
Module 1: Basic Logic

Theme 1: Propositions

English sentences are either true or false or neither. Consider the following sentences:

1. Warsaw is the capital of Poland.

2. 2 + 5 = 3.

3. How are you?

The first sentence is true, the second is false, while the last one is neither true nor false. A statement

that is eithertrue or false but not both is called aproposition. Propositional logic deals with such

statements andcompound propositionsthat combine together simple propositions (e.g., combining

sentences (1) and (2) above we may say “Warsaw is the capital of Poland and2 + 5 = 3”).

In order to build compound propositions we need rules on how to combine propositions. We

denote propositions by lowercase lettersp, q or r. Let us define:

� Theconjunction of p andq, denoted asp ^ q, is the proposition

p and q;

and it istrue when bothp andq are true and false otherwise.

� Thedisjunction of p andq, denoted asp _ q, is the proposition

p or q;

and it isfalsewhen bothp andq are false and true otherwise.

� Thenegationof p, denoted either as:p or �p, is the proposition

It is not true thatp.

Example 1: Let p =“Hawks swoop” andq =“Gulls glide”. Thenp_ q is the same as “Hawks swoop

or gulls glide”. We also can translate back. For example, the English sentence “it is not true that

hawks swoop” can be written as:p.

Exercise 1A: With the same notation as in the example above write the following propositions sym-

bolically:

� It is not true that “Hawks swoop and gulls glide”.

� “Hawks do not swoop or gulls do not glide”.
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Theme 2: Truth Tables

We can express compound propositions using atruth table that displays the relationships between

the truth values of the simple propositions and the compound proposition. In the next three tables

we show the truth tables for the negation, conjunction, and disjunction. Observe that any proposition

p can take only two values, namelytrue, denotedT , or false, denotedF . Therefore, for a com-

pound proposition consisting of two propositions (e.g.,p ^ q) we must consider only four possible

assignments ofT andF .

Table 1: The truth table for the negation.

p :p

T F

F T

Table 2: The truth table for the conjunction.

p q p ^ q

T T T

T F F

F T F

F F F

Table 3: The truth table for the disjunction.

p q p _ q

T T T

T F T

F T T

F F F

In this module we will often use truth tables. To construct a truth table for a statement (e.g.,

:p_ q) containing two propositions, sayp andq, one first builds two columns with all possible vales

of p andq (i.e., (T; T ); (T; F ); (F; T ); (F; F )), and then follows already accepted rules of inference

to determine the truth value of the compound statement (say:p _ q).

Exercise 1B: Construct truth tables for the following statements:

� p ^ :p;

� p _ :q.
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Theme 3: Implications

In mathematics we often deal withconditional statementslike: “ if x = 2, then x2 = 4. The if–then

statement is calledimplication and it is denoted asp! q. It is false whenp is true andq is false and

true otherwise. The reader may inspect the truth table ofp! q in Table 4 below.

Table 4: The truth table for the implication.

p q p! q

T T T

T F F

F T T

F F T

It is important to emphasize thatp ! q is false only whenp is true andq is false. In words,

truth cannot imply a falsestatement, butfalsecan implytruth . For example, consider the following

statement

if x = �2; then x2 = 4

which is true even if the first part of this compound statement is not true, say whenx = 2.

In the implicationp! q, the propositionp is calledhypothesisor antecedentand the proposition

q is known asconclusion or consequent. The conclusion expresses anecessary conditionfor p,

while the hypothesis expresses asufficient condition for q to hold. Some other common ways of

expressing the implicationp! q are:

� if p, thenq;

� p impliesq;

� if p, q;

� p only if q;

� p is sufficient forq;

� q if p;

� q wheneverp;

� q is necessary forp.

Exercise 1C: Make truth tables for the following statements:

1. p! :q;

2. (p ^ :q)! r.
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There are some important related implications following fromp! q, namely:

1. The propositionq ! p is called theconverse.

2. Thecontrapositive of p! q is :q! :p;

3. Theinverse is:p! :q.

In Table 5 we compare the truth values of these propositions.

