[30] Homework 1. Finite Sums and the Euler-Maclaurin Summation Formula
Due by: September 6 by the end of the class.
In the class you will learn the Euler-Maclaurin Summation formula

$$
\sum_{k=m+1}^{n-1} f(k)+\frac{f(m)+f(n)}{2}=\int_{m}^{n} f(x) d x+\int_{m}^{n}\left(x-\lfloor x\rfloor-\frac{1}{2}\right) f^{\prime}(x) d x
$$

for any integers $m \leq n-2$ and differentiable function $f(x)$.
[15] Stirling's Approximation:
[10] Tabulate (and/or plot)

$$
\sum_{k=1}^{n} \log k
$$

for a range of n (e.g., for n in the range $1 \leq n \leq 500$). Based on this numerical computation find a good approximation for

$$
\log n!=\sum_{k=1}^{n} \log k
$$

for large n up to a constant term (e.g., your computations may indicate that $\log n!\approx$ $n \sqrt{n}+3.2 n+4 ;$ note that this is not the correct answer!)
[5] Use the Euler-Maclaurin formula to compute $\log n$! up to a constant term.

[15] A Very Simple Sum:

[10] Tabulate (and/or plot)

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}
$$

for a range of n. Based on this numerical computation find a good approximation for S_{n}.
[5] What answer gives you the Euler-Maclaurin formula? Justify your response.

Hints. You may want to know that:

$$
\begin{aligned}
\int_{1}^{\infty}\left(x-\lfloor x\rfloor-\frac{1}{2}\right) \frac{d x}{x} & \approx-0.080894281 \\
\int_{1}^{\infty}\left(x-\lfloor x\rfloor-\frac{1}{2}\right) \frac{d x}{x^{2}} & \approx-0.077215333 \\
\int_{1}^{\infty}\left(x-\lfloor x\rfloor-\frac{1}{2}\right) \frac{d x}{x^{3}} & \approx-.07246695009 \\
\int_{1}^{\infty}\left(x-\lfloor x\rfloor-\frac{1}{2}\right) \frac{2 x+1}{x^{2}(x+1)^{2}} & \approx-.056852656 .
\end{aligned}
$$

