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Foreword

Sequences – also known as strings or words – surface in many areas of science. Initially studied
by combinatorialists in relation to problems of formal linguistics, they have proved to be of
fundamental importance in a large number of computer science applications, most notably
in textual data processing and data compression. Indeed, designers of large internet search
engines acknowledge them to be huge algorithmic factories operating on strings. In a different
sphere, properties of words are essential to the processing and statistical interpretation of
biological or genetic sequences. There it is crucial to discern signal from noise and to do so
in a computationally efficient manner.

As its title indicates, Szpankowski’s book is dedicated to the analysis of algorithms oper-
ating on sequences. First, perhaps, a few words are in order regarding analysis of algorithms.
The subject was founded by Knuth around 1963 and its aim is a precise characterization of
the behaviour of algorithms that operate on large ensembles of data. A complexity measure
(like execution time) is fixed and there are usually a few natural probabilistic models meant
to reflect the data under consideration. The analyst’s task then consists in predicting the
complexity to be observed. Average-case analysis focuses on expected performance; whenever
possible, finer characteristics like variances, limit distributions, or large deviations should also
be quantified.

For a decade or so, it has been widely recognized that average-case analyses tend to be far
more informative than worst-case ones as the latter focus on somewhat special pathological
configurations. Provided the randomness model is realistic, average-case complexity estimates
better reflect what is encountered in practice—hence their rôle in the design, optimization,
and fine tuning of algorithms. In this context, for algorithms operating on words, properties
of random sequences are crucial. Their study is the central theme of the book.

“Give a man a fish and you feed him for the day; teach him to fish and you feed him
for his lifetime.” Following good precepts, Szpankowski’s book has a largely methodological
orientation. The book teaches us in a lucid and balanced fashion the two main competing
tracks for analysing properties of discrete randomness. Probabilistic methods based on in-
equalities and approximations include moment inequalities, limit theorems, large deviations,
as well as martingales and ergodic theory, all of which nicely suited to the analysis of random
discrete structures. Analytic methods fundamentally rely on exact modelling by generating
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functions which, once viewed as transformations of the complex plane, begin to reveal their
secrets. Singularity analysis, saddle point strategies, and Mellin transforms become then
instrumental. As Hadamard was fond of saying, the shortest path between two truths on the
real line passes through the complex domain.

Throughout the book, the methodology is put to effective use in analysing some of the ma-
jor problems concerning sequences that have an algorithmic or information-theoretic nature.
In fact the book starts right away with a few easily stated questions that form recurrent
themes; these are relative to digital trees, data compression, string editing, and pattern-
matching. A great many more problems are thoroughly analysed in later chapters, including
the celebrated leader election problem of distributed computing, fast pattern matching, basic
information theory, Lempel-Ziv compression, lossy compression.

Analysis of algorithms is now a mature field. The time is ripe for books like this one which
treat wide fields of applications. Szpankowski’s book offers the first systematic synthesis on
an especially important area—algorithms on sequences. Enjoy its mathematics! Enjoy its
information theory! Enjoy its multi-faceted computational aspects!

Philippe Flajolet



Preface

AN ALGORITHM is a systematic procedure that produces in a finite number of steps
the solution to a problem. The name derives from the Latin translation Algoritmi de

numero Indorum of the 9th-century Arab mathematician al-Khwarizmi’s arithmetic treatise
Al-Khwarizmi Concerning the Hindu Art of Reckoning. The most obvious reason for analyz-
ing algorithms, and data structures associated with them, is to discover their characteristics
in order to evaluate their suitability for various applications or to compare them with other
algorithms for the same application. Often such analyses shed light on properties of computer
programs and provide useful insights of the combinatorial behaviors of such programs. Need-
less to say, we are interested in good algorithms in order to efficiently use scarce resources
such as computer space and time.

Most often algorithm designs are finalized toward the optimization of the asymptotic
worst-case performance. Insightful, elegant, and useful constructions have been set up in this
endeavor. Along these lines, however, the design of an algorithm is sometimes targeted at
coping efficiently with unrealistic, even pathological inputs and the possibility is neglected
that a simpler algorithm that works fast on average might perform just as well, or even
better in practice. This alternative solution, also called a probabilistic approach, was an
important issue three decades ago when it became clear that the prospects for showing
the existence of polynomial time algorithms for NP-hard problems were very dim. This
fact, and the apparently high success rate of heuristic approaches to solving certain difficult
problems, led Richard Karp in 1976 to undertake a more serious investigation of probabilistic
algorithms. In the last decade we have witnessed an increasing interest in the probabilistic
analysis (also called average-case analysis) of algorithms, possibly due to a high success
rate of randomized algorithms for computational geometry, scientific visualization, molecular
biology, and information theory. Nowadays worst-case and average-case analyses coexist in a
friendly symbiosis, enriching each other.

The focus of this book is on tools and techniques used in the average-case analysis of
algorithms, where average case is understood very broadly (e.g., it includes exact and limiting
distributions, large deviations, variance, and higher moments). Such methods can be roughly
divided into two categories: analytic and probabilistic. The former were popularized by
D. E. Knuth in his monumental three volumes, The Art of Computer Programming, whose
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primary goal was to accurately predict the performance characteristics of a wide class of
algorithms. Probabilistic methods were introduced by Erdős and Rényi and popularized
in the book by Erdős and Spencer, Probabilistic Methods in Combinatorics. In general,
nicely structured problems are amenable to an analytic approach that usually gives much
more precise information about the algorithm under consideration. As argued by Andrew
Odlyzko: “Analytic methods are extremely powerful and when they apply, they often yield
estimates of unparalleled precision.” On the other hand, structurally complex algorithms are
more likely to be first solved by probabilistic tools that later could be further enhanced by a
more precise analytic approach.

The area of analysis of algorithms (at least, the way we understand it) was born on July
27, 1963, when D. E. Knuth wrote his “Notes on Open Addressing” about hashing tables
with linear probing. Since 1963 the field has been undergoing substantial changes. We see
now the emergence of combinatorial and asymptotic methods that allow the classification of
data structures into broad categories that are amenable to a unified treatment. Probabilistic
methods that have been so successful in the study of random graphs and hard combinatorial
optimization problems play an equally important role in this field. These developments have
two important consequences for the analysis of algorithms: it becomes possible to predict av-
erage behavior under more general probabilistic models; at the same time it becomes possible
to analyze much more structurally complex algorithms. To achieve these goals the analysis
of algorithms draws on a number of branches in mathematics: combinatorics, probability
theory, graph theory, real and complex analysis, number theory and occasionally algebra,
geometry, operations research, and so forth.

In this book, we choose one facet of the theory of algorithms, namely, algorithms and data
structures on sequences (also called strings or words) and present a detailed exposition of the
analytic and probabilistic methods that have become popular in such analyses. As stated
above, the focus of the book is on techniques of analysis, but every method is illustrated
by a variety of specific problems that arose from algorithms and data structures on strings.
Our choice stems from the fact that there has been a resurgence of interest in algorithms on
sequences and their applications in computational biology, and information theory.

Our choice of methods covered here is aimed at closing the gap between analytic and
probabilistic methods. There are excellent books on analytic methods such as the three vol-
umes of D. E. Knuth and the recent book by Sedgewick and Flajolet. Probabilistic methods
are discussed extensively in the books by Alon and Spencer, Coffman and Lueker, and Mot-
wani and Raghavan. However, remarkably few books have been dedicated to both analytic
and probabilistic analysis of algorithms, with possible exceptions of the books by Hofri and
Mahmoud.
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About This Book

This is a graduate textbook intended for graduate students in computer science, discrete
mathematics, information theory, applied mathematics, applied probability, and statistics. It
should also be a useful reference for researchers in these areas. In particular, I hope that those
who are experts in probabilistic methods will find the analytic part of this book interesting,
and vice versa.

The book consists of three parts: Part I describes a class of algorithms (with associated
data structures) and formulates probabilistic and analytic models for studying them. Part II
is devoted to probabilistic methods, whereas Part III presents analytic techniques.

Every chapter except the first two has a similar structure. After a general overview, we
discuss the method(s) and illustrate every new concept with a simple example. In most cases
we try to provide proofs. However, if the method is well explained elsewhere or the material
to cover is too vast (e.g., the asymptotic techniques in Chapter 8), we then concentrate on
explaining the main ideas behind the methods and provide references to rigorous proofs. At
the end of each chapter there is an application section that illustrates the methods discussed
in the chapter in two or three challenging research problems. Needless to say, the techniques
discussed in this book were selected for inclusion on exactly one account: how useful they
are to solve these application problems. Naturally, the selection of these problems is very
biased, and often the problem shows up in the application section because I was involved
in its solution. Finally, every chapter has a set of exercises. Some are routine calculations,
some ask for details of derivations presented in the chapter, and others are research problems

denoted as4! and unsolved problems marked as5? .
Now we discuss in some detail the contents of the book. Part I has two chapters. The

first chapter is on the algorithms and data structures on words that are studied in this
book: We discuss digital search trees (i.e., tries, PATRICIA tries, digital search trees, and
suffix trees), data compression algorithms such as Lempel-Ziv schemes (e.g., Lempel-Ziv’77,
Lempel-Ziv’78, lossy extensions of Lempel-Ziv schemes), pattern matching algorithms (e.g.,
Knuth-Morris-Pratt and Boyer-Moore), the shortest common superstring problem, string
editing problem (e.g., the longest common subsequence), and certain combinatorial optimiza-
tion problems. Chapter 2 builds probabilistic models on sequences that are used throughout
the book to analyze the algorithms on strings. In particular, we discuss memoryless, Markov,
and mixing sources of generating random sequences. We also review some facts from probabil-
ity theory and complex analysis. We finish this chapter with an overview on special functions
(e.g., the Euler gamma function and the Riemann zeta function) that are indispensable for
the analytic methods of Part III.

Part II consists of four chapters. Chapter 3 is on the probabilistic and combinatorial
inclusion–exclusion principle, the basic tool of combinatorial analysis. After proving the
principle, we discuss three applications, namely, the depth in a trie, order statistics, and
the longest aligned matching word. Chapter 4 is devoted to the most popular probabilistic
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tool, that of the first and the second moment methods. We illustrate them with a variety
of examples and research problems (e.g., Markov approximation of a stationary distribution
and the height analysis of digital trees). In Chapter 5 we discuss both the subadditive
ergodic theorem and the large deviations. We use martingale differences to derive the very
powerful Azuma’s inequality (also known as the method of bounded differences). Finally, in
Chapter 6 we introduce elements of information theory. In particular, we use the random
coding technique to prove three fundamental theorems of Shannon (i.e., the source coding
theorem, the channel coding theorem and the rate distortion theorem). In the applications
section we turn our attention to some recent developments in data compression based on
pattern matching and the shortest common superstring problem. In particular, we show
that with high probability a greedy algorithm that finds the shortest common superstring is
asymptotically optimal. This is of practical importance because the problem itself is NP-hard.

Part III is on analytic methods and is composed of four chapters. Chapter 7 introduces
generating functions, a fundamental and the most popular analytic tool. We discuss ordinary
generating functions, exponential generating functions, and Dirichlet series. Applications
range from pattern matching algorithms to the Delange formula on a digital sum. Chapter 8
is the longest in this book and arguably the most important. It presents an extensive course
on complex asymptotic methods. It starts with the Euler-Maclaurin summation formula,
matched asymptotics and the WKB method, continues with the singularity analysis and
the saddle point method, and finishes with asymptotics of certain alternating sums. In the
applications section we discuss the minimax redundancy rate for memoryless sources and the
limiting distribution of the depth in digital search trees. The next two chapters continue
our discussion of asymptotic methods. Chapter 9 presents the Mellin transform and its
asymptotic properties. Since there are good accounts on this method (cf. [132, 149]), we made
this chapter quite short. Finally, the last chapter is devoted to a relatively new asymptotic
method known as depoissonization. The main thrust lies in an observation that certain
problems are easier to solve when a deterministic input is replaced by a Poisson process.
However, nothing is for free in this world, and after solving the problem in the Poisson
domain one must translate the results back to the original problem, that is, depoissonize
them. We cover here almost all known depoissonization results and illustrate them with
three problems: analysis of the leader election algorithm, and the depth in generalized digital
search trees for memoryless and Markovian sources. The latter analysis is among the most
sophisticated in this book.

Personal Perspective

I can almost pin down the exact date when I got interested in the analysis of algorithms.
It was in January 1983 in Paris during a conference on performance evaluation (at that
time I was doing research in performance evaluation of multiaccess protocols and queueing
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networks). I came from a gloomy Poland, still under martial law, to a glamorous, bright,
and joyful Paris. The conference was excellent, one of the best I have ever participated in.
Among many good talks one stood out for me. It was on approximate counting, by Philippe
Flajolet. The precision of the analysis and the brightness (and speed) of the speaker made a
lasting impression on me. I wished I could be a disciple of this new approach to the analysis
of algorithms. I learned from Philippe that he was influenced by the work of D. E. Knuth.
For the first time I got a pointer to the three volumes of Knuth’s book, but I could not find
them anywhere in Poland.

In 1984 I left Gdańsk and moved to McGill University, Montreal. I had received a paper to
review on the analysis of conflict resolution algorithms. The paper was interesting, but even
more exciting was a certain recurrence that amazingly had a “simple” asymptotic solution.
I verified numerically the asymptotics and the accuracy was excellent. I wanted to know
why. Luckily, Luc Devroye had just returned from his sabbatical and he pointed me again
to Knuth’s books. I found what I needed in volumes I and III. It was an illumination! I
was flabbergasted that problems of this complexity could be analyzed with such accuracy. I
spent the whole summer of 1984 (re)learning complex analysis and reading Knuth’s books.
I started solving these recurrences using the new methods that I had been learning. I was
becoming a disciple of the precise analysis of algorithms.

When I moved to Purdue University in 1985, I somehow figured out that the recurrences
I was studying were also useful in data structures called tries. It was a natural topic for me
to explore since I moved from an electrical engineering department to a computer science
department. I got hooked and decided to write to Philippe Flajolet, to brag about my new
discoveries. In response he sent me a ton of papers of his own, solving even more exciting
problems. I was impressed. In May 1987 he also sent to Purdue his best weapon, a younger
colleague whose name was Philippe Jacquet. When Philippe Jacquet visited me I was working
on the analysis of the so-called interval searching algorithm, which I knew how to solve but
only with numerical help. Philippe got a crucial idea on how to push it using only analytic
tools. We wrote our first paper [214]. Since then we have met regularly every year producing
more and longer papers (cf. Chapter 10; in particular, Section 10.5.3). We have become
friends.

Finally, in 1989 I again rediscovered the beauty of information theory after reading the
paper [452] by Wyner and Ziv. There is a story associated with it. Wyner and Ziv proved
that the typical length of repeated substrings found within the first n positions of a random
sequence is with high probability 1

h log n, where h is the entropy of the source (cf. Sec-
tion 6.5.1). They asked if this result can be extended to almost sure convergence. My work
on suffix trees (cf. Section 4.2.6) paid off since I figured out that the answer is in the negative
[411] (cf. also Section 6.5.1). The crucial intuition came from the work of Boris Pittel [337],
who encouraged me to study it and stood behind me in the critical time when my analysis
was under attack. It turned out that Ornstein and Weiss [333] proved that the Wyner and
Ziv conjecture is true. To make the story short, let me say that fortunately both results were



x

correct since we analyzed slightly different settings (i.e., I analyzed the problem in the so-
called right domain of asymptotics, and Ornstein and Weiss in the left domain). The reader
may read more about it in Chapter 6. Since then I have found information theory more and
more interesting. Philippe Jacquet and I have even coined the term analytic information
theory for dealing with problems of information theory by using analytic methods, that is,
those in which complex analysis plays a pivotal role.
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Chapter 1

Data Structures and Algorithms on Words

Summary: In this book we choose one facet of the theory of algorithms, namely data struc-
tures and algorithms on sequences (strings, words) to illustrate probabilistic, combinatorial,
and analytic techniques of analysis. In this chapter, we briefly describe some data structures
and algorithms on words (e.g., tries, PATRICIA tries, digital search trees, pattern matching
algorithms, Lempel-Ziv schemes, string editing, and shortest common superstring) that are
used extensively throughout the book to illustrate the methods of analysis.

DATA STRUCTURES AND ALGORITHMS on sequences have experienced a new wave
of interest due to a number of novel applications in computer science, communications,

and biology. Among others, these include dynamic hashing, partial match retrieval of mul-
tidimensional data, searching and sorting, pattern matching, conflict resolution algorithms
for broadcast communications, data compression, coding, security, genes searching, DNA se-
quencing, genome maps, double digest problem, and so forth. To satisfy these diversified
demands various data structures were proposed for these algorithms. Undoubtedly, the most
popular data structures in algorithms on words are digital trees [3, 269, 305] (e.g., tries,
PATRICIA, digital search trees), and in particular suffix trees [3, 17, 77, 375, 383, 411, 412].
We discuss various digital trees and introduce several parameters characterizing them that
we shall study throughout the book.

The importance of digital trees stems from their abundance of applications in other prob-
lems such as data compression (Section 1.2), pattern matching (Section 1.3), and the shortest
common superstring problem (Section 1.4). These problems recently became very important
due to the need for an efficient storage and transmission of multimedia, and possible appli-
cations to DNA sequencing.

Graphs and directed acyclic graphs (DAG) also find several applications in problems on
strings. In particular, we consider the edit distance problem and its variants (Section 1.5).
Finally, we close this chapter with a brief discussion of certain class of optimization problems

3
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Trie PATRICIA

1

1 0

0

0

1 0

X3 X4

X1 X2 X3 X4

X4

X2 X3

X4

Digital Search Tree

Figure 1.1: A trie, PATRICIA trie and a digital search tree (DST) built from the following
four strings X1 = 11100 . . . , X2 = 10111 . . . , X3 = 00110 . . . , and X4 = 00001 . . ..

on graphs that find applications for algorithms on sequences (Section 1.6).

1.1 Digital Trees

We start our discussion with a brief review of the digital trees. The most basic digital
tree, known as a trie (from retrieval), is defined first, and then other digital trees (such as
PATRICIA, digital search trees and suffix trees) are described in terms of the trie.

The primary purpose of a trie is to store a set X of strings (words, sequences), say
X = {X1, . . . ,Xn}. Throughout the book, the terms strings, words and sequences are used
interchangeably. Each string is a finite or infinite sequence of symbols taken from a finite
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alphabet A = {ω1, . . . , ωV } of size V = |A|. We use a generic notation Dn for all digital trees
built over a set X of n strings. A string will be stored in a leaf of the trie. The trie over X
is built recursively as follows: For |X | = 0, the trie is, of course, empty. For |X | = 1, trie(X )
is a single node. If |X | > 1, X is split into V subsets X1,X2, . . . ,XV so that a string is in
Xj if its first symbol is ωj. The tries trie(X1), trie(X2), . . . , trie(XV ) are constructed in the
same way except that at the kth step, the splitting of sets is based on the kth symbol. They
are then connected from their respective roots to a single node to create trie(X ). Figure 1.1
illustrates such a construction. Observe that all strings are stored in external nodes (shown
as boxes in Figure 1.1) while internal nodes are branching nodes used to direct strings to
their destinations (i.e., external nodes). When a new string is inserted, the search starts at
the root and proceeds down the tree as directed by the input symbols (e.g., symbol “0” in
the input string means move to the right and “1” means proceed to the left as shown in
Figure 1.1).

There are many possible variations of the trie. One such variation is the b-trie, in which
a leaf is allowed to hold as many as b strings (cf. [145, 305, 411]). The b-trie is particularly
useful in algorithms for extendible hashing in which the capacity of a page or other storage
unit is b. A second variation of the trie, the PATRICIA trie (Practical Algorithm To
Retrieve Information Coded In Alphanumeric) eliminates the waste of space caused by nodes
having only one branch. This is done by collapsing one-way branches into a single node
(Figure 1.1). In a digital search tree (DST), shown also in Figure 1.1, strings are directly
stored in nodes so that external nodes are eliminated. More precisely, the root contains the
first string (however, in some applications the root is left empty). The next string occupies
the right or the left child of the root depending on whether its first symbol is “0” or “1”. The
remaining strings are stored in available nodes which are directly attached to nodes already
existing in the tree. The search for an available node follows the prefix structure of a string
as in tries. That is, if the next symbol in a string is “0” we move to the right, otherwise we
move to the left.

As in the case of a trie, we can consider an extension of the above digital trees by allowing
them to store up to b strings in an (external) node. We denote such digital trees as D(b)

n , but
we often drop the upper index when b = 1 is discussed. Figure 1.1 illustrates these definitions
for b = 1.

One of the most important example of tries and PATRICIA tries are suffix trees and
compact suffix trees (also called PAT). In suffix trees and compact suffix trees, the words
stored in these trees are suffixes of a given string X = x1x2 . . .; that is, the word Xj =
xjxj+1xj+2 . . . is the jth suffix of X which begins at the jth position of X. Thus a suffix
tree is a trie and a compact suffix tree is a PATRICIA trie in which the words are all suffixes
of a given string. Clearly, in this case the strings Xj for j = 1, . . . , n strongly depend on
each other while in a trie the strings of X might be completely independent. A suffix tree is
illustrated in Figure 1.2.

Certain characteristics of tries and suffix trees are of primary importance. We define them
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S1  = 1010010001 S4  = 0010001
S2  =   010010001 S5  =   010001
S3  =     10010001

S4

S1 S3

S2 S5

Figure 1.2: Suffix tree built from the first five suffixes S1, . . . , S5 of X = 1010010001 . . .

below.

Definition 1.1 (Digital Trees Parameters) Let us consider a b-digital tree D(b)
n built over

n strings and capable of storing up to b strings in an (external) node.
(i) The mth depth D

(b)
n (m) is the length of a path from the root of the digital tree to the

(external) node containing the mth string.
(ii) The typical depth D(b)

n is the depth of a randomly selected string, that is,

Pr{D(b)
n ≤ k} =

1
n

n∑
m=1

Pr{D(b)
n (m) ≤ k} . (1.1)
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(iii) The (external) path length L(b)
n is the sum of all depths, that is,

L(b)
n =

n∑
m=1

D(b)
n (m). (1.2)

(iv) The height H(b)
n is the length of the longest depth, that is,

H(b)
n = max

1≤m≤n
{D(b)

n (m)}. (1.3)

(v) The fill-up level F (b)
n is the maximal full level in the tree D(b)

n , that is, D(b)
n is a full

tree up to level F (b)
n but not on the level F (b)

n + 1. In other words, on levels 0 ≤ i ≤ F (b)
n there

are exactly V i nodes (either external or internal) in the tree, but there are less than V F
(b)
n +1

nodes on level F (b)
n + 1.

(vi) The shortest depth s(b)n is the length of the shortest path from the root to an external
node, that is,

s(b)n = min
1≤m≤n

{D(b)
n (m)}. (1.4)

(Observe that F (b)
n ≤ s(b)n .)

(vii) The size S(b)
n is the number of (internal) nodes in D(b)

n .
(viii) The kth average profile B̄(b)

n (k) is the average number of strings stored on level k of
D(b)

n .

These parameters can be conveniently represented in another way that reveals combina-
torial relationships between strings stored in such digital trees. We start with the following
definition.

Definition 1.2 Alignments

For the set of strings X = {X1,X2, . . . ,Xn}, the alignment Ci1...ib+1
between b + 1 strings

Xi1 , . . . ,Xib+1 is the length of the longest common prefix of all these b+ 1 strings.

To illustrate this definition and show its usefulness to the analysis of digital trees, we
consider the following example.

Example 1.1: Illustration of the Self-Alignments.
Let us consider the suffix tree shown in Figure 1.2. Define C = {Cij}5i,j=1 for b = 1 as the

self-alignment matrix which is shown explicitly below:

C =


? 0 2 0 0
0 ? 0 1 4
2 0 ? 0 0
0 1 0 ? 1
0 4 0 1 ?

 .
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Observe that we can express the parameters of Definition 1.1 in terms of the self-alignments
Cij as follows:

Dn(1) = max
2≤j≤5

{C1j}+ 1 = 3,

Hn = max
1≤i<j≤n

{Cij}+ 1 = 5,

sn = min
1≤i≤n

max
1≤j≤n

{Cij}+ 1 = 2

(since b = 1 we drop b from the above notations).
Certainly, similar relationships hold for tries, but not for PATRICIA tries and digital

search trees. In PATRICIA tries, however, one can still express parameters of the trees in
terms of the alignments matrix C. For example, the depth of the fourth string D4(4) can be
expressed as follows:

D4(4) = max{min{C41,D4(1)},min{C42,D4(2)},min{C43,D4(3)}}.

This is a bit too complicated to be of any help. 2

The above example suggests that there are relatively simple relationships between pa-
rameters of a trie and the alignments. Indeed, this is the case as the theorem below shows.
The reader is asked to provide a formal proof in Exercise 1.

Theorem 1.3 In a trie the following holds:

D(b)
n (ib+1) = max

1≤i1,...,ib≤n
{Ci1...ib+1

}+ 1, (1.5)

H(b)
n = max

1≤i1,...,ib+1≤n
{Ci1...ib+1

}+ 1, (1.6)

D(b)
n (n+ 1) = max

1≤i1,...,ib≤n
{Ci1...ib,n+1}+ 1, (1.7)

s(b)n = min
1≤ib+1≤n

{D(b)
n (ib+1)} = min

1≤ib+1≤n
max

1≤i1,...,ib≤n
{Ci1...ib+1

}+ 1 (1.8)

for any 1 ≤ i1, . . . , ib+1 ≤ n, where D(b)
n (n+ 1) := In can be viewed as the depth of insertion

In.

In passing, we should mention that the above combinatorial relationships find applications
in problems not directly related to digital trees. We shall meet them again in Section 6.5.2
when analyzing the shortest common superstring problem discussed in Section 1.4.

The digital trees are used very extensively in this book as illustrative examples. We
analyze the height of tries, PATRICIA tries, and suffix trees in Chapter 4. Recurrences
arising in the analysis of digital trees are discussed in Chapter 7, while the typical depth of
digital search trees is studied in Chapters 8–10.
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1.2 Data Compression: Lempel-Ziv Algorithms

Source coding is an area of information theory (see Chapter 6) that deals with problems of
optimal data compression. The most successful and best-known data compression schemes
are due to Lempel and Ziv [460, 461]. Efficient implementation of these algorithms involves
digital trees. We describe here some aspects of the Lempel-Ziv schemes and return to them
in Chapter 6.

We start with some definitions. Consider a sequence {Xk}∞k=1 taking values in a finite
alphabet A (e.g., for English text the cardinality |A| = 26 symbols, while for an image |A| =
256). We write Xn

m to denote Xm,Xm+1 . . . Xn. We encode Xn
1 into a binary (compression)

code C n, and the decoder produces the reproduction sequence X̂n
1 of Xn

1 . More precisely,
a code C n is a function φ : An → {0, 1}∗. On the decoding side, the decoder function
ψ : {0, 1}∗ → An is applied to find X̂n

1 = ψ(φ(Xn
1 ). Let `(C n(Xn

1 )) be the length of the
code C n (in bits) representing Xn

1 . Then the bit rate is defined as

r(Xn
1 ) =

`(C n(Xn
1 ))

n
.

For example, for text r(Xn
1 ) is expressed in bits per symbol, while for image compression in

bits per pixel or in short bpp.
We shall discuss below two basic Lempel-Ziv schemes, namely, the so-called Lempel-

Ziv’77 (LZ77) [460] and Lempel-Ziv’78 (LZ78) [461]. Both schemes are examples of lossless
compression; that is, the decoder can recover exactly the encoded sequence. A number of
interesting problems arise in lossy extensions of the Lempel-Ziv schemes. In the lossy data
compression, discussed below, some information can be lost during the encoding.

1.2.1 Lempel-Ziv’77 Algorithm

The Lempel-Ziv algorithm partitions or parses a sequence into phrases that are similar in
some sense. Depending on how such a parsing is encoded we have different versions of the
algorithm. However, the basic idea is to find the longest prefix of yet uncompressed sequence
that occurs in the already compressed sequence.

More specifically, let us assume that the first n symbols Xn
1 are given to the encoder and

the decoder. This initial string is sometimes called the “database string” or the “training
sequence.” Then we search for the longest prefix Xn+`

n+1 of X∞
n+1 that is repeated in Xn

1 , that
is,

Let In be the largest ` such that Xn+`
n+1 = Xm+`−1

m for some prescribed range of
m and `.

Depending on the range of m and `, we can have different versions of the LZ77 scheme.
In the original LZ77 algorithm [460], m and ` were restricted to a window size W and
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S2 S4

S1 S3

Figure 1.3: Suffix tree built from the first four suffixes of X = 1010010001 . . .

“lookahead” buffer B, that is, n − W + 1 ≤ m ≤ n and ` ≤ B. This implementation is
sometimes called the sliding window LZ77. In the fixed database(FDLZ) version [452, 453],
one sets 1 ≤ m ≤W and m−1+` ≤W ; that is, the database sequence is fixed and the parser
always looks for matches inside such a fixed substring XW

1 . Such a scheme is sometimes called
the Wyner-Ziv scheme [452]. Finally, in the growing database version the only restriction is
that 1 ≤ m ≤ n (i.e., the database consists of the last n symbols).

In general, the code built for LZ77 consists of the triple (m, `, char) where char is the
symbol Xm+`. Since the pointer to m needs log2 n bits, the length ` could be coded in
O(log In) bits and char requires log |A| bits, the code length of a phrase is log2 n+O(log In)+
log2 |A| bits. In Exercise 5 we propose a formula for the code length of the FDLZ, while in
Exercise 6 the reader is asked to find the code length for all other versions of the Lempel-Ziv
schemes.

The heart of all versions of the Lempel-Ziv schemes is the algorithm that finds the longest
prefix of length In that occurs in the database string of length n. It turns out that the suffix
tree discussed in Section 1.1 can be used to efficiently find such a prefix. Indeed, let us
consider a sequence X = 1010010001 . . ., and assume X4

1 is the database string. The suffix
tree built over X4

1 is shown in Figure 1.3. Let us now look for I4, that is, the longest prefix
of X∞

5 that occurs (starts) in the database X4
1 . In the growing database implementation it is

X8
5 since it is equal to X5

2 . This can be seen by inserting the fifth suffix of X into the suffix
tree from Figure 1.3 — which actually leads to the suffix tree shown in Figure 1.2.
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1.2.2 Lempel-Ziv’78 Algorithm

The Lempel-Ziv’78 (LZ78) is a dictionary-based scheme that partitions a sequence into phrases
(blocks) of variable sizes such that a new block is the shortest substring not seen in the past
as a phrase. Every such phrase is encoded by the index of its prefix appended by a symbol,
thus LZ78 code consists of pairs (pointer, symbol). A phrase containing only one symbol is
coded with the index equal to zero.

Example 1.2: The Lempel-Ziv’78 and Its Code
Consider the string X14

1 = ababbbabbaaaba over the alphabet A = {a, b}, which is parsed
and coded as follows:
Phrase No: 1 2 3 4 5 6 7
Sequence: (a) (b) (ab) (bb) (abb) (aa) (aba)
Code: 0a 0b 1b 2b 3b 1a 3a

Observe that we need dlog2 7e bits to code a phrase, and two bits to code a symbol, so in
total for 7 phrases we need 28 bits. 2

The most time consuming part of the algorithm is finding the next phrase, that is, search-
ing the dictionary. However, this can be speeded up by using a digital search tree to build the
dictionary. For example, the string 11001010001000100 is parsed into (1)(10)(0)(101)(00)(01)
(000)(100), and this process is represented in Figure 1.4 using the digital search tree struc-
ture. In this case, however, we leave the root empty (or we put an empty phrase into it). To
show that the root is different from other nodes we draw it in Figure 1.4 as a square. All
other phrases of the Lempel-Ziv parsing algorithm are stored in internal nodes (represented
in the figure as circles). When a new phrase is created, the search starts at the root and
proceeds down the tree as directed by the input symbols exactly in the same manner as in
the digital tree construction (cf. Section 1.1). The search is completed when a branch is
taken from an existing tree node to a new node that has not been visited before. Then the
edge and the new node are added to the tree. The phrase is just a concatenation of symbols
leading from the root to this node, which also stores the phrase.

We should observe differences between digital search trees discussed in Section 1.1 and
the one described above. For the Lempel-Ziv scheme we consider a word of fixed length,
say n, while before we dealt with fixed number of strings, say m, resulting in a digital tree
consisting of exactly m nodes. Looking at Figure 1.4, we conclude that the number of nodes
in the associated digital tree is equal to the number of phrases generated by the Lempel-Ziv
algorithm.

1.2.3 Extensions of Lempel-Ziv Schemes

Finally, we shall discuss two extensions of Lempel-Ziv schemes, namely generalized Lempel-
Ziv’78 and lossy Lempel-Ziv’77. Not only are these extensions useful from a practical point of
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(1)

(10)

(101) (100)

(0)

(01) (00)

(000)

Figure 1.4: A digital tree representation of the Lempel-Ziv parsing for the string
11001010001000100

view (cf. [11, 29, 299, 399, 361]), but they are also a source of interesting analytical problems.
We return to them in Chapters 6, 9, and 10.

Generalized Lempel-Ziv’78

Let us first consider the generalized Lempel-Ziv’78 scheme. It is known that the original
Lempel–Ziv scheme does not cope very well with sequences containing a long string of re-
peated symbols (i.e., the associated digital search tree is a skewed one with a long path).
To somewhat remedy this situation, Louchard, Szpankowski and Tang [299] introduced a
generalization of the Lempel–Ziv parsing scheme that works as follows: Fix an integer b ≥ 1.
The algorithm parses a sequence into phrases such that the next phrase is the shortest phrase
seen in the past by at most b − 1 phrases (b = 1 corresponds to the original Lempel–Ziv
algorithm). It turns out that such an extension of the Lempel-Ziv algorithm protects against
the propagation of errors in the dictionary (cf. [399, 361]).

Example 1.3: Generalized Lempel-Ziv’78
Consider the sequence αβαββαβαβαααααααααγ over the alphabet A = {α, β, γ}. For

b = 2 it is parsed as follows: (α)(β)(α)(β)(βα)(βα)(βαα)(αα)(αα)(ααα)(γ) that has seven
distinct phrases and eleven phrases. The code for this new algorithm consists: (i) either of
(pointer, symbol) when pointer refers to the first previous occurrence of the prefix of the
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(1)
(1)

(11)

(0)
(0)

(10)
(10)

(01) (00)
(00)

(100)

Figure 1.5: A 2-digital search tree representation of the generalized Lempel–Ziv parsing for
the string 1100101000100010011

phrase and symbol is the value of the last symbol of this phrase; (ii) or just (pointer) if the
phrase has occurred previously (i.e., it is the second or the third or . . . the bth occurrence
of this phrase). For example, the code for the previously parsed sequence is for b = 2:
0α0β122α33α1α55α0γ (e.g., the phrase (2α) occurs for the first time as a new phrase, hence
(2) refers to the second distinct phrase appended by α, while code (5) represents a phrase
that has its second occurrence as the fifth distinct phrase). Observe that this code is of length
47 bits since there are eleven phrases each requiring up to dlog2 7e = 3 bits and seven symbols
need 14 additional bits (i.e., 47 = 11 · 3 + 7 · 2 = 47). The original LZ78 code needs 54 bits.
We saved 7 bits! But, the reader may verify that the same sequence requires only 46 bits for
b = 3 (so only one additional bit is saved), while for b = 4 the bit count increases again to
52. 2

The above example suggests that b = 3 is (at least locally) optimum for the above se-
quence. Can one draw similar conclusions “on average” for a typical sequence (i.e., generated
randomly)? This book is intended to provide tools to analyze such problems.

As for the original Lempel-Ziv algorithm, the most time-consuming part of the construc-
tion is to generate a new phrase. An efficient way of accomplishing this is by means of
generalized digital search trees, introduced in Section 1.1, namely, b-digital search tree (b-
DST). We recall that in such a digital tree one is allowed to store up to b strings in a node.
In Figure 1.5 we show the 2-DST constructed from the sequence 1100101000100010011.
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Lossy Extension of Lempel-Ziv’77

We now discuss another extension, namely a lossy Lempel-Ziv’77 scheme. In such a scheme
in the process of encoding some information is lost. To control this loss, one needs a measure
of fidelity d(·, ·) between two sequences. For example, the Hamming distance is defined as

dn(Xn
1 , X̂

n
1 ) =

1
n

n∑
i=1

d1(Xi, X̂i)

where d1(Xi, X̂i) = 0 for Xi = X̂i and 1 otherwise. In the square error distortion we set
d(Xi, X̂i) = (Xi − X̂i)2. We explore this topic in depth in Chapter 6.

Let us now fix D > 0. In the lossy LZ77, we consider the longest prefix of the uncom-
pressed file that approximately (within distance D) occurs in the database sequence. More
precisely, the quantity In defined in Section 1.2.1 becomes in this case:

Let In be the largest K such that a prefix of X∞
n+1 of length K is within distance

D from Xi−1+K
i for some 1 ≤ i ≤ n−K + 1, that is, d(Xi−1+K

i ,Xn+K
n+1 ) ≤ D.

Not surprisingly, the bit rate of such a compression scheme depends on the probabilistic
behavior of In. We shall analyze it in Chapter 6. The reader is also referred to [91, 278, 303,
403, 439].

1.3 Pattern Matching

There are various kinds of patterns occurring in strings that are important to locate. These
include squares, palindromes, and a specific pattern. For example, in computer security one
wants to know if a certain pattern (i.e., a substring, or even better a subsequence) appears
(too) frequently in an audit file (text) since this may indicate an intrusion. In general, pattern
matching involves a pattern H and a text string T . One is asked to determine the existence
of H within T , the first occurrence of H, the number of occurrences or the location of all
occurrences of H.

Two well-known pattern matching algorithms are the Knuth-Morris-Pratt (KMP) algo-
rithm and the Boyer-Moore (BM) algorithm [3, 77]. In this section we focus on the former.
The efficiency of these algorithms depends on how quickly one determines the location of the
next matching attempt provided the previous attempt was unsuccessful. The key observation
here is that following a mismatch at, say the kth position of the pattern, the preceding k− 1
symbols of the pattern and their structure give insight as to where the next matching attempt
should begin. This idea is used in the KMP pattern matching algorithm and is illustrated in
the following example and Figure 1.6.

Example 1.4: The Morris–Pratt Algorithm



15 Data Structures and Algorithms on Words

H 0 1 1 0 1 0
T 1 0 1 1 0 1 1 0 1 1

(a) first attempt

H 0 1 1 0 1 0
T 1 0 1 1 0 1 1 0 1 1

(b) second attempt

H 0 1 1 0 1 0
T 1 0 1 1 0 1 1 0 1 1

(c) third attempt

Figure 1.6: Comparisons made by the Morris–Pratt pattern matching algorithm

We now consider a simplified version of the KMP algorithm, namely that of the Morris–
Pratt pattern matching algorithm. Let H6

1 = 011010 and the text string T 10
1 = 1011011011,

as shown in Figure 1.6. When attempting to match P with T , we proceed from left to right,
comparing each symbol. No match is made with the first symbol of each, so the pattern H
is moved one position to the right. On the second attempt, the sixth symbol of H does not
match the text, so this attempt is halted and the pattern H is shifted to the right. Notice
that it is not fruitful to begin matching at either the third or fourth position of T since the
suffix 01 of the so far matched pattern H5

1 = 01101 is equal to the prefix 01 of H5
1 . Thus the

next matching attempt begins at the fifth symbol of T . 2

Knowing how far to shift the pattern H is the key to both the KMP and the BM al-
gorithms. Therefore, the pattern H is preprocessed to determine the shift. Let us assume
that a mismatch occurs when comparing Tl with Hk. Then some alignment positions can be
disregarded without further text-pattern comparisons. Indeed, let 1 ≤ i ≤ k be the largest
integer such that Hk−1

k−i = H i
1, that is, i is the longest prefix of H that is equal to the suffix

of H of length i. Then positions l − k + 1, l − k + 2, . . . , l − i + 1 of the text do not need
to be inspected and the pattern can be shifted by k − i positions (as already observed in
Figure 1.6). The set of such i can be known by a preprocessing of H.

There are different variants of the classic Knuth-Morris-Pratt algorithm [272] that differ
by the way one uses the information obtained from the mismatching position. We formally
define two variants, and provide an example. They can be described formally by assigning
to them the so-called shift function S that determines by how much the pattern H can be
shifted before the next comparison at l + 1 is made. We have:
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Morris-Pratt variant:

S = min{k : min{s > 0 : Hk−1
1+s = Hk−1−s

1 }} ;

Knuth-Morris-Pratt variant:

S = min{k : min{s : Hk−1
1+s = Hk−1−s

1 and Hk 6= Hk−s}}

There are several parameters of pattern matching algorithms that either determine their
performance or shed some light on their behaviors. For example, the efficiency of an algorithm
is characterized by its complexity, defined below.

Definition 1.4 (i) For any pattern matching algorithm that runs on a given text T and a
given pattern H, let M(l, k) = 1 if the lth symbol Tl of the text is compared by the algorithm
to the kth symbol Hk of the pattern, and M(l, k) = 0 otherwise.

(ii) For a given pattern matching algorithm the partial complexity function Cr,n is defined as

Cr,s(Hm
1 , T

n
1 ) =

∑
l∈[r,s],k∈[1,m]

M [l, k]

where 1 ≤ r < s ≤ n. For r = 1 and s = n the function C1,n := Cn is called the complexity
of the algorithm.

We illustrate some of the notions just introduced in the following example.

Example 1.5 Illustration to Definition 1.4.
Let H = abacabacabab and T = abacabacabaaa. The first mismatch occurs for M(12, 12).

The comparisons performed from that point are:

1. Morris-Pratt variant:

(12, 12); (12, 8); (12, 4); (12, 2); (12, 1); (13, 2); (13, 1) ,

where the text character is compared in turn with pattern characters (b, c, c, b, a, b, a)
with the alignment positions (1, 5, 9, 11, 12, 12, 13).

2. Knuth-Morris-Pratt variant:

(12, 12); (12, 8); (12, 2); (12, 1); (13, 2); (13, 1) ,

where the text character is compared in turn with pattern characters (b, c, b, a, b, a) with
the alignment positions (1, 5, 11, 12, 12, 13).

2

It is interesting to observe that the subset {1, 5, 12} appears in all variants. We will see
that these positions share a common property of “unavoidability” explored in Section 5.5.2.
We shall also discuss the pattern matching problem in Section 7.6.2.
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1.4 Shortest Common Superstring

Various versions of the shortest common superstring (SCS) problem play important
roles in data compression and DNA sequencing. In fact, in laboratories DNA sequencing
(cf. [285, 445]) is routinely done by sequencing large numbers of relatively short fragments
and then heuristically finding a short common superstring. The problem can be formulated
as follows: given a collection of strings, say X1,X2, . . . ,Xn over an alphabet A, find the
shortest string Z such that each Xi appears as a substring (a consecutive block) of Z. In
DNA sequencing, another formulation of the problem may be of even greater interest. We
call it an approximate SCS and one asks for a superstring that contains approximately (e.g.,
in the Hamming distance sense) the original strings X1,X2, . . . ,Xn as substrings.

More precisely, suppose X = x1x2 . . . xr and Y = y1y2 . . . ys are strings over the same
finite alphabet A. We also write |X| for the length of X. We define their overlap o(X,Y ) by

o(X,Y ) = max{j : yi = xr−j+i, 1 ≤ i ≤ j}.

If X 6= Y and k = o(X,Y ), then

X · Y = x1x2 . . . xryk+1yk+2 . . . ys.

is the superstring of X and Y , where · is the concatenation operation. Let S be a set of all
superstrings built over the strings X1, . . . ,Xn. Then,

Oopt
n =

n∑
i=1

|Xi| −min
Z∈S
|Z|

is the optimal overlap in the shortest common superstring.

Example 1.6: Common Superstring and Its Graph Representation

Let us consider the following five strings: X1 = abaaab, X2 = aabaaaa, X3 = aababb,
X4 = bbaaba, and X5 = bbbb. We first find Cij that represents the length of the longest suffix
of Xi that is also equal to a prefix of Xj . In our case

C =


? 3 3 1 1
1 ? 2 0 0
0 0 ? 2 2
3 4 4 ? 0
0 0 0 2 ?


Let now G(C) be a weighted digraph built on the set of strings {X1, . . . ,X5} with weights
Cij . This digraph is shown in Figure 1.7. Observe that the optimal (maximum) Hamiltonian
path in G(C) determines the maximum overlap between strings X1, . . . ,X5. Hence, one can
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Figure 1.7: The digraph G(C) from Example 6. Optimal Hamiltonian path (starting at
node 4 is shown in bold.

construct the shortest common superstring, which in our case is Z = abaaababbbbaabaaaa
and Oopt

n = 3 + 2 + 2 + 4 = 11. 2

From the above example, we should conclude that computing the shortest common su-
perstring is as hard as finding the longest Hamiltonian path; hence the problem is NP-hard.
Nevertheless, constructing a good approximation to SCS is of prime interest. It has been
shown recently that a greedy algorithm can compute in O(n log n) time a superstring that
in the worst case is only β times (where 2 ≤ β ≤ 4) longer than the shortest common super-
string [53, 427]. Often, one is interested in maximizing total overlap of SCS using a greedy
heuristic and showing that such a heuristic produces an overlap Ogr

n that approximates well
the optimal overlap Oopt

n .
A generic greedy algorithm for the SCS problem can be described as follows (cf. [53, 157,

427]: Its input is the n strings X1,X2, . . . ,Xn. It outputs a string Z which is a superstring
of the input.

Generic greedy algorithm

1. I ← {X1,X2,X3, . . . ,Xn}; Ogr
n ← 0;

2. repeat

3. choose X,Y ∈ I; Z = X ⊕ Y ;

4. I ← (I \ {X,Y }) ∪ {Z};
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5. Ogr
n ← Ogr

n + o(X,Y );

6. until |I| = 1

Different variants of the above generic algorithm can be envisioned by interpreting ap-
propriately the “choose” statement in Step 3 above:

RGREEDY: In Step 3, X is the string Z produced in the previous iteration, while Y is
chosen in order to maximize o(X,Y ) = o(Z, Y ). Our initial choice for X is X1. Thus, in
RGREEDY we have one “long” string Z which grows by addition of strings at the right hand
end. In terms of the digraph G(C), one starts from the vertex X1 and follow the out-going
edge with the maximum weight C1,j. This process continues until all vertices of G(C) are
visited, disregarding cycles of length smaller than n.