Table 5: The truth table for the implication, contrapositive, converse, and inverse.

p q p! q :q ! :p q ! p :p! :q

T T T T T T

T F F F T T

F T T T F F

F F T T T T

We say that two compound propositionsP andQ arelogically equivalent if they have the same

truth values. We shall write

P � Q

or

P , Q:

It should be observed from Table 5 that the implicationp ! q has the same truth values as the

contrapositive:q ! :p, but not as the converse and the inverse. Thus we can write

p! q � :q ! :p;

p! q 6� :p! :q;

p! q 6� q ! p:

Example 2: Prove that

p! q � :p _ q:

We use the truth table. Our computation is shown in Table 6. Comparing the second column with the

last one, we see that the truth values are the same forp! q and:p _ q, so the above two compound

propositions are logically equivalent.

Table 6: The truth table for Example 2.

p q p! q :p :p _ q

T T T F T

T F F F F

F T T T T

F F T T T
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Exercise 1D: Using the truth table prove that the following propositions are logically equivalent:

p _ (q ^ r) � (p _ q) ^ (p _ r):

In Exercise 1D the reader was asked to prove logical equivalence that is known under the name

distributive law . This is an example of many other logical equivalences that we list in Table 7 and

prove in the sequel.

Table 7: Logical Equivalences

Equivalence Name

p ^ T � p Identity laws

p _ F � p

p _ T � T Domination laws

p ^ F � F

p _ p � p Idempotent laws

p ^ p � p

:(:p) � p Double negation law

p _ q � q _ p Commutative laws

p ^ q � q ^ p

p _ (q _ r) � (p _ q) _ r Associative laws

p ^ (q ^ r) � (p ^ q) ^ r

p _ (q ^ r) � (p _ q) ^ (p _ r) Distributive laws

p ^ (q _ r) � (p ^ q) _ (p ^ r)

:(p ^ q) � :p _ :q De Morgan’s laws

:(p _ q) � :p ^ :q

All laws listed above can be easily proved using the truth table. The reader is encouraged to try

to work out all the truth tables. Having such laws under our belt, we can prove many new logical

equivalenceswithoutusing the truth table.

Example 3: Prove that

:(p _ (:p ^ q)) � :p ^ :q � :(p _ q):

We proceed as follows

:(p _ (:p ^ q)) � :p ^ :(:p ^ q) De Morgan’s law

� :p ^ (:(:p) _ :q) De Morgan’s law

� :p ^ (p _ :q) double negation law

� (:p ^ p) _ (:p ^ :q) distributive law
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� F _ (:p ^ :q) since :p ^ p � F

� (:p ^ :q) _ F commutative law

� (:p ^ :q) identity law

� :(p _ q) De Morgan’s law:

Thus the above logical equivalence is proved. The above is largely self-explanatory, but a few words

of additional information follows: In the first statement above we, naturally, apply De Morgan’s law

:(P _Q) = :P ^:Q. In our case,Q is a compound statementQ = :p^q, thus another application

of De Morgan’s law implies:Q = p_:q. Then we “multiply out”, that is,p^(q_r) = (p^q)_(p^r).

The rest is simple.

A compound proposition is called atautology if it is always true, no matter what the truth values

of the propositions (e.g.,p _ :p � T no matter what is the value ofp. Why?).

A compound proposition is called acontradiction if it is always false, no matter what the truth

values of the propositions (e.g.,p ^ :p � T no matter what is the value ofp. Why?).

Finally, a proposition that is neither a tautology nor a contradiction is called acontingency.
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Theme 4: Predicates and Quantifiers

In mathematics we often have to deal with sentences like

p : x2 � 2x+ 1 = 0 or q : n is a prime number;

which arenot propositions since their values are neither true nor false since the values of the variables

x andn are not specified. We shall denote such statements asP (x) or Q(n) and callpropositional

functionsor predicatesof x or n.

