder weights are kept frozen.

4. Experiments
4.1. Experimental Settings
Datasets We evaluate the effectiveness of our proposed
framework in terms of generalizability and interpretability
across multiple deepfake datasets:
1. FF++ dataset [43] consists of 1,000 real and 4,000 fake

videos from various sources. Four deepfake techniques
are employed to generate the corresponding fake videos.
We train all models over FF++ dataset. For evaluation,
we adopt the c23 version of FF++.

2. DFDC dataset [12] is a more challenging and larger
deepfake detection dataset. Consistent with existing lit-
erature, we train the detector on the FF++ dataset and
evaluate its performance on the DFDC dataset.

3. DF40 [56] is a recent dataset with 40 distinct forgery
methods. We select 8 unseen faceswapping methods
generated from the FF++ real samples for evaluation.

4. DD-VQA dataset [56] is a recently established deepfake
visual question answering dataset. It includes 14,782
question-answer pairs, with the images collected from
the FF++ and human annotated text.

Baselines For the binary deepfake classification task, we
compare our proposed framework with 5 state-of-the-art bi-
nary deepfake detectors, including UCF [53], SRM [32],
Face-X-Ray [23], SPSL [27], and LSDA [55]. We use
the implementation and pre-trained weights from the third-
party evaluation toolbox, DeepfakeBench [54]. For the
deepfake reasoning task, we compare our method with
BLIP-TI [60], a state-of-the-art multi-modal VQA model
specialized in deepfake detection and reasoning tasks.
Metrics For the binary deepfake detection task, following
exsisting worsk [53], we report the AUC score on the FF++,
DFDC, and DF40 datasets and compare them with state-of-
the-art methods. To assess our model’s reasoning capabil-
ity against baselines on DD-VQA, we follow the methodol-
ogy outlined in [60]. This includes using detection accuracy
and four natural language processing metrics: BLUE-4[38],
CIDEr [50], ROUGE L [25], and METEOR [4].
Implementation Details Our training process consists of
two stages. In the first stage, we train an expert deepfake
vision encoder using ViT-L/14 [41] for the vision branch
and RoBERTa [30] for the text branch. Both ViT-L/14 and
RoBERTa are pretrained on the LAION dataset [45]. Dur-
ing fine-tuning, the text encoder remains frozen, and only
the vision encoder’s weights are updated. The learning rate
is set to 5e-6, with 1,000 warmup steps. We employ the
Adam optimizer with a cosine learning rate scheduler and
train for 5 epochs. The α and β are set to 0.05 and 1 respec-
tively. In the second stage, we perform instruction tuning
for deepfake reasoning.

4.2. Evaluation Results
Evaluation on Seen Attacks We perform in-distribution
evaluation with seen attacks using the FF++ dataset [43] and
demonstrate that our vision encoder training by combining
commonsense and statistical artifacts would not sacrifice
the performance in this setting. As shown in Tab. 1, when
evaluating the in-distribution performance, our approach
excels with an AUC of 98.87% on the FF++ dataset [43],
outperforming the best baseline UCF (98.12%) [53] by a
margin of 0.76%. When analyzing the performance on the
individual subsets within FF++, our method exhibits com-
parable results to UCF on the FF-DF, FF-F2F, and FF-FS
subsets. However, our approach significantly outperforms
UCF on the FF-NT subset, achieving an AUC of 98.13%,
which exceeds UCF’s 95.27% by a substantial 3.00%.
Evaluation on Unseen Attacks We compare our method
with the recent state-of-the-arts on out-of-distribution test
using unseen attacks from the DFDC dataset [12] in Tab. 1
and selected unseen face-swapping attacks from DF40 [56]



Method Venues In-distribution test (AUC (%)↑) Out-distribution test (AUC (%)↑) Out-distribution test (ACC (%)↑)
FF-DF FF-F2F FF-FS FF-NT FF++ DFDC DFDC