GREEDY: Sort the edges of Gn(C) into e1, e2, . . . , eN , N = n2 so that C(ei) ≥ C(ei+1)
where C(ei) is the weight assigned to edge ei; SG ← ∅;
For i = 1 to N do:
if SG ∪ {ei} contains in G neither
(i) a vertex of outdegree or indegree at least 2 in SG,
(ii) a directed cycle,
then SG ← SG ∪ {ei}.
On termination SG contains the n − 1 edges of a Hamilton path of G and corresponds to
a superstring of X1,X2, . . . ,Xn. The selection of an edge weight (Xi,Xj) corresponds to
overlapping Xi to the left of Xj .

MGREEDY: In Step 3 choose X,Y in order to maximize o(X,Y ). If X 6= Y proceed as
in GREEDY. If X = Y , then I ← I \ {X}, Ogr

n is not incremented, and C ← C ∪ {X} where
the set C is initially empty. On termination we add the final string left in I to C.
MGREEDY: sort the edges G into e1, e2, . . . , eN , N = n2 so that w(ei) ≥ w(ei+1); SMG, C ←
∅;
For i = 1 to N do:
if SMG ∪ {ei} contains no vertex of outdegree or indegree at least 2 in SMG,
then SMG ← SMG ∪ {ei}.
If ei closes a cycle, then C ← C ∪ {ei}.

On termination the edges of SMG form a collection of vertex disjoint cycles C1, C2, . . . , Ct,
t = |C| which cover [n]. Each Cj contains one edge fj which is a member of C and fj is a
lowest weight edge of Cj. Let Pj = Cj − fj. The catenation of paths P1,P2, . . . ,Pt define a
superstring of the input.

We shall analyze the shortest common superstring in Chapters 4 and 5.
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1.5 String Editing Problem

The string editing problem arises in many applications, notably in text editing, speech recog-
nition, machine vision and molecular sequence comparison (cf. [445]). Algorithmic aspects
of this problem have been studied rather extensively in the past (cf. [19, 323, 375, 445]).
In fact, many important problems on words are special cases of string editing, including the
longest common subsequence problem (cf. [77, 67, 375]). In the following, we review the
string editing problem and its relationship to the longest path problem in a grid graph.

Let Y be a string consisting of ` symbols over the alphabet A. There are three operations
that can be performed on a string, namely deletion of a symbol, insertion of a symbol, and
substitution of one symbol for another symbol in A. With each operation is associated a
weight function. We denote by WI(yi), WD(yi) and WQ(xi, yj) the weight of insertion and
deletion of the symbol yi ∈ A, and substitution of xi by yj ∈ A, respectively. An edit script
on Y is any sequence of edit operations, and the total weight is the sum of weights of the
edit operations.

The string editing problem deals with two strings, say Y of length ` (for `ong) and X
of length s (for short), and consists of finding an edit script of minimum (maximum) total
weight that transforms Y into X. The maximum (minimum) weight is called the edit distance
from X to Y , and it is also known as the Levenshtein distance. In molecular biology, the
Levenshtein distance is used to measure similarity (homogeneity) of two molecular sequences,
say DNA sequences (cf. [375]).

The string edit problem can be solved by the standard dynamic programming method.
Let Cmax(i, j) denote the maximum weight of transforming the prefix of Y of size i into the
prefix of X of size j. Then (cf. [19, 323, 445])

Cmax(i, j) = max{Cmax(i− 1, j − 1) +WQ(xi, yj), Cmax(i− 1, j)
+ WD(xi), Cmax(i, j − 1) +WI(yj)}

for all 1 ≤ i ≤ ` and 1 ≤ j ≤ s. We compute Cmax(i, j) row by row to finally obtain the
total cost Cmax = Cmax(`, s) of the maximum edit script. A similar procedure works for the
minimum edit distance.

The edit distance can be conveniently represented on a grid graph. The key observation
is to note that interdependency among the partial optimal weights Cmax(i, j) induces an `×s
grid-like directed acyclic graph, called a grid graph. In such a graph vertices are points in
the grid and edges go only from (i, j) to its neighboring points, namely, (i, j + 1), (i + 1, j)
and (i + 1, j + 1). A horizontal edge from (i − 1, j) to (i, j) carries the weight WI(yj); a
vertical edge from (i, j − 1) to (i, j) has weight WD(xi); and finally a diagonal edge from
(i − 1, j − 1) to (i, j) is weighted according to WQ(xi, yj). Figure 1.8 shows an example of
such an edit graph. The edit distance is the longest (shortest) path from the point O = (0, 0)
to E = (`, s).
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Figure 1.8: Example of a grid graph of size ` = 4 and s = 3.

Finally, we should mention that by properly selecting the distributions of WI , WD and
WQ we can model several variations of the string editing problem. For example, in the
standard setting the deletion and insertion weights are identical, and usually constant, while
the substitution weight takes two values, one (high) when matching between a letter of X
and a letter of Y occurs, and another value (low) in the case of a mismatch (e.g., in the
Longest Common Subsequence problem [67, 375], one sets WI = WD = 0, and WQ = 1 when
a matching occurs, and WQ = −∞ for a mismatch).

We shall analyze the edit distance problem in Chapter 5.

1.6 Optimization Problems

In the previous two sections we have seen that combinatorial optimization problems on graphs
often arise in the design and analysis of algorithms and data structures on sequences. Un-
doubtedly, these problems are also a source of exciting and interesting probabilistic problems.
Therefore, in this final section we present a fairly general description of optimization prob-
lems.

We consider a class of optimization problems that can be formulated as follows: Let n
be an integer (e.g., number of vertices in a graph, size of a matrix, number of strings in a
digital tree, etc.), and Sn a set of objects (e.g., set of vertices, elements of a matrix, strings,
etc). We shall investigate the behavior of the optimal values Zmax(Sn) and Zmin(Sn) defined
as follows

Zmax(Sn) = max
α∈Bn

 ∑
i∈Sn(α)

wi(α)

 , Zmin(Sn) = min
α∈Bn

 ∑
i∈Sn(α)

wi(α)

 , (1.9)
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and

Zmax(Sn) = max
α∈Bn

{
min

i∈Sn(α)
wi(α)

}
, Zmin(Sn) = min

α∈Bn

{
max

i∈Sn(α)
wi(α)

}
, (1.10)

where Bn is a set of all feasible solutions, Sn(α) is a set of objects from Sn belonging to the
αth feasible solution, and wi(α) is the weight assigned to the ith object in the αth feasible
solution. We often write Zmax and Zmin instead of Zmax(Sn) and Zmin(Sn), respectively.

For example, in the traveling salesman problem, Bn represents the set of all Hamiltonian
paths in a graph built over n vertices, Sn(α) is the set of edges belonging to the αth Hamilto-
nian path, and wi(α) is the length (weight) of the ith edge. Traditionally, formulation (1.9) is
called the optimization problem with sum-objective function, while (1.10) is known as either
the capacity optimization problem (Zmax) or the bottleneck optimization problem (Zmin).

Certainly, combinatorial optimization problems arise in many areas of science and engi-
neering. Among others are the capacity and bottleneck assignment problem (see Exercise 11)
the (bottleneck and capacity) quadratic assignment problem, the minimum spanning tree,
the minimum weighted k-clique problem, geometric location problems, and some others not
directly related to optimization (but of interest to us), such as the height and depth of digital
trees (see Sections 4.2.4–4.2.6), the maximum queue length, and hashing with lazy deletion
(cf. [6]), pattern matching (cf. [28]), the shortest common superstring, and the longest
common subsequence, discussed in the previous subsections.

We return to the general optimization optimization problem in Chapter 5 (see Exer-
cise 5.17).

1.7 Exercises

1.1 Prove (1.5)–(1.8) of Theorem 1.3.

1.2 Establish combinatorial relationships between PATRICIA and digital trees parameters
and the alignments {Cij}nij=1, as we did in Theorem 1.3 for tries.

1.3 Parse and build the Lempel-Ziv’77 and Lempel-Ziv’78 codes for the following sequence:
X = ababbbaabbbabbbbababbb. How will the parsing and the code change when general-
ized LZ78 is used with b = 4.

1.4 Fix an integer b ≥ 1. Generalize the Lempel-Ziv’77 scheme in a manner similar to the
way we generalized the Lempel-Ziv’78 scheme in Section 1.2.3.

1.5 Consider the FDLZ, that is, the fixed database version of the Lempel-Ziv scheme. Let
the database sequence be denoted as X̂n

1 and the source sequence be XM
1 . The source

sequence is partitioned into phrases of length I1, I2, . . . , IK where K is the total number
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of phrases (i.e., I1 + · · · + IK = M). Show that the compression ratio rn(XM
1 ) can be

expressed as

rn(XM
1 ) =

1
M

K∑
i=1

(log2 n+O(log Ii)) .

1.6 Given a sequence of length n, derive a closed-form formula for the code lengths of the
LZ77, LZ78 and the generalized-LZ78 schemes in terms of the number of phrases Mn,
the size of the alphabet V , and the parameter b.

1.7 Construct the compression code for X = ababbbaabbbabbbbababbb using the lossy LZ77
with D = 0.3 assuming the Hamming distance.

1.8 Compute the complexity Cn introduced in Definition 1.4 forH = abab and T = abbbbabababbbab
when the KMP algorithm is used to find all occurrences of H in T .

1.9 Construct the optimal and the three greedy heuristics RGREEDY, GREEDY, and
MGREEDY for the common superstring of X1 = ababababa, X2 = bbbbbbbb, X3 =
aaaaaaaaa, X4 = babbbaaa and X5 = bbaabbaabbaa.

1.10 Find the longest common subsequence of X = abcccabbbbbabab and Y = cabbbabababb
over A = {a, b, c}.

1.11 Determine the feasible set Bn and set of objects Sn for the shortest common superstring
problem and the longest common subsequence problem.
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Chapter 2

Probabilistic and Analytical Models

Summary: We first discuss several probabilistic models that are used throughout this book.
Then we briefly review some basic facts from probability theory (e.g., types of stochastic
convergence) and complex analysis (e.g., Cauchy’s residue theorem). We conclude with a
brief discussion of certain special functions (e.g., Euler’s gamma function, and Riemann’s
zeta function) that we shall use throughout the book.

DATA STRUCTURES AND ALGORITHMS on strings are used in a variety of applica-
tions, ranging from information theory, telecommunications, wireless communications,

approximate pattern matching, molecular biology, game theory, coding theory, and source
coding to stock market analysis. It is often reasonable, and sometimes sine qua non, to
assume that strings are generated by a random source of known or unknown statistics. Ap-
plications often dictate what is a reasonable set of probabilistic assumptions. For example, it
is inappropriate to postulate that suffixes of a (single) sequence are independent, but experi-
ments support the claim that bits in a hashing address form an independent sequence, while
bases in a DNA sequence should be modeled by a Markov chain. We propose a few basic
(generic) probabilistic models that one often encounters in the analysis of problems on words.
We use them throughout the book. Finally, we review some facts from probability theory
and complex analysis, and finish this chapter with a brief discussion of special functions that
often arise in the analysis of algorithms.

2.1 Probabilistic Models of Strings

Throughout this book, we shall deal with sequences of discrete random variables. We write
{Xk}∞k=1 for a one-sided infinite sequence of random variables; however, we often abbreviate
it as X provided it is clear from the context that we are talking about a sequence, not
a single variable. We assume that the sequence {Xk}∞k=1 is defined over a finite alphabet

25
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A = {ω1, . . . , ωV } of size V . A partial sequence is denoted as Xn
m = (Xm, . . . ,Xn) for m ≤ n.

When more than one sequence is analyzed (as in the digital trees) we either use an upper
index to denote sequences: X1 = {X1

k}∞k=1, . . . ,X
m = {Xm

k }∞k=1 for m sequences; or we
write X(1) = {Xk(1)}∞k=1, . . . ,X(m) = {Xk(m)}∞k=1. Finally, we shall always assume that a
probability measure exists, and we write P (Xn

1 ) = Pr{Xk = xk, 1 ≤ k ≤ n, xk ∈ A} for the
probability mass, where we use lowercase letters for a realization of a stochastic process.

Sequences are generated by information sources, usually satisfying some constraints. We
also call them probabilistic models. We start with the most elementary source, namely the
memoryless source.

(B) Memoryless Source

Symbols of the alphabet A = {ω1, . . . , ωV } occur independently of one another; thus
X = X1X2X3 . . . can be described as the outcome of an infinite sequence of Bernoulli
trials in which Pr{Xj = ωi} = pi and

∑V
i=1 pi = 1. If p1 = p2 = . . . = pV = 1/V ,

then the model is called symmetric or the source is unbiased; otherwise, the model is
asymmetric or the source is biased. In this book, we often consider the binary alphabet
A = {0, 1} with p being the probability of “0” and q = 1− p the probability of “1”.

When one deals with many strings (e.g., when building a digital tree), it is necessary to say
whether the strings are dependent.

In many cases, assumption (B) is not very realistic. For instance, if the strings are words
from the English language, then there is certainly a dependence between consecutive letters.
For example, h is much more likely to follow an s than a b. When this is the case, assumption
(B) can be replaced by:

(M) Markov Source

There is a Markovian dependency between consecutive symbols in a string; that is,
the probability pij = Pr{Xk+1 = ωj|Xk = ωi} describes the conditional probability of
sampling symbol ωj immediately after symbol ωi. We denote by P = {pij}Vi,j=1 the
transition matrix, and by π = (π1, . . . , πV ) the stationary vector satisfying πP = π. In
general, Xk+1 may depend on the last r symbols, and then we have rth order Markov
chains (however, in this book we mostly deal with r = 1).

In information theory Markov sources are usually denoted as Sk (i.e., set of states). A
generalization of Markov sources is the so-called finite state source (cf. [163]) or hidden
Markov source (cf. [75]) in which the output string Xk is a function of a Markov source
Sk, that is, Xk = f(Sk) for some function f(·). Finally, if in a finite state source the current
state, say Sk, is computable from the current source sample Xk and previous state Sk−1 (i.e.,
Sk = g(Sk−1,Xk) for some function g), then the source is called the unifilar source (cf.
[163]).
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There are two further generalizations of Markovian sources, namely the mixing source
and the stationary ergodic source, that are very useful in practice, especially for dealing
with problems of data compression or molecular biology when one expects long dependency
among symbols of a string.

(MX) (Strongly) ψ-Mixing Source

Let Fn
m be a σ-field generated by {Xk}nk=m for m ≤ n. The source is called mixing,

if there exists a bounded function ψ(g) such that for all m, g ≥ 1 and any two events
A ∈ Fm

1 and B ∈ F∞
m+g the following holds

(1− ψ(g))Pr{A}Pr{B} ≤ Pr{AB} ≤ (1 + ψ(g))Pr{A}Pr{B}. (2.1)

If, in addition, limg→∞ ψ(g) = 0, then the source is called strongly mixing.

In words, model (MX) postulates that the dependency between {Xk}mk=1 and {Xk}∞k=m+g is
getting weaker and weaker as g becomes larger (note that when the sequence {Xk} is i.i.d.,
then Pr{AB} = Pr{A}Pr{B}). The “quantity” of dependency is characterized by ψ(g) (cf.
[49, 58, 117]). Occasionally, we write the ψ-mixing condition in an equivalent form as follows:
There exist constants c1 ≤ c2 such that

c1Pr{A}Pr{B} ≤ Pr{AB} ≤ c2Pr{A}Pr{B} (2.2)

for all m, g ≥ 1. In some derivations, we shall require that c1 > 0 which will impose further
restrictions on the process (see Theorem 2.1 below).

A weaker mixing condition, namely φ-mixing is defined as follows:

−φ(g) ≤ Pr{B|A} − Pr{B} ≤ φ(g), Pr{A} > 0, (2.3)

provided φ(g) → 0 as g → ∞. In general, strongly ψ-mixing implies φ-mixing but not vice
versa (cf. [58]). In this book, we shall mostly work with the (strongly) ψ-mixing condition.

The following result shows that Markov sources are special cases of strongly mixing
sources.

Theorem 2.1 If Xk is a finite-state irreducible stationary aperiodic Markov chain, then Xk

is a strongly ψ-mixing process, hence also φ-mixing.
If, in addition, the transition probabilities pij > 0 for all i, j ∈ A, then the Markov chain is
ψ-mixing with the constant c1 > 0 in (2.2).

Proof. We shall follow here Karlin and Ost [229]. Define two events

A = {Xt1 = i1,Xt2 = i2, . . . ,Xtm = im} t1 < t2 < · · · < tm,

Bg = {Xs1+g = j1,Xs2+g = j2, . . . ,Xsr+g = jr} tm ≤ s1 < s2 < · · · < sr
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for any g > 0. Without loss of generality, we assume that Pr{A} > 0 and Pr{Bg} > 0. By
the Markov property

Pr{A ∩Bg} = Pr{Bg|Xs1+g = j1}Pr{Xs1+g = j1|Xtm = im}Pr{A}

= Pr{A}Pr{Bg}
Pr{Xs1+g = j1|Xtm = im}

Pr{Xs1+g = j1}
. (2.4)

Since Xk is an irreducible aperiodic Markov chain over a finite alphabet, it is ergodic, and
since it is also a stationary chain its stationary distribution is Pr{Xt = i} for every t ≥ 0. We
also know from Perron-Frobenius theorem (see Table 4.1 in Chapter 4) that the transition
probability Pr{Xs1+g = j1|Xtm = im} converges exponentially fast to Pr{Xs1+g = j1}. That
is, there exists ρ < 1 (which is related to the second largest eigenvalue of the transition matrix
of the Markov chain) such that∣∣∣∣∣Pr{Xs1+g = j1|Xtm = im}

Pr{Xs1+g = j1}
− 1

∣∣∣∣∣ = O(ρg) (2.5)

as g →∞. This and (2.4) imply that

(1−O(ρg))Pr{A}Pr{Bg} ≤ Pr{A ∩Bg} ≤ (1 +O(ρg))Pr{A}Pr{Bg},

which proves the first part of the theorem.
To show that c1 > 0 when pij > 0 for all i, j ∈ A observe that by (2.4)

Pr{A ∩Bg} = Cij(g)Pr{A}Pr{Bg}

where
Cij(g) =

Pr{Xs1+g = j|Xtm = i}
Pr{Xs1+g = j} .

Clearly, Pr{Xs1+g = j} > 0 for all j ∈ A. Furthermore, if pij > 0 for all i, j ∈ A, then
Cij(1) > 0 and hence Cij(g) > 0 for all g > 1. Setting c1 = mini,j∈A infg≥1{Cij(g)} and using
(2.5), we establish the announced result.

The most general probabilistic model is the stationary ergodic source in which we only
assume that the sequence is stationary and ergodic.

(S) Stationary and Ergodic Source

The sequence {Xk}∞k=1 of letters from a finite alphabet is a stationary and ergodic
sequence of random variables.

In the stationary model, the probability mass Pr{Xn
1 = xn

1} does not depend on time-shift,
that is, if m is an integer, then for every n and m the following holds Pr{Xn+m

1+m = xn
1} =
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Pr{Xn
1 = xn

1}. It turns out that a stationary distribution may be approximated by a k order
Markov distribution (see Section 4.2.1). Such an approximation becomes asymptotically
accurate as k → ∞ (see Theorem 6.33 in Chapter 6). In passing we should point out that
the memoryless source and Markov source may be either stationary or not. In this book, we
shall always work with stationary models, unless stated otherwise.

Recently, B. Vallée introduced in [431] (cf. also [68]) new probabilistic dynamical sources
that are based on the theory of dynamical systems. The basic idea is to assign an infinite
sequence to a real number x in the interval [0, 1] (e.g., the binary expansion of x, the continued
fraction expansion of x). A probabilistic behavior of such sources is induced by selecting the
initial x according to a given density function.

2.2 Review of Probability

Probability theory is a basic tool in the average-case analysis of algorithms. We shall learn in
this book a considerable number of probabilistic tricks that provide insights into algorithmic
behavior. In this section, we briefly review some elementary definitions and results from
probability theory. The reader is referred to Billingsley [49], Durrett [117], Feller [122, 123],
and Shiryayev [389] for more detailed discussions.

In this book, we mostly deal with discrete random variables. Let Xn denote the value
of a parameter of interest depending on n (e.g., depth in a suffix tree or a trie built over n
strings). We write Pr{Xn = k} for the probability mass of Xn. The expected value or the
mean E[Xn] and the variance Var[Xn] are computed in a standard way as:

E[Xn] =
∞∑

k=0

kPr{Xn = k},

Var[Xn] =
∞∑

k=0

(k −E[Xn])2Pr{Xn = k}.

We also write E[Xr] =
∑∞

k=0 k
rPr{Xn = k} for the rth moment of Xn. Finally, we write I(A)

for the indicator function, that is, I(A) = 1 when the event A occurs, and zero otherwise.
Below, we first discuss some standard inequalities for expectations, and then review types

of stochastic convergence.

2.2.1 Some Useful Inequalities

We review here some inequalities that play a considerable role in probability theory; they are
often used in the probabilistic analysis of algorithms.

Markov’s Inequality For a nonnegative function g(·) and a random variable X the following
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holds
Pr{g(X) ≥ t} ≤ E[g(X)]

t
(2.6)

for any t > 0. Indeed, we have the following chain of obvious inequalities

E[g(X)] ≥ E[g(X)I(g(X) ≥ t)] ≥ tE[I(g(X) ≥ t)] = tPr{g(X) ≥ t},

where we recall that I(A) is the indicator function of the event A.

Chebyshev’s Inequality If one replaces g(X) by |X − E[X]|2 and t by t2 in the Markov
inequality, then

Pr{|X −E[X]| > t} ≤ Var[X]
t2

, (2.7)

which is known as Chebyshev’s inequality.

Schwarz’s Inequality (also called Cauchy-Schwarz) Let X and Y be such that E[X2] <∞
and E[Y 2] <∞. Then

E[|XY |]2 ≤ E[X2]E[Y 2] , (2.8)

where throughout the book we shall write E[X]2 := (E[X])2.

Jensen’s Inequality Let f(·) be a downward convex function, that is, for λ ∈ (0, 1)

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) .

Then
f(E[X]) ≤ E[f(X)], (2.9)

with the equality holding when f(·) is a linear function.

Minkowski’s Inequality If E[|X|p] <∞, and E[|Y |p] <∞, then E[|X + Y |]p <∞ and

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p (2.10)

for 1 ≤ p <∞.

Hölder’s Inequality Let 0 ≤ θ ≤ 1, and E[X] <∞, E[Y ] <∞. Then

E[XθY 1−θ] ≤ E[X]θE[Y ]1−θ. (2.11)

Inequality on Means Let (p1, p2, . . . , pn) be a probability vector (i.e.,
∑n

i=1 pi = 1) and
(a1, . . . , an) any vector of positive numbers. The mean of order b 6= 0 (−∞ ≤ b ≤ ∞) is
defined as

Mn(b) :=

(
n∑

i=1

pia
b
i

) 1
b

.
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The inequality on means asserts that Mn(b) is a nondecreasing function of b, that is,

r < s ⇒ Mn(r) ≤Mn(s), (2.12)

where the equality holds if and only if a1 = a2 = · · · = an. Furthermore, Hilbert’s inequal-
ity on means states

lim
b→−∞

Mn(b) = min{a1, . . . , an}, (2.13)

lim
b→∞

Mn(b) = max{a1, . . . , an}. (2.14)

We shall see in Chapter 4 that Markov’s inequality and Chebyshev’s inequality constitute
a foundation for the so-called first and second moment methods. These two simple methods
are probably the most often used probabilistic tools in the analysis of algorithms.

2.2.2 Types of Stochastic Convergence

It is important to know various ways that random variables may converge. Let Xn = {Xn, n ≥
1} be a sequence of random variables, and let their distribution functions be Fn(x), re-
spectively. A good, easy-to-read account on various types of convergence can be found in
Shiryayev [389].

The first notion of convergence of a sequence of random variables is known as conver-
gence in probability. The sequence Xn converges to a random variable X in probability,
denoted Xn → X (pr.) or Xn

pr→X, if for any ε > 0

lim
n→∞Pr{|Xn −X| < ε} = 1 .

It is known that if Xn
pr→ X, then f(Xn) pr→ f(X) provided f is a continuous function (cf.

[49, 117]). The reader is asked to prove this fact in Exercise 6.
Note that convergence in probability does not say that the difference between Xn and X

becomes very small. What converges here is the probability that the difference between Xn

and X becomes very small. It is, therefore, possible, although unlikely, for Xn and X to differ
by a significant amount and for such differences to occur infinitely often. A stronger kind
of convergence that does not allow such behavior is called almost sure convergence or
strong convergence. This convergence assures that the set of sample points for which Xn

does not converge to X has probability zero. In other words, a sequence of random variables

Xn converges to a random variable X almost surely, denoted Xn → X (a.s.) or Xn
(a.s.)→ X, if

for any ε > 0,
lim

N→∞
Pr{ sup

n≥N
|Xn −X| < ε} = 1 .
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From this formulation of almost sure convergence, it is clear that if Xn → X (a.s.), the
probability of infinitely many large differences between Xn and X is zero. As the term strong
implies, almost sure convergence implies convergence in probability.

A simple sufficient condition for almost sure convergence can be inferred from the Borel-
Cantelli lemma presented below.

Lemma 2.2 (Borel-Cantelli) If
∑∞

n=0 Pr{|Xn−X| > ε} <∞ for every ε > 0, then Xn
a.s.→

X.

Proof. It follows directly from the following chain of inequalities

Pr{ sup
n≥N
|Xn −X| ≥ ε} = Pr{

⋃
n≥N

(|Xn −X| ≥ ε)} ≤
∑
n≥N

Pr{|Xn −X| ≥ ε} → 0 .

The inequality above is a consequence of the fact that the probability of a union of events is
smaller than the sum of the probability of the events. The last convergence is a consequence
of our assumption that

∑∞
n=0 Pr{|Xn −X| > ε} <∞.

A third type of convergence is defined on the distribution functions Fn(x). The sequence
of random variables Xn converges in distribution or converges in law to the random
variable X, denoted Xn

d→ X if
lim

n→∞Fn(x) = F (x) (2.15)

for each point of continuity of F (x). One can prove that the above definition is equivalent to
the following: Xn

d→ X if
lim

n→∞E[f(Xn)] = E[f(X)] (2.16)

for all bounded continuous functions f . We shall return to this type of convergence in Chap-
ter 8.

The next type of convergence is the convergence in mean of order p or convergence
in Lp which postulates that E[|Xn −X|p]→ 0 as n→∞. We write it as Xn

Lp

→ X. Finally,
we introduce convergence in moments for which limn→∞ E[Xp

n] = E[Xp] for any p ≥ 1.
We now describe relationships (implications) between various type of convergence. The

reader is referred to [49, 117, 389] for a proof.

Theorem 2.3 We have the following implications:

Xn
a.s.→ X ⇒ Xn

pr→ X, (2.17)

Xn
Lp

→ X ⇒ Xn
pr→ X, (2.18)

Xn
pr→ X ⇒ Xn

d→ X (2.19)

Xn
Lp

→ X ⇒ E[Xp
n]→ E[Xp]. (2.20)

No other implications hold in general.
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It is easy to devise an example showing that convergence in probability does not imply
convergence in mean (e.g., take Xn = n with probability 1/n and zero otherwise). To
obtain convergence in mean from the convergence in probability one needs somewhat stronger
conditions. For example, if |Xn| ≤ Y and E[Y ] < ∞, then by the dominated convergence
theorem (cf. [49, 117]) we know that convergence in probability implies convergence in mean.
To generalize it, one introduces the so called uniform integrability. It is said that a
sequence {Xn, n ≥ 1} is uniformly integrable if

sup
n≥1

E[|Xn|I(|Xn| > a)]→ 0 (2.21)

when a→∞. The above is equivalent to

lim
a→∞ sup

n≥1

∫
|x|>a

xdFn(x) = 0.

Then the following is true (cf. [49, 117]): if Xn is uniformly integrable, then Xn
pr→ X implies

Xn
Lp

→ X.

2.3 Review of Complex Analysis

Much of the necessary complex analysis involves the use of Cauchy’s integral formula and
Cauchy’s residue theorem. Here, we informally recall a few facts from analytic functions,
and then discuss the above two theorems. We shall return to them in Part III. For precise
definitions and formulations the reader is referred to many excellent books such as Henrici
[195], Hille [196], Remmert [363] or Titchmarsh [424]. We shall follow here Flajolet and
Sedgewick [149].

The main topic of this section is analytic function, its definitions, properties, and a few
applications. Analytic functions can be characterized by one of three equivalent ways: by
convergent series, by the differentiability property, and by integrals vanishing on cycles. In
discussing these three definitions, we introduce the necessary concepts from complex analysis.

Convergent Series. A function f(z) of a complex variable z is analytic at point z = a if it
has a convergent series representation in a neighborhood of z = a, that is,

f(z) =
∑
n≥0

fn(z − a)n, z ∈ B(a, r),

where B(a, r) is a ball with center a and radius r > 0. From this definition, one immediately
concludes that if f(z) and g(z) are analytic, then f(z) + g(z), f(z)g(z), and f(z)/g(z) with
g(z) 6= 0 are analytic, too. Furthermore, the above implies that if f(z) is analytic at z = a,



34 Probabilistic and Analytical Models

then there is a disk called the disk of convergence such that the series representing f(z) is
convergent inside this disk and divergent outside the disk. The radius of this disk is called
the radius of convergence. In Chapter 7 we discuss this in depth; in particular, we prove
Hadamard’s theorem (see Theorem 7.1), which gives the radius of convergence of a series in
terms of its coefficients.

Holomorphic Function. An equivalent name for analytic functions is holomorphic. A
holomorphic function f(z) has a derivative at a point z = a defined as

df(z)
dz

= lim
∆z→0

f(z + ∆z)− f(z)
∆z

that does not depend on the way ∆z goes to zero. Riemann proved that a holomorphic
function is analytic, that is, it has a local convergent series representation.

Integrals. Finally, we discuss the very important concept of complex integrals. We should
first define a simply connected domain as an open connected set having the property that
any simple closed path (cf. [363]) can be continuously deformed to a point inside this set.
It is a basic fact of complex analysis that if f(z) is an analytic function on an open simply
connected set, then ∮

f(z) :=
∫
C
f(z) = 0

along any closed path C inside this set. This fact actually is equivalent to analyticity of f(z).
It is worth knowing that one can bound the integrals as follows:∣∣∣∣∫C f(z)

∣∣∣∣ ≤ |C|max
C
{|f(z)|} (2.22)

where |C| is the path length of the curve C. Finally, we cite one more result that plays a
significant role in the analysis (cf. [363]).

Theorem 2.4 (i) Let C be a piecewise continuous differentiable path and Ω a region. If
g(w, z) is continuous on C×Ω and for every w ∈ C the function g(w, z) is analytic in Ω, then
the function

h(z) =
∫
C
g(ξ, z)dξ

is analytic in Ω.

(ii) The function

h(z) =
∫ ∞

a
f(t, z)dt

is an analytic function of z at all points z if: (i) the integral converges; (ii) f(z, t) is an
analytic function of z and t; (iii) ∂f(z,t)

∂t is a continuous function of both variables; (iv) the
integral

∫∞
a

∂f(z,t)
∂z dt converges uniformly.
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Example 2.1: A Simple Integral

In complex analysis a circular integral over z−n for n = 0, 1, . . . plays a very special role.
Observe that this function is not analytic at z = 0. It is easy to see that∮

z−ndz = 2πi
∫ 1

0
e−2πi(n−1)dt =

{
2πi for n = 1
0 otherwise

(2.23)

where we substituted z = e2πit. We shall often use this simple fact throughout the book. 2

Meromorphic Functions and Residues. A quotient of two analytic functions gives a
meromorphic function that is analytic everywhere but a finite number of points called poles,
where the denominator vanishes. More formally, a meromorphic function f(z) can be repre-
sented in a neighborhood of z = a with z 6= a by the Laurent series as:

f(z) =
∑

n≥−M

fn(z − a)n

for some integer M . If the above holds with f−M 6= 0, then it is said that f(z) has a pole
of order M at z = a. An important tool frequently used in complex analysis is the residue.
The residue of f(z) at a point a is the coefficient at (z − a)−1 in the Laurent expansion of
f(z) around a, and it is denoted as

Res[f(z); z = a] := f−1 = lim
z→a

(z − a)f(z).

There are many simple rules to evaluate residues and the reader can find them in any standard
book on complex analysis (e.g., [195, 363]). For example, if f(z) and g(z) are analytic around
z = a, then

Res[
f(z)
g(z)

; z = a] =
f(a)
g′(a)

, g(a) = 0, g′(a) 6= 0; (2.24)

if g(z) is not analytic at z = a, then

Res[f(z)g(z); z = a] = f(a)Res[g(z); z = a]. (2.25)

Evaluating residues of multiple poles is much more computationally involved. Actually, the
easiest way is to use the series command in MAPLE that produces a series development
of a function. The residue is simply the coefficient at (z − a)−1. For example, the following
session of MAPLE computes the series expansion of f(z) = 1/(1 − 2z)2 at z = 0:

> series(1/(1-2^z)^2, z=0, 4);

1
ln( 2 )2

z−2 − 1
ln( 2 )

z−1 +
5
12

+ O( z )

From the above we see that Res[f(z); z = 0] = 1
ln 2 .

Residues are very important in evaluating contour integrals as demonstrated by the fol-
lowing theorem.
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Theorem 2.5 (Cauchy Residue Theorem) If f(z) is analytic within and on the bound-
ary of a simple closed curve C except at a finite number of poles a1, a2, . . . , aN inside of C
having residues Res[f(z); z = a1], . . . ,Res[f(z); z = aN ], respectively, then

1
2πi

∫
C
f(z)dz =

N∑
j=1

Res[f(z); z = aj] ,

where the curve C is traversed counterclockwise.

Sketch of Proof: Let us assume there is only one pole at z = a. Since f(z) is meromorphic,
it has a Laurent expansion, which after integration over C leads to∫

C
f(z)dz =

∑
n≥0

fn

∫
C
(z − a)ndz + f−1

∫
C

dz

z − a = 2πiRes[f(z), z = a],

since the first integral is zero by the calculation of Example 1.

The Cauchy residue theorem can be used to prove the next very important result, namely
Cauchy’s Integral Theorem. In Part III of this book, it will be the most often used
paradigm.

Theorem 2.6 (Cauchy Coefficient Formula) Let f(z) be analytic inside a simply con-
nected region with C being a closed curve oriented counterclockwise that encircles the origin
z = 0. Then

fn := [zn]f(z) =
1

2πi

∮
f(z)

dz

zn+1
. (2.26)

Also, the following holds

f (k)(z) =
k!

2πi

∮
f(w)dw

(w − z)k+1
(2.27)

where f (k)(z) is the kth derivative of f(z).

Proof: These formulas are direct consequences of Cauchy’s residue theorem. Indeed,

fn := [zn]f(z) = Res[f(z)z−n−1 : z = 0] =
1

2πi

∮
f(z)

dz

zn+1
.

Throughout this book, we shall write [zn]f(z) for the coefficient of f(z) at zn.

We finish this section with two examples that illustrate what we have learned so far. The
second example is particularly important since we shall do this type of calculation quite often
in Part III.

Example 2.2: Liouville’s Theorem
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We prove the following theorem of Liouville: If a function f(z) is analytic in the whole
complex plane C and |f(z)| ≤ B for some constant B, then f(z) must be constant. Let us
first assume that f(z) = B. Then by Example 1 we show that fn = 0 for n ≥ 1. Conversely,
let |f(z)| ≤ B. Then fn = O(R−n) for any R (it doesn’t matter how large) by (2.26) and
(2.22), so fn must be zero except for n = 0. 2

Example 2.3: Expansion of Meromorphic Functions

Let f(z) be meromorphic for |z| < R with isolated poles at a1, . . . , am. Then

fn := [zn]f(z) = −
m∑

j=1

Res[f(z)z−n−1, z = aj] +O(R−n).

Indeed, let us compute the following integral

In =
1

2πi

∮
R
f(z)

dz

zn+1
,

where the integration is along a circle of radius R and center at the origin. Observe that the
circle of radius R contains all the poles of the function in addition to the pole at z = 0. On
one hand, by our estimate (2.22) this integral is |In| = O(R−n) (since f(z) is analytic on the
circle of radius R). On the other hand, inside the circle of radius R there are poles at z = 0
and z = aj . The pole at z = 0 contributes fn by Cauchy’s coefficient formula while the poles
at z = aj contribute Res[f(z)z−n−1, z = aj], which leads to our result. We shall return to
these estimates in Section 8.3.1. 2

2.4 Special Functions

In this subsection, we review properties of two special functions: Euler’s gamma function
and Riemann’s zeta function. Both are used very frequently in the average-case analysis
of algorithms. We shall meet them quite often in Part III of this book. There are many
excellent books treating these functions in depth. The reader might inspect a new book of
Temme [422], an excellent account on special functions and asymptotics by Olver [331], and
an old, traditional (but still in use) book of Whittaker and Watson [448]. The new book [14]
by Andrews, Askey and Roy is also excellent. Here we will follow Temme [422]. A full list
of properties for these special functions can be found in the handbook of Abramowitz and
Stegun [2] and the three-volume opus on transcendental functions [35] by H. Bateman.

2.4.1 Euler’s Gamma Function

A desire to generalize n! to the complex plane led Euler to introduce one of the most useful
special functions, namely, the gamma function. It is defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt, <(z) > 0. (2.28)
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To see that the above integral generalized n!, let us integrate it by parts. We obtain

Γ(z + 1) = −
∫ ∞

0
tzd

(
e−t
)

= zΓ(z). (2.29)

Observe now that Γ(1) = 1, and then Γ(n+ 1) = n! for n natural, as desired.

Analytic Continuation. We now analytically continue the gamma function to the whole
complex plane. We first extend the definition to −1 < <(z) < 0 by considering (2.29) and
writing

Γ(z) =
Γ(z + 1)

z
, −1 < <(z) < 0.

Since Γ(z + 1) is well defined for −1 < <(z) < 0 (indeed, <(z + 1) > 0), we can enlarge the
region of definition to the strip −1 < <(z) < 0. However, at z = 0 there is a pole whose
residue is easy to evaluate; that is,

Res[Γ(z); z = 0] = lim
z→0

zΓ(z) = 1.

Now we can further extend to −2 < <(z) < −1 by applying (2.29) twice to get

Γ(z) =
Γ(z + 2)
z(z + 1)

, −2 < <(z) < −1.

Observe that
Res[Γ(z); z = −1] = lim

z→−1
(z + 1)Γ(z) = −1.

In general, let us assume we have already defined Γ(z) up to the strip −n < <(z) < −n+ 1.
Then, extension to −n− 1 < <(z) < −n is obtained by

Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n)
.

The residue at z = −n becomes

Res[Γ(z); z = −n] = lim
z→−n

(z + n)Γ(z) =
(−1)n

n!
(2.30)

for all n = 0, 1, . . . . The above formula is the most useful, and certainly responsible for many
applications of the gamma function to discrete mathematics and the analysis of algorithms.
The reader should take a good look at it.

Beta Function. Closely related to the gamma function is the beta function defined as

B(w, z) =
∫ 1

0
tw−1(1− t)z−1dt, <(w) > 0 and <(z) > 0. (2.31)
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The reader is asked to prove in Exercise 11 the following formula that relates the gamma and
the beta functions:

B(w, z) =
Γ(w)Γ(z)
Γ(w + z)

. (2.32)

The beta function is often used to prove properties of the gamma function (e.g., see Exer-
cises 14 and 16).

Infinite Products. In 1856, Weierstrass defined the gamma function as

1
Γ(z)

= zeγz
∞∏

n=1

[(
1 +

z

n

)
e−z/n

]
,

where the constant γ is known as Euler’s constant and is computed as

γ = lim
n→∞

(
n∑

k=1

1
k
− ln(n+ 1)

)
= 0.5772157 . . . .

Using this definition of γ, and some algebraic manipulation the reader is asked in Exercise 12
to derive the following Euler’s product representation:

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
.

In Exercise 13 we suggest showing that the above representation is equivalent to the integral
formula (2.29) for <(z) > 0.

Gamma Function on Imaginary Line. Several applications of the gamma function follow
from its desirable behavior for purely imaginary variable; that is, for z = iy where y ∈ R. Let
us start with the well-known reflection formula of the gamma function (see Exercise 14):

Γ(z)Γ(1 − z) =
π

sinπz
, z /∈ Z. (2.33)

Set now z = iy for y ∈ R and use (2.29) to get

Γ(iy)Γ(−iy) =
π

−iy sinπiy
.

But since −i sin iy = sinh y = (ey − e−y)/2, we finally derive

Γ(iy)Γ(−iy) = |Γ(iy)|2 =
π

y sinhπy
,

where we also use the fact that Γ(−iy) is conjugate to Γ(iy), that is, Γ(−iy) = Γ(iy) (in gen-
eral, Γ(z) = Γ(z)). A consequence of the above identity is the following important asymptotic
property of the gamma function

|Γ(iy)| ∼
√

2π
|y|e

−π|y|/2 as |y| → ±∞, (2.34)
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where f(z) ∼ g(z) if limz→∞
f(z)
g(z) = 1 (see Section 8.1.1 for a precise definition). The above

shows that the gamma function decays exponentially fast on the imaginary line. In general,
using (2.29) one can show that

|Γ(x+ iy)| ∼
√

2π|y|x− 1
2 e−π|y|/2 as |y| → ±∞ (2.35)

for any x ∈ R.

Asymptotic Expansions. In many applications Stirling’s asymptotic formula for n! proves
to be extremely useful. Not surprisingly then, the same is true for asymptotic expansion of
the gamma function. It can be proved [422, 448] that (see Example 8.3 in Chapter 8)

Γ(z) =
√

2πzz− 1
2 e−z

(
1 +

1
12z

+
1

288z2
+ · · ·

)
for z →∞ when | arg(z)| < π.

The above asymptotic is helpful in deriving another approximation for large z. Let us
consider the ratio of Γ(z + a) and Γ(z + b) for large z. To see how it behaves, consider

Γ∗(z) =
Γ(z)

√
2πzz− 1

2 e−z
,

which tends to one as z →∞. Then,

Γ(z + a)
Γ(z + b)

= za−b Γ∗(z + b)
Γ∗(z + b)

Q(z, a, b),

where Q(z, a, b) = 1+O(1/z) as z →∞. Hence, the above ratio is approximately za−b. More
precisely

zb−a Γ(z + a)
Γ(z + b)

= 1 +
(a− b)(a+ b− 1)

2z
+O(1/z2) (2.36)

as z → ∞ along any curve joining z = 0 and z = ∞ providing z 6= −a,−a − 1, . . ., and
z 6= −b,−b−1, . . .. A full asymptotic expansion of this ratio can be found in Exercise 16 and
in Temme [422].

Psi Function. The derivative of the logarithm of the gamma function plays an important
role in the theory and applications of special functions. It is known as the psi function and
is defined as:

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)
Γ(z)

.

Using Weierstrass’s product form of the gamma function, one can derive the following

ψ(z) = −γ +
∞∑

n=0

(
1

n+ 1
− 1
z + n

)
, z 6= 0,−1,−2, . . . . (2.37)
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From the above, we conclude that the psi function possesses simple poles at all nonpositive
integers, and

Res[ψ(z); z = −n] = lim
z→−n

(z + n)ψ(z) = −1, n ∈ N. (2.38)

Laurent’s Expansions. As we observed above, the gamma function and the psi function
do have simple poles at all nonpositive integers. Thus one can expand these functions around
z = −n using the Laurent’s series. The following is known (cf. [422]):

Γ(z) =
(−1)n

n!
1

(z + n)
+ ψ(n + 1) (2.39)

+
1
2

(z + n)
(
π2/3 + ψ2(n+ 1)− ψ′(n+ 1)

)
+O((z + n)2),

ψ(z) =
−1

(z + n)
+ ψ(m + 1) +

∞∑
k=2

(
(−1)nζ(n) +

k∑
i=1

i−k

)
(z + n)k−1, (2.40)

where ζ(z) is the Riemann zeta function defined in Section 2.4.2. In particular,

Γ(z) =
1
z
− γ +O(z), (2.41)

Γ(z) =
−1
z + 1

+ γ − 1 +O(z + 1). (2.42)

We shall use the above formulas quite often in Part III (see Section 7.6.3).

2.4.2 Riemann’s Zeta Function

We discuss here the Riemann zeta function ζ(z). This is the most fascinating special function
that still hides from us its beautiful properties (e.g., the Riemann conjecture concerning zeros
of ζ(z)). We uncover only the tip of the iceberg. The reader is referred to Titchmarsh and
Heath-Brown [425] for more in-depth discussion. The Riemann zeta function is defined as

ζ(z) =
∞∑

n=1

1
nz
, <(z) > 1. (2.43)

The generalized zeta function ζ(z, a) (also known as the Hurwitz zeta function) is defined as

ζ(z, a) =
∞∑

n=0

1
(n+ a)z

, <(z) > 1,

where a 6= 0,−1,−2, . . . is a constant. It is evident that ζ(z, 1) = ζ(z).
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Integral Representation and Analytical Continuation. To analytically continue the
zeta function to the whole complex plane we use an integral representation. We start with a
simple observation that

1
nz

=
1

Γ(z)

∫ ∞

0
tz−1e−ntdt,

which follows from the definition of the gamma function and the substitution w = nt. Sum-
ming the above over all n ≥ 1, and interchanging summation and integration (which is allowed
due to uniform convergence), we obtain

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt, <(z) > 1. (2.44)

It can be proved [422, 448] that the above expression can be further transformed into

ζ(z) =
Γ(1− z)

2πi

∫ (0+)

−∞
tz−1

e−t − 1
dt, (2.45)

where the integral
∫ (0+)
−∞ is known as the Hankel integral (the reader is referred to Table 8.3

in Chapter 8 for a precise definition and properties). Thus ζ(z) may not be analytic where
Γ(1 − z) is not analytic, that is, at z = 1, 2, . . .. But we know already that ζ(z) is analytic
for <(z) > 1; hence z = 1 is the only singularity of ζ(z).

Finally, the reflection formula for zeta function due to Riemann relates the gamma func-
tion and the zeta function (cf. [448]):

ζ(s)Γ
(
s

2

)
π−s/2 = ζ(1− s)Γ

(
1− s

2

)
π−(1−s)/2, (2.46)

which is true for all s where ζ(s) and Γ(s) functions are defined.

Zeta Function on Imaginary Line. The zeta function ζ(z) behaves differently from the
gamma function on imaginary lines, which has important consequences for certain asymp-
totics that we shall learn in Chapter 8. Let now z = x+ iy, where x, y ∈ R, and we inspect
the behavior of ζ(z) for fixed x and y → ±∞. The following result is proved in Whittaker
and Watson [448]

ζ(z) =


O(|y| 12−x) for x < 0
O(|y| 1−x

2 ) for 0 < x < 1
O(1) for x > 1

(2.47)

as y → ±∞. Thus unlike the gamma function, ζ(z) function has a polynomial growth along
the imaginary axis. It is worth remembering the above relationships.