More formally, letP be a statement involving the variablex that belongs to the setD. ThenP is

called apropositional function or predicate with respect toD if for eachx 2 D the sentenceP (x)

is a proposition. The domainD is often called theuniverse of discourseof P .

Example 4: The statement above

P (x) : x2 � 2x+ 1 = 0

is true whenx = 1 and is false for anyx 6= 1. The statementQ(3) is true, whereQ(n): “n is a prime

number”.

Predicates are very important in mathematics and computer science since they allow us to justify

logical inferences orsyllogisms. Consider the following famous syllogism:

All men are mortal.

Fermat is a man.

Therefore, Fermat is mortal.

This conclusion seems to be perfectly correct, but we do not have rules of inference for propositional

logic to justify it. We shall come back in Module 3 to such logical inferences when we discuss

mathematical proofs.

We saw above how to change a propositional function into a proposition: by assigning truth values

to the variablex. There is another way of changing a predicateP (x) into a proposition: either by

saying thatP (x) is true forall values ofx belonging toD or thatP (x) is true forsomevalue ofx in

D. The former is called theuniversal quantificationwhile the latter theexistential quantification.

Universal quantification

Theuniversal quantification P (x) is the proposition

P (x) is true for all values ofx in the universe of discourseD.

We shall denote is as

8x P (x):
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We can also read it as “for allx P (x)” or “for every x P (x)”. The symbol8 (notice that it is an

upside downA) is called a universal quantifier.

Example 5: The statement

8x x2 � 0

is a universally quantified statement that is true. But

8x x2 > 0

is a universally quantified statement that is false since forx = 0 we havex2 = 0. We have just

learned how to prove that a universal quantification is false. We must showat least one valueof x for

whichP (x) is not true. Such a value ofx is called acounterexamplefor 8x; P (x).

Finally, observe that if the universe of discourse consists of a finite number of elements, say

x1; x2; : : : ; xn, then

8xP (x) � P (x1) ^ P (x2) ^ � � � ^ P (xn)

since this conjunction is true if and only ifP (x1); P (x2); : : : ; P (xn) are all true.

Existential quantification

Theexistential quantification P (x) is the proposition

P (x) is true for some value(s) ofx in the universe of discourseD.

We shall denote it as

9x P (x):

We can also read it as “for somex P (x)” or “there is anx such thatP (x)” or “there is at least onex

such thatP (x)”. The symbol9 (notice that it is mirror image ofE) is called an existential quantifier.

Example 6: LetQ(x) denote the statement:4x2 = 1. What is the truth value of the quantification

9x Q(x)

when the universe of discourse forx is the set of real numbers? SinceQ(1=2) andQ(�1=2) are true

propositions, we conclude that9x Q(x) is true in the defined universe of discourse. But if we demand

that the universe of discourse forx is the set of integers, then9x Q(x) is false since there is no integer

satisfying4x2 = 1. Here, we observe that in order to prove that an existentially qualified statement

P (x) is false, one must show that forall x in the universe of discourse the predicateP (x) is false.

Finally, observe that if the universe of discourse consists of a finite number of elements, say

x1; x2; : : : ; xn, then

9xP (x) � P (x1) _ P (x2) _ � � � _ P (xn)

since this disjunction is true if and only if at least one ofP (x1); P (x2); : : : ; P (xn) is true.
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We now generalize De Morgan’s laws to quantifications. We claim that

:8xP (x) � 9x:P (x); (1)

:9xP (x) � 8x:P (x) (2)

Let us try toprovethe first statement. Suppose that:8xP (x) is true. Hence,8xP (x) is false. But,

as we seen before such a statement is false if there exists at least onex for whichP (x) is false. This

implies that for suchx the statement:P (x) is true, form which we infer that9x:P (x) is true. We

have shown that if:8xP (x) is true, then9x:P (x) is true. In a similar manner, we conclude that

if :8xP (x) is false, then9x:P (x) is false. In conclusion, the pair of propositions:8xP (x) and

9x:P (x) have the same truth values, so they must be logically equivalent.
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