UCF [53] ICCV 2023 99.05 99.01 99.18 95.27 98.12 73.15 65.75
SRM [32] CVPR 2021 97.82 97.08 97.17 94.01 96.52 68.44 62.83
Face-X-Ray [23] CVPR 2020 97.94 98.72 98.71 92.90 95.92 63.26 -
SPSL [27] CVPR 2021 97.81 97.54 98.29 92.99 96.10 70.40 62.35
LSDA [55] CVPR 2024 96.94 96.43 95.11 94.92 95.38 73.60 60.73
FreqDebias [18] CVPR 2025 - - - - 97.50 74.10 -
AuthGuard (ours) - 99.65 98.83 98.85 98.13 98.87 78.13 71.93

Table 1. Comparison on AUC (%) is performed using a standard evaluation setup, where the models are trained on the FF++ dataset [43]
and tested for in-distribution performance on FF++ and out-of-distribution performance on DFDC [12].

Method Venues Out-distribution test (AUC (%) ↑) Out-distribution test (ACC (%) ↑)
UniFace E4S FaceDancer FS-GAN InSwap SimSwap Average Average

RECCE [5] CVPR 2022 84.25 65.20 78.32 88.45 79.51 73.04 78.13 69.40
CORE [36] CVPR 2022 81.69 63.39 71.69 91.06 79.37 69.34 76.09 68.74
SRM [32] CVPR 2021 78.24 66.73 77.43 84.52 76.15 65.96 74.84 68.11
UCF [53] ICCV 2023 78.67 69.17 80.06 88.09 76.85 64.92 76.29 68.26
LSDA [55] CVPR 2024 84.25 65.19 78.32 88.45 79.37 69.34 77.49 65.37
AuthGuard (ours) - 95.54 89.65 85.56 95.37 95.06 85.78 91.16 83.81

Table 2. Accuracy comparison for several recent methods on six representative face-swapping techniques from the DF40 dataset [56]. Our
method outperforms the recent approaches by a substantial margin, leading to an 16.68% improvement in performance.
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Figure 5. To qualitatively demonstrate the alignment between the vision representations from our expert vision encoder and the paired
text, we visualize attention maps from our vision-language contrastive learning using the approach from [8]. For the same image, different
descriptions of commonsense artifacts activate the corresponding facial regions.

in Tab. 2. In the out-of-distribution setting, our method
achieves an AUC of 78.13% on the DFDC dataset [12]
and 93.20% on the DF40 dataset [56]. These results rep-
resent significant improvements of 6.15% and 16.68%, re-
spectively, compared to the best corresponding baselines
[53]. Based on the superior performance over state-of-the-
art methods depicted in Tab. 1 and Tab. 2, we can conclude
that our method surpasses existing methods not only in the
in-distribution setting but also in the out-of-distribution set-
ting. This validates the effectiveness of combining statis-
tical and commonsense deepfake features, enhancing gen-
eralization and enabling robust detection of both seen and
unseen deepfakes.

Improving Explanation and Reasoning In addition of
detection accuracy, we evaluate deepfake explanation and
reasoning capabilities of our method on the DD-VQA
dataset [60], comparing it with general MLLMs and the
expert MLLM, BLIP-TI [60], as shown in Tab. 3. Firstly,
we benchmark the performance of GPT-4 [3], LLaVA-1.5-
7B [29], InternVL [10], Phi-3.5-Vision [1], InternVL2-
8B [10], and LLaVA-OB-7B [21] for the deepfake detec-
tion task without any fine-tuning on the DD-VQA dataset.

We prompt the MLLMs with “Is this image real or fake?”
and evaluate accuracy by comparing the model’s output
(real/fake) with the ground truth labels. By this approach,
these MLLMs obtain accuracy of 75.00%, 61.83%, 61.07%,
61.07%, and 70.23%, respectively. Additionally, we pro-
vide the detection and reasoning performance of the stan-
dard LLaVA model, trained on general vision data. While
better than random guessing, its accuracy remains subop-
timal, even for the supervised fine-tuned LLaVA on the
same instruction tuning dataset. These limitations in stan-
dard MLLMs highlight the need to enhance the vision
encoder with deepfake-specific knowledge. On the DD-
VQA dataset, BLIP-TI [60] is the only deepfake domain
expert model providing both capabilities on binary detec-
tion (yes/no) and reason explanation. Compared to BLIP-
TI [60], our method can produce probabilistic output and
achieve a detection accuracy of 90.84%, outperforming
BLIP-TI by 3.83% on deepfake detection accuracy. This
improvement in detection accuracy validates the effective-
ness of our approach in accurately identifying deepfake ar-
tifacts within the DD-VQA dataset [60]. In reasoning, our
method significantly outperforms BLIP-TI across all four