Laurent’s Expansion. By (2.45), we know that ζ(z) has only one pole at z = 1. It can be
proved that its Laurent series around z = 1 is

ζ(z) =
1

z − 1
+

∞∑
k=0

(−1)kγk

k!
(z − 1)k, (2.48)
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where γk are the so–called Stieltjes constants for k ≥ 0 defined as

γk = lim
m→∞

(
m∑

i=1

lnk i

i
− lnk+1m

k + 1

)
.

In particular, γ0 = γ = 0.577215 . . . is the Euler constant, and γ1 = −0.072815 . . .. From the
above (or directly from (2.45)), we conclude that

Res[ζ(z); z = 1] = 1.

We shall use the ζ(z) function quite extensively in Part III. We will learn more about this
fascinating function. Among other things, we will relate the value of the zeta function on
nonnegative integers to the so-called Bernoulli numbers discussed in Chapter 8 (Table 8.1).
Stay tuned!

2.5 Extensions and Exercises

2.1 Prove the following formula for the (k + 1)st moment of a discrete nonnegative random
variable X:

E[Xk+1] =
∑
m≥0

Pr{X > m}
k∑

i=0

(m + 1)k−imi.

In particular,
E[X] =

∑
m≥0

Pr{X > m}.

2.2 Prove that (2.15) and (2.16) are equivalent.

2.3 Construct counterexamples to every reverse implication from Theorem 2.3.

2.4 Prove Theorem 2.3.

2.5 Prove the following result: If Xn is a sequence of nonnegative random variables such

that Xn
a.s.→ X and E[Xn]→ E[X], then Xn

L1

→ X.

2.6 Prove that if Xn
pr→ X, then f(Xn)

pr→ f(X) provided f is a continuous function.

2.7 Prove (2.24)–(2.25).

2.8 Compute the residue of f(z) = Γ(z)(1− 2z)−1 at z = 0.

2.9 Extend Liouville’s theorem to polynomial functions, that is, prove that if f(z) is of at
most polynomial growth, that is, |f(z)| ≤ B|z|r for some r > 0, then it is a polynomial.
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2.10 Estimate the growth of the coefficients fn = [zn]f(z) of

f(z) =
1

(1− z)(1− 2z)

using the argument from Example 3.

2.11 Prove formula (2.32).
Hint. Compute the integral

I(w, z) =
∫ ∞

0

∫ ∞

0
x2w−1y2z−1e−(x2+y2)dxdy

in two different ways (cf. [422]).

2.12 Show that the Weierstrass product formula for the gamma function implies the Euler
product form representation for the gamma function.
Hint. Use the definition of the Euler constant.

2.13 Prove that the product formulas for the gamma function are equivalent to the integral
formula (2.28).
Hint. Compute ∫ ∞

0

(
1− t

n

)n

tz−1dt

in two different manners (cf. [422]).

2.14 Prove the reflection formula (2.33) for the gamma function.
Hint. Compute

B(z, 1− z) =
∫ ∞

0

sz−1

1 + s
ds

in two ways (cf. [422]).

2.15 Prove the growth (2.47) of ζ(z) function on imaginary lines for 0 < x < 1. In general,
prove that: if

∑
n≥0 an <∞, then the series

f(z) =
∞∑

n=1

an

nz

grows like |f(x+ iy)| = O(|y|1−x) for 0 < x < 1 as y → ±∞ (cf. [424]).

2.164! In this exercise we extend the asymptotic formula (2.36) for Γ(z+a)/Γ(z+b). Prove
the following asymptotic expansion for <(b− a) > 0 (cf. [422]):

Γ(z + a)
Γ(z + b)

∼ za−b
∞∑

n=0

cn
Γ(b− a+ n)

Γ(b− a)
1
zn

as z →∞, (2.49)
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where

cn = (−1)nB
a−b+1
n (a)
n!

,

and B
(w)
n (x) are the so-called generalized Bernoulli polynomials defined as

exz
(

z

ez − 1

)w

=
∞∑

n=0

B
(w)
n (x)
n!

zn |z| < 2π.

Hint. Express the ratio Γ(z + a)/Γ(z + b) in terms of the beta function, that is,

Γ(z + a)
Γ(z + b)

=
B(z + a, b− a)

Γ(b− a)
.

Then, use the integral representation of the beta function to show that

Γ(z + a)
Γ(z + b)

=
1

Γ(b− a)

∫ ∞

0
ub−a−1e−zuf(u)du,

where

f(u) = e−au

(
1− e−u

u

)b−a−1

.
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Chapter 3

Inclusion-Exclusion Principle

Summary: The inclusion-exclusion principle is one of the oldest methods in combinatorics,
number theory, discrete mathematics, and probabilistic analysis. It allows us to compute
either the probability that exactly r events occur out of n events (probabilistic inclusion-
exclusion principle) or the number of objects that belong exactly to r sets out of n possibly
intersecting sets (combinatorial inclusion-exclusion principle). In this chapter, we derive a
general form of the inclusion-exclusion principle, and discuss three applications: depth in a
trie, order statistics, and the longest aligned word.

IN COMBINATORICS we often must count the number of objects that satisfy certain prop-
erties or belong to certain sets. The (combinatorial) principle of inclusion and exclusion

is very helpful. Imagine the following situation: Sets A and B are subset of S, and we
wish to count the number of objects that belong neither to A nor to B. Certainly it is not
|S| − |A| − |B|, since the objects in A∩B have been subtracted twice. The correct answer is
|S| − |A| − |B|+ |A ∩B|, as one may expect.

In probability, we often need to compute the probability that at least one event out of n
events A1, . . . , An does occur. The events A1, . . . , An might be dependent and not disjoint.
For example, we know that Pr{A ∪ B} = Pr{A} + Pr{B} − Pr{A ∩ B}. In this chapter we
generalize these examples and discuss some applications of the inclusion-exclusion principle.

Finally, a word about notation. Throughout the book, we shall write log(·) for logarithm
of an unspecified base. We shall also use ln(·) for natural logarithm and lg := log2 for binary
logarithm.

3.1 Probabilistic Inclusion-Exclusion Principle

Let A1, . . . , An be n events which may be intersecting and dependent. We want to compute
the probability Pr that exactly r events occur in a random trial. If we write Āi for the

49
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complement of Ai, then naturally

Pr =
∑

1≤j1<···<jr≤n

Pr{Aj1 . . . AjrĀjr+1 . . . Ājn}, (3.1)

where j1, . . . , jn is a permutation of (1, 2, . . . , n). To simplify further derivations, let us define
Jr = {(j1, . . . , jr) : 1 ≤ j1 < · · · < jr ≤ n} and for k ≥ 1

Sk :=
∑
Jk

Pr{Aj1 . . . Ajk
} (3.2)

with S0 = 1. Observe that

Sk =
∑
Jk

Pr{Aj1 . . . Ajk
}

=
∑
Jk

Pr{Aj1 . . . Ajk
(Ajk+1

∪ Ājk+1
) . . . (Ajn ∪ Ājn)}

=
n∑

r=k

(
r

k

)∑
Jr

Pr{Aj1 . . . AjrĀjr+1 . . . Ājn}

=
n∑

r=k

(
r

k

)
Pr,

where Pr is defined in (3.1).
But we are interested in Pr rather than in Sk, so we need to invert the above. This can

be done as follows:
n∑

k=r

(−1)r+k

(
k

r

)
Sk =

n∑
k=r

n∑
s=k

(−1)r+k

(
k

r

)(
s

k

)
Ps

=
n∑

s=r

(
s∑

k=r

(−1)k−r

(
k

r

)(
s

k

))
Ps.

However, as can be easily verified,

s∑
k=r

(−1)k−r

(
k

r

)(
s

k

)
=

(
s

r

)
s−r∑
l=0

(−1)l

(
s− r
l

)
=

{
1 if r = s
0 otherwise.

We conclude that

Pr =
n∑

k=r

(−1)r+k

(
k

r

)
Sk.

The above equation is an example of the inversion formula.
Thus we have just proved the principle of inclusion and exclusion. Observe that we did

not make any assumption regarding the events A1, . . . , An.
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Theorem 3.1 (Inclusion-Exclusion Principle) Let A1, . . . , An be events in an arbitrary
probability space, and let Pr be the probability of exactly r of them to occur as defined precisely
in (3.1). Then

Pr =
n∑

k=r

(−1)r+k

(
k

r

) ∑
1≤j1<···<jk≤n

Pr{Aj1 . . . Ajk
} (3.3)

=
n∑

k=r

(−1)r+k

(
k

r

)
Sk,

where Sk is explicitly defined in (3.2).

We shall discuss some applications of the inclusion-exclusion principle in the applications
section of this chapter. However, for convenience we provide some examples that illustrate
the method.

Example 3.1: Computing a Distribution Through Its Moments
This example is adopted from Bollobás [55]. Let X be a random variable defined on

{0, 1, . . . , n}, and let Ek[X] = E[X(X − 1) · · · (X − k+ 1)] be the kth factorial moment of X.
We shall prove that

Pr{X = r} =
1
r!

n∑
k=r

(−1)r+k Ek[X]
(k − r)! .

Indeed, let Ai = {X ≥ i} for all i = 1, . . . , n where Jk is defined above. We now evaluate
Sk =

∑
Jk

Pr{⋂j∈Jk
Aj}. Observe that

S1 =
n∑

j=1

Pr{X ≥ j} =
n∑

i=1

iPr{X = i} = E[X],

S2 =
n∑

i=1

n∑
j=i+1

Pr{X ≥ j} =
n∑

j=2

(j − 1)Pr{X ≥ j}

=
n∑

k=2

Pr{X = k}
k−1∑
j=1

j =
E2[X]

2
.

In Exercise 1 we ask the reader to prove the following easy generalization:

Sk =
∑

1≤j1<···<jk≤n

Pr{X ≥ j1, . . . ,X ≥ jk} =
1
k!

Ek[X]. (3.4)

But {X = r} is equivalent to the event that exactly r of Ai occur, since {X = r} =
A1A2 . . . ArĀr+1 . . . Ān = Pr (other events contributing to the probability Pr are empty). By
Theorem 3.1 and (3.4) we prove the announced result. 2
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As mentioned above, we did not make any assumptions regarding Ai, and Ai can live on
arbitrary spaces. In fact, such a generalization of the inclusion-exclusion principle is due to
Fréchet. Its usefulness is illustrated in the next example.

Example 3.2: Laplace’s Formula on the Sum of I.I.D. Uniform Distributions
Let X1, . . . ,Xn be independent random variables uniformly distributed on the interval

(0, 1). We prove Laplace’s formula (cf. [373]), namely,

Pr{X1 + · · ·+Xn < x} =
1
n!

n∑
k=0

(−1)k

(
n

k

)
(x− k)n

+,

where x+ = max{0, x}. Observe that the distribution of X1 + · · ·+Xn is equal to the volume
of the following set

Ω = {(x1, . . . , xn) : x1 + · · · + xn < x, 0 ≤ xi ≤ 1, i = 1, . . . , n}.

To compute this we use the Fréchet formula (i.e., Theorem 3.1 applied to Rn space). Define
the simplex

Ω̃ = {(x1, . . . , xn) : x1 + · · ·+ xn < x, xi ≥ 0, i = 1, . . . , n},

and Ai = Ω̃ ∩ {xi > 1}. Clearly, the volume V (Ω) is equal to the volume of Ω̃ minus those
parts that do not belong to the unit cube [0, 1]n. But, this can be estimated by applying the
inclusion-exclusion principle with a condition that none of Ai occurs. By setting r = 0 in
Theorem 3.1, we obtain

Pr{X1 + · · ·+Xn < x} = V (Ω) =
n∑

k=0

(−1)kSk,

where S0 = V (Ω̃) and
Sk =

∑
1≤j1<···<jk≤n

V (Aj1 , . . . , Ajk
).

In the above, V (Aj1 , . . . , Ajk
) is the volume of the part of Ω̃ that possesses properties

Aj1, . . . , Ajk
, that is, xj1 > 1, . . . , xjk

> 1. To compute V (Aj1, . . . , Ajk
) we must set k

variables in the equation x1 + · · · + xn = x to 1; hence

V (Aj1 , . . . , Ajk
) =

(x− k)n
+

n!
.

This completes the proof of Laplace’s formula. 2
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In many situations, one needs to estimate the probability that at least one event occurs.
This is also known as the inclusion-exclusion principle, and in fact it follows directly from
Theorem 3.1. Indeed,

Pr{
n⋃

i=1

Ai} =
n∑

r=1

Pr

=
n∑

r=1

n∑
k=r

(−1)r+k

(
k

r

)
Sk =

n∑
k=1

(−1)kSk

k∑
r=1

(
k

r

)
(−1)r

=
n∑

k=1

(−1)kSk[(1− 1)k − 1] =
n∑

k=1

(−1)k+1Sk.

We summarize this finding in the next corollary.

Corollary 3.2 For arbitrary events the following holds:

Pr{
n⋃

i=1

Ai} =
n∑

k=1

(−1)k+1
∑
Jk

Pr{
⋂

j∈Jk

Aj} =
n∑

k=1

(−1)k+1Sk, (3.5)

where Jk = {1 ≤ j1 < · · · < jk ≤ n}.

It is indeed quite rare to be able to compute all the probabilities involved in the inclusion-
exclusion formula. Therefore, often one must retreat to inequalities. The most simple, yet
still very powerful, is the following Boole’s inequality

Pr{
n⋃

i=1

Ai} ≤
n∑

i=1

Pr{Ai}, (3.6)

which can be easily proved by induction. However, we can do much better. The reader
is asked in Exercise 2 to use mathematical induction to prove the following Bonferroni’s
inequalities.

Lemma 3.3 (Bonferroni’s Inequalities) For every even integer m ≥ 0 we have

m∑
j=1

(−1)j+1
∑

1≤t1<···<tj≤n

Pr{At1 . . .Atj} ≤ Pr{
n⋃

i=1

Ai}

≤
m+1∑
j=1

(−1)j+1
∑

1≤t1<···<tj≤n

Pr{At1 . . . Atj} .

In Section 3.3.3 we use Bonferroni’s inequalities to derive the limiting distribution of the
longest aligned match between two sequences.
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3.2 Combinatorial Inclusion-Exclusion Principle

In this section, we count the number of objects (properties) that belong exactly to r (possibly
intersecting) subsets. Imagine the following scenario: There are N objects in a set X whose
subsets are A1, . . . , An of cardinalities N1, . . . ,Nn, respectively. We are interested in counting
the number, N(r), of objects that belong exactly to r subsets, where r = 0, 1, . . . , n. Let
Nj1,...,jk

= |Aj1 ∩· · ·∩Ajk
|, that is, Nj1,...,jk

is the cardinality of the intersection of the subsets
Aj1, . . . , Ajk

where 1 ≤ j1 < · · · < jk ≤ n. The following, also known as the combinatorial
inclusion-exclusion principle, is a direct consequence of Theorem 3.1.

Theorem 3.4 For any n and 0 ≤ r ≤ n, the number N(r) of objects that belong to exactly
r subsets A1, . . . , An of a set X of cardinality N is

N(r) =
n∑

k=r

(−1)r+k

(
k

r

) ∑
1≤j1<···<jk≤n

Nj1,...,jk
(3.7)

=
n∑

k=r

(−1)r+k

(
k

r

)
Wk,

where Wk =
∑

1≤j1<···<jk≤nNj1,...,jk
.

Proof. We derived the above directly from the probabilistic inclusion-exclusion principle. It
suffices to assume that all objects in X are uniformly distributed; hence the probability of a
subset A of X is Pr{A} = |A|/N . Then, the probability Pr of Theorem 3.1 becomes N(r)/N ,
and (3.7) follows immediately from (3.3).

We illustrate the combinatorial inclusion-exclusion principle in a few examples. More can
be found in the exercises at the end of this chapter. We start with a simple enumeration of
surjections.

Example 3.3: Number of Surjections
Let X be a set of cardinality n, and Y = {y1, . . . , ym}. We want to enumerate the number

of surjections from X on Y , that is, the functions from X to Y whose image is Y . Let us
call this number snm. Clearly, snm = n! if n = m and snm = 0 if m > n. This can be
used to verify the formula that we are going to derive. Let Ai be the subset of all functions
f : X → Y such that yi /∈ f(X). In terms of Theorem 3.4 we need to find N(0) = snm, that
is, the number of functions that do not belong to any of Ai. But |Aj1 ∩ · · · ∩Ajk

| = (m− k)n,
thus by (3.7) with r = 0 we obtain

snm =
m∑

k=0

(−1)k

(
m

k

)
(m− k)n.
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Interestingly enough, we also proved that
n∑

k=0

(−1)k

(
n

k

)
(n − k)n = n!,

m∑
k=0

(−1)k

(
m

k

)
(m− k)n = 0 for m > n.

Such combinatorial relationships are sometimes quite cumbersome to prove. Counting may
help! 2

Let us now apply Theorem 3.4 to count sequences satisfying certain properties. In those
problems the Möbius function plays a pivotal role. It is defined as follows: Consider an
integer n that has a unique factorization as a product of prime powers, that is,

n = pe1
1 p

e2
2 · · · per

r , (3.8)

where pi are distinct prime numbers and ei ≥ 1. We define the Möbius function µ(n) as
µ(1) = 1 and for n > 1

µ(n) =

{
0 if any power ei > 1
(−1)r if e1 = · · · = er = 1.

(3.9)

The Möbius function finds applications in counting problems that involve divisors of n.
Let us agree to write d|n when d is a divisor of n. Observe that

∑
d|n

µ(d) =

{
1 if n = 1
0 otherwise,

(3.10)

where the summation is over all divisors d of n. Indeed, to prove the above, let n have the
factorization (3.8). By the definition of the Möbius function we have

∑
d|n

µ(d) =
r∑

i=0

(
r

i

)
(−1)i = (1− 1)r = 0,

since one finds
(r
i

)
divisors d consisting of i distinct primes involved in the factorization of n.

This leads us to the following interesting inversion formula.

Theorem 3.5 (Möbius Inversion Formula) Let f(n) and g(n) be functions defined for
a positive integer n that satisfy

f(n) =
∑
d|n

g(d).

Then
g(n) =

∑
d|n

µ(d)f
(
n

d

)
. (3.11)
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Proof. By (3.10) we have

∑
d|n

µ(d)f
(
n

d

)
=

∑
d|n

µ

(
n

d

)
f(d)

=
∑
d|n

µ

(
n

d

)∑
d′|d

g(d′) =
∑
d′|n

g(d′)
∑

m|(n/d′)

µ(m)

= g(n)

as desired.

An inversion formula like the above is very useful in counting and proving combinatorial
identities. We shall return to it in Chapter 7 where we use analytic tools to explore them
(see Section 7.5.2). We finish this section with an application of Theorem 3.5.

Example 3.4: Primitive Sequences
Let us count the number of binary sequences of length n that are primitive, that is, they

are not expressible as a concatenation of some identical smaller sequences. For example,
010101 is not a primitive sequence while 011010 is a primitive one. Let f(n) be the number
of such primitive sequences. There are 2n all binary strings, and every one is uniquely
expressible as a concatenation of n/d identical primitive strings of length d, where d is a
divisor of n. Thus for every n

2n =
∑
d|n

f(d).

Then by the Möbius inversion formula we have

f(n) =
∑
d|n

µ

(
n

d

)
2d

for any n ≥ 0. 2

3.3 Applications

We now tackle some problems in which the inclusion-exclusion principle plays a significant
role. We start with deriving the generating function for the depth in a trie, then deal with
order statistics, and finish with deriving the asymptotic distribution for the longest aligned
word in two randomly generated strings. The last problem is by far the most challenging.

3.3.1 Depth in a Trie

In Section 1.1 we discussed tries built over n binary strings X1, . . . ,Xn. We assume that those
strings are generated by a binary memoryless source with “0” occurring with probability p
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and “1” with probability q = 1− p. We are interested here in the depth Dn(m) as defined in
Definition 1.1. By Definition 1.2, Cij is the length of the longest string that is a prefix of Xi

and Xj . Then, by Theorem 1.3

Dn(m) = max
1≤i6=m≤n

{Ci,m}+ 1. (3.12)

Certainly, the alignments Cij are dependent random variables even for the memoryless source.
Our goal is to compute the generating function of the depth Dn := Dn(1), that is,

Dn(u) =
∑∞

k=0 Pr{Dn = k}uk = E[uDn ]. Observe that

Pr{Dn > k} = Pr{
n⋃

i=2

Ai,1},

where Aij = {Cij ≥ k}. Thus one can apply the principle of inclusion-exclusion, as expressed
in Corollary 3.2, to obtain

Pr{Dn > k} = Pr{
n⋃

i=2

[Ci,1 ≥ k]}

=
n−1∑
r=1

(−1)r+1

(
n− 1
r

)
Pr{C2,1 ≥ k, . . . , Cr+1,1 ≥ k},

since the probability Pr{C2,1 ≥ k, . . . , Cr+1,1 ≥ k} does not depend on the choice of strings
(i.e., it is the same for any r-tuple of selected strings). Moreover, it can be easily explicitly
computed. Indeed, we find

Pr{C2,1 ≥ k, . . . , Cr+1,1 ≥ k} = (pr+1 + qr+1)k,

since r independent strings must agree on the first k symbols, and the probability that they
agree on a symbol at a given position is pr+1 + qr+1. Thus

n∑
k=0

Pr{Dn > k}uk =
n−1∑
r=1

(−1)r+1

(
n− 1
r

)
1

1− u(pr+1 + qr+1)
.

In Exercise 4 we ask the reader to prove that
∞∑

k=0

Pr{Dn > k}uk =
1−E[uDn ]

1− u ,

which finally leads to

Dn(u) = 1 +
n−1∑
r=1

(−1)r

(
n− 1
r

)
1− u

1− u(pr+1 + qr+1)

for |u| < 1.
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3.3.2 Order Statistics

Let Y1, . . . , Ym be a sequence of random variables. We often need to compute the maximum
or minimum values of such a sequence. In some problems (e.g., combinatorial optimiza-
tion problems discussed in Section 1.6) we are also interested in the rth greatest value of
Y1, . . . , Ym, where r = 1, . . . ,m. More precisely, let min1≤i≤m{Yi} := Y(1) ≤ Y(2) ≤ · · · ≤
Y(m) := max1≤i≤m{Yi}. We call Y(r) the rth order statistic of Y1, . . . , Ym.

The inclusion-exclusion principle can be used to find the probabilistic behavior of order
statistics. Indeed, let Ai = {Yi > x}, then {Y(m) > x} = {max{Y1, . . . , Ym} > x} =

⋃m
i=1Ai.

More interestingly, we can express the rth order statistic as follows

{Y(r) > x} =
⋃

1≤j1<···<jm−r+1≤m

m−r+1⋂
i=1

Aji , (3.13)

since for {Y(r) > x} to hold it is required that at least m−r+1 variables out of Y1, . . . , Ym are
greater than x. Indeed, for r = m we have {Y(m) > x} = {max1≤i≤m{Yi} > x} =

⋃m
i=1{Yi >

x}, and for r = m− 1 we obtain

{Y(m−1) > x} = {Y1 > x & Y2 > x or . . . or Y1 > x & Ym > x

or . . . or Ym−1 > x & Ym > x}

and the general case is given in (3.13).
The next finding presents a simple result on the maximum of a set of random variables.

Theorem 3.6 Let Y1, Y2, . . . , Ym be a sequence of random variables with distribution func-
tions F1(y), F2(y), . . . , Fm(y), respectively, and let Ri(y) = Pr{Yi ≥ y}. Define Y(m) =
max1≤i≤m{Yi}.
(i) If am is the smallest solution of

m∑
k=1

Rk(am) = 1 , (3.14)

then

E[Y(m)] ≤ am +
m∑

k=1

∞∑
j=am

Rk(j) .

(ii) If the distribution function Fi(y) of Yi satisfies for all 1 ≤ i ≤ m the following two
conditions

Fi(y) < 1 for all y <∞ , (3.15)

and
lim

y→∞ sup
i

1− Fi(cy)
1− Fi(y)

= 0 for c > 1 , (3.16)
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then Y(m)/am ≤ 1 in probability (pr.), that is, for any ε > 0

lim
m→∞Pr{Y(m) ≥ (1 + ε)am} = 0 ,

where am solves (3.14).

(iii) If Y1, . . . , Ym are independently and identically distributed with common distribution func-
tion F (·), then Y(m) ∼ am (pr.), that is, for any ε > 0

lim
m→∞Pr{(1 − ε)am ≤ Y(m) ≤ (1 + ε)am} = 1 ,

where am is a solution of (3.14) that in this case becomes mR(am) = 1.

Proof. For (i) observe that for any a

Y(m) ≤ a+
m∑

k=1

[Yk − a]+,

where t+ = max{0, t}. Since [Yk − a]+ is a nonnegative random variable, then E[Yk − a]+ =∫∞
a Rk(y)dy (assuming for simplicity that Yk is a continuous random variable), thus

E[Y(m)] ≤ a+
m∑

k=1

∫ ∞

a
Rk(x)dx .

Minimizing the right-hand side of the above with respect to a yields part (i). For part (ii)
we use (3.13) for r = m, and after a simple application of (3.6), we arrive at

Pr{Y(m) > x} = Pr{
m⋃

i=1

Yi > x} ≤
m∑

i=1

Ri(x).

Let now x = (1 + ε)am where ε > 0 and am be defined by (3.14). Observe that by (3.15)
am →∞. Then, (3.16) with c = 1 + ε implies R((1 + ε)am) = o(1)R(am); hence

Pr{Y(m) ≥ (1 + ε)am} = o(1)
m∑

i=1

R(am)→ 0.

Part (iii) can be proved using the additional assumption about the independence of Y1, . . . , Ym.
The reader is asked in Exercise 9 to provide details of the proof.

Finally, we present a simple asymptotic result concerning the behavior of Y(r) for the so-
called exchangeable random variables. A sequence {Yi}mi=1 is exchangeable if for any k-tuple
{j1, . . . , jk} ⊂ {1, . . . ,m} the following holds:

Pr{Yj1 < yj1, . . . , Yjk
< yjk

} = Pr{Y1 < y1, . . . , Yk < yk},

that is, the joint distribution depends only on the number of variables (cf. [161]).
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Theorem 3.7 Let {Yi}mi=1 be exchangeable random variables with distribution F (·) having
property (3.15), and let Rr(x) = Pr{Y1 > x, . . . , Yr > x} satisfy for all c > 1

lim
x→∞

Rm−r+1(cx)
Rm−r+1(x)

= 0 (3.17)

uniformly over all r = 1, . . . ,m. Define a(r)
m as the smallest solution of(

m

r − 1

)
Rm−r+1(a(r)

m ) = 1.

Then Y(r) ≤ a
(r)
m (pr.) as m→∞.

Proof. We use (3.13) with x = (1 + ε)a(r)
m . By (3.6) and the assumption of exchangebility,

we obtain

Pr{Y(r) > (1 + ε)a(r)
m } ≤

(
m

m− r + 1

)
Rm−r+1((1 + ε)a(r)

m )

=

(
m

r − 1

)
Rm−r+1(a(r)

m )o(1)→ 0,

where the last equation follows from (3.17).

The reader is asked in Exercises 9–11 to extend the above results and apply them to some
combinatorial optimization problems.

3.3.3 Longest Aligned Word

We report here some results of Karlin and Ost [229]. Imagine two sequences of length n, say
X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn). We assume that both are generated by memoryless
sources over a binary alphabet, say Bernoulli(p1, p2) and Bernoulli(r1, r2), respectively. We
are interested in the length Wn of the longest aligned match word, that is, a word as long
as possible that is common to both strings and starts at the same position in both strings.
More precisely:

Wn := max{k : ∃1≤t≤n Xt = Yt, . . . ,Xt+k−1 = Yt+k−1 and Xt+k 6= Yt+k}.

To see how this problem is related to the topic of this section, let us observe that Wn =
maxk{A(n, k)}, where

A(n, k) = {There exists an aligned match word of length k in both sequences}.
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Figure 3.1: The distribution function of Wn − log2 20 with two continuous extremes for
binary symmetric Bernoulli models.

Then Pr{Wn ≥ k} = Pr{A(n, k)} and

A(n, k) =
n⋃

t=1

At(k),

where At(k) is the event signifying a k-word match starting at position 1 ≤ t ≤ n. Thus, the
principle of inclusion-exclusion (cf. Corollary 3.2) can be used to evaluate Pr{A(n, k)}, and
hence Pr{Wn ≥ k}.

We start with the formulation of the result of Karlin and Ost [229]. Let P = p1r1 + p2r2
be the probability of a match at a given position. Thus, the probability of a match of length
at least k starting at any position is equal to P k. For convenience we also define Q = P−1.
We prove below that the maximal aligned match Wn is concentrated around

k =
log n

log(P−1)
+ x+ 1 = logQ n+ x+ 1,

where x is a real number. We denote by x̃ such x (that may depend on n) that k =
logQ n+ x̃+ 1 is an integer.

Theorem 3.8 (Karlin and Ost, 1987) Under the above assumptions

lim
n→∞Pr{Wn ≤ logQ n+ x̃} = exp

(
−(1− P )P x̃+1

)
. (3.18)



62 Inclusion-Exclusion Principle

If x is a fixed real number, then the limiting distribution of Wn does not exist, but one can
claim

lim inf
n→∞ Pr{Wn ≤ logQ n+ x} = exp (−(1− P )P x) (3.19)

lim sup
n→∞

Pr{Wn ≤ logQ n+ x} = exp
(
−(1− P )P x+1

)
(3.20)

where Q−1 = P = p1r1 + p2r2 is the probability of a match at a given position.

Before we proceed with the proof, some explanations are in order. The limiting distribu-
tion of Wn does not exist for general real x, but an asymptotic distribution may be found
that resembles the extreme distribution exp(−e−x) (cf. Galambos [161]). Indeed, we shall
prove below that for large n

lim
n→∞Pr{Wn ≤ logQ n+ x} ∼ exp

(
−(1− P )P x+1−〈logQ n+x〉) ,

where 〈log n〉 = log n − blog nc. This fractional part 〈logQ n〉 behaves very erratically. We
shall study its property in Section 8.2.3. The asymptotic distribution is presented in Fig-
ure 3.1, where the staircase-like function exp

(
−(1− P )P x+1−〈logQ n+x〉

)
is plotted together

with the lower extreme distribution exp (−(1− P )P x) and the upper extreme distribution
exp

(
−(1− P )P x+1

)
. We should point out, however, that such a behavior is not a surprise,

since Wn as a discrete order statistic is expected not to have a limiting distribution. Already
in 1970 Anderson [12] observed that the limiting distribution of the maximum of discrete
i.i.d. random variables may not exist.

Now we are ready to prove the Karlin and Ost result. Throughout this derivation we
assume that

k =
log n

log(P−1)
+ x̃+ 1 = logQ n+ x̃+ 1, (3.21)

where x̃ is such that k is an integer. As observed above, we need to estimate Pr{A(n, k)},
and after applying Corollary 3.2 we can write

Pr{A(n, k)} =
n∑

m=1

(−1)m+1
∑

1≤t1<...<tm≤n

Pr{At1 . . . Atm} =
n∑

m=1

(−1)m+1Sm(n),

where Sm(n) =
∑

1≤t1<...<tm≤n Pr{At1 . . . Atm}. We write below At for At(k).
The plan for establishing the limit of Pr{A(n, k)} is as follows: We shall prove that for

k as in (3.21) every term Sm(n) converges to a function, say am(x̃) as n → ∞; that is, for
m = 1, 2, . . .

lim
n→∞Sm(n) = lim

n→∞
∑

1≤t1<...<tm≤n

Pr{At1 . . . Atm} = am(x̃). (3.22)
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By Bonferroni’s inequalities for every even m

lim inf
n→∞ Pr{A(n, k)} ≥

m∑
i=1

(−1)i+1ai(x̃),

lim sup
n→∞

Pr{A(n, k)} ≤
m+1∑
i=1

(−1)i+1ai(x̃).

Next, we shall show that the alternating series
∞∑
i=1

(−1)i+1ai(x̃) = a(x̃)

converges uniformly for bounded x, which would imply that

lim
n→∞Pr{Wn ≤ logQ n+ x̃} = 1− a(x̃).

We now compute limn→∞ Sm(n) for every m. Let us start with m = 1. Observe that
Pr{At} = P k; thus

lim
n→∞S1(n) = lim

n→∞nP logQ n+x̃+1 = P x̃+1 := φ(x̃).

This was quite easy! The next step requires a little more work. Let

S2(n) =
∑

t1<t2

Pr{At1At2} =
1
2

∑
|t2−t1|≤k

Pr{At1At2}+
1
2

∑
|t2−t1|>k

Pr{At1At2}

:= T1(n) + T2(n).

By independence T2(n) can be easily computed, and we arrive at

lim
n→∞T2(n) =

1
2

lim
n→∞ (S1(n))2 =

1
2
φ2(x̃).

To assess T1(n), we must take into account overlapping parts. Let the two overlapping words
of length k be such that the first word starts at position t and the overlapping begins at
position t + j for 1 ≤ j ≤ k. Let C2 denote the extended match of length k + j. Then
Pr{C2 > k + j} = P k+j, and hence

T1(n) =
n∑

t=1

k∑
j=1

P k+j = nP k
(

P

1− P

)
(1− P k).

In summary, for k as in (3.21)

lim
n→∞S2(n) =

1
2

(φ(x̃))2 +
(

P

1− P

)
φ(x̃)



64 Inclusion-Exclusion Principle

since (1− P k) = (1− P x̃+1/n)→ 1 as n→∞.
Let us now consider a general m and compute Sm(n). We partition m = n1 +2n2 +3n3 +

· · ·+mnm so that S(n1,n2,...,nm)
m (n) denotes the cumulation of probabilities Pr{At1 , . . . , Atm} of

joint events which consist of n1 matches of nonoverlapping k-words, n2 pairs of overlapping
k-word matches which are mutually independent, n3 groups of overlapping three k-word
matching which are disjoint between the different triples, etc., and nm (necessarily at most
1) successive overlapping k-word matches. Then, Sm(n) =

∑
P(n1,...,nm) S

(n1,n2,...,nm)
m (n) where

P(n1, . . . , nm) is the set of all integer partitions such that m = n1 + 2n2 + 3n3 + · · ·+mnm.
It is not too difficult to observe that

S(n1,n2,...,nm)
m (n) =

1
n1!n2! · · ·nm!

m∏
i=1

(
nP k

(
P

1− P

)m−1

(1− P k)m−1

)ni

.

Indeed, consider ni groups of overlapping i word matches of length k. Since any permutation
of these words leads to the same probability, we see the term 1/ni! in the above. Let a
group of i k-word matches start at position 1 ≤ t ≤ n and the overlaps begin at positions
t+ j1, . . . , t + ji−1, respectively. Such an extended Ci match has the following probability:

Pr{Ci > k + j1 + · · ·+ ji−1} =
k∑

j1=1

· · ·
k∑

ji−1=1

P k+j1+···+ji−1 = P k
(

P

1− P

)i−1

(1− P k)i−1.

Summing over all 1 ≤ t ≤ n, and noting that the ni groups are independent, we obtain the
desired formula. Thus, for k as in (3.21) we arrive at

lim
n→∞S(n1,n2,...,nm)

m (n) =
1

n1!n2! · · ·nm!

m∏
i=1

sni
i ,

where si = φ(x̃)(P/(1 − P ))i−1 = P x̃+1(P/(1− P ))i−1 and finally,

am(x̃) = lim
n→∞Sm(n) =

∑
n1+2n2+···+mnm=m

1
n1!n2! · · · nm!

m∏
i=1

sni
i . (3.23)

To complete the proof, we need to sum up the alternating series
∑∞

m=1(−1)m+1am(x̃).
For this we need one result from generating functions, namely,

∞∑
m=0

∑
n1+2n2+···mnm=m

xm

n1!n2! · · ·nm!

m∏
i=1

cni
i = exp

( ∞∑
i=1

cix
i

)
, (3.24)

provided the series
∑∞

i=1 cix
i converges. The above formula is a simple application of the

convolution formula of exponential generating functions, and will be discussed in Chapter 7.
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In fact, we prove it in Example 7.5 of Chapter 7. (This is the point where analytic and
probabilistic analyses meet and need each other to solve the problem at hand.) Knowing
this, we can proceed as follows:

∞∑
m=1

(−1)m+1am(x̃) =
∞∑

m=1

(−1)m+1
∑

n1+2n2+···+mnm=m

1
n1!n2! · · ·nm!

(
P

1− P

)∑m

i=1
ni(i−1)

× (φ(x̃))
∑m

i=1
ni =

∞∑
m=1

(−1)m+1
(

P

1− P

)m

×
∑

n1+2n2+···+mnm=m

1
n1!n2! · · · nm!

(
1− P
P

φ(x̃)
)∑m

i=1
ni

= 1− exp
(
−(1− P )P x̃+1

)
,

where the last equality comes from identity (3.24) with x = −P/(1 − P ) and ci = (1 −
P )φ(x̃)/P . The above identities are true only for P/(1 − P ) < 1, that is, for P < 1

2 . But
with the help of analytic continuation (see Chapter 8) we can extend their validity to the
whole interval 0 < P < 1. This proves (3.18) of Theorem 3.8. To establish the second part of
Theorem 3.8, we observe that for any real x we can write Pr{Wn ≥ logQ +x+ 1} = Pr{Wn ≥
blogQ +x+ 1c} and blogQ +x+ 1c = logQ +x+ 1 + 〈logQ +x〉.

3.4 Extensions and Exercises

3.1 Prove (3.4), that is,

Sk =
∑

1≤j1<···<jk≤n

Pr{X ≥ j1, . . . ,X ≥ jk} =
1
k!

Ek[X].

3.2 Prove Lemma 3.3 using mathematical induction.

3.3 (Bell’s Inequality) Prove the following useful inequality of Bell:

Pr{A ∩B} ≤ Pr{A ∩C}+ Pr{B ∩ C̄},

where A,B,C are events and C̄ is the complementary event to C. The above inequality
is used in quantum physics to establish the Einstein-Podolsky-Rosen paradox.

3.4 Prove that for any random variable X over nonnegative integers
n∑

k=0

Pr{X > k}uk =
1−E[uX ]

1− u

for |u| < 1.
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3.5 Prove that if X is a nonnegative random variable with finite moments and for all m

lim
k→∞

Ek[X]km

k!
= 0,

then

Pr{X = r} =
1
r!

∞∑
k=r

(−1)r+k Ek[X]
(k − r)! ,

where, as before, Ek[X] is the kth factorial moment of X.

3.6 Enumerate the number of binary circular sequences, where two sequences obtained by a
rotation are considered the same.

3.7 Let n = pe1
1 p

e2
2 · · · per

r be a positive integer, and denote by φ(n) the number of integers
1 ≤ k ≤ n such that gcd(n, k) = 1. (The function φ is known as the Euler function.)
Prove that

φ(n) = n
r∑

k=0

(−1)k
∑

1≤j1<...<jk≤r

1
pj1 · · · pjk

= n
r∏

i=1

(
1− 1

pi

)
,

and ∑
d|n

φ(d) = n.

Conclude that
φ(n) = n

∑
d|n

µ(d)
d

for all positive integers n.

3.8 How many positive integers less than 1000 have no factor between 1 and 10?

3.9 Prove part (iii) of Theorem 3.6. Then establish the following refinement: Let Y1, . . . , Ym

be i.i.d. and let am be the smallest solution of m(1− Pr{Y1 > am}) = 1. Then

lim
m→∞Pr{max{Y1, . . . , Ym} = bamc or bamc+ 1} = 1.

Hint. Verify that

lim
m→∞ (Pr{max{Y1, . . . , Ym} < x} − exp(n(1− Pr{Y1 > x}))) = 0

for real x.
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3.10 (Aldous, Hofri, and Szpankowski, 1992) Prove the following result: If {Xk}∞k=1 are i.i.d.
Poisson distributed random variables with mean ρ, then for large enough integers a and
n

Pr{ max
1≤k≤n

Xk < a} − exp(−ne−ρρa/a!)→ 0 as n, a→∞

and
Pr{ max

1≤k≤n
Xk = banc+ 1 or banc} = 1−O(1/an)→ 1 as n→∞.

For large n the sequence {an} satisfies

an ∼
log n− ρ

log(log n− ρ)− log ρ
∼ log n

log log n
,

where an is defined as the smallest solution of the equation

n · γ(an, ρ)
Γ(an)

= 1.

In the above γ(x, ρ) ≡
∫ ρ
0 t

x−1e−tdt is the incomplete gamma function, and Γ(x) =
γ(x,∞) is the gamma function discussed in Section 2.4.

3.114! Let W = {wi,j}ni,j=1 be a matrix of weights that are i.i.d. distributed according to
a common strictly continuous and increasing distribution F (·). Consider the following
bottleneck assignment problem:

Zmin = min
σ∈Bn

{max
1≤i≤n

wi,σ(i)},

and capacity assignment problem

Vmax = max
σ∈Bn

{ min
1≤i≤n

wi,σ(i)},

where Bn is a set all permutations of {1, 2, ..., n}. Prove that

lim
n→∞

Z(d)

F−1(log n/n)
= 1 (pr.)

lim
n→∞

V(d)

F−1(1− log n/n)
= 1 (pr.),

where F−1(·) denotes the inverse function of the distribution F (·).

3.124! (Karlin and Ost [229]) Extend Theorem 3.8 to Markov sources. More generally,
compute the asymptotic distribution of the longest aligned word match found in r or
more sequences among s sequences generated by Markov sources.
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3.134! (Karlin and Ost [230]) Compute the limiting distribution of the longest common word
(not necessary aligned) common to r or more of s sequences generated by memoryless
and Markov sources.



Chapter 4

The First and Second Moment Methods

In the analysis of algorithms, we are usually interested in time complexities, storage require-
ments, or the value of a particular parameter characterizing the algorithm. These quantities
are random (nondeterministic) since either the input is assumed to vary or the algorithm
itself may make random decisions (e.g., in randomized algorithms). We often are satisfied
with average values; however, for many applications this might be too simplistic. In many
instances these quantities of interest, though random, behave in a very deterministic manner
for large inputs. The first and second moment methods are the most popular probabilistic
tools used to derive such relationships. We discuss them in this chapter together with some
interesting applications.

IMAGINE that Xn is a random variable representing a quantity of interest (e.g., the number
of pattern occurrences in a random text of length n). Usually, it is not difficult to compute

the average E[Xn] of Xn but it is equally easy to come up with examples that show how poor
such a measure of variability of Xn could be. But often we can discover refined information
about Xn (e.g., that with high probability Xn ∼ E[Xn] as n→∞). In this case, the random
variable Xn converges (in probability or almost surely) to a deterministic value an = E[Xn]
as n becomes larger (see Example 2).

Consider the following example: Let Mn = max{C1, . . . , Cn} where Ci are dependent
random variables (e.g., Mn may represent the longest path in a digital tree). Again, Mn

varies in a random fashion but for large n we shall find out that Mn ∼ an where an is a
(deterministic) sequence (see Example 1). More precisely, for every ε > 0 the probability of
(1− ε)an ≤Mn ≤ (1 + ε)an becomes closer and closer to 1; thus according to the definition
from Section 2.2.2 we say that Mn

pr→an or Mn → an (pr.).
These and other problems can be investigated by two simple probabilistic techniques

called the first and second moment methods. They resemble Boole’s and Bonferroni’s

69
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inequalities, but instead of bounding the probability of a union of events by marginal prob-
abilities they use the first and the second moments. We also briefly discuss the fourth
moment method.

Here is the plan for the chapter: We first discuss some theoretical underpinnings of the
methods which we illustrate through a few examples. Then we present several applications
such as a Markov approximation of a stationary distribution, evaluate the number of primes
dividing a given number, and finally estimate the height in tries, PATRICIA tries, digital
search trees, and suffix trees.

4.1 The Methods

Let us start by recalling Markov’s inequality (2.6) from Chapter 2: For a nonnegative random
variable X, we can bound the probability that X exceeds t > 0 as follows: Pr{X ≥ t} ≤
E[X]/t. If in addition, X is an integer-valued random variable, after setting t = 1 we obtain

Pr{X > 0} ≤ E[X], (4.1)

which is the first moment method. We can derive it in another manner (without using the
Markov inequality). Observe that

Pr{X > 0} =
∞∑

k=1

Pr{X = k} ≤
∞∑

k=0

kPr{X = k} = E[X].

The above implies Boole’s inequality (3.6). Indeed, let Ai (i = 1, . . . , n) be events, and set
X = I(A1) + · · ·+ I(An) where, as before, I(A) = 1 if A occurs, and zero otherwise. Boole’s
inequality (3.6) follows.

In a typical application of (4.1), we expect to show that E[X]→ 0, and hence that X = 0
occurs with high probability (whp). Throughout, we shall often write whp instead of the
more formal “convergence in probability.” We illustrate the first moment method in a simple
example.

Example 4.1: Maximum of Dependent Random Variables
Let Mn = max{X1, . . . ,Xn} where Xi are dependent but identically distributed random

variables with the distribution function F (·). We assume that the distribution function is
such that for all c > 1

1− F (cy) = δ(y)(1 − F (y)),

where δ(y) → 0 as y → ∞. We shall prove that whpMn/an ≤ 1 where an is the smallest
solution of the following equation:

n(1− F (an)) = 1,

provided an →∞ as n → ∞. Indeed, observe that {Mn > x} =
⋃n

i=1Ai where Ai = {Xi >
x}. Thus by the first moment method,

Pr{Mn > x} ≤ nE[I(A1)] = n(1− F (x)).
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Let us set now x = (1 + ε)an for any ε > 0, where an is defined as above. Then

Pr{Mn > (1 + ε)an} ≤ n(1− F ((1 + ε)an)) = δ(an)n(1− F (an)) = δ(an)→ 0,

since an →∞. Thus Mn ≤ (1 + ε)an whp, as desired (see also Section 3.3.2). 2

The first moment method uses only the knowledge of the average value of X to bound the
probability. A better estimate of the probability can be obtained if one knows the variance
of X. Indeed, Chebyshev already noticed that (cf. (2.7))

Pr{|X −E[X]| ≥ t} ≤ Var[X]
t2

.

Setting in the Chebyshev inequality t = |E[X]| we arrive at

Pr{X = 0} ≤ Var[X]
E[X]2

. (4.2)

Indeed, we have

Pr{X = 0} ≤ Pr{X (X − 2E[X]) ≥ 0} = Pr{|X −E[X]| ≥ |E[X]|} ≤ Var[X]
E[X]2

.