Method Deepfake Detection Visual Question Answering (VQA)

AUC (%)↑ Accuracy (%)↑ BLEU-4 ↑ CIDEr ↑ ROUGH L ↑ METEOR ↑ Average ↑
General MLLMs (GPT-4o and [1, 3, 10, 21]) - 58.43-75.00 - - - - -
BLIP-TI [60] - 87.49 0.4075 2.0567 0.6085 0.3463 0.9823

LLaVA (off-the-shelf) [29] - 61.83 0.1422 1.4231 0.2314 0.2489 0.5114
LLaVA (fine-tuned) - 70.60 0.3880 1.7320 0.5470 0.3212 0.7470

AuthGuard (ours) 96.81 90.84 0.4980 3.3050 0.6950 0.4010 1.2248

Table 3. Comparison of various methods on the DD-VQA dataset [60] for both deepfake detection and reasoning tasks. Our method
achieved a 3.83% improvement on deepfake detection and a 24.69% improvement on the average quality metric on deepfake VQA.

Ours: The person's skin looks fake. The person's 
skin looks a bit fake because the skin is overly 
smooth and lacks of details, such as skin texture. 
There are stains/flaws on the person's face. There 
are areas looking unnaturally brighter. There area 
of looking unnaturally darker.

Ours: The person's nose looks fake. The person's 
nose looks a bit fake because the nose looks 
curved.

Ours: The person's eyes look fake. The person's 
eyes look a bit fake because the eyes look 
unnaturally asymmetric.

Ours: The image looks real. The person have 
complete face feature. Those features are in good 
shape, size, and positioning. The person has 
smooth skin, arched eyebrows, round eyes, straight 
nose, full mouth.

Ours: The person's skin looks real. The person has 
naturally smooth skin.

Ours: The person's nose looks real. The person has 
naturally straight nose.

Llama 3.2: The image appears to be a screenshot 
of a video, and the person's face is blurred, which 
could suggest that it is a manipulated or fake 
image. However, without more context or 
information, it is difficult to say for certain whether 
the image is real or fake.

Llama 3.2: The image appears to be a low-
resolution, pixelated photograph of a man with a 
blurred face, making it difficult to determine 
whether it is real or fake. The image's quality and 
lack of clear details make it challenging to assess its 
authenticity.

Llama 3.2: The image appears to be a screenshot 
from a video, which is why it seems fake. The image 
quality is low and pixelated, and the lighting is 
uneven, which suggests that it may have been taken 
in low-light conditions or edited to look that way.

Llama 3.2: The image appears to be a still from a 
video, and the quality is not high enough to 
determine if it is real or fake. The image is blurry 
and pixelated, making it difficult to discern any 
details that could confirm its authenticity.

Llama 3.2: The image appears to be a 
manipulated or edited version of a real person. The 
level of detail and realism in the image suggests 
that it may have originated from a real photograph, 
but the unusual pose, expression, and context 
suggest that it has been altered in some way.

Llama 3.2: The image appears to be a screenshot 
of a video, and the woman's features seem 
exaggerated or digitally altered, suggesting that it 
may be a manipulated or edited image.

Figure 6. Reasoning examples of our method on DD-VQA. Highlighted text indicates the accurate descriptions of facial features.

Modules Datasets

Semantic Artifacts Uncertainty Est. Adapter FF++ DFDC

98.35 75.22
✓ 98.69 76.29
✓ ✓ 98.62 77.20
✓ ✓ ✓ 98.87 78.13

Table 4. Ablation study on AUC (%), evaluating the improvement
of the proposed modules on the FF++ and DFDC datasets.

metrics and 24.69% improvement on average. Specifically,
we achieve scores of 0.4980 for BLEU-4, 3.3050 for CIDEr,
0.6950 for ROUGE L, and 0.4010 for METEOR, while
BLIP-TI scores 0.4075, 2.0567, 0.6085, and 0.3463, respec-
tively. These higher scores indicate that the responses gen-
erated by our method are better aligned with human anno-
tators’ assessments, and that the binary token produced by
our method shows greater consistency with the labels.

4.3. Ablation Study and Visualization

Impact of Various Image Encoder Improvements To
evaluate the impact of each proposed module, we performed
ablation studies by incrementally adding each component
to the image encoder training process depicted in Tab. 4.

First, incorporating semantic learning through image-text
contrastive learning led to an AUC increase from 98.35%
to 98.69% on FF++ and from 75.22% to 76.29% on DFDC,
suggesting that semantic alignment enhances performance
even in the presence of noisy labels. Next, we introduced an
uncertainty estimation (Uncertainty Est.) module to address
the unreliability of pseudo-text annotations, further improv-
ing the AUC from 76.29% to 77.20%. This result indicates
that probabilistic embeddings can strengthen the effective-
ness of semantic learning by providing adaptive vision-
language alignment. Finally, with the integration of adap-
tive balancing between commonsense and forgery-specific
features, the AUC rose from 75.22% to 78.13%, achieving
the highest scores across all configurations. These findings
demonstrate that both commonsense and statistical artifacts
are crucial for deepfake detection, and adaptively combin-
ing these artifacts offers an optimal solution.

Interpretation and Reasoning For reasoning training, we
incrementally adapt the off-the-shelf LLaVA model to our
specific requirements, assessing its performance on the DD-
VQA dataset [60]. Tab. 3 reveal that with the default fine-
tuning approach where the CLIP [41] vision encoder is fixed
and only the vision-language projector and LLM are tuned,
the model achieves a detection accuracy of just 70.60% and



The image depicts a real 
human face. The man's 
facial features, such as his 
eyes, nose, and mouth, 
are clearly visible and 
appear natural. The image 
does not exhibit any signs 
of manipulation or 
artificiality that are 
commonly associated 
with deepfakes, such as 
unnatural facial 
expressions, inconsistent 
lighting, or blurred areas. 

The image depicts a 
deepfake-generated human 
face. The facial features, 
such as the eyes, nose, and 
mouth, appear to be 
artificially created, and the 
skin texture seems unnatural. 
Additionally, the overall 
appearance of the face is not 
typical of a real human face, 
which further supports the 
conclusion that it is a 
deepfake. The background, 
which includes people 
walking by, adds to the 
realism of the scene, but the 
face itself is not genuine.

The image depicts a 
deepfake-generated face, as it 
combines human and robotic 
elements. The woman's face 
is blended with a robotic face, 
creating a unique and 
unrealistic appearance. The 
blending of human and 
robotic features is a 
characteristic of deepfake 
technology, which uses 
artificial intelligence to create 
realistic but fake images or 
videos. 

The image depicts a 
deepfake-generated face, as 
indicated by the unnatural 
appearance of the woman's 
face and the inconsistencies 
in her features. The face 
appears to be digitally 
manipulated, with an 
unrealistic texture and 
lighting that is not typical of 
a real human face. The 
woman's hair and earrings 
also seem to be artificially 
rendered

The image depicts a 
deepfake-generated face, 
as it shows a woman with 
a very smooth and 
unnatural appearance. The 
facial features, such as the 
eyes and skin, appear too 
perfect and lack the subtle 
imperfections that are 
typically found in real 
human faces. 
Additionally, the overall 
composition of the image, 
including the lighting and 
focus, seems to be 
artificially created

The image depicts a 
deepfake-generated face, as 
it shows a man with a blue 
hat and a blue shirt, but the 
facial features and 
expressions do not match 
the real Vladimir Putin. The 
eyes, nose, and mouth seem 
to be manipulated or altered, 
making it difficult to 
recognize the person as the 
real Vladimir Putin. This 
suggests that the image is a 
digital creation rather than a 
genuine photograph of the 
Russian president.

Real image SDXL DALL-E3 Lumenor.ai Midjourney IP-Adapter

The image depicts a real 
human face. The man's 
facial features, such as his 
eyes, nose, and mouth, 
are clearly visible and 
appear natural. The 
presence of a scarf around 
his neck and the overall 
appearance of the man 
suggest that the image is 
a genuine photograph of a 
person, rather than a 
deepfake-generated face.