Inequality (4.2) is known as (Chebyshev’s version of) the second moment method.
We now derive a refinement of (4.2). Shepp [385] proposed to apply Schwarz’s inequality

(2.8) to obtain the following:

E[X]2 = E[I(X 6= 0)X]2 ≤ E[I(X 6= 0)]E[X2] = Pr{X 6= 0}E[X2],

which leads to a refinement of the second moment inequality, namely,

Pr{X = 0} ≤ Var[X]
E[X2]

. (4.3)

Actually, another formulation of Shepp’s inequality due to Chung and Erdős is quite
useful. Consider Xn = I(A1) + · · ·+ I(An) for a sequence of events A1, . . . , An, and observe
that {Xn > 0} =

⋃n
i=1Ai. Rewriting (4.3) as

Pr{Xn > 0} ≥ E[Xn]2

E[X2
n]
,

we obtain, after some simple algebra,

Pr{
n⋃

i=1

Ai} ≥
(
∑n

i=1 Pr{Ai})2∑n
i=1 Pr{Ai}+

∑
i6=j Pr{Ai ∩Aj}

. (4.4)
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In a typical application, if we are able to prove that Var[Xn]/E[X2
n]→ 0, then Xn

pr→E[Xn]
as n→∞, that is, for any ε > 0

lim
n→∞Pr{|Xn −E[Xn]| ≥ εE[Xn]} = 0.

We present below two simple examples delaying a discussion of a more sophisticated problem
till the applications section.

Example 4.2: Pattern Occurrences in a Random Text
Let H be a given string (pattern) of length m, and T be a random string of length n.

Both strings are over a finite alphabet, and we assume that m = o(n). Our goal is to find a
typical (in a probabilistic sense) behavior of the number of the pattern occurrences in T . We
denote this by On. Is it true that On ∼ E[On] whp? We compute the mean E[On] and the
variance Var[On]. Let Ii be a random variable equal to 1 if the pattern H occurs at position
i, and 0 otherwise. Clearly On = I1 + I2 + · · ·+ In−m+1, and hence

E[On] =
n−m+1∑

i=1

E[Ii] = (n−m+ 1)P (H),

where P (H) = Pr{T i+m−1
i = H} for some 1 ≤ i ≤ n −m + 1, that is, the probability that

the pattern H occurs at position i of the text T . The variance is also easy to compute since

Var[On] =
n−m+1∑

i=1

E[I2
i ] +

∑
1≤i<j≤n−m+1

Cov[IiIj ] =
n−m+1∑

i=1

E[Ii] +
∑

1≤i<j≤n−m+1

Cov[IiIj],

where
Cov[IiIj ] = E[IiIj ]−E[Ii]E[Ij ].

Let us compute the covariance Cov[IiIj ]. Observe that Cov[IiIj ] = 0 for |j − i| > m, and
otherwise Cov[IiIj] ≤ E[IiIj] ≤ E[Ii] = P (H). Thus

Var[On] ≤ (n−m+ 1)P (H) +
∑

|j−i|≤m

E[Ii] ≤ (n−m+ 1)P (H) + 2m2P (H).

In view of the above and Chebyshev’s inequality, we obtain for any ε > 0

Pr{|On/E[On]− 1| > ε} ≤ (n −m + 1 + 2m2)P (H)
ε2(n−m+ 1)2P 2(H)

≤ 1
ε2(n−m+ 1)P (H)

+
2m2

ε2(n−m+ 1)2P (H)
→ 0,

provided m = o(n), which is a natural assumption to make since H is given. This proves that
On/E[On]→ 1 whp. A fuller discussion of this problem can be found in Section 7.6.2. 2
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In the next example, we consider a deterministic problem and use randomized technique
to solve it. It is adopted from Alon and Spencer [9].

Example 4.3: Erdős Distinct Sum Problem
Consider a set of positive integers {x1, . . . , xk} ⊂ {1, . . . , n}. Let f(n) denote the maximal

k such that there exists a set {x1, . . . , xk} with distinct sums. The simplest set with distinct
sums is {2i : i ≤ log2 n}, which also shows that f(n) ≥ 1 + blog2 nc. Erdős asked to prove
that

f(n) ≤ log2 n+ C

for some constant C. We shall show that

f(n) ≤ log2 n+
1
2

log2 log2 n+O(1).

Indeed, let {x1, . . . , xk} be a distinct sum set, and let Bi be a random variable taking values
0 and 1 with equal probability 1

2 . Consider

X = B1x1 + · · ·+Bkxk.

Certainly,

E[X] =
x1 + · · ·+ xk

2
,

Var[X] =
x2

1 + · · ·+ x2
k

4
≤ n2k

4
.

Using Chebyshev’s inequality with t = λ
√

Var[X] we obtain, after reversing the inequality,

1− 1
λ2
≤ Pr{|X −E[X]| ≤ λn

√
k/2}

for some λ > 1. On the other hand, we should observe that, due to the assumption that
{x1, . . . , xk} is a distinct sum set, the probability that X has a particular value is equal either
to 0 or 2−k. Since there are λn

√
k values within |X −E[X]| ≤ λn

√
k/2, we obtain

Pr{|X −E[X]| ≤ λn
√
k/2} ≤ 2−kλn

√
k.

Comparing the above two inequalities leads to

n ≥ 2k

√
k

1− λ−2

λ
.

Since 2f(n) ≤ nk, we find

f(n) ≤ log2 n+
1
2

log2 log2 n+O(1),
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which completes the proof of the claim. 2

Finally, we discuss the fourth moment method. Here is a simple derivation. Using Hölder’s
inequality (2.11) we have

E[Y 2] = E[|Y |a|Y |2−a] ≤ E[|Y |ap]1/pE[|Y |(2−a)q ]1/q

where 0 < a < 2 and 1/p + 1/q = 1. Set now a = 2/3, p = 3/2 (so that 1/p = 2/3 and
1/q = 1/3) to conclude that

E[Y 2] ≤ E[|Y |]2/3E[|Y 4]1/3,

which yields the fourth moment inequality (cf. [43])

E[|Y |] ≥ E[Y 2]3/2

E[Y 4]1/2
. (4.5)

We illustrate the fourth moment method in a simple example, while the reader is encour-
aged to read Berger [43] for considerably deeper analysis.

Example 4.4: Discrepancy of a Sum of Random Variables
As in [69], consider Y = X1 + · · · + Xn where Xi ∈ {−1, 0, 1} are i.i.d. and Pr{Xi =

−1} = Pr{Xi = +1} = p/2 while Pr{Xi = 0} = 1 − p. Actually, we allow p to vary with n
provided np ≥ 1. We wish to find a lower bound for E[|Y |]. Observe that E[Y 2] = np and

E[Y 4] =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[XiXjXkXl].

When all indices i, j, k, l are different, then clearly E[XiXjXkXl] = 0. In fact, E[XiXjXkXl]
is not vanishing only if all four indices are the same or two of them are equal to one value
and the other two equal to another value. But there are only O(n2) such indices, thus
E[Y 4] = Θ(n2p2), and by the fourth moment inequality we prove that

E[|Y |] = Ω(
√
np).

In fact, one can prove that E[|Y |] = Θ(
√
np). 2

We summarize this section by presenting all the results derived so far.

Theorem 4.1 Let X be a random variable.

[First Moment Method]: If X is nonnegative integer-valued, then

Pr{X > 0} ≤ E[X].



75 The First and Second Moment Methods

[Chebyshev’s Second Moment Method]: For arbitrary X we have

Pr{X = 0} ≤ Var[X]
E[X]2

;

[Shepp’s Second Moment Method]:

Pr{X = 0} ≤ Var[X]
E[X2]

.

[Chung and Erdős’ Second Moment Method]: For any set of events A1, . . . , An

Pr{
n⋃

i=1

Ai} ≥
(
∑n

i=1 Pr{Ai})2∑n
i=1 Pr{Ai}+

∑
i6=j Pr{Ai ∩Aj}

.

[Fourth Moment Method]: If X possess the first four moments, then

E[|X|] ≥ E[X2]3/2

E[X4]1/2
.

4.2 Applications

It is time to apply what we have learned so far to some interesting problems. We start this
section with a kth order Markov approximation of a stationary distribution (see Section 4.2.1).
Then we shall present the Hardy and Ramanujan result [190] concerning the number of primes
dividing a large integer n (see Section 4.2.2), and finally we consider the height in digital trees
and suffix trees (see Sections 4.2.3–4.2.6). In Chapter 6 we shall discuss other applications
of information theoretical flavor in which the methods of this chapter are used.

4.2.1 Markov Approximation of a Stationary Distribution

In information theory and other applications, one often approximates a stationary process by
a kth order Markov chain. Such an approximation can be easily derived through the Markov
inequality; hence the first moment method. We discuss this next. The following presentation
is adopted from Cover and Thomas [75].

Let {Xk}∞k=−∞ be a two-sided stationary process with the underlying distribution P (xn
1 ) =

Pr{Xn
1 = xn

1}. We consider the random variable P (Xn−1
0 ) and estimate its probabilistic

behavior through a kth order Markov approximation. The latter is defined as follows:

P k(Xn−1
0 ) := P (Xk−1

0 )
n−1∏
i=k

P (Xi|Xi−1
i−k)
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for fixed k.
Let us evaluate the ratio P k(Xn−1

0 )/P (Xn−1
0 ) by the first moment method. First of all,

we have

E

[
P k(Xn−1

0 )
P (Xn−1

0 )

]
=

∑
xn−1
0

P (xn−1
0 )

P k(xn−1
0 )

P (xn−1
0 )

=
∑
xn−1
0

P k(xn−1
0 ) ≤ 1.

By Markov’s inequality, for any an →∞, we have

Pr

{
1
n

log
P k(Xn−1

0 )
P (Xn−1

0 )
≥ 1
n

log an

}
= Pr

{
P k(Xn−1

0 )
P (Xn−1

0 )
≥ an

}
≤ 1
an
.

Taking an = n2, we conclude by the Borel-Cantelli lemma that the event

1
n

log
P k(Xn−1

0 )
P (Xn−1

0 )
≥ 1
n

log an

occurs infinitely often with probability zero. Hence,

lim sup
n→∞

1
n

log
P k(Xn−1

0 )
P (Xn−1

0 )
≤ 0 (a.s.).

Actually, we can also find an upper bound on P (Xn−1
0 ). Let us consider P (Xn−1

0 |X−1
−∞)

as an approximation of P (Xn−1
0 ). We shall again use Markov’s inequality, so we must first

evaluate

E

[
P (Xn−1

0 )
P (Xn−1

0 |X−1
−∞)

]
= EX−1

−∞

[
EXn−1

0

[
P (Xn−1

0 )
P (Xn−1

0 |X−1
−∞)

∣∣∣X−1
−∞
]]

= EX−1
−∞

∑
xn−1
0

P (xn−1
0 )

P (xn−1
0 |X−1

−∞)
P (xn−1

0 |X−1
−∞)

 ≤ 1.

By the same argument as above we conclude that

lim sup
n→∞

1
n

log
P (Xn−1

0 )
P (Xn−1

0 |X−1
−∞)

≤ 0 (a.s.).

In summary, we formulate the following lemma (cf. [8, 75]).
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Lemma 4.2 (Algoet and Cover, 1988 Sandwich Lemma) Let P be a stationary mea-
sure and P k its kth order Markov approximation, as defined above. Then

lim sup
n→∞

1
n

log
P k(Xn−1

0 )
P (Xn−1

0 )
≤ 0 (a.s.), (4.6)

lim sup
n→∞

1
n

log
P (Xn−1

0 )
P (Xn−1

0 |X−1
−∞)

≤ 0 (a.s.) (4.7)

for large n.

In fact, the proof of the above lemma allows us to conclude the following: Given ε > 0,
there exists Nε such that for n > Nε with probability at least 1− ε we have

1
n2
P k(Xn−1

0 ) ≤ P (Xn−1
0 ) ≤ n2P (Xn−1

0 |X−1
−∞).

The sandwich lemma was proved by Algoet and Cover [8], who used it to establish the exis-
tence of the entropy rate for general stationary processes. We shall return to it in Chapter 6.

4.2.2 Excursion into Number Theory

We present below Turán’s proof of the Hardy and Ramanujan result concerning the number,
ν(n), of primes dividing a number chosen randomly between 1 and n. We prove that ν(n)
is close ln lnn as n → ∞. We use the second moment method, thus we again solve a
deterministic problem with a probabilistic tool. We shall follow the exposition of Alon and
Spencer [9].

Throughout this section let p denote a prime number. We need two well-known results
from number theory (cf. [190, 423]):

∑
p≤x

1
p

= ln lnx+ C + o(1), (4.8)

π(x) =
x

lnx
(1 + o(1)), (4.9)

where C is a constant C = 0.26149 . . ., and π(x) denotes the number of primes smaller than
x.

We now choose x randomly from the set {1, . . . , n}. For prime p we set Ip = 1 if p|x, and
zero otherwise. We ask for the number of prime factors ν(x) of x. Observe that

X :=
∑
p≤n

Ip = ν(x).
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Since x can be chosen on n different ways, and in bn/pc cases it will be divisible by p, we
easily find that

E[Ip] =
bn/pc
n

=
1
p

+O

(
1
n

)
,

and by (4.8) we also have

E[X] =
∑
p≤n

(
1
p

+O

(
1
n

))
= ln lnn+O(1).

Now we bound the variance

Var[X] =
∑
p≤n

Var[Ip] +
∑

p 6=q≤n

Cov[IpIq] ≤ E[X] +
∑

p 6=q≤n

Cov[IpIq],

since Var[Ip] ≤ E[Ip]. In the above p and q are two distinct primes. Observe that IpIq = 1
if and only if p|x and q|x, which further implies that pq|x. In view of this we have

Cov[IpIq] = E[IpIq]−E[Ip]E[Iq] =
bn/(pq)c

n
− bn/pc

n

bn/qc
n

≤ 1
pq
−
(

1
p
− 1
n

)(
1
q
− 1
n

)
≤ 1

n

(
1
p

+
1
q

)
.

Then by (4.9)

∑
p 6=q

Cov[IpIq] ≤ 2π(n)
n

∑
p≤n

1
p
≤ 2n(ln lnn+O(1))

n lnn
= O

(
ln lnn
lnn

)
→ 0.

Finally, by Chebyshev’s inequality with t = ω(n)
√

ln lnn, where ω(n) → ∞ arbitrarily
slowly, we arrive at the main result

Pr{|ν(x)− ln lnn| > ω(n)
√

ln lnn} ≤ c

ω(n)
,

where c is a constant. This is summarized in the theorem below.

Theorem 4.3 (Hardy and Ramanujan, 1920; Turán, 1934) For ω(n) → ∞ arbitrar-
ily slowly, the number of x ∈ {1, . . . , n} such that

|ν(x)− ln lnn| > ω(n)
√

ln lnn

is O(n/ω(n)) = o(n).
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4.2.3 Height in Tries

In the following subsections, we shall analyze various digital trees, namely tries, PATRICIA
tries, and digital search trees (DST), and their generalizations such as b-tries. As we discussed
in Section 1.1, these digital trees are built over a set X = {X1, . . . ,Xn} of n independent
strings of (possibly) infinite length. Each string Xi is generated by either a memoryless
source or a Markovian source. We concentrate on estimating the typical length of the height
in such digital trees. We recall that the height is the longest depth in a tree.

In this subsection, we consider a trie built over n strings generated independently by
memoryless and Markov sources. The reader may recall that in Theorem 1.3 we express the
height Hn in terms of the alignments Cij as

Hn = max
1≤i<j≤n

{Cij}+ 1, (4.10)

where Cij is defined as the length of the longest common prefix of strings Xi and Xj .
Throughout this section, we again apply the first moment method to bound the height from
above, and the Chung-Erdős second moment method to establish a lower bound.

The results of the following subsections are mostly adopted from Devroye [94, 99, 101],
Pittel [337], and Szpankowski [410, 411, 412]. However, the reader is advised to study also a
series of papers by Arratia and Waterman [21, 22, 23, 25] on similar topics.

Memoryless Source.

We now assume that every string from X is generated by a memoryless source. To simplify
the analysis, we only consider a binary alphabet A = {0, 1}; hence the source outputs an
independent sequence of 0’s and 1’s with probabilities p and q = 1− p, respectively. Observe
that P2 = p2 + q2 is the probability that two independently generated strings agree on a
given position (i.e., either both symbols are 0 or both are 1). We also write Q2 = 1/P2 to
simplify our exposition. Clearly, the alignment Cij has a geometric distribution, that is, for
all i, j ∈ {1, . . . , n} and k ≥ 0

Pr{Cij = k} = P k
2 (1− P2)

and hence Pr{Cij ≥ k} = P k
2 .

We now derive a typical behavior of Hn. We start with an upper bound. By the first
moment method (or equivalently the Boole inequality), for any nonnegative integer k

Pr{Hn > k} = Pr{ max
1≤i<j≤n

{Cij} ≥ k} ≤ n2Pr{Cij ≥ k},

since the number of pairs (i, j) is bounded by n2. Set now k = b2(1 + ε) logQ2
nc for any

ε > 0. Then

Pr{Hn > 2(1 + ε) logQ2
n} ≤ n2

n2(1+ε)
=

1
n2ε
→ 0.
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Thus Hn/(2 logQ2
n) ≤ 1 (pr.).

We now match the above upper bound and prove thatHn/(2 logQ2
n) = 1 (pr.) by showing

that Pr{Hn > 2(1 − ε) logQ2
n} → 1 for any ε > 0. We set below k = b2(1 − ε) logQ2

nc.
We use the Chung-Erdős formulation of the second moment method with Aij = {Cij ≥ k}.
Observe that the sums in (4.4) are over pairs (i, j). Let us define

S1 =
∑

1≤i<j≤n

Pr{Aij},

S2 =
∑

(i,j)6=(l,m)

Pr{Aij ∩Alm},

where the summation in S2 is over all pairs 1 ≤ i, j ≤ n, 1 ≤ l,m ≤ n such that (i, j) 6= (l,m).
Then by (4.4)

Pr{Hn ≥ k} ≥
S2

1

S1 + S2
.

The following is obvious for n ≥ 2

S1 =
∑

1≤i<j≤n

Pr{Aij} =
1
2
n(n− 1)P k

2 ≥
n2

4
P k

2 .

The sum S2 is a little harder to deal with. We must consider two cases: (i) all indices i, j, l,m
are different, (ii) either i = l (i.e., we have (i, j) and (i,m)) or j = m (so we have (i, j) and
(l, j)). Let us split S2 = S′

2 + S′′
2 such that S′

2 is the summation over all different indices (as
in (i) above), and S′′

2 covers the latter case. Notice that Cij and Clm are independent when
the indices are different, hence

S′
2 ≤

n4

4
P 2k

2 .

To evaluate S′′
2 we must compute the probability Pr{Cij ≥ k,Cim ≥ k}. But, as in Sec-

tion 3.3.1, we easily see that

Pr{Cij ≥ k,Ci,m ≥ k} = (p3 + q3)k = P k
3 ,

since the probability of having the same symbol at a given position for three strings Xi, Xj

and Xm is equal to P3 = p3 + q3. But, there are no more than n3/6 pairs with one common
index, thus

S′′
2 ≤ n3(p3 + q3)k.

In summary,

S2 =
∑

(i,j),(l,m)

Pr{Cij ≥ k, Clm ≥ k} ≤
n4

4
P 2k

2 + n3(p3 + q3)k .

To proceed further, we need to bound the sum S′′
2 . We prove a useful inequality in the

following lemma.
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Figure 4.1: Function (p3 + q3)
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3 (lower curve) plotted against (p2 + q2)
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Lemma 4.4 For all s ≥ t > 0 the following holds

(ps + qs)1/s ≤ (pt + qt)1/t, (4.11)

where 0 < q = 1− p < 1.

Proof. Let f(x) = (px + qx)1/x for x > 0. Then

f ′(x) =
f(x)
x

(
px ln p+ qx ln q

px + qx
− ln f(x)

x

)
.

For p ≥ q define a = q/p. For x ≥ 1 we proceed as follows:

px ln p+ qx ln q
px + qx

− ln f(x)
x

≤ 1
1 + ax

ln p+
1

1 + a−x
ln q − 1

x
ln p

≤ 1
1 + a−x

(ln q − ln p) +
(

1− 1
x

)
ln p

≤ 0.

Thus f ′(x) < 0 for x ≥ 1 and f(x) is a decreasing function. This can be easily extended
to 0 ≤ x < 1 so the lemma is proved for all x ≥ 0. In Figure 4.1 we plot the function
f(s) = (ps + qs)1/s for s = 2 and s = 3.
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The rest is easy: An application of the Chung-Erdős formula (4.4) leads to

Pr{Hn > k} ≥ 1
1/S1 + S′

2/S
2
1 + S′′

2/S
2
1

≥ 1
4n−2P−k

2 + 1 + 16(p3 + q3)k/(nP 2k
2 )

≥ 1

1 + 4n−2ε + 16n−1P
−k/2
2

≥ 1
1 + 4n−2ε + 16n−ε

= 1−O(1/nε)→ 1,

where the third inequality follows from k = 2(1−ε) logQ2
n, and the last one is a consequence

of (4.11). Thus we have shown that Hn/(2 logQ2
n) ≥ 1 (pr.), which completes our proof of

Pr{2(1 − ε) logQ2
n ≤ Hn ≤ 2(1 + ε) logQ2

n} = 1−O(n−ε) (4.12)

for any ε > 0, where Q−1
2 = P2 = p2 + q2. In passing we should observe that the above

implies the convergence in probability of Hn/ logQ2
n→ 1, but the rate of convergence is too

slow to use the Borel-Cantelli lemma and to conclude almost sure convergence of Hn/ logQ2
n.

Nevertheless, at the end of this section we provide an argument (after Kingman [240] and
Pittel [337]) that allows us to justify such a convergence (see Theorem 4.7 for a complete
statement of the result).

Memoryless Source for b-Tries.

We now generalize the above to b-tries in which every (external) node is capable of storing
up to b strings. As in Theorem 1.3, we express the height Hn in terms of the alignments
Ci1,...,ib+1

as
Hn = max

1≤i1<···<ib+1≤n
{Ci1,...,ib+1

}+ 1,

where Ci1,...,ib+1
is the length of the longest common prefix of strings Xi1 , . . . ,Xib+1 . We

follow the same route as for b = 1, so we only outline the proof. First of all, observe that

Pr{Ci1,...,ib+1
≥ k} = P k

b+1,

where Pb+1 = pb+1 + qb+1 represents the probability of a match in a given position of b + 1
strings Xi1 , . . . ,Xib+1 . As before, we write Qb+1 = 1/Pb+1. Our goal is to prove that
Hn ∼ (b + 1) logQb+1

n (pr.). To simplify the analysis, we let Di = {i = (i1, . . . , ib+1) : ik 6=
il whenever k 6= l} and Ai = {Ci1,...,ib+1

≥ k}.
The upper bound is an easy application of the first moment method. We have for k =

b(1 + ε)(b + 1) logQb+1
nc

Pr{Hn > k} = Pr{max
Di

{Ci1,...,ib+1
} ≥ k}

≤ nb+1Pr{Ci1,...,ib+1
≥ (1 + ε)(b + 1) logQb+1

n}

=
1

n(b+1)ε
→ 0,
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which is the desired result.
The lower bound is slightly more intricate due to complicated indexing. But in principle

it is nothing else than the second moment method, as in the case b = 1. Let us denote by
S1 and S2 the two sums appearing in the Chung–Erdős inequality. The first sum can be
estimated as follows:

S1 =
∑
Di

Pr{Ai} =

(
n

b+ 1

)
P k

b+1 ≥
(n− b)b+1

(b+ 1)!
P k

b+1.

The second sum S2 we upper bound by

S2 =
∑

Di 6=Dj

Pr{Ai ∩Aj} ≤
1

[(b+ 1)!]2
n2(b+1)P 2k

b+1 +
b∑

i=1

(
b+ 1
i

)
n2(b+1)−iP k

2(b+1)−i.

Using the Chung-Erdős formula we obtain

Pr{Hn > k} ≥ 1
1/S1 + S2/S2

1

≥ 1
(b+1)!

(n−b)b+1P k
b+1

+
(
1 + b

n−b

)2(b+1)
+
∑b

i=1

(b+1
i

)
[(b+ 1)!]2 n2(b+1)−i

(n−b)2(b+1)

P k
2(b+1)−i

P 2k
b+1

.

Setting now k = b(1− ε)(b + 1) logQb+1
nc and using inequality (4.11) we finally arrive at

Pr{Hn > (1− ε)(b + 1) logQb+1
n} ≥ 1

c1n(b+1)ε + 1 +
∑b

i=1 c2(b)niε

≥ 1
1 + c(b)nε

= 1−O(n−ε),

where c1, c2(b) and c(b) are constants. In summary, as in the case b = 1, we conclude that
Hn ∼ (b+ 1) logQb+1

n (pr.), or more precisely for any ε > 0,

Pr{(1 − ε)(b+ 1) logQb+1
n ≤ Hn ≤ (1 + ε)(b+ 1) logQb+1

n} = 1−O
(

1
nε

)
, (4.13)

where Q−1
b+1 = Pb+1 = pb+1 + qb+1 (see Theorem 4.7 for a precise formulation of this result).

Markovian Source.

Our last generalization deals with the Markovian model. We now assume that all strings
X1, . . . ,Xn are generated independently by a stationary Markovian source over a finite al-
phabet A of size V . More precisely, the underlying Markov chain is stationary with the
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transition matrix P and the stationary distribution π satisfying π = πP. For simplicity,
we also assume b = 1. We shall follow the footsteps of the previous analysis once we find
formulas on Pr{Cij ≥ k} and Pr{Cij ≥ k,Clm ≥ k}. In principle, it is not that difficult. We
need, however, to adopt a new approach that Arratia and Waterman [22] called the analysis
by pattern; Jacquet and Szpankowski [216] named it the string-ruler approach; and it was
already used in Pittel [337]. The idea is to choose a given pattern w ∈ Ak of length k, and
measure relationships between strings X1, . . . ,Xn by comparing them to w. In particular,
it is easy to see that

Cij ≥ k ⇒ ∃w∈Ak Xi
1X

i
2 . . . X

i
k = Xj

1X
j
2 . . . X

j
k = w,

that is, Cij ≥ k implies that there exists a word w of length k such that prefixes of length k
of Xi and Xj are the same and equal to w. Let P (w) := P (w) and P s(w) = [Pr{w}]s. Then

Pr{Cij ≥ k} =
∑

w∈Ak

P 2(w), (4.14)

Pr{Cij ≥ k,Clm ≥ k} =
∑

w∈Ak

∑
u∈Ak

P 2(w)P 2(u) i 6= l, j 6= m, (4.15)

Pr{Cij ≥ k,Cim ≥ k} =
∑

w∈Ak

P 3(w) i = l, j 6= m. (4.16)

To complete our analysis, we must compute the probabilities Pr{Cij ≥ k} and Pr{Cij ≥
k,Clm ≥ k} as k →∞. As shown in (4.14)–(4.16) these probabilities depend on P (w) where
w ∈ Ak is a word of length k. Let w = wj1wj2 . . . wjk

. Then

P (w) = πj1pj1,j2pj2,j3 · · · pjk−1,jk
.

Thus for any r we have∑
w∈Ak

P r(w) =
∑

1≤j1,j2,...,jk≤V

(
πj1pj1,j2 · · · pjk−1,jk

)r
. (4.17)

We can succinctly rewrite the above using the Schur’s product of matrices. Let P◦P◦· · ·◦P :=
P[r] := {pr

ij}Vi,j=1 be the rth Schur product of P, that is, elementwise product of elements of
P. We also write ψ = (1, 1, . . . , 1) for the unit vector, and π[r] = (πr

1, . . . , π
r
V ) for the rth

power of the stationary vector. Then (4.17) becomes in terms of matrices just introduced∑
w∈Ak

P r(w) = 〈π[r],P
k−1
[r] ψ〉,

where 〈x,y〉 is the scalar product of vectors x and y. Assuming that the underlying Markov
chain is aperiodic and irreducible, by the Perron-Frobenius Theorem 4.5 (Table 4.1) the above
can be represented for some ρ < 1 as follows:

〈π[r],A
k−1
[r] ψ〉 = λk−1

[r] 〈π[r],r〉〈l,ψ〉(1 +O(ρk)),
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Table 4.1: Spectral properties of nonnegative matrices

Let r and l be, respectively, the right eigenvector and the left eigenvector of a matrix A
associated with the eigenvalue λ, that is,

lA = λl , Ar = λr.

To avoid heavy notation, we do not specify whether vectors are column or row vectors since
this should be clear from the context. Consider now a nonnegative matrix A (all elements of
A are nonnegative). We also assume it is irreducible (cf. [200, 327]; the reader may think of
A as a transition matrix of an irreducible Markov chain). Let λ1, . . . , λm be eigenvalues of A
associated with the eigenvectors r1, . . . , rm. We assume that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|.

Theorem 4.5 (Perron–Frobenius) Let A be a V ×V irreducible nonnegative matrix. Then

• A has a positive real eigenvalue λ1 of the largest value, that is, λ1 ≥ |λi6=1|.

• The eigenvector r1 associated with λ1 has all positive coordinates.

• λ1 is of multiplicity one.

• λ1 > |λi6=1| if there exists k such that all entries of Ak are strictly positive or the main-
diagonal entries are strictly positive.

Assume first that all eigenvalues are of multiplicity one. Then the left eigenvectors l1, l2, . . . , lV
are orthogonal with respect to the right eigenvectors r1, r2, . . . , rV , that is, 〈li, rj〉 = 0 for i 6= j

where 〈x,y〉 denotes the inner (scalar) product of x and y. (Indeed, 〈li, rj〉 = λj

λi
〈li, rj〉 = 0

since λi 6= λj.) Setting 〈li, ri〉 = 1 for all 1 ≤ i ≤ V we can write for any vector x =
〈l1,x〉r1 +

∑V
i=2〈li,x〉ri, which yields

Ax = 〈l1,x〉λ1r1 +
V∑

i=2

〈li,x〉λiri.

Since Ak has eigenvalues λk
1 , λ

k
2 , . . . , λ

k
V , then — dropping the assumption about eigenvalues

λ2, . . . , λV being simple — we arrive at

Akx = 〈l1,x〉r1λ
k
1 +

V∑
i=2

qi(k)〈li,x〉riλ
k
i

where qi(k) is a polynomial in k (qi(k) ≡ 1 when the eigenvalues µ2, . . . , µV are simple. In
particular, for irreducible nonnegative matrices by the above and the Perron-Frobenius theorem
Akx = βλk(1 +O(ρk)) for some β and ρ < 1.
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where l and r are the left and the right principal eigenvectors of P[r]. In summary, there
exists a constant β > 0 such that∑

w∈Ak

P r(w) = βλk
[r](1 +O(ρk)), (4.18)

hence

Pr{Cij ≥ k} = β1λ
k
[2](1 +O(ρk)), (4.19)

Pr{Cij ≥ k,Clm ≥ k} = β2
1λ

2k
[2](1 +O(ρk)) i 6= l, j 6= m, (4.20)

Pr{Cij ≥ k,Cim ≥ k} = β2λ
k
[3](1 +O(ρk)) i = l, j 6= m (4.21)

for some constants β1 > 0 and β2 > 0.
We need the following inequality on λ1/r

[r] that extends Lemma 4.4 to Markov models and
is interesting in its own right.

Lemma 4.6 (Karlin and Ost, 1985) Let P[r] be the rth order Schur product of a transi-
tion matrix P of an aperiodic irreducible Markov chain, and let λ[r] be its largest eigenvalue.
The function

F (r) = λ
1/r
[r]

is nonincreasing for r > 0.

Proof. We follow the arguments of Karlin and Ost [228]. From (4.18) we observe that

lim
k→∞

 ∑
w∈Ak

P r(w)

 1
k

= λ[r] ≤ 1.

But (by either a probabilistic argument or an algebraic one)∑
w∈Ak

P r+s(w) ≤
∑

w∈Ak

P r(w)
∑

w∈Ak

P s(w),

hence together with the above we conclude that

λ[r+s] ≤ λ[r]λ[s]. (4.22)

Furthermore, it is easy to see that log λ[r] is convex as a function of r. Let now f(s) = log λ[s]

and set for r < s < 2r
s =

2r − s
r

r +
s− r
r

2r.
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By convexity

f(s) ≤ 2r − s
r

f(r) +
s− r
r

f(2r).

But (4.22) implies f(2r) ≤ 2f(r); hence the above yields

f(s) ≤ s

r
f(r),

and therefore f(r)/r is nonincreasing. This proves the lemma.

The rest is an imitation of our derivation from the above. The reader is asked in Exercise 2
to complete the proof of the following for any ε > 0

Pr{2(1 − ε) logQ2
n ≤ Hn ≤ 2(1 + ε) logQ2

n} = 1−O(n−ε), (4.23)

where Q−1
2 = λ[2] is the largest eigenvalue of P ◦ P = P[2]. Thus Hn ∼ 2 logQ2

n (pr.).

Almost Sure Convergence.

For simplicity of derivations, we again assume here b = 1. In (4.12), (4.13), and (4.23) we
proved that whp the height Hn of a trie is asymptotically equal to 2 logQ2

n with the rate
of convergence O(n−ε). This rate does not yet justify an application of the Borel-Cantelli
Lemma in order to improve the result to almost sure convergence. Nevertheless, we shall show
in this section that Hn/(2 logQ2

n)→ 1 (a.s.), thanks to the fact that Hn is a nondecreasing
sequence. We apply here a method suggested by Kesten and reported in Kingman [240].

First of all, observe that for any n

Hn ≤ Hn+1,

that is, Hn – though random – is a nondecreasing sequence. Furthermore, the rate of conver-
gence O(n−ε) and the Borel-Cantelli Lemma justify almost sure convergence of Hn/(2 logQ2

n)
along the exponential skeleton n = s2r for some integers s and r. Indeed, we have

∞∑
r=0

Pr

{∣∣∣∣∣ Hs2r

2 logQ2
(s2r)

− 1

∣∣∣∣∣ ≥ ε
}
<∞.

We must extend the above to every n. Fix s. For every n we find such r that

s2r ≤ n ≤ (s+ 1)2r .

Since logarithm is a slowly varying function and Hn is a nondecreasing sequence, we have

lim sup
n→∞

Hn

2 logQ2
n
≤ lim sup

r→∞
H(s+1)2r

2 logQ2
(s + 1)2r

2 logQ2
(s+ 1)2r

2 logQ2
s2r

= 1 (a.s.).
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In a similar manner, we prove

lim inf
n→∞

Hn

2 logQ2
n
≥ lim inf

r→∞
Hs2r

2 logQ2
(s+ 1)2r

= 1 (a.s.).

We summarize the main findings of this section in the following theorem.

Theorem 4.7 (Pittel, 1985; Szpankowski, 1991) Consider a b-trie built over n inde-
pendent strings generated according to a stationary Markov chain with the transition matrix
P. Then

lim
n→∞

Hn

lnn
=

(b+ 1)
lnλ−1

[b+1]

(a.s.),

where λ[b+1] is the largest eigenvalue of the (b+ 1)st order Schur product of P. In particular,
in the Bernoulli model λ[b+1] =

∑V
i=1 p

b+1
i where pi is the probability of generating the ith

symbol from the alphabet A = {1, . . . , V }.

4.2.4 Height in PATRICIA Tries

In Section 1.1 we described how to obtain a PATRICIA trie from a regular trie: In PATRICIA
we compress a path from the root to a terminal node by avoiding (compressing) unary nodes
(see Figure 1.1). In this section, we look at the height Hn of PATRICIA and derive its
typical probabilistic behavior. To simplify our analysis, we again assume a binary alphabet
A = {0, 1} with p ≤ q = 1−p. Actually, we shall write pmax = max{p, q} and Qmax = 1/pmax.
We again assume the memoryless model.

We start with an upper bound for the PATRICIA height. Following Pittel [337] we argue
that for fixed k and b the event Hn ≥ k+ b− 1 in the PATRICIA trie implies that there exist
b strings, say Xi1 , . . . ,Xib such that their common prefix is of length at least k. In other
words,

Hn ≥ k + b− 1 ⇒ ∃i1,...,ib Ci1,i2,...,ib ≥ k.

This is true since in PATRICIA there are no unary nodes. Hence, if there is a path of length
at least k + b− 1, then there must be b strings sharing the common prefix of length k. But,
as in the analysis of b tries, we know that

Pr{Ci1,i2,...,ib ≥ k} = P k
b ,

where Pb = pb + qb. Thus, for fixed b and k(b) = b(1 + ε) logP−1
b
n

Pr{Hn ≥ k + b− 1} ≤ nbPr{Ci1,i2,...,ib ≥ k} = O(n−ε).
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The above is true for all values of b; hence we now allow b to increase arbitrary slowly to
infinity. Observe then

lim
b→∞

k(b) = (1 + ε) lim
b→∞

b log n
log P−1

b

= (1 + ε) lim
b→∞

log n

logP−1/b
b

≤ (1 + ε)
log n

log p−1
max

= (1 + ε) logQmax
n,

since limb→∞ P
1/b
b ≤ limb→∞ p

b−1
b

max = pmax. In summary, for any ε > 0 we just proved that

Pr{Hn ≥ (1 + ε) logQmax
n} = O(n−ε),

which is the desired upper bound.
Not surprisingly, we shall use the second moment method to prove a lower bound. Let

“1” occur with the probability pmax. Define the following k strings: Xi1 = 10 . . ., Xi2 =
110 . . . , · · · ,Xik = 111 · · · 10 . . ., where string Xij has the first j symbols equal to 1 followed
by a 0. We show that with high probability for k = (1 − ε) logQmax

n the above k strings
appear among all n strings X1, . . . Xn. Observe that if this is true, then Hn ≥ k + 1 whp.

Let now i = (i1, i2, . . . , ik), and define Zi = 1 if Xi1 = 10 . . ., Xi2 = 110 . . . , · · · ,Xik =
111 · · · 10 . . ., and zero otherwise. Let also

Z =
∑
i∈Di

Zi,

where Di = {i = (i1, . . . , ik) : ij 6= il whenever j 6= l}. Observe that

Pr{Z > 0} ≤ Pr{Hn > k}.

We estimate the left-hand side of the above by the second moment method. First of all,

E[Z] =

(
n

k

)
p

k(k+1)
2

max (1− pmax)k,

since the probability of Xi is pi
max(1 − pmax), and the strings are independent. In a similar

manner we compute the variance

Var[Z] ≤ E[Z] +
∑

Di 6=Dj

Cov[ZiZj].

The covariance Cov[ZiZj] depends on how many indices are the same in i and j. If, say
0 < l < k, indices are the same, then

Cov[ZiZj] ≤ E[ZiZj] ≤
(

n

2k − l

)
pk(k+1)−l(l+1)/2
max (1− pmax)2k−l.
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Thus by the second moment method

Pr{Z = 0} ≤ Var[Z]
E[Z]2

≤ 1
E[Z]

+
1

E[Z]2

k−1∑
l=1

(
n

2k − l

)
pk(k+1)−l(l+1)/2
max (1− pmax)2k−l. (4.24)

Let us now evaluate the above. First of all, for k = (1 − ε) ln n/ ln p−1
max we obtain for

some constant c

E[Z] ≥ c
nk

k!
pk2/2
max (1− pmax)k

≥ exp

(
(1− ε) ln2 n

ln p−1
max
− (1− ε)2

2
ln2 n

ln p−1
max
−O(ln n ln lnn)

)

= exp

(
1
2

(1− ε) ln2 n

ln p−1
max

)
→∞,

where ε is an arbitrary small positive number. The lth term of (4.24) can be estimated as
follows ( n

2k−l

)
p

k(k+1)−l(l+1)/2
max (1− pmax)2k−l

E[Z]2
=

( n
2k−l

)
p
−l(l+1)/2
max (1− pmax)−l(n

l

)2
= O

(
n−lp−l2/2

max (1− pmax)−l
)
→ 0,

where the convergence to zero is true for l ≤ k = (1− ε) ln n/ ln p−1
max by the same arguments

as above (indeed, the function f(l) = nlp
l2/2
max is nondecreasing with respect to l for l ≤ k =

lnn/ ln p−1
max). Thus

Pr{Hn ≥ (1− ε) lnn/ ln p−1
max} ≥ 1−O

(
(exp(−α ln2 n+ ln lnn)

)
for some α > 0.

In summary, we prove the following result (the almost sure convergence is established in
the same fashion as in the previous section).

Theorem 4.8 (Pittel, 1985) Consider a PATRICIA trie built over n independent strings
generated by a memoryless source with pi being the probability of generating the ith symbol
from the alphabet A = {1, . . . , V }. Then

lim
n→∞

Hn

log n
=

1
log p−1

max
(a.s.),

where pmax = max{p1, p2, . . . , pV }.
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4.2.5 Height in Digital Search Trees

To complete our discussion of digital trees, we shall analyze the height of a digital search tree
and prove a result similar to the one presented in Theorem 4.8.

We start with a lower bound, and use an approach similar to the one discussed for
PATRICIA tries. Actually, the lower bound from Section 4.2.4 works fine for digital search
trees. Nevertheless, we provide another derivation so the reader can again see the second
moment method at work. Set Z0 = n, and let Zi for i ≥ 1 be the number of strings whose
prefix of length i consists of 1’s. We recall that 1 occurs with the probability pmax. Let also
k = (1− ε) ln n/ ln p−1

max. Observe that

Zk > 0 ⇒ Hn > k,

where Hn is the height in a digital search tree. We prove that Pr{Zk > 0} whp when
k = (1 − ε) lnn/ ln p−1

max using the second moment method. Thus, we must find E[Zk] and
Var[Zk].

All strings X1, . . . ,Xn are independent, hence Z1 has the binomial distribution with pa-
rameters n and pmax, that is, Z1 ∼ Binomial (n, pmax). In general, Zi ∼ Binomial (Zi−1, pmax).
Using conditional expectation we easily prove that (the reader is asked to provide details in
Exercise 8)

E[Zk] = npk
max, (4.25)

Var[Zk] = npk
max(1− pk

max). (4.26)

Then for Qmax = 1/pmax

Pr{Hn ≤ (1− ε) logQmax
n} ≤ Pr{Zk = 0} ≤ Var[Zk]

E[Zk]2
≤ 1
npk

max

= n−ε.

This proves that Hn/ log n ≥ 1/ log p−1
max whp.

The upper bound is slightly more complicated. Let us consider a given word w (of possibly
infinite length) whose prefix of length k is denoted as wk. We shall write P (wk) := P (wk).
Define Tn(w) to be the length of a path in a digital search tree that follows the symbols of w
until it reaches the last node of the tree on its path. For example, referring to Figure 1.1 we
have T4(00000 . . .) = 3. The following relationship is quite obvious:

Pr{Tn(w) ≥ k} = Pr{Tn−1(w) ≥ k}+ Pr{Tn−1(w) = k − 1}P (wk),

since when inserting a new string to the tree we either do not follow the path of w (the first
term above) or we follow the path leading to the second term of the recurrence. Observe now
that for given w

Tn(w) ≥ Tn−1(w),
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so that Tn(w) is a nondecreasing sequence with respect to n. Since, in addition, P (wk) ≤ pk
max

and Pr{Tn−1(w) = k− 1} ≤ Pr{Tn−1(w) ≥ k− 1}, we can iterate the above recurrence to get

Pr{Tn(w) ≥ k} ≤ Pr{Tn−2(w) ≥ k}+ 2pk
maxPr{Tn−1(w) ≥ k − 1},

so that after iterations with respect to n the above yields

Pr{Tn(w) ≥ k} ≤ npk
maxPr{Tn−1(w) ≥ k − 1}.

Iterating now with respect to k, we find

Pr{Tn(w) ≥ k} ≤ nkpk2

max.

Set now k = (1 + ε) log n/ log p−1
max to obtain

Pr{Hn > (1 + ε) logpmax
n−1} ≤

∑
w∈Ak

Pr{Tn(w) ≥ k}

≤ 2knkpk2

max

≤ exp
(
k ln 2 + k lnn− k2 ln p−1

max

)
≤ exp (−k(1 + ε) ln n+ k lnn+ k ln 2)
≤ exp(−α ln2 n)→ 0

for some α > 0 as long as ε > ln 2/ ln n.

Theorem 4.9 (Pittel, 1985) Consider a digital search tree built over n independent strings
generated by a memoryless source with pi being the probability of generating the ith symbol
from the alphabet A = {1, . . . , V }. Then

lim
n→∞

Hn

log n
=

1
log p−1

max
(a.s.),

where pmax = max{p1, p2, . . . , pV }.

4.2.6 Height in a Suffix Tree

Finally, we consider the height of a suffix tree built from the first n suffixes of a (possibly
infinite) string X∞

1 generated by a memoryless source. As before, we assume a binary al-
phabet with p and q = 1− p being the probability of generating the symbols. We denote by
X(i) = X∞

i the ith suffix, where 1 ≤ i ≤ n. (We recall that a suffix tree is a trie built from
suffixes X(1), . . . ,X(n).) We restrict the analysis to the memoryless model. The reader is
asked in Exercise 7 to extend this analysis to the mixing model.
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The analysis of the height follows the same footsteps as in the case of tries (i.e., we use
the first moment method to prove an upper bound and the second moment method to prove
a lower bound) except that we must find the probability law governing the self-alignment Cij

that represents the length of the longest prefix common to X(i) and X(j). We recall that
the height Hn is related to Cij by Hn = maxi6=j{Cij}+ 1.

We need to know the probability of Aij = {Cij ≥ k}. Let d = |i− j| and consider suffixes
X(i) and X(i + d). Below, we assume that j = i+ d. When d ≥ k, then X(i) and X(i + d)
are independent in the memoryless model, hence as in tries we easily find that

Pr{Ci,i+d ≥ k} = P k
2 d ≥ k,

where P2 = p2 + q2. The problem arises when d < k. We need to identify conditions under
which k symbols starting at position i are the same as k symbols following position i + d;
that is,

Xi+k−1
i = Xi+d+k−1

i+d ,

where Xi+k−1
i and Xi+d+k−1

i+d are k-length prefixes of suffixes X(i) and X(i+d), respectively.
The following simple combinatorial lemma provides a solution.

Lemma 4.10 (Lothaire, 1982) Let X∞
1 be a string whose ith and jth suffixes are X(i) =

X∞
i and X(j) = X∞

j , respectively, where j − i = d > 0. Also let Z be the longest common
prefix of length k ≥ d of X(i) and X(j). Then there exists a word w ∈ Ad of length d such
that

Z = wbk/dcw̄, (4.27)

where w̄ is a prefix of w, and wl is the string resulting from the concatenation of l = bk/dc
copies of the word w.

We leave the formal proof of the above lemma to the reader (see Exercise 9). Its meaning,
however, should be quite clear. To illustrate Lemma 4.10, let is assume that Xk+d

1 = X3d+2
1 =

x1x2 . . . xdx1x2 . . . xd . . . x1x2 . . . xdx1x2, where k = 2d+2 and d > 2. One easily identifies w =
x1x2 . . . xd and w̄ = x1x2. The common prefix Z of Xk+d−1

1 and Xk+2d
d+1 can be represented

as Z2d+2
1 = w2w̄, as stated in Lemma 4.10.

In view of the above, we can now derive a formula on the probability Pr{Ci,i+d ≥ k},
which is pivotal to our analysis of the height. An application of Lemma 4.10 leads to

Pr{Ci,i+d ≥ k} =
∑

w∈Ak∧d

P (wbk
d
c+1w̄) (4.28)

=
(
pb

k
d
c+1 + qb

k
d
c+1
)d−r (

pb
k
d
c+2 + qb

k
d
c+2
)r
, (4.29)

where r = k − dbk/dc and k ∧ d = min{d, k} (so word w has length k ∧ d). Observe that
by restricting the length of w to k ∧ d, we also cover the case k < d, in which case we have
Pr{Ci,i+d ≥ k} = (p2 + q2)k.
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To see why (4.28) implies (4.29), say for d < k, we observe that d− r symbols of w must
be repeated l = bk/dc times in wl, while the last r symbols of w must occur l+ 1 times. The
probability of having the same symbol on a given position in l strings is pl+1 + ql+1. Thus
(4.29) follows.

Before we proceed, we need an inequality on (4.29), which we formulate in the form of a
lemma.

Lemma 4.11 For d < k we have

Pr{Ci,i+d ≥ k} ≤ (p2 + q2)k/2 = P
k+d

2
2 (4.30)

Proof. The result follows from Lemma 4.4 (cf. (4.11)) and (4.29). Indeed, let Pl = (pl + ql).
Then

Pr{Ci,i+d ≥ k} = P d−r
l+1 P

r
l+2 ≤ P

1
2
[(d−r)(l+1)+r(l+2)]

2 = P
k+d
2

2 ,

since k = dl + r.

Now we are ready to prove an upper bound for the height. We use the Boole inequality
and the above to obtain

Pr{max
i,d
{Ci,i+d} ≥ k} ≤ n

 k∑
d=1

Pr{Ci,i+d ≥ k}+
n∑

d=k+1

Pr{Ci,i+d ≥ k}


≤ n

 k∑
d=1

P
k+d
2

2 +
n∑

d=k+1

P k
2


≤ n

(
P

k+1
2

2 (1−
√
P2)−1 + nP k

2

)
,

where the second inequality is a consequence of Lemma 4.11. From the above we conclude
that

Pr{Hn > 2(1 + ε) logQ2
n} = Pr{max

i,d
{Ci,i+d} ≥ 2(1 + ε) logQ2

n} ≤ c

nε
,

where (as before) Q2 = P−1
2 and c is a constant. Thus whp we have Hn ≤ 2(1 + ε) logQ2

n.
For the lower bound, we use the Chung and Erdős second moment method, as one can

expect. We need, however, to overcome some difficulties. Let D = {(i, j) : |i − j| > k}.
Observe that

Pr{Hn > k} = Pr{
⋃
i6=j

Aij} ≥ Pr{
⋃

i,j∈D
Aij} ≥

S2
1

S1 + S2
,

where

S1 =
∑

i,j∈D
Pr{Aij},

S2 =
∑

(i,j)6=(l,m)∈D
Pr{Aij ∩Alm}.
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The first sum is easy to compute from what we have learned so far. Since |i − j| > k in D
we immediately find that

S1 ≥ (n2 − (2k + 1)n)P k
2 .

To compute S2 we split it into three terms, S21, S22 and S23, such that the summation in S2i

(i = 1, 2, 3) is over the set Di defined as follows:

D1 = {(i, j), (l,m) ∈ D : min{|l − i|, |l − j|) ≥ k and min{|m− i|, |m − j|) ≥ k}
D2 = {(i, j), (l,m) ∈ D : min{|l − i|, |l − j|) ≥ k and min{|m− i|, |m − j|) < k

or min{|l − i|, |l − j|) < k and min{|m− i|, |m− j|) ≥ k}
D3 = {(i, j), (l,m) ∈ D : min{|l − i|, , |l − j|) < k and min{|m− i|, |m− j|) < k}

Using arguments as in the case of tries, we obtain

S21 =
∑

(i,j),(l,m)∈D1

Pr{Aij ∩Alm} ≤ n4P 2k
2 ,

S22 =
∑

(i,j),(l,m)∈D2

Pr{Aij ∩Alm} ≤
∑

(i,j),(i,m)∈D2

Pr{Aij ∩Aim} ≤ 8kn3P k
3 ≤ 8kn2P

3
2
k

2

S23 =
∑

(i,j),(l,m)∈D3

Pr{Aij ∩Alm} ≤
∑

(i,j),(i,j)∈D3

Pr{Aij ∩Aij} ≤ 16k2n2P k
2 ,

where, as before, P3 = p3 + q3. The last inequality for S22 follows from Lemma 4.4. The rest
is a matter of algebra. Proceeding as in Section 4.2.3 we arrive at

Pr{Hn > 2(1− ε) logQ2
n} ≥ 1

1 + c1n−ε log n+ c2n−2ε
= 1−O

(
log n
nε

)
,

for some constants c1, c2. As before we can extend this convergence in probability to almost
sure convergence by considering an exponential skeleton n = s2r. Thus, we just proved the
following interesting result.

Theorem 4.12 (Devroye, Rais, and Szpankowski, 1992) Consider a suffix tree built
from n suffixes of a string generated by a memoryless source with pi being the probability
of generating the ith symbol from the alphabet A = {1, . . . , V }. Then

lim
n→∞

Hn

log n
=

1
logP−1

2

(a.s.),

where P2 =
∑V

i=1 p
2
i .

In passing we point out that results of Sections 4.2.3–4.2.6 can be extended to the mixing
probabilistic model (cf. [337, 411, 412]). The reader is asked to try to prove such extensions
in Exercises 6 and 7. Additional details can be found in Chapter 6.
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4.3 Extensions and Exercises

4.1 Prove the following alternative formulation of the second moment method. Let {Ai}ni=1

be a set of identically distributed events such that nPr{Ai} → ∞. If∑
i6=j

Pr{Ai|Aj}
nPr{Ai}

→ 1

as n→∞, then Pr{⋃n
i=1Ai} → 1.

4.2 Consider the height of a b-trie in a Markovian model and prove

Pr{(b+ 1)(1 − ε) logQb+1
n ≤ Hn ≤ (b+ 1)(1 + ε) logQb+1

} = 1−O(n−ε),

where Q−1
b+1 = λ[b+1] is the largest eigenvalue of P[b+1] = P ◦ · · ·P.

4.3 Find another proof for the lower bound in the derivation of the height in PATRICIA
tries.

4.44! Extend the analysis of PATRICIA tries to a Markovian source. What is the equiv-
alence of pmax in the Markovian model? (see Chapter 6.)

4.54! Extend the analysis of digital search trees to a Markovian source.

4.64! (Pittel 1985) Establish typical behaviors of heights in all three digital trees in the
mixing model (see Chapter 6).

4.74! (Szpankowski, 1993) Extend the analysis of the height in a suffix tree (see Sec-
tion 4.2.6) to the mixing model.

4.8 Prove (4.25) and (4.26).

4.9 Prove Lemma 4.10.

4.104! (Pittel, 1985) Consider the fill-up level Fn (see Section 1.1) in tries, PATRICIA tries
and digital search trees. Prove the following theorem:

Theorem 4.13 (Pittel, 1985) Consider tries, PATRICIA tries, and digital search
trees built over n independent strings generated by a memoryless source with pi being
the probability of generating the ith symbol from the alphabet A = {1, . . . , V }. Then

lim
n→∞

Fn

log n
=

1
log p−1

min

(a.s.),

where pmin = min{p1, p2, . . . , pV }.
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Can this theorem be extended to suffix trees?

4.115? Consider again digital trees as above, including suffix trees. Using the same notation
as in Exercise 10, prove or disprove the following result.

Theorem 4.14 Consider digital trees built over n independent strings generated by a
memoryless source with pi being the probability of generating the ith symbol from the
alphabet A = {1, . . . , V }. Then

lim
n→∞

sn

log n
=

1
log p−1

min

(a.s.),

where pmin = min{p1, p2, . . . , pV }.

4.12 Consider the following “comparison” of two random strings. Let Xn
1 and Y m

1 of length n
and m < n, respectively, be generated by a binary memoryless source with probabilities
p and q = 1−p of the two symbols. Define Ci to be the number matches between Xi+m−1

i

and Y ; that is,

Ci =
m∑

j=1

equal(Xi+j−1, Yj),

where equal(x, y) is one when x = y and zero otherwise (i.e., the Hamming distance).
Define Mmn = max1≤i≤n−m+1{Ci}. Prove that if log n = o(m) then

lim
n→∞

Mm,n

m
= P2 (a.s.),

where P2 = p2 + q2.

4.134! (Atallah, Jacquet, and Szpankowski 1993) Consider the same problem as in Exer-
cise 12 above. Let n = Θ(mα) and P3 = p3 + q3. Define

β =
(P2 − P − 3)(P2 − 3P 2

2 + 2P3)
6(P3 − p2

2)
.

Prove that if P2 − P3 ≤ (1 − α)β then Mm,n − mP ∼
√

2m(P2 − P3) log n (pr.) as
n,m→∞.

4.14 Consider an n-dimensional unit cube In = {0, 1}n (i.e., a binary sequence (x1, . . . , xn) is
regarded as a vertex of the unit cube in n dimensions). Let Tn be the cover time of a
random walk; that is, the time required by a simple walk to visit all 2n vertices of the
cube. Prove that Tn ∼ (1 + n)2n log 2 whp.
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Chapter 5

Subadditive Ergodic Theorem and Large
Deviations

Summary: The celebrated ergodic theorem of Birkhoff finds many applications in computer
science. However, for the probabilistic analysis of algorithms a generalization of it due to
Kingman, called the subadditive ergodic theorem, is even more important. Kingman’s result
proves the existence of a limit, but neither says what the limit is nor what is the rate of
convergence. Azuma’s inequality tries to remedy the latter problem. Its easiest and most
general derivation is based on Hoeffding’s inequality for martingale differences. We also
review martingales since they are useful probabilistic tools for the analysis of algorithms.

THE ERGODIC THEOREM of Birkhoff asserts that a sample mean of a stationary er-
godic process converges almost surely and in moments to the actual mean of the process.

In the analysis of algorithms we often encounter a situation in which a quantity of interest,
say Xn

0 , satisfies either a subadditivity property (i.e., Xn
0 ≤ Xm

0 + Xn
m for m ≤ n) or a su-

peradditivity property (i.e., Xn
0 ≥ Xm

0 + Xn
m). Does it suffice to conclude that Xn

0 /n has a
limit as n → ∞? In 1976 Kingman [240] proposed conditions under which the answer is in
the affirmative. We shall discuss in this chapter a generalization of Kingman’s subadditive
ergodic theorem and its applications to the analysis of algorithms.

The subadditive ergodic theorem has its “cavity.” It says that a limit exists but does
not say what it is. Actually, finding this limit might be quite troublesome. But we can do
the next best thing, namely, show that the process Xn

0 /n is well concentrated around its
limit. This can be accomplished through a powerful lemma initiated by Azuma, and further
developed by others (cf. McDiarmid [312], Talagrand [418, 419]). We present here a proof
of Azuma’s inequality based on martingale differences. Martingales find many applications
in the probabilistic analysis of algorithms, and we shall review here some of their properties.
In recent years, Talagrand [418] developed a novel isoperimetric theory of concentration

99
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inequalities. We will not discuss it here. The reader is referred either to the original paper of
Talagrand [418], or a more readable account of Steele [402], Talagrand [418] or McDiarmid
[185]. Finally, we observe that Azuma’s inequality is an example of a large deviations result.
We discuss here in depth large deviations theory of i.i.d. random variables. We shall return
to large deviations in Chapter 8.

In the applications section of this chapter we first discuss two pattern matching prob-
lems, namely, the edit distance problem and the Knuth-Morris-Pratt algorithm. The third
application deals with a certain problem that arose in the analysis of the hashing with lazy
deletion, in which martingales play a crucial role.

5.1 Subadditive Sequence

Let us start with a deterministic situation. Assume a deterministic sequence {xn}∞n=0 satisfies
the subadditivity property, that is,

xm+n ≤ xn + xm

for all integers m,n ≥ 0. We will prove that

lim
n→∞

xn

n
= inf

m≥1

xm

m
= α

for some α ∈ [−∞,∞). Indeed, it suffices to fix m ≥ 0, write n = km+ l for some 0 ≤ l < m,
and observe that by consecutive applications of the subadditivity property we arrive at

xn ≤ kxm + xl .

Dividing by n, and considering n→∞ with n/k → m, we finally arrive at

lim sup
n→∞

xn

n
≤ inf

m≥1

xm

m
= α ,

where the inequality follows from arbitrariness of m. This completes the derivation since

lim inf
n→∞

xn

n
≥ α

is automatic from the definition of lim inf (cf. Table 5.1). We just derived the following
theorem of Fekete.

Theorem 5.1 (Fekete, 1923) If a sequence of real numbers {xn} satisfies the subadditive
condition

xm+n ≤ xn + xm (5.1)

for all integers m,n ≥ 0, then
lim

n→∞
xn

n
= inf

m≥1

xm

m
. (5.2)
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If the subadditivity (5.1) is replaced by the superadditivity property

xm+n ≥ xn + xm (5.3)

for all integers m,n ≥ 0, then
lim

n→∞
xn

n
= sup

m≥1

xm

m
. (5.4)

Example 5.1: Longest Common Subsequence
In Section 1.5 we discussed the longest common subsequence (LCS) problem, which is

a special case of the edit distance problem. To recall: Two ergodic stationary sequences
X = X1,X2, . . . ,Xn and Y = Y1, Y2, . . . , Yn are given. Let

Ln = max{K : Xik = Yjk
for 1 ≤ k ≤ K, where 1 ≤ i1 < i2 < · · · < iK ≤ n,

and 1 ≤ j1 < j2 < · · · < jK ≤ n}

be the length of the longest common subsequence. Observe that

L1,n ≥ L1,m + Lm,n, m ≥ n,

where Lm,n is the longest common subsequence of Xn
m and Y n

m. The above inequality follows
from a simple observation that the longest subsequence may cross the boundary of Xm

1 , Y
m
1

and Xn
m, Y

n
m, hence it may be bigger than the sum of LCS in each subregion (1,m) and (m,n).

Thus, an = E[L1,n] is superadditive. By Theorem 5.1

lim
n→∞

an

n
= α = sup

m≥1

E[Lm]
m

.

Interestingly enough, we still do not know the value of α even for the i.i.d case (memoryless
source). Steele in 1982 conjectured that α = 2/(1+

√
2) ≈ 0.8284, and some simulation studies

support this guess. The best bounds were due to Deken [88], who proved that 0.7615 ≤ α ≤
0.8376, until 1995, when Danc̆ik and Paterson [80] improved them slightly.

Example 5.2: Rate of Convergence in Theorem 5.1 Can be Arbitrarily Slow
Let xn = f(n) ≥ 0 with f(n)/n decreasing where f is an arbitrary function. Then

xn+m = f(n+m) = m
f(n+m)
n+m

+ n
f(n+m)
n+m

≤ mf(m)
m

+ n
f(n)
n

= xm + xn.

Thus
lim

n→∞
xn

n
= inf

m≥1

f(m)
m
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Table 5.1: Basic properties of limsup and liminf.

We start with a formal definition.

Definition 5.2 Let an be a sequence of real numbers. Limit superior and limit inferior are
defined as

lim sup
n→∞

an = inf
n≥0
{sup

k≥n
{ak}} = lim

n→∞

(
sup
m≥n

am

)
,

lim inf
n→∞ an = sup

n≥0
{ inf

k≥n
{ak}} = lim

n→∞

(
inf

m≥n
am

)
.

The following theorem is useful.

Theorem 5.3 We say that L < ∞ is the limit superior of an if the following two conditions
hold:
(i) For every ε > 0 there exists an integer N such that n > N implies

an < L+ ε,

that is, the above holds for all but finitely many n;
(ii) For every ε > 0 and given m, there exists an integer n > m such that

an > L− ε,

that is, infinitely many an satisfy the above condition.
A similar statement is true for limit inferior.

In words, we can characterize the above limits as follows: Let us consider lim inf an. Take
all possible convergent subsequences ank

of an, and let E be the set of all limits of such
subsequences. Then lim inf an = inf E. Observe that lim inf an and lim sup an always exist,
and lim an = a if and only if lim inf an = a = lim sup an.
Finally, in applications we often use the following simple result.

Theorem 5.4 Assume that an ≤ bn for all n = 1, 2, . . . Then we have

lim inf
n→∞ an ≤ lim inf

n→∞ bn, lim sup
n→∞

an ≤ lim sup
n→∞

bn.
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and due to the arbitrariness of f the convergence can be as slow as desired. 2

It should not be a surprise that the subadditivity property can be relaxed while still
keeping unchanged the main thesis of Fekete’s theorem. For example, if xm+n ≤ xn +xm + c,
where c is a constant, then yn = xn + c satisfies the subadditivity property, hence xn/n has
a limit that is equal to inf xm/m. Can we replace the constant c by a sequence cn = o(n)
so that the thesis of Fekete’s theorem still holds? The next result solves this problem, while
exercises provide further generalizations. We shall follow the presentation of Steele [402].

Theorem 5.5 (De Bruijn and Erdős, 1952) Let cn be a positive and nondecreasing se-
quence fulfilling

∞∑
k=1

ck
k2

<∞. (5.5)

If xn satisfies
xn+m ≤ xn + xm + cn+m, (5.6)

then
lim

n→∞
xn

n
= inf

m≥1

xm

m
.

Proof. The idea is to find a new sequence bn = o(n) such that an = xn + bn is subadditive.
Let

bn = n
∞∑

k=n

ck
k2
,

which is o(n) due to (5.5). Observe that monotonicity of cn implies

h∑
k=`

ck
k2
≥ c`

∫ h+1

`
t−2dt = c`

(
1
`
− 1
h+ 1

)
.

Define an = xn + bn, and assume without loss of generality that m ≥ n. Then

am+n − an − am = xn+m − xn − xm −m
m+n∑
k=m

ck
k2
− n

m+n∑
k=n

ck
k2

≤ cn+m −mcm
(

1
m
− 1
n+m+ 1

)
− ncn

(
1
n
− 1
n+m+ 1

)
≤ cm

(
m

m+ n+ 1

)
− cn

(
1− n

n+m+ 1

)
≤ cn

(
m+ n

m+ n+ 1
− 1

)
≤ 0,
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where the inequalities in the third and fourth line follow from the monotonicity of cn, and
the last inequality is a consequence of the positivity of cn. Thus we prove that xn + bn is
subadditive and its limit is equal to infm≥1(xm/m + bm/m). But, by (5.5) bm/m = o(1),
which completes the proof.

As the reader may expect, there are many interesting embellishments of the subadditive
theorem. We discuss some of them in the exercises section, but two stand out above all and
we present a short account of them here following Steele’s presentation from [402]. The first
one deals with the rate of convergence (for a generalization see Exercise 2).

Theorem 5.6 (Pólya and Szegő, 1924) If a real sequence xn satisfies

xn + xm − c ≤ xn+m ≤ xn + xm + c (5.7)

for all n,m ≥ 1, then there is a finite constant α such that∣∣∣∣xn

n
− α

∣∣∣∣ ≤ c

n
(5.8)

for all n ≥ 1.

Proof. First of all, observe that setting m = n in (5.7) we obtain∣∣∣∣x2m

2m
− xm

m

∣∣∣∣ ≤ c

2m

for all m ≥ 1. Also, since xn + c is subadditive, by Fekete’s theorem xn/n→ inf xm/m = α.
Using this and the above we obtain∣∣∣∣α− xm

m

∣∣∣∣ < ∣∣∣∣x2m

2m
− xm

m

∣∣∣∣+ ∣∣∣∣x4m

4m
− x2m

2m

∣∣∣∣+ · · · <∑
k≥1

c

2km
=

c

m
,

as desired.

Finally, the next theorem due to De Bruijn and Erdős shows that we can relax the
requirement that the subadditivity holds for all m and n. We ask the reader to prove it in
Exercise 3 (cf. [402]).

Theorem 5.7 (De Bruijn and Erdős, 1952) If a real sequence xn satisfies the subaddi-
tivity condition for the restricted range of m and n

xm+n ≤ xn + xm for
1
2
n ≤ m ≤ 2n,

then
lim

n→∞
xn

n
= inf

m≥1

xm

m
= α,

where −∞ ≤ α <∞.
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5.2 Subadditive Ergodic Theorem

In the early seventies there was a resurgence of interest in generalizing Fekete’s deterministic
subadditivity result to a sequence of random variables. Such an extension would have an
impact on many research problems of those days. For example, Chvatal and Sankoff [67] used
ingenious tricks to establish the probabilistic behavior of the Longest Common Superstring
problem (see Example 1), while it is a trivial consequence of a stochastic extension of the
subadditivity result. In 1976 Kingman [240] presented the first proof of what later will be
known as the Subadditivity Ergodic Theorem. Below, we present an extension of Kingman’s
result due to Liggett [288] and Derriennic [93].

To formulate it we must consider a sequence of doubly indexed random variables Xn
m =

(Xm,Xm+1, . . . ,Xn). However, traditionally, when dealing with subadditivity theorems, one
denotes such a substring as Xm,n = Xn

m, and we adopt it here. Our goal is to say something
about probabilistic behavior of X0,n as n→∞, when X0,n satisfies the subadditivity property.
One expects that X0,n ∼ nα in a probabilistic sense, where α is a constant. This turns out
to be true under certain assumptions specified below in the subadditive ergodic theorem.

Theorem 5.8 (Kingman, 1976; Liggett, 1985) Let Xm,n (m < n) be a sequence of ran-
dom variables satisfying the following properties:

(i) X0,n ≤ X0,m +Xm,n (subadditivity);

(ii) For every k, {Xnk,(n+1)k, n ≥ 1} is a stationary sequence.

(iii) The distribution of {Xm,m+k, k ≥ 1} does not depend on m.

(iv) E[X0,1] <∞ and for each n, E[X0,n] ≥ c0n where c0 > −∞.

Then
lim

n→∞
E[X0,n]

n
= inf

m

E[X0,m]
m

:= α, (5.9)

and also
lim

n→∞
X0,n

n
= X a.s. and in L1, (5.10)

such that E[X] = α. Finally, if all stationary sequences in (ii) are ergodic, then

lim
n→∞

X0,n

n
= α (a.s.). (5.11)

Clearly, (5.9) follows directly from Fekete’s Theorem 5.1 while the proof of almost sure
convergence and in mean (5.10) is beyond the scope of this book. An accessible proof can
be found in Durrett [117]. Also, the original proof of Kingman [240] is readable. In fact,
Kingman proved a weaker version of the theorem in which (ii) and (iii) are replaced by
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(ii’) Xm,n is stationary (i.e., the joint distributions of Xm,n are the same as Xm+1,n+1) and
ergodic.

There are examples in which (ii’) does not hold while Liggett’s version works fine (cf. [117]).
Before we proceed with examples (see also Section 5.5) we mention a generalization of

the subadditive ergodic theorem that is known as the almost subadditive ergodic theorem.

Theorem 5.9 (Derriennic, 1983) Let (ii’) and (iv) above be fulfilled and (i) be replaced
by

X0,n ≤ X0,m +Xm,n +Am,n (5.12)

where Am ≥ 0 and limn→∞ E[A0,n/n] = 0, then (5.11) holds.

We must point out, however, that the above findings establish only the existence of a
constant α such that (5.11) holds. They say nothing of how to compute the limit, and in fact
many ingenious methods have been devised in the past to bound the constant.

Example 5.3 The First Birth Problem for an Age-Dependent Branching Process
Let us consider an age-dependent branching process in which each individual i lives for

time ti distributed as F before producing k offspring with probability pk. The process starts
with one individual in generation 0 who is born at time 0, and when dying its offspring
start independent copies of the original process. Our interest lies in estimating the birth
time Bn of the first member of generation n (cf. [46, 47, 241]). To estimate Bn, let B0,m

be the birth of the first individual in generation m, and Bm,n be the time needed for this
individual to have an offspring in generation n > m. Little reflection is needed to find out that
B0,n ≤ B0,m + Bm,n; however, it is not true that for l > 0 we also have Bl,n ≤ Bl,m + Bm,n.
Since Bn = B0,n is a nonnegative process, all assumptions of Theorem 5.8 are fulfilled, and
therefore there exists a constant α such that

Bn

n
→ α (a.s.).

Interestingly enough, in this case we can compute the constant α. In Exercise 16 we guide
the reader through Biggins’ derivation (cf. [46]).

The first birth problem is of prime importance to the analysis of algorithms since in 1986
Devroye [96] used it to prove the long-standing conjecture concerning the height of a binary
search tree (cf. also Drmota [105, 106] and Reed [352])

Example 5.4 Increasing Sequences in Random Permutations
Let π be a permutation of {1, 2, . . . , n} and let ln(π) be the longest increasing sequence

in π, that is, the largest k for which there are i1 < i2 < · · · < ik such that π(i1) < π(i2) <
· · · < π(ik). This example is interesting since it is easy to see that ln(π) is not linear in n,
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hence the subadditive ergodic theorem cannot be applied. We have the following estimate by
Boole’s inequality

Pr{ln(π) ≥ 2e
√
n} ≤ exp(−2e

√
n).

Indeed, there are
(n
k

)
subsequences of length k and each has probability 1/k!, so that

Pr{ln(π) ≥ k} ≤
(
n

k

)
1
k!
.

Using Stirling’s approximation with k = 2e
√
n, one proves the above estimate. But for any k

E[ln(π)] =
∑

0≤i≤k

iPr{ln = i}+
∑

k+1≤i≤n

iPr{ln = i}

≤ k + nPr{ln(π) ≥ k},

hence for sufficiently large n we have E[ln(π)] ≤ c√n for some c > e. The longest increasing
sequence cannot grow linearly!

To circumvent this problem, we follow Hammersley and poissonize, that is, embed the
process ln(π) into a Poisson stream of rate 1 in the plane. Poissonization is a powerful
probabilistic technique to which we devote Chapter 10 of this book. We denote by l(t, s) (t <
s) the length of the longest increasing sequence in the rectangle with corners (s, s), (s, t), (t, t)
and (t, s). By the longest sequence in the plane we mean the largest k for which there are
points (xi, yi) in the Poisson process with s < x1 < · · · < xk < t and s < y1 < · · · < yk < t.
Now, we are in the superadditive world, that is,

l(0, s + t) ≥ l(0, s) + l(s, s+ t),

since the longest increasing sequence can go through two other rectangles not included in
l(0, s) and l(s, s+ t). Then, by the superadditive ergodic theorem

lim
t→∞

l(t)
t

= α (a.s.).

The ease with which we obtain this result has its price. We must depoissonize it to recover the
probabilistic behavior of ln(π). Chapter 10 is devoted to analytic depoissonization. Here we
apply a theorem from that chapter adopted to our situation. Let us concentrate on estimating
the average E[ln(π)], which we denote for simplicity as gn. The idea is to choose such t that
on a square of the area t2 there are exactly n points. In other words, we shall condition on
the Poisson process having n points in the square (0, t)2. It is well known (cf. [402, 369])
that, under the conditioning on n, l(0, t) has the same distribution as ln(π). But we just
proved that

E[l(t)] =
∞∑

k=0

gk
(t2)k

k!
e−t2 ∼ αt (5.13)
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for large t. We need to recover gn = E[ln(π)] for large n from the above. This is exactly
where the analytic depoissonization can help. Setting t2 = z in (5.13), we observe that
the Poisson transform G̃(z) =

∑∞
k=0 gk

zk

k! e
−z of gn = E[ln(π)] grows like α

√
z; hence by the

depoissonization Theorem 10.3 in Chapter 10 we conclude that E[ln(π)] = gn = α
√
n+o(

√
n).

2

5.3 Martingales and Azuma’s Inequality

The subadditive ergodic theorem is a very powerful tool that allows us to predict the growth
rate of a quantity of interest. As we have seen before (cf. Example 4), the technique is not
restricted to linear growth, but then one must also use other approaches. The drawback
of the subadditivity method lies in its inability to evaluate the constant α. But we can
try to do the next best thing, namely, assess the deviation from the most likely value αn.
This is known as the concentration of measure (probability). Surprisingly enough, there is
a general technique for the concentration of measure even without any knowledge about α.
Such results are known in literature under the name Azuma’s inequality or the method of
bounded differences (cf. [312]).

Azuma’s inequality is an outcome of Hoeffding’s large deviations lemma applied to mar-
tingales. Before we plunge into technical details, we would like to make two comments.
Large deviations is discussed in depth in the next section of this chapter and we return to it
in Chapter 8. Azuma’s inequality could be viewed as a special case of large deviations, but
its applicability and usefulness deserve a special attention. In fact, at the heart of Azuma’s
inequality are martingales. Martingale is another very useful tool in the probabilistic analysis
of algorithms, so we recall their basic properties in Table 5.2. The applications Section 5.5.3
provides a more sophisticated example of martingales applications. In passing, we mention
here that Régnier [355] (cf. Mahmoud [305]) used the martingales convergence theorem to
establish the limiting distribution of the path length in a binary search tree or the quicksort
algorithm (cf. [76, 110, 193, 258, 313, 370, 381, 420]).

Martingales are standard probabilistic tools, and the interested reader is referred to Dur-
rett [117] for a more detailed discussion. Of supreme importance for martingale is its conver-
gence theorem (see Theorem 5.12). However, in the analysis of algorithms a bound on the
degree of fluctuation of a martingale is even more interesting. This bound will lead directly
to Azuma’s inequality, which finds an abundance of applications.

Let then {Yn}∞n=0 be a martingale with respect to the filtration F , or simply Yn is a
martingale with respect to X0,X1, . . ., as discussed in Definitions 5.10 and 5.11 of Table 5.2.
We now define the martingale difference sequence {Dn}∞n=1 as

Dn = Yn − Yn−1, (5.14)
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Table 5.2: Basic properties of martingales

Martingales, besides Markov processes and stationary processes, are another broad class of
processes that often arise in the analysis of algorithms.

Definition 5.10 A sequence Yn = f(X1, . . . ,Xn) (n ≥ 0) is a martingale with respect to the
sequence X0,X1, . . . if for all n ≥ 0

(i) E[|Yn|] <∞,

(ii) E[Yn+1| X0,X1, . . . ,Xn] = Yn .

We should observe that E[Yn+1| X0,X1, . . . ,Xn] defines a random variable depending on
X0, . . . ,Xn (or more precisely, defined on the σ-field with respect to each X0,X1, . . . ,Xn).
The best known and simplest example of a martingale is constructed as follows: Define
Sn = X1 + · · · + Xn with Xi being i.i.d. with mean µ = E[Xi]. Then, Yn = Sn − nµ is
a martingale since

E[Yn+1| X0,X1, . . . ,Xn] = E[Yn +Xn+1 − µ| X0,X1, . . . ,Xn] = Yn,

where we use the fact that E[Yn| X1, . . . ,Xn] = Yn since Yn is completely determined by
X1, . . . ,Xn.
From the above, we may conclude that for the definition of martingale we require only the
knowledge (i.e., information) obtained from X0,X1, . . . ,Xn. In fact, this vague idea can be
made rigorous, if we agree to enter the realm of σ-fields. We do, since the advantage of
such an approach will be immediately visible (e.g., shortening our notation). In general, let
F = {F0,F1, . . .} be a sequence of sub-σ-field of F . We call F a filtration if Fn ⊂ Fn+1 for
all n (i.e., Fn is more coarser than Fn+1). A sequence Yn (n ≥ 0) is said to be adapted to the
filtration F , if Yn is Fn measurable for all n (i.e., can be properly defined on Fn). With this
in mind, we can generalize the definition of martingales to the following one.

Definition 5.11 We say that the sequence Yn is a martingale with respect to the filtration F
if for all n ≥ 0 (i) above holds together with

(ii) E[Yn+1| Fn] = Yn .

We recover the previous definition by choosing Fn = σ(X0,X1, . . . ,Xn), i.e., the smallest σ-
fields with respect to which the variables Xi are defined. Finally, we discuss one result known
as the martingale convergence theorem which we present here in a simpler version.

Theorem 5.12 If Yn is a martingale with E[Y 2
n ] ≤ M < ∞ for some M , then there exists a

random variable Y such that Yn converges to Y almost surely and in mean square.
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so that

Yn = Y0 +
n∑

i=1

Di. (5.15)

Clearly, Dn depends only on the knowledge contained in X0, . . . ,Xn, or simply is Fn-
measurable where Fn = σ(X0, . . . ,Xn) is the smallest σ-field generated by (X0, . . . ,Xn).
Also, by the definition of martingales E[|Dn|] <∞. In fact, for all n,

E[Dn+1| Fn] = E[Yn+1| Fn]−E[Yn|Fn] = Yn − Yn

= 0, (5.16)

hence E[Dn] = 0. Actually, let us consider the product Dn+1Dn. Observe that

E[Dn+1Dn| Fn] = DnE[Dn+1| Fn] = 0.

In general, we can conclude that for any 1 ≤ i1 < i2 < · · · < ik ≤ n

E[Di1Di2 · · ·Dik ] = 0. (5.17)

This property, as pointed out by Steele [402], is the only one required to prove Theorem 5.13
below (but we formulate it in a more traditional way and ask the reader to generalize it in
Exercise 4).

Theorem 5.13 (Hoeffding’s Inequality) Let {Yn}∞n=0 be a martingale with respect to the
filtration F , and let there exist constant cn such that for all n ≥ 0

|Yn − Yn−1| ≤ cn. (5.18)

Then for x > 0

Pr{|Yn − Y0| ≥ x} = Pr

{
|

n∑
i=1

Di| ≥ x
}
≤ 2 exp

(
− x2

2
∑n

i=1 c
2
i

)
. (5.19)

Proof. We start with a simple inequality for the exponential function. Observe that for
β > 0 the exponential function eβd is convex for any d, and hence on the interval d ∈ (−1, 1)
we obtain

eβd ≤ 1
2

(1− d)e−β +
1
2

(1 + d)eβ .

If now d is replaced by a random variable D with mean E[D] = 0, then the above becomes

E[eβD] ≤ 1
2

(
e−β + eβ

)
< e

1
2
β2
, (5.20)

where the last inequality follows immediately from the Taylor expansions of both sides and
a comparison of the coefficients at β2k.
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We shall only derive (5.19) for Yn−Y0 ≥ x since our arguments will be valid for the other
side of the inequality. Observe now that by Markov’s inequality (cf. (2.6)) we have

Pr{Yn − Y0 ≥ x} = Pr{eθ(Yn−Y0) ≥ eθx} ≤ e−θxE[eθ(Yn−Y0)] (5.21)

for some θ > 0. Let Dn = Yn − Yn−1 be the martingale difference. Observe that Yn − Y0 =
Yn−1 − Y0 + Dn. Conditioning now on Fn−1 (the reader can think of conditioning on all
knowledge extracted from Y0, Y1, . . . , Yn−1) we obtain

E[eθ(Yn−Y0)| Fn−1] = eθ(Yn−1−Y0)E[eθDn | Fn−1]

≤ eθ(Yn−1−Y0)e
1
2
θ2c2n ,

where the last inequality follows from (5.20) applied to Dn/cn ≤ 1 (cf. (5.18)). Now taking
the expectation of the above with respect to Fn we have

E[eθ(Yn−Y0)] ≤ e 1
2
θ2c2nE[eθ(Yn−1−Y0)],

and after n iterations we arrive at

E[eθ(Yn−Y0)] ≤ exp

(
1
2
θ2

n∑
i=1

c2i

)
.

Hence, by (5.21) we prove that

Pr{Yn − Y0 ≥ x} ≤ exp

(
−θx+

1
2
θ2

n∑
i=1

c2i

)
,

which becomes (5.19) after the substitution θ = x
(∑n

i=1 c
2
i

)−1 (which maximizes the exponent
of the above). This completes the proof.

Our derivation of (5.19) is quite simple but we did not get the optimal constant in the
exponent. The reader is asked in Exercise 5 to prove that (5.19) can be improved to

Pr{|Yn − Y0| ≥ x} = Pr

{
|

n∑
i=1

Di| ≥ x
}
≤ 2 exp

(
− 2x2∑n

i=1 c
2
i

)
. (5.22)

Before we derive the Azuma concentration of measure (cf. Theorem 5.15), we illustrate
it in an example. The reader should very carefully study this example since it explains the
main idea behind the Azuma inequality and a construction of martingale differences.

Example 5.5 Bin Packing
Consider n objects with random sizes X1,X2, . . . ,Xn having a common distribution on

[0, 1], and an unlimited collection of bins each of size 1. Let Bn := Bn(X1, . . . ,Xn) be the
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minimum number of bins required to pack the objects. First of all, it is not difficult to see
that Bn is subadditive, that is, B0,n ≤ B0,m + Bm,n, hence by Theorem 5.8 there exists a
constant α such that

lim
n→∞

E[Bn]
n

= α,

lim
n→∞

Bn

n
= α (a.s.).

The evaluation of α is quite complicated, if possible at all, but we can answer the next
interesting question: how close is Bn to its mean value E[Bn] ∼ αn? As expected, we shall
use Hoeffding’s inequality. Thus, we must define a martingale and martingale differences.
Here it comes. Let

Yi = E[Bn(X1, . . . ,Xn)| X1, . . . ,Xi]
= E[Bn| Fi],

where throughout we assume that Fi = σ(X1, . . . ,Xi). In other words, Yi is the average of
the minimum number of bins required to pack n items, provided someone reveals to us sizes
X1, . . . ,Xi of the first i objects. Is it a martingale? Yes, it is, and we prove it below. Our
task is to show that {Yi}ni=0 is a finite martingale; that is, for all 0 ≤ i ≤ n− 1

E[Yi+1| Fi] = E[E[Bn| Fi+1]| Fi] = E[Bn| Fi] = Yi. (5.23)

The second equality, which we shall prove in its whole generality in Lemma 5.14, is at the
heart of many martingale applications. In this example, instead of being general and abstract
we present a simple and boring proof that reveals all the details: We simply prove the above
for n = 3; that is, we show

E[Y2| X1] = E[E[Bn(X1,X2,X3)| X1,X2]| X1] = E[Bn(X1,X2,X3)| X1] = Y1. (5.24)

Indeed, let us compute the above averages. Observe that the right-hand side of the above
becomes

E[Bn(X1,X2,X3)| X1] =
∫

x2

∫
x3

B(X1, x2, x3)f(X1, x2, x3|X1)dx2dx3, (5.25)

where f(X1, x2, x3|X1) = f(X1, x2, x3)/f(X1) is the conditional density of (X1, x2, x3) given
X1. Needless to say, the above average is a random variable (since X1 is a random variable).
Let us now compute the left-hand side of (5.24). Let Z(X1,X2) = E[Bn(X1,X2,X3)| X1,X2];
that is, Z(X1,X2) is a random function of X1,X2 whose value is

Z(X1,X2) = E[Bn(X1,X2,X3)| X1,X2] =
∫

x3

B(X1,X2, x3)
f(X1,X2, x3)
f(X1,X2)

dx3.
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Its distribution is f(x1, x2) when X1 = x1 and X2 = x2. Then,

E[Z(X1,X2)| X1] =
∫

x2

Z(X1, x2)
f(X1, x2)
f(X1)

dx2

=
∫

x2

∫
x3

B(X1, x2, x3)
f(X1, x2, x3)

f(X1)
dx2dx3,

which is equal to E[Bn(X1,X2,X3)| X1] as established in (5.25). This proves (5.24). The
same analysis shows that for any 1 ≤ i ≤ n we have E[Yi+1| Fi] = Yi.

Knowing that Yi is a martingale, we define the martingale difference as Di = Yi − Yi−1,
and verify that

E[Di|Fi−1] = E[E[Bn| Fi]| Fi−1]−E[Bn|Fi−1]
= E[Bn| Fi−1]−E[Bn|Fi−1] = 0, (5.26)

as desired. In fact, the equality (5.26) follows from (5.23) (see also Lemma 5.14 below).
It remains now to observe that Yn = E[Bn|X1, . . . ,Xn] = Bn and Y0 = E[Bn]; hence

we are almost ready to apply Hoeffding’s inequality, if we can prove that Di = Yi − Yi−1 is
bounded. The only difference between Yi and Yi−1 is that the former knows one more size,
namely Xi. But, in the worst case this cannot improve the packing by more than one bin!
Thus |Di| = |Yi − Yi−1| ≤ 1. In view of this, Theorem 5.13 allows us to write

Pr{|Bn −E[Bn]| ≥ x} ≤ 2 exp

(
−x

2

2n

)
.

We do not know exactly E[Bn], except that it is O(n). Let then x = εn for any ε > 0. Thus

Pr{|Bn − αn| ≥ εn} ≤ 2 exp
(
−1

2
ε2n(1 + o(1))

)
which is a useful bound as long as nε2 →∞. 2

In the above example we used the following result, which is crucial for any martingale
application, in particular, for the Azuma inequality.

Lemma 5.14 If F1 ⊂ F2, then

E[E[Y |F1]|F2] = E[Y |F1], (5.27)
E[E[Y |F2]|F1] = E[Y |F1]. (5.28)

In words, the smaller σ-field always wins. In particular,

E[E[Y | X1,X2]| X1] = E[Y | X1] = E[E[Y | X1]| X1,X2].
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Proof. The proof of (5.27) is quite simple. Observe that E[f(X)| X] = f(X) since f(X) ∈
σ(X) for a measurable function f . But E[Y |F1] ∈ F2 since F1 ⊂ F2; hence (5.27) follows.
The second part is a little more intricate, but we have already given a sketch of the proof above
in Example 5. Here is another derivation: Notice that E[Y |F1] ∈ F1 and for A ∈ F1 ⊂ F2

we have ∫
A

E[Y |F1]dP =
∫

A
Y dP =

∫
A

E[Y |F2]dP,

which completes the proof.

We are now ready to derive the Azuma inequality. Let

Yn = Fn(X1, . . . ,Xn)

be a martingale with respect to X1, . . . ,Xn. Define

Di = E[Yn|Fi]−E[Yn|Fi−1]
= E[Yn| X1, . . . ,Xi]−E[Yn| X1, . . . ,Xi−1],

which is a martingale difference since by Lemma 5.14

E[Di|Fi−1] = E[E[Yn|Fi|Fi−1]−E[Yn|Fi−1] = E[Yn|Fi−1]−E[Yn|Fi−1] = 0.

Also, it is easy to see that

E[Yn|Fn] = Yn, and E[Yn|F0] = E[Yn],

since F0 does not have any information about X1, . . . ,Xn while Fn completely describes Yn.
In view of the above, we can apply Hoeffding’s inequality to Di provided they are bounded,

say |Di| ≤ ci. However, the real trick of Azuma is to explore this generic representation to
find a simple way of bounding Di. In order to accomplish this, let X̂i be a new random
variable independent of Xi and with the same distribution as Xi. The point to observe is
that Fi has no information about this new random variable, so that

E[Fn(X1, . . . ,Xi, . . . ,Xn)|Fi−1] = E[Fn(X1, . . . , X̂i, . . . ,Xn)|Fi].

Hence

Di = E[Fn(X1, . . . ,Xi, . . . ,Xn)|Fi]−E[Fn(X1, . . . ,Xi, . . . ,Xn)|Fi−1]
= E[Fn(X1, . . . ,Xi, . . . ,Xn)|Fi]−E[Fn(X1, . . . , X̂i, . . . ,Xn)|Fi].

In view of this, if we postulate for every 1 ≤ i ≤ n

|Fn(X1, . . . ,Xi, . . . ,Xn)|Fi]− Fn(X1, . . . , X̂i, . . . ,Xn)|Fi]| ≤ ci,

then |Di| ≤ ci, and Hoeffding’s inequality immediately implies the following Azuma’s result.
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Theorem 5.15 (Azuma’s Inequality) Let Yn = Fn(X1, . . . ,Xn) be a martingale with re-
spect to X1, . . . ,Xn such that for every 1 ≤ i ≤ n there exist constant ci

|Fn(X1, . . . ,Xi, . . . ,Xn)− Fn(X1, . . . , X̂i, . . . ,Xn)| ≤ ci , (5.29)

where X̂i is independent of Xi and has the same distribution as Xi. Then

Pr{|Yn −E[Yn]| ≥ x} = Pr{|Fn(X1, . . . ,Xn)−E[Fn(X1, . . . ,Xn)]| ≥ x}

≤ 2 exp

(
− x2

2
∑n

i=1 c
2
i

)
(5.30)

for some x > 0.

In applications the following corollary is often used. Its proof is a direct consequence of
our previous discussion.

Corollary 5.16 If X1, . . . ,Xn are independent random variables satisfying (5.29) for a func-
tion Fn, then (5.30) holds.

In the applications section (Section 5.5) we discuss some nontrivial applications of Azuma’s
inequality. The reader can also consult McDiarmid [312] for many interesting applications in
graph theory. In passing, we point out that the concentration of mean for the bin packing
Example 5 can be obtained directly from the Azuma inequality.

5.4 Large Deviations

Hoeffding’s inequality presented in the previous section is an example of a large deviations
bound when applied to the martingale Sn − nE[X1] where Sn = X1 + · · · + Xn. We devote
this section to a detailed discussion of large deviations of Sn. Before we plunge into technical
details, we first offer an explanation of why one must investigate large deviations and why
the central limit theorem studied so extensively in probability theory is not sufficient.

Let us consider a sequence X1, . . . ,Xn of i.i.d. random variables, and let Sn = X1 + · · ·+
Xn. Define µ := E[X1] and σ2 := Var[X1]. To study limiting laws of Sn one must normalize
it appropriately. For example, for the central limit theorem the following normalization is
useful:

sn :=
Sn − nµ
σ
√
n

.

Let Fn(x) := Pr{sn ≤ x} and Φ(x) be the distribution function of the standard normal
distribution, that is,

Φ(x) :=
1√
2π

∫ x

−∞
e−

1
2
t2dt .
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The central limit theorem asserts that Fn(x) → Φ(x) for continuity points of Φ(·), provided
σ < ∞ (cf. [117, 123]). A stronger version is due to Berry-Essén (see Lemma 8.29 of
Chapter 8), who proved that

|Fn(x)− Φ(x)| ≤ 2ρ
σ2
√
n
, (5.31)

where ρ = E[|X−µ|3] <∞. Finally, Feller [123] showed that if centralized moments µ2, . . . , µr

exist, then

Fn(x) = Φ(x)− 1√
2π
e−

1
2
x2

r∑
k=3

n−
1
2
k+1Rk(x) +O

(
n−

1
2
r+ 1

2

)
(5.32)

uniformly in x, where Rk(x) is a polynomial of degree k depending only on µ1, . . . , µr but not
on n and r. We shall return to these problems in Chapter 8, where we study large deviations
by some analytic methods.