The image depicts a real 
human face. The woman 
has a distinctive hairstyle, 
and her facial features, 
such as her eyes, nose, 
and mouth, are well-
defined. The makeup, 
including the pink lipstick 
and eyeshadow, is also 
applied in a way that is 
typical of a real human 
face. The overall 
appearance of the woman 
in the image suggests that 
it is a genuine photograph 
of a person rather than a 
deepfake-generated face.

Real imageReal image

Figure 7. Evaluating deepfake images beyond FF++: the images with blue-shaded texts are real; the remaining images are AI-generated.

a BLEU-4 score of 0.3880. This shows limitations of using
a vision encoder pre-trained on natural images, supporting
our hypothesis that such encoders are insufficient for ex-
tracting deepfake-relevant features. To address this issue,
we fine-tune the standard vision encoder with our special-
ized deepfake detection encoder, which is trained to cap-
ture both commonsense and statistical artifacts. After this
modification, we observe significant improvements in both
detection and reasoning performance. The model achieves
an accuracy of 90.84% for deepfake detection and a BLEU-
4 score of 0.4980 for reasoning, outperforming the base-
line LLaVA model by a substantial margin. These results
demonstrate the efficacy of our expert vision encoder in
capturing deepfake-specific artifacts, enabling more accu-
rate detection and improved reasoning capabilities.
Attention Map Visualization To further validate the effi-
cacy of our proposed semantic learning module, we present
a visual analysis of the attention maps [8] generated by our
model, as depicted in Fig. 5. The text prompts displayed are
pseudo-labels derived from the Llama 3.2 model [33], and
all four images utilized in this analysis are synthetic deep-
fakes. As illustrated, by providing distinct text prompts for
the same deepfake image, our model successfully guides
the encoder to concentrate on the targeted regions, aligning
with our objective of encouraging the model to learn seman-
tic artifacts directed by pseudo-text descriptions. An exam-
ination of Fig. 5 reveals a strong correspondence between
the attention masks and the associated text descriptions, in-
dicating that our vision encoder effectively captures the rel-
evant semantic artifacts as guided by the textual input.
Qualitative Examples of Deepfake Explanation Fig. 6
presents qualitative results on the DD-VQA dataset [60],
comparing our model’s responses with Llama 3.2. Our
model accurately classifies all samples (top three: deepfake,
bottom three: real) with precise explanations. While Llama
3.2 often expresses uncertainty in detection and provides

only high-level explanations, our expert encoder-enhanced
approach delivers both accurate classification and detailed
semantic reasoning, particularly in identifying specific fa-
cial artifacts and structural inconsistencies commonly found
in deepfakes. To evaluate our model’s generalization, we
test its performance on facial images from diverse genera-
tion methods (e.g., SDXL [40] and IP-Adapter [57]). As
shown in Fig. 7, our model provides reasonable answers to
queries, demonstrating its effectiveness beyond FF++ and
its adaptability to recent image synthesis methods.

5. Limitations
AuthGuard cannot guarantee strictly causal explanations:
subtle or hidden cues may yield plausible but non-causal
rationales, a common limitation in explainable deepfake de-
tection. While semantic guidance reduces reliance on low-
level noise, causal faithfulness remains an open challenge.
Nonetheless, explanations are still valuable in practice, as
AuthGuard is designed to support rather than replace hu-
man judgment by highlighting why an image may appear
suspicious.

6. Conclusion
This paper presents AuthGuard, a unified deepfake de-
tection and reasoning framework that boosts both the
generalization and interpretability of deepfake detection
by combining statistical and commonsense deepfake arti-
facts. Extensive evaluations show that our approach out-
performs existing methods in detection accuracy, general-
ization (6.15%), and interpretability (24.69%). By bridg-
ing specialized deepfake detection with multi-modal large
language models, we take a step toward more transparent
and generalizable deepfake detection systems. We hope our
work contributes to combating misinformation, protecting
digital identity, and fostering trust in media authenticity.
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