One should notice, however, the weakness of the central limit result that is able only to
assess the probability of small deviations from the mean. Observe that (5.31) or (5.32) are
useful only for x = O(1) (i.e., for Sn ∈ (µn−O(

√
n), µn+O(

√
n)) due to a polynomial rate

of convergence as shown in (5.31). To see this even more explicitly we quote here a result of
Greene and Knuth [171], proved in Section 8.4.3, that is valid for discrete random variables,
namely,

Pr{Sn = µn+ r} =
1

σ
√

2πn
exp

(
−r2
2σ2n

)(
1− κ3

2σ4

(
r

n

)
+

κ3

6σ6

(
r3

n2

))
+O

(
n−

3
2

)
, (5.33)

where κ3 is the third cumulant of X1, and r is such that µn + r is integer. Now, it should
be clear that when r = O(

√
n) (i.e., x = O(1) in our previous formulas) the error term is

of the same order as the leading term of the asymptotic expression; thus the whole estimate
becomes useless.

From the above discussion, one should conclude that the central limit theorem has a
limited range of application, and one should expect another law for large deviations from the
mean, that is, when x→∞. The most interesting from the application point of view is the
case when x = O(

√
n) (or r = O(n)), that is, for Pr{Sn = n(µ+ δ)} for δ 6= 0. Hereafter, we

shall discuss this large deviations behavior.
Actually, we already touched large deviations results when we derived Hoeffding’s inequal-

ity. To see this, let us define Yn = Sn − nµ where X1, . . . ,Xn are i.i.d. random variables.
Notice that Yn is a martingale with respect to Fn = σ(X1, . . . ,Xn) since

E[Yn+1|Fn] = E[Sn +Xn+1 − (n+ 1)µ|Fn] = Sn − (n + 1)µ− µ = Yn.

Defining the martingale difference Dn = Yn − Yn−1 and recognizing that E[Yn|Fn] = Yn as
well as E[Yn|F0] = E[Yn], we derive from (5.22) Theorem 5.17 below (several generalizations
and extensions of this results are discussed in the exercises section).
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Theorem 5.17 (Hoeffding, 1963) Let X1, . . . ,Xn be i.i.d. random variables such that
|Xi| ≤ 1 for every i. Then

Pr{Sn ≥ n(µ+ δ)} ≤ exp
(
−1

2
nδ2

)
(5.34)

for δ > 0.

In passing we observe that directly from Theorem 5.13 we can obtain a weaker bound,
namely, Pr{Sn ≥ n(µ+ δ)} ≤ exp

(
−1

8nδ
2
)
.

Let us now further explore the large deviations behavior of Sn = X1+· · ·Xn for i.i.d. (not
necessary bounded) random variables. We start with evaluating Pr{Sn ≥ an} as n → ∞.
Observe that

Pr{Sn+m ≥ (n+m)a} ≥ Pr{Sm ≥ ma, Sn+m − Sm ≥ na} = Pr{Sn ≥ na}Pr{Sm ≥ ma},

since Sm and Sn+m − Sm are independent. Taking logarithm of both sides, and recognizing
that log Pr{Sn ≥ an} is a superadditive sequence, by Fekete’s Theorem 5.1 we obtain

lim
n→∞

1
n

log Pr{Sn ≥ na} = −I(a),

where I(a) ≥ 0. Thus Sn may decay exponentially (provided I(a) > 0) when far away from
its mean, as we have already seen it for bounded random variables. Unfortunately, we obtain
the above result from the subadditive property that allows us to conclude the existence of
the above limit, but says nothing about I(a). In particular, we must discover when I(a) = 0,
that is, the decay of Sn is subexponential. We discuss this next.

We want to know when Sn has a subexponential or heavy tail, which will lead to I(a) = 0.
Intuitively, when the tail of the distribution of a random variable X is not exponential, then
the moment generating function defined as

M(λ) = E[eλX ]

cannot exist for λ > 0. (We shall discuss in depth generating functions in Chapter 7 for
complex λ, but here we assume that λ is real and positive.) To make this claim precise, let
us consider a sequence X1, . . . ,Xn of i.i.d. random variables such that for all λ > 0

M(λ) = E[eλX1 ] =∞. (5.35)

Then we claim
lim inf
n→∞

1
n

log Pr{Sn ≥ an} = 0, (5.36)
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where, as always, Sn = X1 + · · ·+Xn. It suffices to prove that

lim inf
t→∞

1
t

log Pr{t ≤ Sn ≤ t+ 1} = 0. (5.37)

Indeed, observe that

lim inf
n→∞

1
n

log Pr {Sn ≥ an} ≥ lim inf
n→∞

1
n

log Pr {an ≤ Sn < an+ 1}

= |a| lim inf
n→∞

1
|a|n log Pr {an ≤ Sn < an+ 1}

≥ |a| lim inf
t→∞

1
t

log Pr{t ≤ Sn ≤ t+ 1}.

We prove now that (5.35) implies (5.37). Let us assume the contrary and postulate the
existence of δ > 0 such that for t > t0 the following holds: Pr{t ≤ Sn ≤ t + 1} ≤ e−tδ . Then
for some constant Ct0 > 0, we obtain

E[eλSn ] =
∫ ∞

−∞
eλsdP (s) ≤ Ct0 +

∫ ∞

t0
eλsdP (s)

= Ct0 +
∞∑

t=t0

∫ t+1

t
eλsdP (s)

≤ Ct0 +
∞∑

t=t0

eλtPr{t ≤ Sn ≤ t+ 1}

< ∞ for λ < δ.

Thus the moment generating functions of Sn and X1 exist at least for λ < δ. This contradicts
our basic assumption (5.35) and proves (5.36).

Hereafter, we adopt the hypothesis that the moment generating function of X1 exists;
that is, we assume that

M(λ) = E[eλX1 ] <∞ for some λ > 0. (5.38)

In addition, we define the cumulant function of X1

κ(λ) = logM(λ).

Certainly, κ′(0) = E[X1] = µ and κ′′(0) = Var[X1]. In Exercise 12 we ask the reader to
prove that κ(λ) is a convex function.

For a moment we drop the assumption about independence of X1, . . . ,Xn. Then by
Markov’s inequality

eλnaPr{Sn ≥ na} = eλnaPr{eλSn ≥ eλna} ≤ E[eλSn ]

for any λ > 0. Actually, due to arbitrariness of λ, subject to λ > 0, we just derived the
Chernoff’s bound.
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Lemma 5.18 (Chernoff’s Bound) Let X1, . . . ,Xn be random variables for which the mo-
ment generating functions Mi(λ) exist for some λ > 0. Then

Pr{Sn ≥ na} ≤ min
λ>0

{
e−λnaE[eλSn ]

}
(5.39)

for any a > 0.

Example 5.6 Bounds on the Binomial Distribution
Let Xi be Bernoulli distributed with Pr{X1 = 1} = p and q = 1 − p. Hence, Sn =

X1 + · · ·+Xn has the Binomial(n, p) distribution. By Chernoff’s bound we have

Pr{Sn ≥ na} ≤ exp
(
−naλ+ n ln(peλ + q)

)
.

Set now a = p(1+ ε). Instead of finding the optimal λ, we assume that λ = εβ, and we select
β > 0 later. Since

ln(peλ + q) ≤ pεβ + pε2
β2

2
+ p

∞∑
i=3

(εβ)i

i!
,

we find
Pr{Sn ≥ na} ≤ exp

(
−npε2

(
β − 1

2
β2 −O(ε)

))
.

Setting β = 1− (1−O(ε))/
√

3, for sufficiently small ε > 0 we finally arrive at

Pr{Sn ≥ np(1 + ε)} ≤ exp(−npε2/3). (5.40)

The reader may follow the above derivation to prove also that

Pr{Sn ≤ np(1− ε)} ≤ exp(−npε2/2) (5.41)

for sufficiently small ε > 0. 2

In the i.i.d. case the bound (5.39) becomes

Pr{Sn ≥ na} ≤ min
λ>0
{exp(−n(aλ− κ(λ))}

since

E[eλ(X1+···+Xn)] = E[
n∏

i=1

eλXi ] =
n∏

i=1

E[eλXi ] = enκ(λ),

where the second equality follows from independence. We shall write the above in a different
manner by introducing the Fenchel-Legendre transform:

I(a) = sup
λ>0
{aλ− κ(λ)}.
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Then
Pr{Sn ≥ na} ≤ e−nI(a)

and we shall prove below a matching lower bound.
We first need to study some properties of the Fenchel–Legendre transform. Let now

L(λ) = aλ− κ(λ)
I(a) = sup

λ>0
L(λ).

To find an explicit formula for I(a) we must solve a simple optimization problem, that is,
to find such λa, if it exists, that L(λa) = I(a). We shall look at λa among solutions of
L′(λa) = 0, that is, such that

a = κ′(λa) =
M ′(λa)
M(λa)

. (5.42)

To study the existence of λa and to prove a lower bound for the large deviations result, we
introduce the twisted distribution known also as the shift of mean method (cf. Section 8.4.3)
and exponential change of measure. Let Xθ be a random variable with the distribution

Fθ(x) =
1

M(θ)

∫ x

−∞
eθydF (y).

It is easy to check that Fθ(x) is a distribution function, and

E[Xθ] = κ′(θ) =
M ′(θ)
M(θ)

.

The exponential change of measure plays an important role in probability since the mean of
Xθ can be shifted to any position by selecting proper θ (e.g., by choosing θ = λa the mean
of Xθ becomes a). Then, we may apply several useful probability laws that are true only
around the mean (e.g., weak law of numbers and central limit theorem). Moreover, since

κ′′(θ) = Var[Xθ] ≥ 0,

κ′(θ) = E[Xθ] is strictly increasing as long as the distribution F is not a point mass at µ. In
view of this, and the fact that κ′(0) = µ, we conclude that for a > µ equation (5.42) has at
most one solution λa ≥ 0 such that it maximizes the concave function L(λ).

We now know that λa maximizes L(λ); however, to use this fact for the large deviations,
we must relate it to the assumption (5.38) since it might happen that M(λ) is defined only
for λ < λa. To handle this properly, we introduce

x0 = sup{x : F (x) < 1},
λmax = sup{λ : M(λ) <∞}.

We are now ready to formulate the basic large deviations result.
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Theorem 5.19 (Large Deviations I) Assume X1, . . . ,Xn are i.i.d. Let M(λ) = E[eλX1 ] <
∞ for 0 < λ < λmax, and the distribution of Xi is not a point mass at µ. Set µ < a < x0

and assume there is λa ∈ (0, λmax) such that

a =
M ′(λa)
M(λa)

.

Then
lim

n→∞
1
n

log Pr{Sn ≥ na} = −(aλa − logM(λa)) = −I(a).

Proof. The upper bound follows immediately from the Chernoff bound and the discussion
above. Following Durrett [117], for the lower bound we introduce the twisted distribution
Fλ such that λ ∈ (λa, λmax), and consider Xλ

1 , . . . ,X
λ
n with distribution Fλ. Observe that

Sλ
n = Xλ

1 + · · · + Xλ
n has mean E[Sλ

n] = nκ′(λ) > na where the inequality follows from the
monotonicity of κ′(λ) and λ > λa. It is also easy to compute the distribution F λ

n of Sλ
n in

terms of the distribution Fn of Sn. Indeed, since Mn(λ) is the moment generating function
of Sn, we realize that

dFn(x)
dF λ

n (x)
= e−λxMn(λ).

Now we obtain

Pr{Sn > an} =
∫ ∞

na
dFn(x) =

∫ ∞

na
e−λxMn(λ)dF λ

n (x)

≥ Mn(λ)e−λna(1− Pr{Sλ
n ≤ na})

→ Mn(λ)e−λna,

where the last line follows from the weak law of large numbers since E[Sλ
n] > na, as shown

above. Thus
lim inf
n→∞

1
n

log Pr{Sn > na} ≥ −(aλ− logM(λ)),

and the theorem follows from the arbitrariness of λ > λa.

In Theorem 5.19, we assumed that λa < λmax; however, there is an abundance of examples
(see below) when this condition is violated. In this case, we should replace Theorem 5.19 by
the result below, which we ask the reader to prove in Exercise 14.

Theorem 5.20 (Large Deviations II) Suppose that

lim
λ→λmax

κ′(λ) = x1 ≤ a.

Then
lim

n→∞
1
n

log Pr{Sn ≥ na} = −(aλmax − logM(λmax))

for a ≥ x1.
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Example 5.7 Large Deviations of Some Known Distributions
We apply here the large deviations results to some distributions.

1. Standard Normal Distribution: In this case it is easy to check that

M(λ) =
1√
2π

∫ ∞

−∞
eλye−

1
2
y2
dy = e

1
2
λ2

by completing the square in the exponent. Then κ(λ) = 1
2λ

2, κ′(λ) = λ, and hence λa = a,
which implies I(a) = 1

2a
2 so that for a > 0

log Pr{Sn ≥ an} ∼ −
n

2
a2.

2. Poisson Distribution: Consider the Poisson distribution with mean θ. Then easy
calculations show

M(λ) = exp
(
θ(eλ − 1)

)
,

and λa = log(a/θ) so that
I(a) = a (log(a/θ)− 1) + θ.

Theorem 5.19 implies for a > θ

Pr{Sn ≥ an} =
(
a

θ

)−na

e−n(θ−a)+o(n).

3. Perverted Exponential Distribution: Define the density f as follows: it is zero for
x < 1 and for x ≥ 1 we set f(x) = Cx−3e−x with C chosen so that f is a probability density
(cf. [117]). Observe that M(λ) can exist only for λ ≤ 1 and

κ′(λ) ≤ κ′(1) = 2.

Thus λmax = 1, M(λmax) = C/2, and κ′(λ) = a does not have a solution for a > 2. In other
words, as λ→ λmax we only have κ′(λ)→ 2 = x1. By Theorem 5.20 for a > 2 we have

n−1 log Pr{Sn ≥ an} → − ((a− log(C/2))

as n→∞. 2

A major strengthening of the large deviation theorem is due to Gärtner [165] and Ellis
[111], who extended it to weakly dependent random variables. Let us consider Sn as a
sequence of random variables (e.g., Sn = X1 + . . . + Xn), and let Mn(λ) = E[eλSn ]. The
following is quite useful. Its proof can be found in Dembo and Zeitouni [90].
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Theorem 5.21 (Gärtner, 1977; Ellis, 1984) For dependent random variable X1, . . . ,Xn,
let for real λ

lim
n→∞

logMn(λ)
n

= c(λ)

exist and it is finite in a subinterval of the real axis. If there exists λa such that c′(λa) is
finite and c′(λa) = a, then

lim
n→∞

1
n

log Pr{Sn ≥ na} = −(aλa − c(λa)) .

We return to large deviations of weakly dependent random variables in Chapter 8 where we
analyze the quasi-power case, for which Mn(s) ∼ a(s)cn(s) where a(s) and c(s) are functions
of complex s.

5.5 Applications

This is a long chapter and we need a few good applications of the subadditive ergodic theorem,
Azuma’s inequality, martingales, Chernoff’s bound, and large deviations to illustrate these
important techniques. We hope this section presents some interesting problems. We shall
continue using these techniques throughout the book.

Hereafter, we discuss three applications. First, we deal with the edit distance problem
already described in Section 1.5 (cf. [296]). Then, we turn our attention to the Knuth-Morris-
Pratt pattern matching algorithm and prove that its complexity grows linearly with the size
of the text (cf. [357]). For this application, unlike other examples discussed so far, the hardest
part is to establish the subadditive property. Finally, we investigate an interesting problem
on a random sequence that arose in the analysis of hashing with lazy deletions (cf. [6]).

5.5.1 Edit Distance

We consider the edit distance problem presented in Section 1.5 and in Example 1 of this
chapter. We want to estimate the minimum cost Cmin or the maximum cost Cmax of trans-
forming Y `

1 of length ` into Xs
1 of length s. As mentioned before, this problem can be reduced

to finding the longest (shortest) path in a special grid graph (see Figure 1.8). Let us assume
that Y `

1 and Xs
1 are generated by a memoryless source and the weights of insertion WI , dele-

tion WD and substitution WQ are independent random variables. We further postulate that
` = βs for some β > 0; the reader may assume for simplicity that ` = s; however, we express
our results in terms of n = `+ s. We start with the following result

lim
n→∞

Cmax

n
= lim

n→∞
E[Cmax]

n
= α (a.s.)
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where α > 0 is a constant. Indeed, let us consider the `×s grid of Figure 1.8 with the starting
point O and the ending point E. Call it Grid(O,E). We also choose an arbitrary point, say A,
inside the grid so that we can consider two grids, Grid(O,A) and Grid(A,E). Actually, point A
splits the edit distance problem into two subproblems with objective functions Cmax(O,A) and
Cmax(A,E). Clearly, Cmax(O,E) ≥ Cmax(O,A) + Cmax(A,E). Thus under our assumption
regarding the weights, the objective function Cmax is superadditive, and a direct application
of Theorem 5.8 proves the result.

As expected, the above calculation does not indicate how to compute α. From Example 1,
we know that even in the simplest case of the longest common superstring problem, the
constant α is unknown. But we can prove that Cmax is concentrated around αn.

Theorem 5.22 (Louchard and Szpankowski, 1995) (i) If all weights are bounded ran-
dom variables such that max{WI ,WD,WQ} ≤ 1, then for arbitrary ε > 0 and large n

Pr{|Cmax −E[Cmax]| > εnα]} ≤ 2 exp(−1
2
ε2α2n). (5.43)

(ii) If the weights are unbounded but such that Wmax = max{WI ,WD,WQ} satisfies the
following:

nPr{Wmax ≥ n1/2−δ} ≤ U(n) (5.44)

for some δ > 0 and a function U(n)→ 0 as n→∞, then

Pr{|Cmax −E[Cmax]| > εnα]} ≤ 2 exp(−βnδ) + U(n) (5.45)

for any ε > 0 and some β > 0.

Proof: Part (i) is a direct consequence of Azuma’s inequality (cf. Theorem 5.15). We first
define Zn

1 = Y `
1 · Xs

1 as a concatenation of Y `
1 and Xs

1 of length n = ` + s. Observe that
Z1, . . . , Zn are independently distributed. Moreover,

|Cmax(Z1, . . . , Zi, . . . , Zn)− Cmax(Z1, . . . , Ẑi, . . . , Zn)| ≤ max
1≤i≤n

{Wmax(i)} ≤ 1, (5.46)

where Wmax(i) is the ith independent version of Wmax defined in the theorem. An application
of Corollary 5.16 proves (5.43).

To prove part (ii), we proceed as follows for some c:

Pr{|Cmax −E[Cmax]| ≥ t} = Pr{|Cmax −E[Cmax]| ≥ t , max
1≤i≤n

{Wmax(i)} ≤ c}

+ Pr{|Cmax −E[Cmax]| ≥ t , max
1≤i≤n

{Wmax(i)} > c}

≤ 2 exp(−1
2
t2/nc2) + nPr{Wmax > c} .
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Set now t = εnα and c = O(n1/2−δ), then

Pr{|Cmax −E[Cmax]| ≥ εnα} ≤ 2 exp(−βnδ) + nPr{Wmax > n1/2−δ} ,

for some constant β > 0. This implies (5.45) provided (5.44) holds.

In passing, we add that the probabilistic analysis of the edit problem was initiated by
Chvatal and Sankoff [67], who analyzed the longest common subsequence problem. After an
initial success in obtaining some probabilistic results for this problem and its extensions by a
rather straightforward application of the subadditive ergodic theorem, a deadlock was reached
due to a strong statistical dependency. There is not much literature on the probabilistic
analysis of the string edit problem and its variations (cf. [80]) with the notable recent
exception of Arratia and Waterman [23], who proved their own conjecture concerning the
phase transition in a sequence matching. The interested reader is advised to study this
excellent paper.

5.5.2 Knuth-Morris-Pratt Pattern Matching Algorithms

Here, we shall analyze the number of comparisons Cn performed by a Knuth-Morris-Pratt
like algorithm (described in detail in Section 1.3) when it searches for occurrences of a given
pattern H of length m in a random text T of size n. In the derivation we shall use the
subadditive ergodic Theorem 5.8. Unlike all other examples in this section, the main difficulty
here lies in establishing the subadditivity property for Cn. We follow here the presentation
of Régnier and Szpankowski [357], but we also discuss some new results.

We recall that Knuth-Morris-Pratt (KMP) algorithms scan the text from left to right.
The main idea can be described as follows: Let (when searching for pattern occurrences) the
algorithm find a mismatch at, say, position l of the text and position k of the pattern. Then
the next comparison is made at position l of the text and position i of the pattern such that
i is the largest integer satisfying

H i−1
1 = Hk−1

k−i ,

that is, the largest suffix of the already searched pattern that is a prefix of the pattern.
The pattern is shifted by k − i positions to be aligned at l − i + 1 position of the text (cf.
Section 1.3). We shall write M(l, k) = 1 if the the algorithm makes a comparison at position
l of the text with position k of the pattern; otherwise M(l, k) = 0.

Our goal is to prove the following result.

Theorem 5.23 (Régnier and Szpankowski, 1995) Consider the Knuth-Morris-Pratt al-
gorithm for pattern matching. Let H be a given pattern of length m.

(i) If the text T n
1 is given, then

lim
n→∞

maxT Cn

n
= α1(H), (5.47)
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where α1(H) ≥ 1 is a constant.

(ii) If the text is generated by a stationary and ergodic source, then

lim
n→∞

Cn

n
= α2(H) a.s.

lim
n→∞

E[Cn]
n

= α2(H),

where α2(H) ≥ 1 is a constant.

We prove this theorem by showing that Cn is subadditive. For this, we denote by Cr,m

the number of comparisons performed on Tm
r (r ≤ m). Actually, we prove a stronger result,

namely, that the subadditivity holds for the `-convergent pattern matching algorithms that
are defined below together with some other useful notations.

Definition 5.24 (i) Given a string searching algorithm, a text T and a pattern H, a position
AP in the text T satisfying for some k (1 ≤ k ≤ m)

M [AP + (k − 1), k] = 1

is said to be an alignment position (i.e., the first position of the pattern is aligned with
position AP of the text).

(ii) For a given pattern H, a position i in the text T n
1 is an unavoidable alignment position

for an algorithm if for any r, l such that r ≤ i and l ≥ i+m, the position i is an alignment
position when the algorithm is run on T l

r.

(iii) An algorithm is said to be `-convergent if, for any text T and pattern H, there exists
an increasing sequence {Ui}ni=1 of unavoidable alignment positions satisfying Ui+1 − Ui ≤ `
where U0 = 0 and n−maxi Ui ≤ `.

Our main effort will concentrate on proving the following lemma.

Lemma 5.25 An `-convergent pattern matching algorithm satisfies the following inequality
for all r such that 1 ≤ r ≤ n:

|C1,n − (C1,r + Cr,n)| ≤ m2 + `m , (5.48)

provided any comparison is done only once.

Proof. Let Ur be the smallest unavoidable position greater than r. We evaluate in turn
C1,n− (C1,r +CUr,n) and Cr,n−CUr,n (cf. Figure 5.1) . We start our analysis by considering
C1,n − (C1,r + CUr ,n). This part involves the following contributions:
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• Those comparisons that are performed after position r but with alignment positions
before r. We call this contribution S1. Observe that those comparisons contribute to
C1,n but not to C1,r. To avoid counting the last character r twice, we must subtract
one comparison. Thus

S1 =
∑

AP<r

∑
i≥r

M(i, i−AP + 1)− 1.

• The next contribution, called S2, accounts for alignments AP satisfying r ≤ AP ≤ Ur

that only contribute to C1,n, that is,

S2 =
Ur−1∑
AP=r

∑
i≤m

M(AP + (i− 1), i) .

• Finally, since the alignment positions after Ur on the text T n
Ur

and T n
1 are the same, the

only difference in contribution may come from the amount of information saved from
previous comparisons done on T r

1 . This is clearly bound by

|C1,n − (C1,r + CUr,n + S1 + S2)| ≤ m .

Now, we evaluate Cr,n − CUr,n (see second part of Figure 5.1). We assume that the
algorithm runs on T n

r and let AP be any alignment position satisfying r ≤ AP < Ur. The
following contributions must be considered:

• The contribution S3

S3 =
Ur−1∑
AP=r

∑
i

M(AP + (i− 1), i)

counts for the number of comparisons associated positions r ≤ AP < Ur. This sum
is the same as S2 but the associated alignment positions and searched text positions
AP + k − 1 may be different.

• Additional contribution may come from the alignment at position Ur. But no more
than m comparisons can be saved from previous comparisons, hence

|Cr,n − CUr,n − S3| ≤ m.

To complete the proof, it remains to find upper bounds on S1, S2, and S3. For ` ≥ Ur− r
we easily see that S2 and S3 are smaller than `m. So are their differences. With respect to
S1, for a given alignment position AP , we have |i − AP | ≤ m; hence |r − AP | ≤ m, and
for any AP the index i has at most m different values. Thus S1 ≤ m2, and this proves the
lemma.
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Figure 5.1: Illustration to the proof of Lemma 5.25

To prove Theorem 5.23, it is enough to show that the KMP algorithm is an ` = m-
convergent algorithm. Before we establish this fact, we prove an interesting property of
KMP-like algorithms.

Lemma 5.26 Given a pattern H and a text T , KMP-like algorithms have the same set of
unavoidable alignment positions U =

⋃n
l=1{Ul}, where

Ul = min{ min
1≤k≤l

{T l
k = H l−k+1

1 }, l + 1}.

Proof. Let l be a text position such that 1 ≤ l ≤ n, and r be any text position satisfying
r ≤ Ul. Let {Ai} be the set of alignment positions defined by a KMP-like algorithm that
runs on T n

r . As it contains r, we may define (see Figure 5.2).

AJ = max{Ai : Ai < Ul}

Hence, we have AJ+1 ≥ Ul. Using an adversary argument, we shall prove that AJ+1 > Ul

cannot be true, thus showing that AJ+1 = Ul. Let y = max{k : M(AJ +(k−1), k) = 1}, that
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Figure 5.2: Illustration to the proof of Lemma 5.26.

is, y the rightmost position where we can do a comparison starting from AJ . We observe that
we have y ≤ l. Otherwise, according to the KMP algorithm rule, TAJ

would be a prefix of H,
which contradicts the definition of Ul. Also, since KMP-like algorithms are sequential (i.e.,
the text-pattern comparisons define nondecreasing sequences), then AJ+1 ≤ y + 1 ≤ l + 1.
Hence Ul = l + 1 contradicts the assumption AJ+1 > Ul and we may assume Ul ≤ l. In
that case, H l

Ul
is a prefix of H, and an occurrence of H at position Ul is consistent with the

available information. Let the adversary assume that H does occur. Since a sequence {Ai}
is nondecreasing and AJ+1 is greater than Ul, this occurrence will not be detected by the
algorithm. This leads to the desired contradiction. Thus AJ+1 = Ul, as needed.

To complete the proof of Theorem 5.23, it is necessary to show that KMP is m-convergent.
But this is easy. Let AP be an alignment position and define l = AP +m. As |H| = m, one
has l − (m− 1) ≤ Ul ≤ l + 1. Hence, Ul − AP ≤ m which establishes the m-convergence of
the KMP algorithm, and the main Theorem 5.23.

As in other applications, since we obtained the result through the subadditive ergodic
theorem, the constants α1 and α2 are unknown. In [72] some bounds for α1 were found.
But even if we cannot find the value of α2, we still are able to show that Cn is concentrated
around α2n. As expected, we shall use the Azuma inequality. Let us now assume that T
is generated by a memoryless source. It suffices to observe that Cn, as a function of random
text T = T1, . . . , Tn, satisfies

|Cn(T1, . . . , Ti, . . . , Tn)− Cn(T1, . . . , T̂i, . . . , Tn)| ≤ 2m2

where T̂i is an independent copy of the ith symbol Ti of the text. In view of this and
Theorem 5.15 we prove the following.

Theorem 5.27 Let T be generated by a memoryless source while the pattern H of length
m is given. The number of comparisons Cn made by the Knuth-Morris-Pratt algorithm is
concentrated around its mean E[Cn] = α2n(1 + o(1)). More precisely,

Pr{|Cn −E[Cn]| ≥ εnα2} ≤ 2 exp

(
−ε

2α2
2

8
n

m4

)
for any ε > 0.
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5.5.3 Large Deviations of a Random Sequence

We consider here a large deviations result proved in Aldous, Hofri, and Szpankowski [6], who
studied hashing with lazy deletion. We reformulate the problem as a coding problem.

Let {Yi}∞i=1 be a sequence of independent random variables with uniform distribution over
A = {1, . . . , V }. Let also f : {1, 2, 3, . . .} → {1, 2, 3, . . .} be a 1−1 function such that f(i) > i
for all i ≥ 1. Our goal is to estimate the probability that

Yf(i) is different than all of Y1, . . . , Yi.

Let Ai be the event that the above holds, and let B =
∑∞

i=1 I(Ai). We want to estimate
Pr{B ≥ b} for large b.

A direct application of Chernoff’s bound leads to

Pr{B ≥ b} ≤ min
z>1

{
z−bE[zB ]

}
,

where we set z = eλ in Theorem 5.18. The problem is that we do not know how to assess the
generating function of B since I(Ai) are dependent. To overcome this difficulty, we adopt
a different approach based on martingales. Let the events Ai be adapted to the increasing
σ-fields Fi (i.e., Fi contains all the information about A1, . . . , Ai). We first prove that for
some w ≥ 1

Mn =
w
∑n

i=1
I(Ai)∏n

i=1 E[wI(Ai)|Fi−1]

is a positive martingale. Indeed,

E[Mn+1|Fn] =
E[w

∑n

i=1
I(Ai)wI(An+1)|Fn]∏n

i=1 E[wI(Ai)|Fi−1]E[wI(An+1)|Fn]

=
w
∑n

i=1
I(Ai)∏n

i=1 E[wI(Ai)|Fi−1]
· E[wI(An+1)|Fn]
E[wI(An+1)|Fn]

= Mn.

Observe that the above martingale is the “multiplicative” analogue of the additive martingale
we have been working so far. But by the martingale convergence theorem (Theorem 5.12)
Mn converges almost surely and in mean to the random variable

M∞ =
wB

Dw
,

where
Dw =

∏
i≥1

E[wI(Ai)|Fi−1] =
∏
i≥1

(1 + (w − 1)Pr{Ai|Fi−1}).
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In addition, we know that E[M∞] ≤ E[M0] = 1, hence

E[wB/Dw] ≤ 1. (5.49)

Now we proceed as follows. Instead of using Chernoff’s bound directly, we write for some
a > 0

Pr{B ≥ b} ≤ Pr{Dw > a}+ Pr{B ≥ b, Dw ≤ a}
≤ E[Dw/a] + Pr{wB/Dw ≥ wb/a}
≤ E[Dw/a] + a/wb

= 2
√
w−bE[Dw], a =

√
wbE[Dw],

where the second inequality follows from Markov’s inequality, and the third one is a conse-
quence of (5.49). Since w ≥ 1 is arbitrary, we finally arrive at

Pr{B ≥ b} ≤ 2
√

inf
w>1

w−bE[Dw]. (5.50)

We now evaluate the required infimum in (5.50). First of all, observe that

Pr{Ai|Fi−1} = Li/V,

where Li is the number of values not taken by Y1, . . . , Yi. Thus, for w > 1 the quantity Dw is

Dw =
∏
i≥1

(1 + (w − 1)Li/V ) ≤ exp

w − 1
V

∑
i≥1

Li

 . (5.51)

But ∑
i≥1

Li =
V∑

k=1

kWk, (5.52)

where Wk is the waiting time for the process Li to go from k to k − 1 (e.g., L0 = V ,
L1 = V − 1). A little thought reveals that the random variables Wk are independent with
(different) geometric distributions

Pr{Wk = `} =
(

1− k

V

)`−1 k

V
, ` ≥ 1.

(This is just the elementary argument for the classical coupon collector’s problem with equally
likely coupons.) Hence, the associated generating function E[zWk ] may be written as

E[zWk ] =
zk/V

1− z(1− k/V )
=

1
1− V/k(1 − z−1))

(5.53)
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for |z| < V/(V − k). Combining (5.51)–(5.53) gives

E[Dw] = E

∏
i≥1

(
1 +

w − 1
V

Li

)
≤ E

exp

w − 1
V

∑
i≥1

Li

 = E

[
exp

(
w − 1
V

V∑
k=1

kWk

)]

=
V∏

k=1

E
[
exp

(
w − 1
V

kWk

)]
=

V∏
k=1

(
1− V

k

(
1− e−k(w−1)/V

))−1

≤
V∏

k=1

(1− (w − 1))−1 = (2− w)−V ,

where the last inequality follows from 1− y−1(1 − e−ay) ≥ 1 − a for a, y > 0. By (5.50) we
obtain

Pr{B ≥ b} ≤ 2
√

inf
1<w<2

w−b(2− w)−V .

Elementary calculus gives the exact infimum at w = 2b/(b+ V ). Since throughout the proof
we require w > 1, our result holds only for b > V .

In summary, we prove the following lemma.

Lemma 5.28 Let f : {1, 2, 3, . . .} → {1, 2, 3, . . .} be a 1 − 1 function with f(i) > i. Let
(Yi; i ≥ 1) be independent, uniform on {1, . . . , V }. Define Ai to be the event

Yf(i) is different than all of Y1, . . . , Yi.

Let B be the counting random variable B =
∑

i≥1 I(Ai). Then

Pr{B ≥ b} ≤ 2
(
V + b

2b

)b/2 (V + b

2V

)V/2

for b > V .

5.6 Extensions and Exercises

5.1 Prove the following generalization of the De Bruijn and Erdős result:

Theorem 5.29 Let xn and cn be two sequences of real numbers such that

xm+n ≤ xm + xn + cn

for all m,n ≥ 1. Then limn→∞ xn/n exists provided limn→∞ cn/n = 0, however, the
limit may be greater than inf xm/m.
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5.2 Prove or disprove the following generalization of the Pólya and Szegő result:

Theorem 5.30 If a real sequence xn satisfies

xm + xn − b(n+m) ≤ xn+m ≤ xm + xn + b(n+m)

for all m,n ≥ 1, where b(n) is a positive sequence, then there is a finite constant ω such
that ∣∣∣∣xn

n
− ω

∣∣∣∣ ≤ βn

n
→ 0,

provided that for every m ≥ 1

βm =
∑
k≥1

b(2km)2−k <∞

and βm = o(m).

5.3 Prove the De Bruijn and Erdős Theorem 5.7. Extend all other subadditive theorems so
that the subadditivity property holds only in the range 1

2n ≤ m ≤ 2n.

5.4 Prove Hoeffding’s inequality in Theorem 5.13 using only (5.17) (cf. [402]).

5.5 Prove a refined Theorem 5.13 in which (5.19) is replaced by the optimal

Pr{|Yn − Y0| ≥ x} = Pr

{
|

n∑
i=1

Di| ≥ x
}
≤ 2 exp

(
− 2x2∑n

i=1 c
2
i

)
.

5.6 Doob-Levy’s Martingale. Let Y have a finite second moment, and let X1, . . . ,Xn be a
sequence of variables. Prove that Yn = E[Y |X1, . . . ,Xn] is a martingale with respect
to X1, . . . ,Xn.

5.7 Construct a counterexample to the following statement:

E[E[Y |F1]|F2] = E[E[Y |F2]|F1].

Observe that we drop the condition F1 ⊂ F2 from Lemma 5.14.

5.84! Knapsack Problem. The objective of the knapsack problem is to pack a knapsack
of a finite capacity with objects of maximum wealth. More precisely, let V1, . . . , Vn

and W1, . . . ,Wn be independent nonnegative random variables with finite means and
Wi ≤ M for all i and some fixed M . Assume that the knapsack has finite capacity C
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and your goal is to pack as many objects as you can in a way that maximizes the wealth
of the packed objects. In other words, we search for a zero–one vector (z1, z2, . . . , zn)
such that

n∑
i=1

ziVi ≤ C,

and

Zmax = max{
n∑

i=1

ziWi}

is maximized. Prove that

Pr{|Zmax −E[Zmax]| ≥ x} ≤ 2 exp

(
− x2

2nM2

)

for x > 0.

5.94! Prove the following generalization of the Efron-Stein inequality due to Steele [401]:
Let S(x1, . . . , xn) be any function of n variables, and Xi X̂i for 1 ≤ i ≤ n be 2n i.i.d.
random variables. Define Ŝi = S(X1, . . . ,Xi−1, X̂i,Xi+1, . . . ,Xn). Then

Var[S(X1, . . . ,Xn)] ≤ 1
2
E

[
n∑

i=1

(S(X1, . . . ,Xn)− Ŝi)2
]
.

5.10 Prove that the following are equivalent: (i) I(a) = ∞, (ii) Pr{X1 ≥ a} = 0, and (iii)
Pr{Sn ≥ na} = 0 for all n.

5.11 Prove the following large deviations result due to Bernstein: Let X1, . . . ,Xn be i.i.d.
with mean µ and variance σ2, and suppose that |Xi − E[Xi]| ≤ M < ∞. Then for all
x > 0

Pr{Sn ≥ nµ+ x
√
n} ≤ exp

− x2

2σ2 + 2Mx
3
√

n

 ,
where, as usual, Sn = X1 + · · ·+Xn.

5.12 Prove that the cumulant function κ(λ) = log E[eλX ], if it exists, is a convex function.

Hint: Use the Hölder inequality.

5.13 Prove that the Fenchel-Legendre transform I(a) attains its minimum at a = E[X] = µ
and I(µ) = 0.

5.14 Prove Theorem 5.20.
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5.15 (Feller, 1971) Let Fn(x) = Pr{Sn ≤ x}, where Sn = X1 + · · ·Xn and X1, . . . Xn are i.i.d.
Prove the following large deviations result for x = o(

√
n)

1− Fn(x)
1− Φ(x)

=
(

1 +O

(
x√
n

))
exp

(
µ3

6σ3

x3

√
n

)
,

where Φ(x) is the standard normal distribution function.

5.164! (Biggins, 1976) Consider the age-dependent branching process from Example 3. Let
ti be the life-time for the ith individual, and let Tn = t1 + · · ·+ tn. We recall that each
individual generates k offspring with probability pk when dying. Let µ =

∑
k≥0 kpk.

From large deviations theory, we know that for a < E[ti]

lim
n→∞

1
n

log Pr{Tn ≤ an} = −I(a),

where I(a) = aλa − log E[eλat1 ] and λa is a solution of aE[eλt1 ] = d
dλE[eλt1 ]. In Exam-

ple 3 we prove that the first birth of the nth generation, Bn, grows linearly with the
constant α. Show that α can be computed as follows:

α = inf{a : log µ− I(a) > 0}.

Hint. Follow Biggins’ footsteps from [46] by first considering a new random variable
Zn(an) that denotes the number of individuals in generation n born by time an. Show:

(i) E[Zn(an)] = µnPr{Tn ≤ an};
(ii) Pr{Zn(an) > 0} > 0 if E[Zn(an)] > 1, hence Bn ≤ an and α ≤ a.

5.174! (Szpankowski, 1995) Consider the general combinatorial optimization problem
described in Section 1.6. To recall, we define Zmax and Zmin as

Zmax(Sn) = max
α∈Bn

 ∑
i∈Sn(α)

wi(α)

 , Zmin(Sn) = min
α∈Bn

 ∑
i∈Sn(α)

wi(α)

 ,

where Bn is a set of all feasible solutions, Sn(α) is a set of objects from Sn belonging
to the αth feasible solution, and wi(α) is the weight assigned to the ith object in the
αth feasible solution. Let us adopt the following assumptions:

(A) The cardinality |Bn| of Bn is fixed and equal to m. The cardinality |Sn(α)| of
the set Sn(α) does not depend on α ∈ Bn and for all α it is equal to N , i.e.,
|Sn(α)| = N .
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(B) For all α ∈ Bn and i ∈ Sn(α) the weights wi(α) are identically and independently
distributed (i.i.d.) random variables with common distribution function F (·), and
the mean value µ, the variance σ2, and the third moment µ3 are finite.

Prove the following result: Under assumptions (A) and (B), as N,m→∞ with n→∞

Zmin = Nµ− o(N) (pr.) Zmax = Nµ+ o(N),

provided logm = o(N).



Chapter 6

Elements of Information Theory

Summary: Entropy and mutual information were introduced by Shannon in 1948, and
this began a remarkable development of information theory. Over the last 50 years informa-
tion theory underwent many changes and found new applications. The Shannon-McMillan-
Breiman theorem and random coding technique nowadays are standard tools of the analysis
of algorithms. In this chapter, we discuss elements of information theory and illustrate its
applications to the analysis of algorithms. In particular, we prove three main results of Shan-
non, those of source coding, channel coding, and rate distortion. In the applications section,
we discuss a variety of data compression schemes based on exact and approximate pattern
matching.

ENTROPY of a single random variable X with probability mass P (a) = Pr{X = a} is
defined as

h(X) = −
∑
a∈A

P (a) log P (a),

where by convention 0 log 0 = 0. We intentionally left the base of the logarithm unspecified.
In this chapter it is convenient to use the logarithm to base 2. If the base of the logarithm is
2, we measure the entropy in bits; with the natural logarithm we measure the entropy in nats.
As we shall see, the entropy represents average uncertainty of X, and in fact it is the number
of bits that on the average one requires to describe the random variable (see Exercise 1). For
example, one needs 5 bits to identify a value of a random variable distributed uniformly over
32 outcomes, and the entropy of X is h(X) = 5 bits.

The real virtue of entropy is best manifested when investigating entropy rates of stochastic
processes. The Asymptotic Equipartition Property (AEP) that follows from the most
celebrated result of information theory, that of the Shannon-McMillan-Breiman theorem,
is the key result.

Let us start with a simple observation: Consider an i.i.d. binary sequence of symbols of

137
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length n, say (X1, . . . ,Xn), with p being the probability of one symbol and q = 1 − p the
probability of the other symbol. When p = q = 1/2, then Pr{X1, . . . ,Xn} = 2−n and it does
not matter what are the actual values of X1, . . . ,Xn. In general, Pr{X1, . . . ,Xn} is not the
same for all possible values of X1, . . . ,Xn, however, we shall see that all typical sequences
(X1, . . . ,Xn) have “asymptotically” the same probability. Consider p 6= q in the example
above. In a typical binary sequence of length n there are approximately np+O(

√
n) symbols

of one kind and nq + O(
√
n) symbols of the second kind. We expect that the probability of

such a sequence is well approximated by

pnp+O(
√

n)qnq+O(
√

n) = 2−n(−p log p−q log q)+O(
√

n) ∼ 2−nh,

where h = −p log p − q log q is the entropy of the underlying Bernoulli random variable. We
conclude that typical sequences have approximately the same probability equal to 2−nh. We
make this statement rigorous in this chapter.

Information theory was born in October 1948 when Shannon published his classic paper
“A Mathematical Theory of Communication.” He established three main results of informa-
tion theory: source coding, channel coding, and rate distortion. In source coding one wants
to find the shortest description of a message. It turns out that you cannot beat a certain
limit, which is equal to the entropy times the length of the original message. In channel
coding, the goal is the opposite to source coding, namely, we want to reliably send as much
information as possible. Finally, there are sources of information that cannot be described
by a finite number of bits (e.g., an arbitrary real number, a continuous function, etc.). In
such cases, we can only approximately describe the source of information. How well we can
do? To answer this question we enter the realm of rate distortion theory. We touch in this
chapter some of these problems. The reader is referred to the excellent books of Cover and
Thomas [75] and Csiszár and Körner [78] for further information. In fact, a large part of this
chapter is based on [75].

In the analysis of algorithms, which is the main topic of this book, entropy appears
quite often in disparate problems as we shall see in the applications section of this chapter.
Actually, in the analysis of algorithms the Rényi’s entropy occurs almost as frequently as the
Shannon entropy. We study some properties of Rényi’s entropy and illustrate its applications
for problems on strings. In particular, we study the phrase length in the Lempel-Ziv scheme
and its lossy extension, the shortest common superstring problem, and the bit rate of a lossy
extension of the fixed database Lempel-Ziv scheme.

6.1 Entropy, Relative Entropy, and Mutual Information

In this section we present basic definitions of entropy, relative entropy, Rényi’s entropy, and
mutual information for single random variables. We shall follow the presentation of Cover
and Thomas [75].

Let us consider a random variable X defined over a finite alphabet A. We write P (X)
for a random function of X such that P (a) = Pr{X = a} for every a ∈ A. the Shannon
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entropy is defined as

h(X) = −E[logP (X)] = −
∑
a∈A

P (a) log P (a), (6.1)

where throughout this chapter we assume that the logarithm base is 2 and 0 log 0 = 0.
We sometimes write h(P ) or simply h for the entropy. In some situations, we specifically
show that the average in (6.1) is taken over the measure P , that is, we write h(X) =
EP [− log P (X)].

As mentioned in the introduction, the entropy is a measure of uncertainty of X. It is also
the minimum average number of bits required to describe X, as illustrated in the following
example.

Example 6.1: Entropy and Random Variable Representation
Let X be a random variable taking eight values with the corresponding probabilities

(1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64). The entropy of X is

h(X) = 2 bits.

Suppose we want to relay to another person the outcome of X. We can use 3 bits to encode
8 messages; however, we can do much better by encoding more likely outcomes with shorter
codes and less likely with longer. For example, if we assign the following codes to eight
messages: 0, 10, 110, 1110, 111100, 111101, 111110, 111111, then we need on the average
only 2 bits. Notice that the description length in this case is equal to the entropy. In
Exercise 1 the reader is asked to extend it to general discrete random variables. 2

The entropy h(X) leads to several new definitions that we discuss in the sequel.

Definition 6.1 (i) Joint Entropy h(X,Y ) is defined as

h(X,Y ) = −E[logP (X,Y )] = −
∑
a∈A

∑
a′∈A′

P (a, a′) log P (a, a′). (6.2)

(ii) Conditional Entropy h(Y |X) is

h(Y |X) = −EP (X,Y )[log P (Y |X)] =
∑
a∈A

P (a)h(Y | X = a) = −
∑
a∈A

∑
a′∈A′

P (a, a′) log P (a′|a).

(6.3)
(iii) Relative Entropy or Kullback Leibler Distance between two distributions P and
Q defined on the same probability space is

D(P ‖ Q) = EP

[
log

P (X)
Q(X)

]
=
∑
a∈A

P (a) log
P (a)
Q(a)

, (6.4)

where by convention 0 log 0/Q = 0 and P logP/0 =∞.
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(iv) Mutual Information of X and Y is the relative entropy between the joint distribution
of X and Y and the product distribution P (X)P (Y ), that is,

I(X;Y ) = EP (X,Y )

[
log

P (X,Y )
P (X)P (Y )

]
=
∑
a∈A

∑
a′∈A′

P (a, a′) log
P (a, a′)
P (a)P (a′)

. (6.5)

(v) Rényi’s Entropy of order b (−∞ ≤ b ≤ ∞) is defined as

hb(X) = − log E[P b(X)]
b

= −1
b

log
∑
a∈A

P b+1(a), (6.6)

provided b 6= 0, where

h−∞ = min
i∈A
{P (i)}, (6.7)

h∞ = max
i∈A
{P (i)} (6.8)

by Hilbert’s inequalities on means (2.13) and (2.14). Observe that h(X) = limb→0 hb(X).

Before we justify these definitions and provide an interpretation, let us explore some
mathematical relationships between them. These properties are easy to prove by elementary
algebra, and the reader is asked in Exercise 3 to verify them (see Exercise 4 for more properties
of the entropy).

Theorem 6.2 The following holds:

h(X,Y ) = h(X) + h(Y |X), (6.9)

h(X1,X2, . . . ,Xn) =
n∑

i=1

h(Xi|Xi−1, . . . ,X1), (6.10)

I(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X), (6.11)
I(X;X) = h(X). (6.12)

It is intuitively clear that the conditional entropy h(X|Y ) should not be bigger than the
entropy h(X) since when Y is correlated with X we learn something about X knowing Y ;
hence its uncertainty decreases. We prove this fact and some others below.

Theorem 6.3 The following inequalities hold

D(P ‖ Q) ≥ 0, (6.13)
I(X;Y ) ≥ 0, (6.14)
h(X) ≥ h(X|Y ), (6.15)

h(X1, . . . ,Xn) ≤
n∑

i=1

h(Xi), (6.16)
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with equality in (6.13) if and only if P (a) = Q(a) for all a ∈ A, equality in (6.14) and (6.15)
if and only if X and Y are independent, and equality in (6.16) if and only if X1, . . . ,Xn are
independent.

Proof. Since log x ≤ x− 1 with equality if and only if x = 1, we obtain

−D(P ‖ Q) = EP

[
log

Q

P

]
≤

∑
a∈A

Q(a)−
∑
a∈A

P (a) = 1− 1 = 0,

which proves (6.13). Then (6.14) follows from I(X;Y ) = D(P (X,Y ) ‖ P (X)P (Y )), and
(6.15) is a consequence of the above and (6.11). Finally, (6.16) follows from (6.10) and
(6.15).

6.2 Entropy Rate and Rényi’s Entropy Rates

We first precisely define typical sequences and then prove the Shannon-McMillan-Breiman
theorem for memoryless, mixing, and stationary and ergodic sources. In the second part
of this section, we introduce Rényi’s entropy rates that are widely used in the analysis of
algorithms.

6.2.1 The Shannon-McMillan-Breiman Theorem

Let {Xk}∞k=1 be a one-sided stationary sequence, and let P (Xn
1 ) be a random variable equal

to Pr{Xn
1 = (x1, . . . , xn)} whenever Xn

1 = (x1, . . . , xn) ∈ An. We can define the entropy rate
of Xn

1 in two different ways, namely:

h := − lim
n→∞

E[log P (Xn
1 )]

n
= lim

n→∞
h(X1, . . . ,Xn)

n
, (6.17)

h′ := lim
n→∞h(Xn| Xn−1,Xn−2, . . . ,X1), (6.18)

provided the limits above exist. We shall prove that for stationary processes the limits exist
and are equal.

First of all, observe that the conditional entropy h(Xn| Xn−1,Xn−2, . . . ,X1) is nonin-
creasing with n and hence has a limit. Indeed, by (6.15) and stationarity

h(Xn+1| Xn,Xn−1, . . . ,X1) ≤ h(Xn+1| Xn,Xn−1, . . . ,X2)
= h(Xn| Xn−1,Xn−2, . . . ,X1).

Now, we are in a position to prove the following statement.
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Theorem 6.4 For a stationary process, the limits in (6.17) and (6.18) exist and are equal,
that is,

h = h′.

Proof. By the chain rule (6.10),

h(X1, . . . ,Xn)
n

=
1
n

n∑
i=1

h(Xi| Xi−1, . . . ,X1).

But, we just proved that the conditional entropies h(Xi| Xi−1, . . . ,X1) tend to a limit h′;
hence by the Cesáro mean theorem, the right-hand side converges to h′. We must then
conclude that the limit of the left-hand side exists, and is equal to h = h′.

Example 6.2: Entropy Rates for Memoryless and Markovian Sources
Let us first consider a memoryless source. Then P (Xn

1 ) = Pn(X1) and we have h(Xn
1 ) =

nE[− logP (X1)] = nh(X1).
For a Markovian source, we appeal to the definition (6.18). Let us consider a stationary

Markov source of order one. Then

h = lim
n→∞h(Xn| Xn−1, . . . ,X1) = lim

n→∞h(Xn| Xn−1) = h(X2| X1).

Thus, by definition (6.3), we have

h = h(X2| X1) = −
∑

i,j∈A

πipij log pij, (6.19)

where πi is the stationary distribution and P = {pij}i,j∈A the transition matrix of the sta-
tionary Markov chain. 2

We are now well prepared to derive the most important theorem of this chapter, namely
the Shannon-McMillan-Breiman theorem, which roughly says that the the average operator
E[·] can be taken away from the definition of the entropy (6.17) provided the deterministic
limit is replaced by almost sure convergence of the random variable log P (Xn

1 ). The main
consequence of this theorem is the Asymptotic Equipartition Property discussed in the next
section.

Let us put some rigor into the above rough description. We first show how to derive the
Shannon-McMillan-Breiman theorem for memoryless sources and then for mixing sources.
Finally, we shall formulate the theorem in its full generality and prove it for stationary
ergodic sources using the “sandwich” approach of Algoet and Cover [8]. Consider first a
memoryless source. Then

− log P (Xn
1 )

n
= − 1

n

n∑
i=1

log P (Xi)

→ E[− logP (X1)] = h (a.s.) ,
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where the last implication follows from the strong law of large numbers applied to the sequence
(− log P (X1), . . . ,− log P (Xn)). One should notice a difference between the definition of the
entropy (6.17) and the above result. In (6.17) we take the average of log P (Xn

1 ) while in
the above we proved that almost surely the probability P (Xn

1 ) can be well approximated by
2−nh. We are aiming now at showing that the above conclusion is true for much more general
sources.

As the next step, let us consider mixing sources that include as a special case Markovian
sources (see Chapter 2). In fact, we consider a weak mixing since we only assume that there
exists a constant c such that

P (Xn+m
1 ) ≤ cP (Xn

1 )P (Xn+m
n+1 )

for integers n,m ≥ 0. Taking logarithm we obtain

logP (Xn+m
1 ) ≤ log P (Xn

1 ) + logP (Xn+m
n+1 ) + log c.

Thus logP (Xn
1 ) + log c is subadditive, hence by Theorem 5.8 we prove that

h = − lim
n→∞

logP (Xn
1 )

n
(a.s.) .

Again, the reader should notice the difference between this result and the definition of the
entropy.

We are finally ready to state the Shannon-McMillan-Breiman theorem in its full generality.
We prove it using a Markov approximation discussed in Lemma 4.2 (see also Theorem 6.33
in Exercise 11 below).

Theorem 6.5 (Shannon-McMillan-Breiman) For a stationary and ergodic sequence {Xk}k≥1

the following holds

h = − lim
n→∞

log P (Xn
1 )

n
(a.s.),

where h is the entropy rate of the process {Xk}k≥1.

Proof. We present here the Algoet and Cover sandwich proof. The main idea is to use
the kth order Markov approximation of a stationary distribution. Let P be the stationary
distribution, and

P k(Xn
1 ) := P (Xk

1 )
n∏

i=k+1

P (Xi|Xi−1
i−k)

be its kth order Markov approximation. Using (4.6) of Lemma 4.2, we obtain

lim sup
n→∞

1
n

log
1

P (Xn
1 )
≤ lim sup

n→∞
1
n

log
1

P k(Xn
1 )

= hk
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for any k ≥ 1. In the above, hk is the entropy of the kth order Markov chain, which we know
to exist (cf. Example 2).

Now, we consider a lower bound by using (4.7) of Lemma 4.2, that is,

lim inf
n→∞

1
n

log
1

P (Xn
1 )
≥ lim

n→∞
1
n

log
1

P (Xn
1 |X0−∞)

= h∞,

where h∞ exists by the ergodic theorem since log P (Xn
1 |X0−∞), as a function of an ergodic

process {Xi}∞i=−∞, is an ergodic process (i.e., Yn = f(Xn−∞) is ergodic if {Xi}∞i=−∞ is ergodic).
Putting everything together, we have

h∞ ≤ lim inf
n→∞

1
n

log
1

P (Xn
1 )
≤ lim sup

n→∞
1
n

log
1

P (Xn
1 )
≤ hk.

We shall now prove that hk ↓ h∞ completing the proof since by Theorem 6.4 h = h∞.
By the Doob-Levy martingale construction (see Exercise 5.6 in Chapter 5), we know that
P (x0|X−1

−k) is a martingale. Therefore, by the martingale convergence Theorem 5.12

P (x1|X0
−k+1)→ P (x1|X0

−∞) (a.s.)

for all x1 ∈ A. Since the alphabet A is finite, x log x is bounded for 0 < x < 1 and continuous,
the bounded convergence theorem allows us to interchange expectation and limit, yielding

lim
k→∞

hk = lim
k→∞

E

− ∑
x1∈A

P (x1|X0
−k+1) log P (x1|X0

−k+1)


= E

− ∑
x1∈A

P (x1|X0
−∞) log P (x1|X0

−∞)

 = h∞,

which completes the proof.

In passing we should mention that there is no universal convergence rate to the entropy
for general stationary ergodic processes. However, for memoryless and Markovian processes
Marton and Shields [310] proved that the convergence rate to the entropy is exponential.

6.2.2 Rényi’s Entropy Rates

In many problems on words Rényi’s entropy rates are widely used (see Section 6.5 and
[22, 23, 25, 411, 412]). For −∞ ≤ b ≤ ∞, the bth order Rényi entropy is defined as

hb = lim
n→∞

− log E[P b(Xn
1 )]

bn
= lim

n→∞
− log

(∑
w∈An P b+1(w)

)1/b

n
, (6.20)
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provided the above limit exists. In the above, we write P (w) = Pr{Xn
1 = w} for w ∈ An.

We will prove below that for mixing processes generalized Rényi’s entropies exist. For now,
we observe that

h = lim
b→0

hb,

and by Hilbert’s inequalities on means (2.13) and (2.14)

h−∞ = lim
n→∞

− log (min{P (Xn
1 ) , P (Xn

1 ) > 0})
n

,

h∞ = lim
n→∞

− log (max{P (Xn
1 ) , P (Xn

1 ) > 0})
n

.

Example 6.3 Rényi’s Entropy for Memoryless and Markovian Sources
We compute here the Rényi’s entropies for memoryless and Markovian sources.

1. Memoryless Source. In this case, for b > 0 and a binary alphabet

∑
w∈An

P b+1(w) =
n∑

k=0

(
n

k

)
p(b+1)kq(b+1)(n−k) = (pb+1 + qb+1)n,

where, as always, q = 1− p. For a general alphabet A of size V and probabilities p1, . . . , pV

we obtain

hb = −1
b

log(pb+1
1 + · · ·+ pb+1

V ) b > 0, (6.21)

h−∞ = − log pmin, (6.22)
h∞ = − log pmax, (6.23)

where pmax = max{p1, . . . , pV } and pmin = min{p1, . . . , pV , pi > 0}.
2. Markovian Source. In Section 4.2.3 we proved that∑

w∈An

P b+1(w) = βλn
[b+1](1 +O(ρn))

for constants β > 0 and ρ < 1, where λ[b] is the largest eigenvalue of the Schur product (i.e.,
element-wise product) P[b] = P ◦ P ◦ · · · ◦ P = {pij}Vi,j=1. In view of this,

hb = −1
b

log λ[b+1], b > 0. (6.24)

With respect to h−∞ and h∞, we need a result from digraphs (cf. [234, 368]). Consider a
digraph on A with weights equal to − log pij where i, j ∈ A. Let C = {i1, i2, . . . , iv, i1} be a



146 Elements of Information Theory

cycle for some v ≤ V such that ij ∈ A, and let `(C) = −∑v
k=1 log(pik,ik+1

) (with iv+1 = i1)
be the total weight of the cycle C. Then

h−∞ = min
C

{
`(C)
|C|

}
,

h∞ = max
C

{
`(C)
|C|

}
.

Karp [234] showed how to compute these quantities efficiently. 2

We should point out that we have already encountered Rényi’s entropies in this book.
In Section 4.2.3 the entropies hb and h∞ appeared in the analysis of the height of digital
trees, while h−∞ popped up in the study of the shortest path and fill-up level in a digital
tree (see Exercises 4.10 and 4.11 in Chapter 4). The first Rényi’s entropy h1 plays a role in
the analysis of molecular sequences as discussed in Arratia and Waterman [23, 25, 445].

6.3 Asymptotic Equipartition Property

An important conclusion from the Shannon-McMillan-Breiman theorem is the Asymptotic
Equipartition Property (AEP), which asserts that asymptotically all typical sequences
have the same probability approximately equal to 2−nh. We first precisely define the basic
AEP property, and then extend it to jointly typical sequences, formulate AEP for relative
entropy (divergence), and finally discuss a lossy typical sequences, formulate AEP for relative
entropy (divergence), and finally discuss a lossy generalization of AEP.

6.3.1 Typical Sequences

Let us start with the following definition:

Definition 6.6 For given ε > 0 the typical set Gε
n with respect to the probability measure

P = Pr{·} is the set of all sequences (x1, x2, . . . , xn) ∈ An such that

2−n(h(P )+ε) ≤ P (x1, . . . , xn) ≤ 2−n(h(P )−ε), (6.25)

where P (x1, . . . , xn) := Pr{Xn
1 = (x1, . . . , xn)}.

The Shannon-McMillan-Breiman theorem implies the following property that is at the
heart of information theory.
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Theorem 6.7 (Asymptotic Equipartition Property) For a stationary and ergodic se-
quence Xn

1 , for given ε > 0 the state space An can be partitioned into two subsets, Bε
n (“bad

set”) and Gε
n (“good set”), such that there is Nε so that for n ≥ Nε we have

2−nh(1+ε) ≤ P (xn
1 ) ≤ 2−nh(1−ε) for xn

1 ∈ Gε
n, (6.26)

Pr{Bε
n} ≤ ε. (6.27)

Moreover,
(1− ε)2nh(1−ε) ≤ |Gε

n| ≤ 2nh(1+ε) (6.28)

for sufficiently large n.

Proof. By Shannon-McMillan-Breiman theorem we have for any ε > 0

Pr

{∣∣∣∣− 1
n

logP (X1, . . . ,Xn)− h
∣∣∣∣ < ε

}
> 1− ε

for, say n > Nε. Denote by Bε
n the set of xn

1 = (x1, . . . , xn) that does not satisfy the above.
Its probability is smaller than ε. Call those xn

1 that fulfill the above inequality as Gε
n. Then

for xn
1 ∈ Gε

n

h− ε ≤ − 1
n

logP (x1, . . . , xn) ≤ h+ ε

which proves (6.26) and (6.27). Certainly, Gε
n is the typical set according to Definition 6.6.

To prove the second part of the theorem, we proceed as follows:

1 =
∑

xn
1∈An

P (xn
1 ) ≥

∑
xn
1∈Gε

n

P (xn
1 ) ≥

∑
xn
1∈Gε

n

2−nh(1+ε)

= 2−nh(1+ε)|Gε
n|,

and

1− ε < Pr{Gε
n} ≤

∑
xn
1∈Gε

n

2−nh(1−ε)

= 2−nh(1−ε)|Gε
n|.

This completes the proof.

6.3.2 Jointly Typical Sequences

In some applications (see Section 6.4.2), we need a generalization of AEP to a pair of sequences
(Xn

1 , Y
n
1 ). Let us start with a definition of jointly typical set.
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Definition 6.8 The typical set Gε
n of sequences (xn

1 , y
n
1 ) with respect to the probability mea-

sure P = Pr{·, ·} is the set of all n-sequences such that for given ε > 0 the sequence xn
1 is

P (x) ε-typical, yn
1 is P (y) ε-typical and

2−n(h(X,Y )+ε) ≤ P (xn
1 , y

n
1 ) ≤ 2−n(h(X,Y )−ε), (6.29)

where P (xn
1 , y

n
1 ) := Pr{Xn

1 = (x1, . . . , xn), Y n
1 = (y1, . . . , yn)}. In short,

Gε
n =

{
(xn

1 , y
n
1 ) : 2−nh(X)(1+ε) ≤ P (xn

1 ) ≤ 2−nh(X)(1−ε),

2−nh(Y )(1+ε) ≤ P (yn
1 ) ≤ 2−nh(Y )(1−ε),

2−n(h(X,Y )+ε) ≤ P (xn
1 , y

n
1 ) ≤ 2−n(h(X,Y )−ε)

}
for any ε > 0.

The following is a generalization of AEP to jointly typical sequences.

Theorem 6.9 (Joint AEP) Let {Xk}k≥1, {Y }k≥1 and {Xk, Yk}k≥1 be mixing processes.
Then for given ε > 0 there is Nε so that for n ≥ Nε we have

Pr{(Xn
1 , Y

n
1 ) ∈ Gε

n} ≥ 1− ε, (6.30)
(1− ε)2n(h(X,Y )−ε) ≤ |Gε

n| ≤ 2n(h(X,Y )+ε). (6.31)

In addition, if X̃n
1 and Ỹ n

1 are independent with the same marginals as P (Xn
1 , Y

n
1 ), then

(1− ε)2−n(I(X,Y )+3ε) ≤ Pr{(X̃n
1 , Ỹ

n
1 ) ∈ Gε

n} ≤ 2−n(I(X,Y )−3ε) (6.32)

for sufficiently large n.

Proof. Since {Xk}k≥1 and {Yk}k≥1 are mixing processes, by the Shannon-McMillan-Breiman
theorem we observe that for given ε > 0 there exists n1 such that for n > n1

Pr

{∣∣∣∣− 1
n

logP (Xn
1 )− h(X)

∣∣∣∣ > ε

}
<

ε

3
,

Pr

{∣∣∣∣− 1
n

logP (Y n
1 )− h(Y )

∣∣∣∣ > ε

}
<

ε

3
.

Also, since the pair {Xk, Yk} is a mixing process, by the subadditive ergodic theorem (applied
to log P (Xn

1 , Y
n
1 )) we show that for given ε > 0 there exists n2 such that for n > n2

Pr

{∣∣∣∣− 1
n

logP (Xn
1 , Y

n
1 )− h(X,Y )

∣∣∣∣ > ε

}
<
ε

3
.
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In view of the above, for n > max{n1, n2} the probability of the union of the above sets is
less than ε. Thus the intersection of the complements of these sets forms Gε

n, and therefore

Pr{Gε
n} > 1− ε.

To prove (6.31) we proceed exactly as in the proof of AEP of a single sequence, so we
omit it here. Finally, for (6.32) we observe that

Pr{(X̃n
1 , Ỹ

n
1 ) ∈ Gε

n} =
∑

(xn
1 ,yn

1 )∈Gε
n

P (xn
1 )P (yn

1 )

≤ 2n(h(X,Y )+ε)2−n(h(X)−ε)2−n(h(Y )−ε)

= 2−n(I(X,Y )−3ε).

Using the left-hand side of (6.31), we establish in a similar manner the lower bound of (6.32).
This completes the proof.

The above finding has profound implications for channel coding. We shall discuss it in
depth in Section 6.4.2; however, a brief discussion is in order. Observe that there are about
2nh(X) typical X sequences, about 2nh(Y ) typical Y sequences, but only 2nh(X,Y ) jointly typical
sequences (recall, h(X,Y ) ≤ h(X) + h(Y )). The probability that any randomly chosen pair
(X,Y ) is jointly typical is approximately

2nh(X,Y )

2nh(X)2nh(Y )
= 2−nI(X,Y ).

In other words, for fixed Y n
1 , we may inspect about 2nI(X,Y ) pairs before we find a jointly

typical pair.

6.3.3 AEP for Biased Distributions

Consider the following classification problem: A nineteenth-century manuscript written in
Polish was found in Paris. One suspects that it is a lost manuscript of the famous Polish
poet Adam Mickiewicz. To prove this assertion a classification algorithm is proposed that
will compare (cf. [455] for possible algorithms) the found text with samples of Mickiewicz’s
writings.

From the information theory point of view, we may assume that the found text is generated
by an unknown distribution P = Pr{·} that must be compared with the known distribution
Q obtained from Mickiewicz’s samples. In other words, we estimate the probability of xn

1

generated by an unknown source P with respect to the known distribution Q. We call this
problem AEP for a biased distribution.
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To start, we must define the relative entropy or divergence D(P ‖ Q) for random se-
quences. Let, as before, Xn

1 = (X1, . . . ,Xn), be a random sequence generated by source P
over a finite alphabet. We define the divergence rate as

D(P ‖ Q) := − lim
n→∞

EP [logQ(Xn
1 )/P (Xn

1 )]
n

, (6.33)

provided the limit exists. Unlike the entropy rate, the above limit may not exist for general
stochastic processes, and in general one needs lim sup in the above definition. Below, we
restrict our discussion to jointly mixing processes that will guarantee the existence of the
limit. In such a case, we can also write

− lim
n→∞

EP [logQ(Xn
1 )]

n
= − lim

n→∞
EP [logQ(Xn

1 )/P (Xn
1 )] + EP [log P ]

n
= h(P ) +D(P ‖ Q).

Let us now extend AEP to biased distributions. First, however, we prove the existence
of the limit in (6.33) for the jointly mixing processes.

(JMX) Let the measures P and Q be defined on the same probability space and let Fn
m be the

σ-algebra generated by Xn
m. The measures P and Q are weakly mixing if there exist

constants c1, C1, c2, C2 such that for any m, g ≥ 1 and any two events A ∈ Fm
1 and

B ∈ F∞
m+g the following holds

c1P (A)P (B) ≤ P (AB) ≤ c2P (A)P (B), (6.34)
C1Q(A)Q(B) ≤ Q(AB) ≤ C2Q(A)Q(B) (6.35)

and c1, C1 > 0.

In passing, we should observe that the condition c1, C1 > 0 is quite restrictive. For ex-
ample, not all Markov chains belong to (JMX), but Markov chains with positive transition
probabilities are jointly mixing (see Theorem 2.1).

It is easy to see that if both Q and P are mixing (cf. (2.2), then

logQ(Xn
1 )/P (Xn

1 ) ≤ logC2/c1 + logQ(Xm
1 )/P (Xm

1 ) + logQ(Xn
m)/P (Xn

m),

and logQ/P is subadditive. By Theorem 5.8 we have

− lim
n→∞

logQ(Xn
1 )/P (Xn

1 )
n

= D(P ‖ Q) (a.s),

and hence
− lim

n→∞
logQ(Xn

1 )]
n

= h(P ) +D(P ‖ Q) (a.s.). (6.36)

This leads to the following generalization of AEP (details of the proof are left as an
exercise).
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Theorem 6.10 (AEP for Biased Distributions) Let {Xk}k≥1 be generated according to
P , which, together with another distribution Q, is jointly mixing as defined in (JMX). Then
the state space An can be partitioned into two subsets, Bε

n (“bad set”) and Gε
n(Q) (“good set”),

such that for given ε > 0 there is Nε so that for n ≥ Nε we have

2−n(h(P )+D(P‖Q))(1+ε) ≤ Q(xn
1 ) ≤ 2−n(h(P )+D(P‖Q))(1−ε), xn

1 ∈ Gε
n(Q), (6.37)

Q(Bε
n) ≤ ε. (6.38)

Moreover,
(1− ε)2n(h(P )+D(P‖Q))(1−ε) ≤ |Gε

n(Q)| ≤ 2n(h(P )+D(P‖Q))(1+ε) (6.39)

for sufficiently large n.

We should point out that the above AEP for biased distributions cannot be extended to
general stationary ergodic processes (cf. [179, 180]). In fact, as we mentioned above even the
limit in the definition (6.33) may not exist in a general case. However, the following general
result is known (the reader is asked to prove it in Exercise 10; cf. also Gray [75, 181]).

Lemma 6.11 If P is a stationary process and P k represents the measure of a k order sta-
tionary Markov process, then the limit in (6.33) exists and

D(P ‖ P k) = −hP (X)−EP [lnP k(Xk|Xk−1
0 )] = −hP (X)− hP k(Xk|Xk−1

0 ).

6.3.4 Lossy Generalizations of AEP

Let w ∈ Ak be a word of length k. Often one asks for the probability that a prefix of a
sequence generated by a stationary source is equal to w. Using AEP, we can asymptotically
estimate this probability (e.g., by checking whether w is a typical sequence). But in some
situations (e.g., imagine a continuous signal) another question is more appropriate, namely,
how well w approximates a k-prefix of a sequence. To answer such a question a lossy or
approximate extension of AEP is needed. We discuss this next.

In order to more precisely define the notion of approximate, we need to introduce a
distortion measure or a distance (cf. Berger [42] for a detailed discussion). In information
theory, one defines the distortion function between symbols as

d : A× Â → R
+.

Then the distortion-per-symbol becomes

dn(xn
1 , x̂

n
1 ) =

1
n

n∑
i=1

d(xi, x̂i). (6.40)
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For example, for the Hamming distance one sets d(xi, x̂i) = 0 if xi = x̂i and d(xi, x̂i) = 1
otherwise. Observe that in this case, the distortion dn(xn

1 , x̂
n
1 ) represents the fraction of

mismatches between xn
1 and x̂n

1 . Another distortion measure is useful for image compression,
for example, the square error distortion defined as d(xi, x̂i) = (xi − x̂i)2.

Let us now fix D > 0 and define a ball of radius D and center ck1 ∈ Ak as

BD(ck1) = {xk
1 : dk(xk

1 , c
k
1) ≤ D}.

In particular, B0(xk
1) = xk

1 . If a random sequence Xk
1 is generated by source P , we shall write

P (BD(Xk
1 )) =

∑
x̂k
1∈BD(Xk

1 ) Pr{x̂k
1}. With these definitions in mind, we can now generalize

Rényi’s entropy.

Definition 6.12 (Generalized Rènyi’s Entropy of order b) For any −∞ ≤ b ≤ ∞

rb(D) = − lim
k→∞

log E[P b(BD(Xk
1 ))]

bk
(6.41)

= − lim
k→∞

log
(∑

wk
1∈Ak P b(BD(wk

1 ))P (wk
1 )
)

bk
,

where for b = 0 we understand r0(D) = limb→0 rb(D), that is,

r0(D) = − lim
k→∞

E[log P (BD(Xk
1 ))]

k
, (6.42)

provided the above limits exist.

In Theorem 6.13 below, we first establish the existence of the generalized Rényi’s entropies
for mixing processes. Then, we prove a generalization of the Shannon-McMillian-Breiman
theorem, which will imply AEP for approximate/lossy case.

Theorem 6.13 (AEP for Approximate/Lossy Case) (i) Let {Xk}k≥1 be a weakly mix-
ing process with c1 > 0 (cf. (6.34). Then the generalized bth order entropy rb(D) is well
defined (i.e., the limit in (6.41) exists) for any −∞ ≤ b ≤ ∞.
(ii) The generalized Shannon entropy r0(D) satisfies

r0(D) = − lim
k→∞

logP (BD(Xk
1 ))

k
(a.s.) . (6.43)

(iii) For a weakly mixing sequence {Xk}k≥1 and fixed ε > 0, the state space An can be
partitioned into two subsets, Bε

n (“bad set”) and Gε
n (“good set”), such that there exists Nε so

that for all n > Nε we have

2−n(r0(D)+ε) ≤ P (BD(xn
1 )) ≤ 2−n(r0(D)−ε), (6.44)

P (Bε
n) ≤ ε, (6.45)

(1− ε)2n(r0(D)−ε) ≤ |Gε
n|. (6.46)
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Proof. We consider only 0 ≤ b < ∞, while the b < 0 case is left as an exercise. For (i) it
suffices to show that for some constant c > 0

E[P b(BD(Xn+m
1 ))] ≥ cE[P b(BD(Xn

1 ))]E[P b(BD(Xm
1 ))]. (6.47)

Provided (6.47) is true we simply use Fekete’s Theorem 5.1 to establish our claim. In the
course of proving (6.47) we shall see that P b(BD(Xn+m

1 )) ≥ cP b(BD(Xn
1 ))P b(BD(Xm

1 )),
which by the subadditive ergodic Theorem 5.8 applied to logP (BD(Xn

1 )) will imply (6.43) of
part (ii).

We now wrestle with (6.47). Observe that for any string wn+m
1 ∈ An+m of length n+m

we have

P b(BD(wn+m
1 )) =

 ∑
zn+m
1 ∈BD(wn+m

1 )

P (zn+m
1 )


b

≥ c

 ∑
zn+m
1 ∈BD(wn+m

1 )

P (zn
1 )P (zn+m

n+1 )


b

≥ c

 ∑
zn
1 ∈BD(wn

1 )

P (zn
1 )

b
 ∑

zn+m
n+1 ∈BD(wn+m

n+1 )

P (zn+m
n+1 )


b

= cP b(BD(wn
1 ))P b(BD(wn+m

n+1 )),

where c > 0 is a positive constant. The first inequality of the above follows from the weak
mixing condition (6.34), and the second one is a simple consequence of the following easy-to-
establish property of the distortion-per-symbol

dn+m(xn+m
1 , x̂n+m

1 ) =
n

n+m
dn(xn

1 , x̂
n
1 ) +

m

n+m
dm(xn+m

n+1 , x̂
m+n
n+1 ).

In fact, for the proof we need inequality in the above, which is satisfied by any distortion
measure having subadditivity property. To complete the proof we again use the mixing
condition to get

E[P b(BD(Xn+m
1 ))] =

∑
wn+m

1 ∈An+m

P b(BD(wn+m
1 ))P (wn+m

1 )

≥ c
∑

wn
1∈An

P b(BD(wn
1 ))P (wn

1 )
∑

wm+n
n+1 ∈Am

P b(BD(wn+m
n+1 ))P (wm+n

n+1 )

= cE[P b(BD(Xn
1 ))]E[P b(BD(Xn+m

n+1 ))].

Parts (i) and (ii) are proved by Fekete’s theorem and the superadditive ergodic theorem (see
Chapter 5).

Part (iii) is a direct consequence of Part (ii). For example, to prove (6.46) we proceed as
follows

1− ε ≤
∑

xn
1∈Gε

n

P (xn
1 ) ≤

∑
xn
1∈Gε

n

P (BD(xn
1 )) ≤ |Gε

n|2−n(r0(D)−ε).
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This completes the proof.

The evaluation of the generalized Rényi’s entropies is harder than for the lossless case.
Rényi’s entropies for memoryless sources are computed in the lemma below. There are no
simple formulas for the generalized Rényi’s entropies for Markovian sources; however, some
useful relationships may be found in Yang and Kieffer [439].

Lemma 6.14 ( Luczak and Szpankowski 1997) Assume a binary alphabet A = {0, 1}
with symbol occurrence p and q = 1−p. Define h(D,x) = (1−D) log((1−D)/x)+D log(D/(1−
x)) for 0 < D,x < 1. Then
(i) Let pmin = min{p, q} and pmax = max{p, q}, then

r−∞(D) =

{
h(D, pmin) for D ≤ pmax

0 for D > pmax .

and

r∞(D) =

{
h(D, pmax) for D ≤ pmin

0 for D > pmin .

In addition, r−∞(D) and r∞(D) are convex functions of D.

(ii) If p = q = 1/2 then, for every −∞ ≤ b ≤ ∞ and D ≤ pmin, we have rb(D) = h(D, 1/2).

(iii) Let p 6= q and −∞ < b <∞. Then rb(D) = 0 whenever D > 2pq, while for 0 ≤ D ≤ 2pq
and b 6= 0

rb(D) = (1/b) min
0≤x≤1

{
x log(x/p) + (1− x) log((1− x)/q)− b

(
D log(p/q)

+ x log(px) + (1− x) log(q(1− x))− x log(x− F (x)) (6.48)

− D log(D − F (x))− (1− x−D) log(1 − x−D + F (x))
)}

,

where F (x) is defined as

F (x) =
x+D

2
+
√

(p2 + (x+D)(q − p))2 + 4xq2D(p− q)− p2

2(p − q) . (6.49)

In particular, we have

r1(D) =

{
h(D,P ) for D ≤ 1− P = 2pq
0 for D > 1− P = 2pq,

where P = p2 + q2. The function r1(D) is convex with respect to D.
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(iv) If p 6= q, then r0(D) = 0 for D > 2pq, and for 0 ≤ D ≤ 2pq

r0(D) = −
(
D log(p/q) + 2p log p+ 2q log q − p log(p− F (p))

−D log(D − F (p))− (q −D) log(q −D + F (p))
)
, (6.50)

where F is the function defined by (6.49). In addition, r0(D) is convex with respect to D.

Proof. We only prove part (iii). The reader is referred to [303] for the whole proof, or even
better, is encouraged to provide the missing parts.

Let p 6= q and −∞ < b < ∞, b 6= 0. From the definition of the expectation, for
E[P b(BD(Xk

1 ))] we have

E[P b(BD(Xk
1 ))] =

k∑
i=0

(
k

i

)
piqk−i

bDkc∑
j=0

min{i,j}∑
`=max{0,i+j−k}

(
i

`

)(
k − i
j − `

)
pi+j−2`qk−i−j+2`

b

,

where i counts the number of ones in Xk
1 , j stays for the overall number of mismatches, and `

is the number of disagreements among ones. Let us look first at the sum

s(k, i) =
bDkc∑
j=0

min{i,j}∑
`=max{0,i+j−k}

(
i

`

)(
k − i
j − `

)
pi+j−2`qk−i−j+2`

=
bDkc∑
j=0

min{i,j}∑
`=max{0,i+j−k}

r(k, i, j, `) .

Since there are at most k2 terms in the sum, certainly we have

max
j,`

r(k, i, j, `) ≤ s(k, i) ≤ k2 max
j,`

r(k, i, j, `) .

(Note that all ratios that grow polynomially with k will disappear if we divide the logarithm
of s(k, i) by k; thus they will not affect the value of rb(D).) Similarly,

max
i

(
k

i

)
piqk−isb(k, i) ≤ E[P b(BD(Xk

1 ))] ≤ kmax
i

(
k

i

)
piqk−isb(k, i) .

By Stirling’s formula (cf. (8.31)) for every x ∈ (0, 1) we have(
k

xk

)
∼
(

1
(1− x)1−xxx

)k

. (6.51)
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We use the above to estimate the binomial coefficients and set i = xk, j = yk, ` = zk to
arrive at the following asymptotic formula: for E[P b(BD(Xk

1 ))]

max
0≤x≤1

{( pxq1−x

xx(1 − x)(1−x)

(
max

A(x,D)

{ px+y−2zq1−x−y+2zxx(1− x)1−x

zz(x− z)x−z(y − z)y−z(1− x− y + z)1−x−y+z

})b)k}
,

where A(x,D) ⊂ R2 is defined as

A(x,D) = {(y, z) ∈ R
2 : 0 ≤ y ≤ D, max{0, x+ y − 1} ≤ z ≤ min{x, y}} .

Consequently, we get the following formula

rb(D) = (1/b) min
0≤x≤1

{
x log(x/p) + (1− x) log((1− x)/q)

− b max
A(x,D)

{
(x+ y − 2z) log(p/q) + log q + x log x (6.52)

+ (1− x) log(1− x)− z log z − (x− z) log(x− z)
− (y − z) log(y − z)− (1− x− y + z) log(1− x− y + z)

}}
.

Simple algebra reveals that (6.48) follows from (6.52). Indeed, let us assume first that
D > 2pq. Then, the value of the maximum in (6.52) is 0 and is achieved for y− z = (1− x)p
and z = qx. Furthermore, the first two terms vanish for x = p. Hence, for such a D, we have
rb(D) = 0 for every −∞ < b <∞.

If D ≤ 2pq, then the function which appears under the maximum in (6.52) grows with y,
so we must put y = D. Furthermore, easy calculations show that to choose an optimal value
of z one must solve the equation

(p− q)z2 + (p2 + (q − p)(x+D))z − xDq2 = 0 .

Thus we should set z = F (x), where F is defined by (6.49), and (6.48) follows.
Finally, let us notice that the case when b = 0 can be easily deduced from (6.48). Indeed,

for b → 0 the sum of the first two terms x log(x/p) and (1 − x) log((1 − x)/q) must vanish,
which is possible only for x = p. Thus, (6.50) follows.

We must point out, however, that one can envision another AEP for the lossy case that
is actually quite useful in the rate distortion theory discussed in Section 6.4.3. We briefly
discuss it here.

We start with a definition of distortion typical set denoted as Gε
d,n.

Definition 6.15 The distortion ε-typical set Gε
d,n of sequences (xn

1 , x̂
n
1 ) with respect to the

probability measure P = Pr{·, ·} is the set of all n-sequences such that for given ε > 0

Gε
d,n =

{
(xn

1 , x̂
n
1 ) : 2−nh(X)(1+ε) ≤ P (xn

1 ) ≤ 2−nh(X)(1−ε),
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2−nh(X̂)(1+ε) ≤ P (x̂n
1 ) ≤ 2−nh(X̂)(1−ε),

2−n(h(X,Y )+ε) ≤ P (xn
1 , x̂

n
1 ) ≤ 2−n(h(X,Y )−ε)

EXn
1

[d(Xn
1 , X̂

n
1 )]− ε ≤ d(xn

1 , x̂
n
1 ) ≤ EXn

1
[d(Xn

1 , X̂
n
1 )] + ε

}
.

The following extension of joint AEP can be stated.

Theorem 6.16 (AEP with Distortion) Let {Xk}k≥1, {X̂k}k≥1 and {Xk, X̂k}k≥1 be mix-
ing processes. Then for given ε > 0 there is Nε so that for n ≥ Nε we have

Pr{(Xn
1 , X̂

n
1 ) ∈ Gε

d,n} ≥ 1− ε, (6.53)

while for (xn
1 , x̂

n
1 ) ∈ Gε

n,d we obtain

P (x̂n
1 |xn

1 )2−n(I(X;X̂)−3ε) ≤ P (xn
1 ) ≤ P (x̂n

1 |xn
1 )2−n(I(X;X̂)+3ε) (6.54)

for sufficiently large n.

Proof. We prove only (6.54) since (6.53) follows from the subadditivity of log P (Xn
1 ),

log P (X̂n
1 ), log P (Xn

1 , X̂
n
1 ) and d(Xn

1 , X̂
n
1 ) for mixing processes. Observe that for (xn

1 , x̂
n
1 ) ∈

Gε
d,n

P (x̂n
1 |xn

1 ) = P (x̂n
1 )

P (xn
1 , x̂

n
1 )

P (xn
1 )P (x̂n

1 )

≤ P (x̂n
1 )

2−n(h(X,X̂)−ε)

2−n(h(X)+ε)2−n(h(X̂)+ε)
= P (x̂n

1 )2n(I(X,X̂)−3ε).

The lower bound is proved in a similar fashion.

6.4 Three Theorems of Shannon

In 1948 Claude Shannon published his seminal paper “A Mathematical Theory of Communi-
cation”, where he formulated the three fundamental results of information theory: the uni-
versal source coding theorem, the channel coding theorem, and the rate distortion theorem.
In this section, we discuss them and provide simple proofs. We shall follow the presentation
of Cover and Thomas [75]. In Shannon’s spirit, we shall deal mostly with memoryless sources
to succinctly present the main ideas. Throughout this section, we use a new technique, not
yet seen in this book, called random coding. This method selects codes at random to establish
the existence of a good code that achieves the best possible code rate.
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6.4.1 Source Coding Theorem

A source code C for a source (random variable) X taking values in the set A is a mapping

φ : A → {0, 1}∗,

that we also write as C = φ(X). Such a code is one-to-one if

xi 6= xj ∈ A ⇒ C (xi) 6= C (xj).

The code C n for a sequence X1, . . . ,Xn is an extension of C and it is defined by a mapping

φn : An → {0, 1}∗.

Such a code is:

• Uniquely decodable if it is one-to-one;

• Prefix code or instantaneous code if no codeword is a prefix of another codeword.

It turns out that lengths of prefix codewords cannot be completely arbitrary and must
satisfy a certain constraint known as Kraft’s inequality. We prove it below for the simplest
case. Its extensions can be found in [75].

Theorem 6.17 (Kraft’s Inequality) For any prefix code (over a binary alphabet), the
codeword lengths `1, `2, . . . , `m satisfy the inequality

m∑
i=1

2−`i ≤ 1. (6.55)

Conversely, if codeword lengths satisfy this inequality, then one can build a prefix code.

Proof. This is an easy exercise on trees. Observe that one can associate a binary tree with a
code by assigning, say, “0” to left branch and “1” to the right branch. A path from the root
to a node creates a code. Prefix codes guarantee that none of the codewords are assigned to
an internal node; that is, all codewords are terminal nodes (or leaves of the tree). Let `max

be the maximum codeword length. Observe that at level `max some nodes are codewords,
some are descendants of codewords, and some are neither. Since the number of descendants
at level `max of a codeword located at level `i is 2`max−`i (if root is at level 0 of the tree, then
at level ` there are no more than 2` nodes), we obtain

m∑
i=1

2`max−`i ≤ 2`max ,
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which is the desired inequality. The converse part is easy to prove, and we omit it here.

The average length ¯̀
n(C n) of the source code C n is defined as

¯̀
n(C n) =

∑
xn
1∈An

`(xn
1 )P (xn

1 ),

where P is the source distribution; that is, P (xn
1 ) = Pr{Xn

1 = xn
1}. We cannot make ¯̀(C n)

arbitrarily small, as Theorem 6.18 below indicates. In other words, there is a limit how much
we can compress on the average.

Theorem 6.18 For any source code C n satisfying the Kraft inequality, the average code
length ¯̀(C n) must be bigger than or equal to the entropy h(Xn

1 ) of the source, that is, ¯̀(C n) ≥
hn(Xn

1 ).

Proof. Let K =
∑

xn
1

2−`(xn
1 ) ≤ 1. Then

¯̀(C n)− hn(Xn
1 ) =

∑
xn
1∈An

P (xn
1 )`(xn

1 ) +
∑

xn
1∈An

P (xn
1 ) log P (xn

1 )

=
∑

xn
1∈An

P (xn
1 ) log

P (xn
1 )

2−`(xn
1 )/K

− logK

≥ 0,

since the first term is a divergence and cannot be negative by Theorem 6.3, while K ≤ 1 by
Kraft’s inequality.

The quantity
r̄n(C n) = ¯̀(C n)− hn(Xn

1 )

is known as the average code redundancy. We just proved that for prefix codes it cannot
be negative. We also observe that the average bits per symbol ¯̀(Cn)/n is bounded from
the below by the entropy rate of the source. In Theorem 6.19 below we show that this is
true even if we allow errors on the decoding side. We shall return to the code redundancy in
Sections 8.7.2 and 9.4.2, where we use analytic tools to evaluate precisely the code redundancy
for some classes of processes.

To formulate a universal source coding problem, we start by introducing the bit rate R
of a code C n. Hereafter, we deal only with extended codes for X1, . . . ,Xn generated by a
source with the underlying probability measure P . Let M be the number of codewords for
C n. The bit rate of such a code is defined as

R =
logM
n

.
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We often write M = 2nR to mean M = d2nRe, and the corresponding code we denote as
(2nR, n). Observe that R represents the number of bits per source symbol, and it can be
viewed as the reciprocal of the compression ratio. We expect R < 1 for good compression
codes.

The fixed rate block code C n of rate R for X1, . . . ,Xn is defined by two mappings:

1. Encoder
φn : An → {1, 2, . . . , 2nR};

2. Decoder
ψn : {1, 2, . . . , 2nR} → An;

where we explicitly set M = d2nRe.

Let X̂n
1 = ψn(φn(Xn

1 )) = ψn(C n), and we allow that X̂n
1 6= Xn

1 . In this case, we define the
probability of error PE with respect to the source probability P as

PE := Pr{Xn
1 6= X̂n

1 }.

The problem of universal source coding is to find the smallest bit rate R (or biggest
compression ratio) such that PE < ε for given ε > 0 irrespectively of the (usually unknown)
distribution P .

The first Shannon theorem states that one can build a universal source code as long as
the bit rate R is bigger than the entropy h(P ) of the source. In other words, on average the
best bit rate is equal to the entropy of the source.

Theorem 6.19 (Shannon, 1948) (i) There exists a sequence of (2nR, n) universal source
codes with rate R > h(P ) such that for a given ε > 0 the probability of error PE < ε for large
n.
(ii) Conversely, for all universal codes with PE → 0 the bit rate R > h(P ).

Proof. We prove the achievability part of the theorem by constructing a random code that
satisfies the conditions of the theorem. For given ε > 0, let Gε

n be a set of An such that
P (Gε

n) ≥ 1 − ε. We assign codes that are correctly reproduced to elements of the set Gε
n.

Clearly, then, the error PE is bounded by ε. By AEP, we know that Gε
n is the set of P -typical

sequences and its cardinality can be bounded as (1− ε)2n(h(P )−ε) ≤ |Gε
n| ≤ 2n(h(P )+ε). Thus,

R = log |Gε
n|/n is bounded between h(P )−ε and h(P )+ε, for sufficiently large n. This proves

the first part of the theorem.
To prove the converse, we establish that if R < h(P ), then PE > 1 − ε for a given

0 < ε < 1. Let C ′ be the subset of all codewords C that are encoded without an error.
Observe that |C ′| = 2nR. Since we assume that R < h(P ) there exists δ > 0 such that

|C ′| < 2n(h−2δ).
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Encoder
Channel
P(Y|X) Decoder

W
Message

X Y
Decision

W

Figure 6.1: A communication system.

We now use AEP with 2δ = ε to obtain (we write below Bε
n = An − Gε

n)

1− PE =
∑

xn
1∈C

′
P (xn

1 )

=
∑

xn
1∈C

′∩Bε/2
n

P (xn
1 ) +

∑
xn
1∈C

′∩Gε/2
n

P (xn
1 )

≤ ε/2 + 2n(h−2δ)2−n(h−δ) < ε,

for sufficiently large n. This proves the theorem.

6.4.2 Channel Coding Theorem

Let A relay a message W drawn from the index set of size M to B, who receives message Ŵ
and must guess W . Such a communication is performed by sending the signal X(W ) that
is received as a signal Y depending on X, hence on the message W . This communication
process is illustrated in Figure 6.1, in which the communication medium is called the channel
and is characterized by the conditional probability P (Y |X). As before, we shall write P for
the probability measure characterizing the source and the channel. In fact, we should point
out that to send M messages one needs a code of length n ≥ logM , so from now on we shall
deal with Xn

1 and Y n
1 for some n ≥ logM .

Throughout this section, we consider the channel P (Y n
1 |Xn

1 ) satisfying the following three
properties:

P (yn
1 |xn

1 ) =
n∏

i=1

P (yi|xi), (6.56)

P (yk|xk
1 , y

k−1
1 ) = P (yk|xk), k = 1, 2, . . . , n, (6.57)

P (xk|xk−1
1 , yk−1

1 ) = P (xk|xk−1
1 ), k = 1, 2, . . . , n. (6.58)

Such a channel is called a discrete memoryless channel (cf. (6.56) and (6.57)) without feedback
(cf. (6.58)).

For the channel P (Y n
1 |Xn

1 ), we define an (M,n) channel code with rate R and M = d2nRe
as follows:

• Encoding function
Xn

1 : {1, 2, . . . ,M} → An,
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yielding codewords Xn
1 (1), . . . ,Xn

1 (M) that constitute the codebook;

• Decoding function
χ : Bn → {1, 2, . . . ,M},

where B is the alphabet of the output signal Y . Observe that the received message is
Ŵ = χ(Y n

1 ).

The point to observe is that we consider a noisy channel that can alter the signal, so that
the received signal is not necessary equal to the original one. To capture this situation, we
introduce the (average) probability of error PE defined as

PE = Pr{W 6= Ŵ} (6.59)

=
1
M

M∑
i=1

Pr{χ(Y n
1 ) 6= i|W = i} =

1
M

M∑
i=1

∑
yn
1 :χ(yn

1 )6=i

P (yn
1 |xn

1 (i)).

This definition implies that a message to be sent is selected uniformly from the index set
{1, 2, . . . ,M} where M = d2nRe.

The channel coding problem is to find the largest possible R (hence M) for which
there exists a channel code (2nR, n) such that the probability of error PE → 0 as n→∞. In
a sense, the channel coding is an opposing problem to the source coding. In the latter, we
try to find the best compression, thus the smallest possible bit rate R, while in the former
we want to reliably send as many messages as possible, hence making the code rate R as big
as possible.

To formulate the main result of this section, we introduce the channel capacity defined
as

C = max
P (X)
{I(X;Y )}. (6.60)

(In Exercises 17 and 18 we ask the reader to compute the channel capacity for the bi-
nary symmetric channel and the binary erasure channel.) We shall prove that the chan-
nel capacity is the achievability rate of channel codes. To see this intuitively, we observe
that there are approximately 2nH(Y ) typical Y -sequences. We can divide this set into
2n(H(Y )−H(Y |X)) = 2nI(X;Y ) distinguishable sets of size 2nH(Y |X) corresponding to differ-
ent input sequences (Theorem 6.9). Hence, we can send at most 2nI(X;Y ) distinguishable
sequences of length n. Below we make this statement more rigorous. In our presentation, we
shall closely follow the excellent exposition of Cover and Thomas [75].

To follow this idea, we first derive the converse channel coding theorem by showing that
if R > C then PE > 1− ε for sufficiently large n. Then, we formulate and complete the proof
of the Shannon coding theorem.

Our goal now is to show that

PE ≥ 1− C

R
− 1
nR

, (6.61)
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which would imply that if R > C, then the probability of error is bounded away from zero
for sufficiently large n. To derive it, we first observe that

h(W |Y n
1 ) = h(W )− I(W ;Y n

1 )
≥ h(W )− I(Xn

1 ;Y n
1 ) ≥ n(R− C), (6.62)

since I(Xn
1 ;Y n

1 ) ≤ I(W ;Y n
1 ), nR ≤ h(W ) (indeed, 2nR ≤ d2nRe = M), and I(Xn

1 ;Y n
1 ) ≤ nC.

To see that the latter is true, we write the following chain of relationships that follow directly
from the definition of the discrete memoryless channel (6.57) and (6.16):

I(Xn
1 ;Y n

1 ) = h(Y n
1 )− h(Y n

1 |Xn
1 ) = h(Y n

1 )−
n∑

i=1

h(Yi|Y1, . . . , Yi−1,X
n
1 )

= h(Y n
1 )−

n∑
i=1

h(Yi|Xi) ≤
n∑

i=1

h(Yi)−
n∑

i=1

h(Yi|Xi)

= nI(Xi, Yi) ≤ nC.

We now derive an inequality on h(W |Y n
1 ). Let E = I(Ŵ 6= W ), where, as always, I is

the indicator function. Using h(X,Y |Z) = h(X|Z) + h(Y |X,Z) =h(Y |Z) + h(X|Y,Z), and
noting that h(E|W,Y n

1 ) = 0, we have

h(E,W |Y n
1 ) = h(W |Y n

1 ) = h(E|Y n
1 ) + h(W |E,Y n

1 ) ≤ 1 + h(W |E,Y n
1 ),

where the inequality follows from h(E|Y n
1 ) ≤ h(E) ≤ 1. We estimate h(W |E,Y n

1 ) as follows:

h(W |E,Y n
1 ) = Pr{E = 0}h(W |Y n

1 , E = 0) + Pr{E = 1}h(W |Y n
1 , E = 1)

≤ (1− PE)0 + PEnR ≤ nRPE ,

since h(W |Y n
1 , E = 0) = 0 due to the fact that in this case W is completely determined by

Y . Combining everything we obtain the Fano inequality

h(W |Y n
1 ) ≤ 1 + nRPE, (6.63)

which, after substituting in (6.62), proves (6.61).
In view of the above, we know that the rate of a reliable transmission (i.e., PE < ε)

cannot exceed the capacity of the channel C. But, can we achieve this capacity? In 1948
Shannon was the first to use a number of new ideas (e.g., random coding technique) to prove
this rather counterintuitive fact. We formulate it in the following channel coding theorem.
Below, we deal with the average probability of error PE , but the theorem holds also for the
maximal probability of error Pmax = maxi Pr{χ(Y n

1 ) 6= i|W = i} (the fact that the reader is
asked to prove in Exercise 13).



164 Elements of Information Theory

Theorem 6.20 (Shannon’s Channel Coding Theorem) (i) For every ε > 0 and rate
R < C, there exists a sequence of (2nR, n) codes with PE < ε for sufficiently large n.
(ii) Conversely, any sequence of (2nR, n) codes with PE → 0 must have R < C.

Proof. The converse part was already proved above, so we now concentrate on the achiev-
ability part. The proof of this part is a classic example of the random coding technique.
Thus, let R < C and we construct a random code that achieves PE as small as desired for
sufficiently large n. We independently generate a (2nR, n) code according to the distribution
P (xn

1 ) =
∏n

i=1 P (xi). The wth codeword is denoted as xn
1 (w) for 1 ≤ w ≤ 2nR. Clearly, the

probability of generating a particular code C is

P (C ) =
2nR∏
w=1

n∏
i=1

P (xi(w)).

We postulate that:

• The code C is revealed to both sender and receiver.

• A message W is chosen uniformly, that is,

Pr{W = w} = 2−nR

for w = 1, 2, . . . , 2nR.

• The codeword of xn
1 (w) sent over the channel is received as yn

1 , where

P (yn
1 |xn

1 (w) =
n∏

i=1

P (yi|xi(w)).

• Typical Decoding Procedure. The receiver declares that Ŵ was sent if: (i) (Xn
1 (W ), Y n

1 )
is jointly typical; (ii) there is no other index K 6= W such that (Xn

1 (K), Y n
1 )is jointly

typical (cf. joint AEP Theorem 6.9).

Under the above decoding rule, we now estimate the probability of error PE = Pr{W 6=
Ŵ}. Let Pw

E (C ) = Pr{Ŵ 6= w|W = w} when C code was used. Clearly

PE =
∑
C

P (C )Pr{Ŵ 6= W |C ) =
1

2nR

2nR∑
w=1

∑
C

P (C )Pw
E (C ).

But by symmetry of the code construction the average probability of error averaged over all
codes does not depend on the particular index w; hence we further assume w = 1. The above
can be written as

PE =
∑
C

P (C )P 1
E(C ).
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Let now
Ai = {(Xn

1 (i), Y n
1 ) ∈ Gε

n, i ∈ {1, 2, . . . , 2nR},

where Gε
n is the set of jointly (X,Y )–typical sequences. Clearly,

PE = Pr{Ā1 ∪A2 ∪ · · · ∪A2nR} ≤ Pr{Ā1}+
2nR∑
i=2

Pr{Ai},

where Ā1 is the complement of Ai and represents the event that Xn
1 (1) and Y n

1 are not jointly
typical. Observe that Xn

1 (1) and Xn
1 (i) are independent, as well as Xn

1 (i) and Y n
1 for i 6= 1

due to the way the code is constructed. Then by Theorem 6.9,

PE ≤ Pr{Ā1}+
2nR∑
i=2

Pr{Ai}

≤ ε+
2nR∑
i=2

2−n(I(X,Y )−3ε)

≤ ε+ 23nε2−n(I(X,Y )−R)

≤ 2ε

for sufficiently large n and R < I(X;Y ) − 3ε. To complete the proof, we choose the source
distribution P to be the distribution P that achieves the capacity C. Hence, the condition
R < I(X,Y ) in the above can be replaced by R < C.

6.4.3 Rate Distortion Theorem

In some situations, we cannot or do not want to recover exactly the message sent by the
encoder. The former situation arises when dealing with continuous signals while the latter
occurs in a lossy data compression when one agrees to lose some information in order to get
better compression. Rate distortion theory deals with such problems and can be succinctly
described as follows: Given a source distribution and a distortion measure, what is the
minimum rate required to achieve a particular distortion?

To state our problem in precise mathematical terms, we introduce some definitions. Let
M = d2nRe. A rate distortion code consists of an encoding mapping

φn : An → {1, 2, . . . , 2nR},

and a decoding (reproduction) function

ψn : {1, 2, . . . , 2nR} → Ân,
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where Â is the reproduction alphabet. We often write

X̂n
1 = ψn(φn(Xn

1 ))

and refer to X̂n
1 as the reproduction vector, and Ân as the reproduction space. The point to

observe is that Xn
1 6= X̂n

1 and X̂n
1 approximates the source code Xn

1 . We now introduce a
distortion measure that was already mentioned in Section 6.3.4. Throughout this section, we
consider only the bounded distortion function, that is,

max
a∈A,∈̂Â

{d(a, â)} = dmax <∞.

Roughly speaking, given D > 0, we call a rate distortion code (2nR, n,D) D-semifaithful if
either d(Xn

1 , X̂
n
1 ) ≤ D with high probability or EXn

1
[d(Xn

1 , X̂
n
1 )] ≤ D. We shall show below

that these two definitions are asymptotically equivalent, at least for memoryless sources,
which are assumed throughout this section. We shall follow here Csiszár and Körner [78] and
Cover and Thomas [75].

Definition 6.21 (i) A pair (R,D) is called ε-achievable rate at distortion level D for source
{Xk}k≥1, if for every δ > 0 and sufficiently large n there exists a sequence of rate distortion
codes (φn, ψn) of rate less than R+ δ such that

Pr{dn(Xn
1 , ψ(φ(Xn

1 )) ≤ D + δ} ≥ 1− ε. (6.64)

(ii) The real number R is an achievable rate at distortion D if it is ε-achievable for every
0 < ε < 1.
(iii) The pair (R,D) is called an achievable rate-distortion pair if it is achievable.
(iv) The infimum of achievable (resp. ε-achievable) rates at distortion D is called the rate
distortion function and will be denoted R(D) (resp. Rε(D)). Clearly

R(D) = lim
ε→0

Rε(D). (6.65)

Before we go any further, we would like to observe that condition (6.64) can be replaced
by a more global one:

lim
n→∞EXn

1
[d(Xn

1 , ψn(φn(Xn
1 )))] ≤ D. (6.66)

without any harm to the final results. To see this, let us first assume (6.64) holds. We show
that (6.66) follows. Indeed, let Sn be the set of x̂n

1 for which (6.64) holds. Then

E[d(Xn
1 , X̂

n
1 )] =

∑
xn
1

P (xn
1 )d(xn

1 , x̂
n
1 )

=
∑

xn
1∈Sn

P (xn
1 )d(xn

1 , x̂
n
1 ) +

∑
xn
1 /∈Sn

P (xn
1 )d(xn

1 , x̂
n
1 )

≤ D + δ + εdmax.
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Now assume (6.66) holds, and let N(a, â|xn
1 , x̂

n
1 ) be the number of a ∈ A and â ∈ Â occurring

in xn
1 and x̂n

1 , respectively. If (Xk, X̂k) are i.i.d., then from the law of large numbers we infer
for any ε > 0

lim
n→∞Pr{|N(a, â|Xn

1 , X̂
n
1 )/n − P (a, â)| > ε} = 0, (6.67)

where, as always in this section, P (·, ·) is the probability measure of (Xk, X̂k). (Observe that
(6.67) holds for a much larger class of processes.) In view of this, we have:

d(Xn
1 , ψn(φn(Xn

1 ) =
1
n

∑
a∈A

∑
â∈Â

N(a, â|Xn
1 , X̂

n
1 )d(a, â)

(6.67)
≤

∑
a∈A

∑
â∈Â

P (a, â)d(a, â) + 2ε|A||Â|dmax with prob. 1− ε

(6.66)

≤ D + δ with prob. 1− ε,

where δ > 0. This implies (6.64). Therefore, we shall freely use either (6.66) or (6.64) in the
discussions below.

We now define the information rate distortion function RI(D), and later prove that for
memoryless sources it is equal to the rate distortion function R(D); that is, RI(D) represents
the infimum of rates that achieve a particular distortion. This is the main result of this
section, which was proved by Shannon in 1959.

Definition 6.22 The information rate distortion function RI(D) for source {Xk}k≥1 with
distortion measure d(x, x̂) is defined as

RI(D) = min
P (x̂|x):E[d(X,X̂)]≤D

I(X; X̂), (6.68)

where the minimization is over all conditional distributions P (x̂|x), for which the joint dis-
tribution P (x, x̂) = P (x)P (x̂|x) satisfies

E[d(X, X̂)] =
∑
(x,x̂)

P (x)P (x̂|x)d(x, x̂) ≤ D.

In Exercise 21 we ask the reader to prove the following property of RI(D).

Lemma 6.23 The information rate distortion function RI(D) is a non-increasing convex
and continuous function of D.

The main result of this section can be stated as follows.
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Theorem 6.24 (Shannon Rate Distortion Theorem) The rate distortion function R(D)
for memoryless sources X with distribution P (·) and bounded distortion function d(x, x̂) is
equal to the information rate distortion function RI(D), that is,

R(D) = RI(D) = min
P (x̂|x):E[d(X,X̂)]≤D

I(X; X̂) (6.69)

is the minimum achievable rate at distortion level D.

Proof. Converse. We start with the converse part, which is easier. We need to show that
for any (2nR, n,D) rate distortion code, the code rate R satisfies R > RI(D). We proceed now
as in Cover and Thomas [75], taking into account the fact that X1, . . . ,Xn are independent:

nR ≥ h(X̂n
1 ) ≥ h(X̂n

1 )− h(X̂n
1 |Xn

1 ) = I(X̂n
1 ;Xn

1 )

Theorem 6.2= h(Xn
1 )− h(Xn

1 |X̂n
1 ) =

n∑
i=1

h(Xi)−
n∑

i=1

h(Xi|X̂n
1 ,X1, . . . ,Xi−1)

(6.15)

≥
n∑

i=1

h(Xi)−
n∑

i=1

h(Xi|X̂i) =
n∑

i=1

I(Xi; X̂i)

(6.68)
≥

n∑
i=1

RI(E[d(Xi, X̂i)])

Lemma 6.23
≥ nRI

(
1
n

n∑
i=1

(E[d(Xi, X̂i)]

)
= nRI(E[d(Xn

1 , X̂
n
1 )])

Lemma 6.23
≥ nRI(D).

Achievability. Let P (x̂|x) be the conditional probability that achieves equality in the
definition of RI(D), that is, I(X; X̂) = RI(D). We will prove that for any δ > 0 there exists
a rate distortion code (2nR, n,D) with rate R > RI(D) and distortion smaller than D + δ.
As in the channel coding theorem, we construct a random code as follows:

• Generation. Generate randomly a rate distortion codebook C consisting of 2nR se-
quences X̂n

1 drawn i.i.d. according to
∏n

i=1 P (x̂i). Index this codewords by w ∈
{1, 2, . . . , 2nR}.

• Encoding. Encode xn
1 by such w that (Xn

1 , X̂
n
1 (w) ∈ Gε

n,d, where Gε
n,d is the set of

distortion typical sequences, as defined in Definition 6.15. If there is no such w, set
w = 1. Observe that nR bits suffice to encode such an index w.

• Decoding. The reproduction sequence is X̂n
1 (w).
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We need to estimate the expected distortion EXn
1 ,C [d(Xn

1 , X̂
n
1 )] over the random choice of

codebooks C . Observe that

EXn
1 ,C [d(Xn

1 , X̂
n
1 )] ≤ D + ε+ PEdmax,

where PE is the total probability of all sequences xn
1 for which there is no codeword X̂n

1 (w)
which is distortion typical with xn

1 . It suffices now to show that PE → 0 for sufficiently large
n.

We estimate now PE. Let Sn(C ) be the set of source sequences xn
1 for which there is at

least one codeword in C that is distortion typical with xn
1 . We obtain

PE =
∑
C

P (C )
∑

xn
1 /∈Sn(C )

P (xn
1 ) =

∑
xn
1

P (xn
1 )

∑
C :xn

1 /∈Sn(C )

P (C )

=
∑
xn
1

P (xn
1 )
(
1− Pr{(xn

1 , X̂
n
1 ) ∈ Gε

d,n}
)2nR

, (6.70)

where the last equation is a consequence of a random generation of 2nR independent code-
words. Using distortion AEP Theorem 6.16, we obtain

Pr{(xn
1 , X̂

n
1 ) ∈ Gε

d,n} =
∑

x̂n
1 :(xn

1 ,x̂n
1 )∈Gε

d,n

P (x̂n
1 )

≥ 2−n(I(X;X̂)+3ε)
∑

x̂n
1 :(xn

1 ,x̂n
1 )∈Gε

d,n

P (x̂n
1 |xn

1 ). (6.71)

Let A(xn
1 ) =

∑
x̂n
1 :(xn

1 ,x̂n
1 )∈Gε

d,n
P (x̂n

1 |xn
1 ). We continue now with (6.70), and use the following

simple inequality
(1− xy)n ≤ 1− x+ e−ny, 0 ≤ x, y ≤ 1 (6.72)

to obtain

PE

(6.71)
≤

∑
xn
1

P (xn
1 )
(

1− 2−n(I(X;X̂)+3ε)A(xn
1 )
)2nR

(6.72)

≤
∑
xn
1

P (xn
1 )(1 −A(xn

1 )) + exp
(
−2n(R−I(X;X̂)−3ε)

)
=

∑
(xn

1 ,x̂n
1 )/∈Gε

d,n

P (xn
1 , x̂

n
1 ) + exp

(
−2n(R−I(X;X̂)−3ε)

)
= Pr{(Xn

1 , X̂
n
1 ) /∈ Gε

d,n}+ exp
(
−2n(R−I(X;X̂)−3ε)

)
→ 0 if R > I(X; X̂) + 3ε,
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since Pr{(Xn
1 , X̂

n
1 /∈ Gε

d,n} < ε due to (6.53) of Theorem 6.16. In summary, if we choose
P (x̂|x) to be the conditional distribution that achieves the minimum in the rate information
function RI(D), then R > RI(D) implies R > I(X; X̂), and we can choose ε small enough
so that E[d(Xn

1 , X̂
n
1 )] ≤ D + δ. This completes the proof.

Before we leave this section, we formulate yet another representation for the rate distortion
function R(D) that captures quite well the main thrust of R(D) and is easy to understand
intuitively.

Definition 6.25 (Operational Rate Distortion) Let A = Â, and define a D-ball in An

with center yn
1 as

BD(yn
1 ) = {xn

1 : d(xn
1 , y

n
1 ) ≤ D}.

Let Nε(n,D) be the minimum number of D-balls covering An up to a set of probability
ε, that is, the smallest N for which there exist yn

1 (1), . . . , yn
1 (N) such that the set Sn ⊆⋃N

i=1BD(yn
1 (i)) satisfies

Pr{Sn} ≥ 1− ε.
Then define

Rε(n,D) = min
Sn: P (Sn)≥1−ε

logNε(n,D)
n

.

The following
RO(D) = lim

ε→0
lim

n→∞Rε(n,D) (6.73)

defines the so–called operational rate-distortion.

We shall now argue that R(D) = RO(D). As for the converse, let us consider ε-achievable
codes (2nR, n,D), and let Sn be the set of xn

1 for which (6.64) holds. We sequentially encode
xn

1 ∈ Sn by assigning to it the index of the closest x̂n
1 ∈ Sn that is within distance D. The

other xn
1 are encoded arbitrary (e.g., we assign to them index w = 1). Clearly, the set Sn

can be covered by 2nR balls of radius D + δ. But, Nε(n,D) is the smallest number of balls
covering 1− ε set, hence Nε(n,D) ≤ 2nRε(D+δ), and therefore

lim sup
n→∞

logNε(n,D)
n

≤ Rε(D),

sinceR(D) is a continuous function ofD. To obtain the achievability part, we construct a code
(2nR, n,D) with any R > RO(D) that achieves asymptotically the distortion D. Actually, it
suffices to set x̂n

1 (i) = yn
1 (i) (center of D-balls) for i = 1, . . . , 2nR. The encoder assigns xn

1 to
the closest yn

1 (i) = x̂n
1 (i) such that d(xn

1 , x̂
n
1 ) ≤ D. Clearly, Pr{d(xn

1 , x̂
n
1 ) ≤ D} ≥ 1− ε.

We just sketched the derivation of the following important result (cf. [78]).

Theorem 6.26 For memoryless sources and bounded distortion function

R(D) = RO(D) = lim
ε→0

lim
n→∞Rε(n,D). (6.74)
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6.5 Applications

In this applications section, we discuss three problems involving entropy and AEP. At first, we
look at the typical depth in a suffix tree (see Section 6.5.1). This turns out to be equivalent
to the computation of the phrase length in the Wyner-Ziv [452] compression scheme, as
discussed in Section 1.2. We follow this path and extend the analysis to a lossy Lempel-
Ziv scheme. The next problem we tackle is more of interest to DNA recombination than to
data compression. We compare greedy and optimal algorithms that find the shortest common
superstring described Section 1.4. We prove that these algorithms are asymptotically optimal
(Section 6.5.2). Finally, we turn our attention to the fixed database model of a lossy data
compression and estimate the compression ratio (Section 6.5.3).

6.5.1 Phrase Length in the Lempel-Ziv Scheme and Depth in a Suffix Tree

We start with a more general case, namely, a lossy extension of the Lempel-Ziv scheme, and
conclude with a lossless scheme. Let us assume that a mixing source MX (see Section 2.1)
emits a stationary mixing sequence {Xk}k≥1. We also assume that the first n symbols, Xn

1 ,
called the database or the training sequence, are revealed to the decoder and encoder. To
make the analysis a little more interesting, we actually postulate that the first n symbols
are coming from a distorted source, and we denote them as X̂n

1 . Let P̂ be the underlying
probability measure of X̂n

1 , and we shall postulate that {X̂k,Xk}k≥1 is a ψ-strongly mixing
process.

We consider now a string X∞
n+1 generated by a ψ-mixing source with the underlying

probability P . For simplicity, we only consider binary alphabets A = Â = {0, 1} and the
Hamming distance as the distortion measure. Let D > 0 be fixed. Define two important
parameters:

Let Dn be the largest K such that a prefix of X∞
n+1 of length K is within distance

D from X̂i−1+K
i for some 1 ≤ i ≤ n−K + 1, that is, d(X̂i−1+K

i ,Xn+K
n+1 ) ≤ D;

and

For fixed M ≤ n, let Dn(M) be the length K of the longest prefix of X∞
M for

which there exists M +K ≤ i ≤ n+ 1 such that d(X̂i+K
i ,XM+K

M ) ≤ D.

We observe that for D = 0 the phrase lengths Dn and Dn(M) become the depth of insertion
and the Mth depth of a suffix tree built from X̂n

1 (see Definition 1.1 of Section 1.1).
To formulate the main result of this subsection, we recall the definition of the generalized

Shannon entropy r̂0(D) with respect to measure P̂ (see Definition 6.12)

r̂0(D) = − lim
k→∞

EP [log P̂ (BD(Xk
1 ))]

k
, (6.75)

where EP is the average operator with respect to P .
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Theorem 6.27 ( Luczak and Szpankowski, 1997) Let {X̂k,Xk}k≥1 be a ψ-strongly mix-
ing process. Let also r̂0(D) > 0. Then

lim
n→∞

Dn(M)
log n

= lim
n→∞

Dn

log n
=

1
r̂0(D)

(pr.)− P × P̂ (6.76)

provided ∑
`≥k

Pr{Bε
`} = δ(k)→ 0, (6.77)

where Bε
k is the set of bad states in the lossy AEP with respect to r̂0(D) (see Theorem 6.13).

More precisely, for any ε > 0

Pr

{∣∣∣∣ Dn

log n
− 1
r̂0(D)

∣∣∣∣ > ε

}
= O

(
max{ψ(log n), δ(log n),

log n
nε/4

}
)
. (6.78)

Proof. We establish separately an upper bound and a lower bound for Dn. The quantity
Dn(M) can be treated in a similar manner. Throughout, we use the lossy AEP formulated
in Theorem 6.13 from which we know that the space An can be divided into sets Gε

n and Bε
n

such that for x̂n
1 ∈ Gε

n

2−nr̂0(D)(1+ε) ≤ P̂ (BD(xn
1 )) ≤ 2−nr̂0(D)(1−ε), (6.79)

and P (Bε
n) < ε. We start with the upper bound and use the first moment method (see

Chapter 3). Let Zn be the number of positions 1 ≤ i ≤ n − k + 1 such that the prefix of
Xn+k

n+1 is within distance D from X̂i+k−1
i , that is,

Zn = |{1 ≤ i ≤ n− k + 1 : d(X̂i+k−1
i ,Xn+k

n+1 ) ≤ D}|.

To find an upper bound we need to estimate the probability Pr{(Dn ≥ k} for k = (1 +
ε)r̂−1

0 (D) log n. Surprisingly, there is a certain detail we have to take care of to get it right.
It turns out that {Dn ≥ k} does not imply that there exists a position i in the database such
that Xn+k

n+1 ∈ BD(X̂i+k−1
i ). To see it, let us assume that d(X̂n

1 , w
n
1 ) ≤ D for a word wn

1 ∈ An.
When we increase n, we might have d(X̂n+l

1 , wn+l
1 ) ≤ D as well as d(X̂n+l

1 , wn+l
1 ) ≥ D for

l ≥ 1. Roughly speaking, the set {n : d(X̂n
1 , w

n
1 ) ≤ D} does not consist of consecutive

integers, that is, it has gaps. The correct implication is as follows:

{Dn ≥ k} =⇒ ∃`≥k∃1≤i≤n−`+1 d(Xi+`
i+1,X

n+`
n+1) ≤ D . (6.80)

Then

Pr{Dn ≥ k} ≤
∑
`≥k

n−∑̀
i=1

Pr{X̂i+`−1
i ∈ BD(Xn+`

n+1), Xn+`
n+1 ∈ Gε/2

n }+
∑
`≥k

Pr{Bε/2
` }
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=
∑
`≥k

n−∑̀
i=1

∑
w`

1∈G
ε/2
`

Pr{X̂i+`−1
i ∈ BD(Xn+`

n+1), w`
1 = Xn+`

n+1}+
∑
`≥k

Pr{Bε/2
` }

≤
∑
`≥k

n−∑̀
i=1

(1 + ψ(n + 2− `− i)) 2−`r̂0(D)(1−ε/2) +
∑
`≥k

Pr{Bε/2
` }

≤ nC2−kr̂0(D)(1−ε/2) +
∑
`≥k

Pr{Bε/2
` },

where C > 0 is a constant. Set k = b(1 + ε)r̂−1
0 (D) log nc. But

∑
`≥k Pr{Bε/2

` } = δ(k) → 0
(e.g., Pr{Bε

k} = O(1/k1+δ) for some δ > 0 suffices). Finally, we arrive at

Pr{Dn ≥ b(1 + ε)r̂−1
0 (D) log nc} ≤ c

nε/2(1−ε)
+ δ(log n)

for some constant c > 0. This completes the proof of the upper bound.
For the lower bound, we use the second moment method (see Chapter 3). Let k =

b(1− ε)r̂−1
0 (D) log nc, and define

Z ′
n = |{1 ≤ i ≤ n/(k + g) : d(X̂(i+1)k+ig

i(k+g)+1 ,X
n+k
n+1 ) ≤ D}|

and g = Θ(log n) is a gap between bn/(k + g)c = Θ(n/ log n) nonoverlapping substrings
of length k. In words, instead of looking at all strings of length k we consider only m =
bn/(k + g)c strings with gaps of length g among them. These gaps are used to “weaken”
dependency between the substrings of length k. Observe now that

Pr{Dn < k} ≤ Pr{Z ′
n = 0},

as one can expect. Indeed, if Z ′
n > 0 then by the definition Dn ≥ k. Note also that

Pr{Z ′
n = 0} = Pr{Z ′

n = 0,Xn+k
n+1 ∈ G

ε/2
k }+ Pr{Z ′

n = 0,Xn+k
n+1 ∈ B

ε/2
k )

≤
∑

wk
1∈Gε/2

k

Pr{Z ′
n = 0|Xn+k

n+1 = wk
1}Pr{wk

1 ∈ G
ε/2
k }+ Pr{Bε/2

k }

≤
∑

wk
1∈G

ε/2
k

Pr{Z ′
n(wk

1) = 0}Pr{wk
1 ∈ G

ε/2
k }+ Pr{Bε/2

k } ,

where
Z ′

n(wk
1 ) = |{1 ≤ i ≤ n/(k + g) : d(X̂(i+1)k+ig

i(k+g)+1 , w
k
1) ≤ D}| ,

and Pr{Z ′
n(wk

1) = 0} = Pr{Z ′
n = 0|Xn+k

n+1 = wk
1}. Thus, it is suffices to show that Pr{Z ′

n(wk
1 ) =

0} → 0 uniformly for all wk
1 ∈ G

ε/2
k . Hereafter, we assume that wk

1 ∈ G
ε/2
k .
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Let now m = n/k = Θ(n/ log n). From the definition of the set Gε/2
k for every wk

1 ∈ G
ε/2
k

we have

E[Z ′
n(wk

1)] = mPr{BD(wk
1)} ≥ m2−kr̂0(D)(1+ε/2) ≥ cn

ε/2(1+ε)

log n

for a constant c. We now compute the variance Var[Z ′
n(wn

1 )] for wk
1 ∈ G

ε/2
k . Let Zi

n = 1 if wk
1

occurs approximately at position i(k + g), otherwise Zi
n = 0. Certainly, Z ′

n(wn
1 ) =

∑m
i=1 Z

i
n,

and Var[Z ′
n(wn

1 )] =
∑m

i=1 Var[Zi
n] +

∑m
i=1

∑m
i,j=1 Cov[Zi

n, Z
j
n]. Simple algebra reveals that

m∑
i=1

Var[Zi
n] ≤ mE[Zi

n] = mPr{BD(wk
1 )} = E[Z ′

n(wk
1)].

To compute the second term in the sum above, we split it as
∑n

i,j=1 Cov[Zi
n, Z

j
n] = S1+S2,

where

S1 =
m∑

i=1

∑
|i−j|≤nε/4

Cov[Zi
n, Z

j
n],

S2 =
m∑

i=1

∑
|i−j|≥nε/4

Cov[Zi
n, Z

j
n] .

Observe that

Cov[Zi
n, Z

j
n] = Pr{Zi

nZ
j
n = 1} − Pr{Zi

n = 1}Pr{Zj
n = 1} ≤ Pr{Zi

n = 1} = E[Zi
n] .

Hence S1 ≤ 2nε/4E[Z ′
n(wk

1)].
On the other hand, proceeding as in the above and using the mixing condition we also have

Cov[Zi
n, Z

j
n] ≤ ψ(g)Pr{Zi

n = 1}Pr{Zj
n = 1} where g ≥ nε/4. Thus, S2 ≤ 2ψ(g)(E2[Z ′

n(wk
1)].

Consequently, for every wk
1 ∈ G

ε/2
k we have (ε < 1)

Pr{Z ′
n(wk

1 ) = 0) ≤ Var[Z ′
n(wk

1)]
(E2[Z ′

n(wk
1 )]
≤ 2ψ(g) +O

(
nε/4

E[Z ′
n(wk

1 )]

)
≤ 2ψ(g) +O

(
log n
nε/4

)
,

and finally we obtain
Pr{Dn < b(1− ε)r̂−1

0 (D) log nc} → 0

as n→∞, which completes the lower bound.

Here is another interesting question: Can we extend convergence in probability of Dn/ log n
in Theorem 6.27 to almost sure convergence? Observe that the rate of convergence in The-
orem 6.27 does not justify such an extension. We recall, however, that in Section 4.2.3 we
obtained such a generalization for the height Hn in a trie even when the rate of convergence
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was not good enough to apply the Borel-Cantelli lemma. But the height Hn is a nonde-
creasing function of n, and this allows us to extend convergence in probability to almost sure
convergence. Clearly, Dn does not possess this property, and surprisingly enough we shall
prove that Dn/ log n does not converge almost surely. Actually, this was an open problem
posed by Wyner and Ziv in [452] for the lossless case. It was answered in the negative by the
author in [411] (cf. also Ornstein and Weiss [333] for another formulation of this problem).

To further study the above problem, we need a definition of the generalized height Hn

and the generalized fill-up level Fn.

The height Hn is equal to the largest K for which there exist 1 ≤ i < j ≤ n+1−K
such that d(X̂i−1+K

i ,Xj−1+K
j ) ≤ D;

and

The fill-up level Fn is the largest k such that for every wk
1 ∈ Ak there exists

1 ≤ i ≤ n+ 1− k such that d(X̂i−1+k
i , wk

1 ) ≤ D.

Observe now that Fn ≤ Dn ≤ Hn. If we show that Fn/ log n and Hn/ log n converge (a.s.) to
different(!) constants, then we should expect Dn/ log n oscillates between these two constants.
We shall prove this fact below.

Regarding Fn, we establish the following generalization of the result presented in Exer-
cise 4.10 of Chapter 4.

Theorem 6.28 ( Luczak and Szpankowski, 1997) Let {Xk}k≥1 be a mixing process with
ψ-mixing coefficients such that for every κ ≥ 0

lim
g→∞ gκα(g) = 0. (6.81)

Then
lim

n→∞
Fn

log n
=

1
r−∞(D)

(a.s.) (6.82)

for D ≥ 0.

Proof. We start with an upper bound which is quite simple in this case. Let us define
pmin(k) = minwk

1∈Ak{P (BD(wk
1 ))}, where we assume that the underlying probability measure

of the source is P . By Theorem 6.13, pmin(k) ≤ 2−kr−∞(D)(1−ε). Observe that — unlike the
lossless case — by definition of Fn we have

{Fn > `} =⇒ ∃k>`∀wk
1∈Ak∃1≤i≤n+1−k d(Xi−1+k

i , wk
1 ) ≤ D .

Thus, in particular, Pr{Fn > `} ≤ (n+ 1)
∑

k>` P (BD(wmin
k )), where wmin

k is a word from Ak

for which log(P (BD(wmin
k )) ∼ −kr−∞(D). Hence, for ` = b(1 + ε)r−1

−∞(D) log nc we have

Pr{s > `} ≤ (n+ 1)
∑
k>`

pmin(k) = O(1/nε) .
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The lower bound requires a bit more work. Let us set k = b(1 − ε)r−1
−∞(D) log nc and

consider a set of nonoverlapping substrings of Xn
1 of length k = O(log n) between which one

inserts gaps of length g = O(log n). Thus, there are m = b(n + 1)/(k + g)c = O(n/ log n)
substrings {X(i+1)k+ig

i(k+g)+1 }mi=1. We show that with probability tending to 1 as n→∞ for every
wk

1 ∈ Ak one can find among these m substrings at least one which is within distance D from
wk

1 and consequently Fn ≥ k. Indeed, using mixing conditions we have

Pr{Fn < k} ≤ Pr{
⋃

wk
1∈Ak

m⋂
i=1

(
X

(i+1)k+ig
i(k+g)+1 6= wk

1

)
}

≤
∑

wk
1∈Ak

(1 + ψ(g))m(1− P (BD(wk
1 )))m ≤ 2k(1 + ψ(g))m(1− pmin(k))m .

Taking into account (6.81) we immediately prove that

Pr{Fn < b(1 − ε)r−1
−∞(D) log nc} ≤ O(exp(−nε/2/ log n)),

which completes the proof of the convergence in probability of Fn.
The rate of convergence for the upper bound does not yet justify applying the Borel-

Cantelli lemma. But, Fn is a nondecreasing sequence of n; hence taking an exponentially
increasing skeleton such as nl = 2l, as we explained in Section 4.2.6, we obtain almost sure
convergence for the fill-up level.

The height Hn is harder to handle. First of all, we formulate it for the lossless case. Its
proof follows the idea already presented in Section 4.2.6 so we ask the reader to prove it in
Exercise 23.

Theorem 6.29 (Szpankowski, 1993) Let {Xk}k≥1 be a mixing process with ψ-mixing co-
efficients such that ∑

g≥1

ψ(g) <∞.

Then the height Hn in the lossless case (D = 0) satisfies

lim
n→∞

Hn

log n
=

2
h1

(a.s.) (6.83)

where h1 is the first Rényi entropy.

A generalization of Theorem 6.29 to the lossy situation is not easy. One expects that
(6.83) becomes in lossy case

lim
n→∞

Hn

log n
=

2
r1(D)

(a.s.)
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where r1(D) is the first generalized Rényi entropy. This fact was proved only for memoryless
and Markovian sources by Arratia and Waterman [22]. The difficulty arises when analyzing
overlapping substrings. The reader is asked to prove it in Exercise 24 for memoryless sources.

Now, we are able to answer the question posed just after the proof of Theorem 6.27.
Does Dn/ log n converge (a.s.) to a limit? We consider only the lossless case to simplify the
presentation. We shall show that

lim inf
n→∞

Dn

log n
=

1
h−∞

(a.s.) lim sup
n→∞

Dn

log n
=

2
h1

(6.84)

provided (6.81) holds. Indeed, Dn ≤ Hn, hence Dn/ log n ≤ Hn/ log n, and obviously

lim sup
n→∞

Dn

log n
≤ lim

n→∞
Hn

log n
(a.s.).

We now show that the above holds with ≤ replaced by ≥, which will complete the proof.
Note that almost surely Dn = Hn whenever Hn+1 > Hn, which happens infinitely often (i.o.)
since Hn →∞ (a.s.), and {Xk}k≥1 is an ergodic sequence. Therefore, Pr{Dn = Hn i.o.} = 1
implies that almost surely there exists a subsequence, say nk → ∞, such that Dnk

= Hnk
.

Thus
lim

nk→∞Dnk
/ log nk = lim

nk→∞Hnk
/ log nk (a.s.).

This implies that

lim sup
n→∞

Dn

log n
≥ lim

n→∞
Hn

log n
(a.s.),

that is, lim supn→∞Dn/ log n = limn→∞Hn/ log n (a.s.), and by (6.83) this proves the lim sup
part of (6.84). In a similar manner we can prove the lim inf part by using Fn and Theo-
rem 6.28. In Exercise 25 we ask if (6.84) can be extended to the lossy case.

6.5.2 Shortest Common Superstring Problem

We now turn our attention to the shortest common superstring problem that we described in
Section 1.4. To recall and to reestablish notation, there are n strings, say X`

1(1), . . . ,X`
1(n)

of equal length ` → ∞. These strings are generated by n independent memoryless sources.
Our goal is to construct the shortest superstring, where by a superstring we mean a string
that contains given strings X`

1(1), . . . ,X`
1(n) as substrings. In fact, instead of minimizing the

superstring length we will maximize the overlap Oopt
n defined as the difference between n`

(the total length of all strings) and the shortest superstring (see Section 1.4). We compare
Oopt

n to an overlap Ogr
n that is obtained by an application of a greedy algorithm to construct

a superstring. A class of greedy algorithms was also discussed in Section 1.4. Here we
concentrate on RGREEDY, which builds a superstring Z by finding the maximum overlap
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between (suffix of) Z and (prefixes of) those original strings that have not yet been used in
Z. We prove a surprising result showing that both Oopt

n and Ogr
n asymptotically grow like

1
hn log n where h is the entropy rate of the source.

Before we formulate our findings, let us get some sense of the problem. As explained
in Section 1.4, to construct a superstring one takes a string, say X`

1(i1), and attaches to its
end another string, say X`

1(i2), trying to overlap the longest suffix of X`
1(i1) with the longest

common prefix of X`
1(i2). We continue this process until we exhaust the set of available

strings. This, of course, does not construct an optimal superstring, which would require us
to examine all n! possible permutations of X`

1(1), . . . ,X`
1(n). In fact, the problem is NP-

hard (see Section 1.4 for a reduction to a Hamiltonian path problem). In the RGREEDY
algorithm we choose the first string, say X`

1(i1) arbitrary, but our next choice, say X`
1(i2), is

such that its overlap with X`
1(i1) is the largest among all strings excluding X`

1(i1). And so on,
we choose in every step a remaining string that has the largest overlap with the superstring
built so far.

Let us define C ′
ij to be the length of the longest suffix of X`

1(i) that is equal to the prefix
of X`

1(j) for 1 ≤ i 6= j ≤ n. We introduce

D′
n(i) = max

1≤j≤n,j 6=i
{C ′

ij} ,

Hn = max
1≤i≤n

{D′
n(i)} .

We should observe that C ′
ij is distributed exactly as the alignment Cij introduced in Defini-

tion 1.2 (i.e., the longest common prefix of X(i) and X(j)). But then, D′
n(i) is distributed

as the ith depth Dn(i) in a trie built from X`
1(1), . . . X`

1(n). Therefore, we write Dn(i) for
D′

n(i) for 1 ≤ i ≤ n. By Theorems 6.27 and 4.7 (see Section 4.2.3), we know that for any
ε > 0

lim
n→∞Pr

{
(1− ε) 1

h
lnn ≤ Dn(i) ≤ (1 + ε)

1
h

lnn
}

= 1−O(1/nε) 1 ≤ i ≤ n, (6.85)

lim
n→∞Pr

{
(1− ε) 2

h1
lnn ≤ Hn ≤ (1 + ε)

2
h1

lnn
}

= 1−O(1/nε). (6.86)

To get an upper bound on Oopt
n , we observe that

Oopt
n ≤

n∑
i=1

Dn(i).

But with high probability (i.e., 1 − O(n−ε)) all but nε depths Dn(i) are bounded by (1 +
ε) 1

h lnn. Those nε longer strings cannot have depths bigger than Hn, hence their total
contribution to the above sum is bounded by O(nε lnn). In summary, with high probability
(whp) for any ε > 0

Pr{Oopt
n ≤ (1 + ε)

1
h
n lnn} = 1−O(1/nε) (6.87)
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Can we establish a matching lower bound for Oopt
n ? Definitely not, unless the lengths `

of strings are unbounded (indeed, take ` = 1 to see that Oopt
n ≤ n). If the original strings are

“long” enough, as specified below, then we prove the following main result.

Theorem 6.30 (Alexander, 1996; Frieze and Szpankowski, 1998) Consider the short-
est common superstring problem, in which n memoryless sources generate independent strings
X`

1(1), . . . ,X`
1(n) over the alphabet A = {ω1, . . . , ωV } of size V = |A|. Then

lim
n→∞

Oopt
n

n log n
=

1
h
, (pr.) lim

n→∞
Ogr

n

n log n
=

1
h

(6.88)

provided

` >
4
h1

lnn (6.89)

where h1 = − ln(p2
1 + · · · + p2

V ) is the first order Rényi’s entropy and pt = Pr{Xk(i) = ωt}
for 1 ≤ i ≤ n.

Proof. Since Ogr
n ≤ Oopt

n , we need only establish a lower bound for the greedy algorithm.
We first justify (6.89). Let E denote the event that there is no such pair, say i, j, where the
overlap between X`

1(i) and X`
1(j) is bigger than `/2. Since E occurs if and only if Hn ≤ `/2,

we conclude from (6.83) that whp (i.e., 1−O(n−ε) all overlaps are smaller than `/2 provided
(6.89) holds. In view of this, we split every string X`

1(i) into a prefix Y
`/2
1 (i) and suffix

W `
`/2+1(i) such that X`

1(i) = Y
`/2
1 (i)W `

`/2+1(i).
From the above, we conclude that a suffix of the superstring Z being constructed is

random and independent of the previous history of the algorithm. Having this in mind, let
us define for 1 ≤ k ≤ `/2

Nt(yk
1 ) = |{1 ≤ i ≤ k : yi = ωt ∈ A, 1 ≤ t ≤ V }|,

where A = {ω1, . . . , ωV }. In words, Nt(yk
1 ) denotes the number of positions in yk

1 that are
equal to the tth symbol of the alphabet. When k is large, we expect that Nt(yk

1) ∼ kpt

since Nt(yk
1 ) is distributed as the Binomial(k, pt) := B(k, pt). Indeed, let us define the set of

typical sequences as

Gε
k = {yk

1 : Nt(yk
1 ) ≤ (1 + ε)kpt, 1 ≤ t ≤ V }.

From AEP we know that Pr{Gε
k} ≥ 1− ε, but we need a stronger version of it. In particular,

we need to control the probability of Pr{Bε
k} where Bε

k = Ak − Gε
k.

Recall that in Example 5.6 of Chapter 5 we proved the following bound on the tails of
the binomial distribution B = B(n, p) (cf. (5.40))

Pr{B ≤ (1− ε)np} ≤ e−ε2np/3,

Pr{B ≥ (1 + ε)np} ≤ e−ε2np/3.
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Thus

Pr{Bε
k} = Pr{yk

1(i) 6∈ Gε
k} ≤

V∑
t=1

e−ε2kpt/3 = θ, (6.90)

and θ decays to zero for the following choice of ε and k

ε = (log n)−1/3 and k =
⌊
(1− 2ε)

1
h

log n
⌋

that we assume from now on. In other words, ε2k →∞ with n and

e−k(1+ε)h ≤ Pr{Y k
1 (i) = yk

1} = P (yk
1 ) ≤ e−k(1−ε)h, yk

1 ∈ Gε
k. (6.91)

As a side effect, we observe that whp

|{i : yk
1(i) 6∈ Gε

k}| = o(εn). (6.92)

Finally, for yk
1 ∈ Gε

k define
R(yk

1 ) = |{i : Y k
1 (i) = yk

1}|.

Then

Pr{R(yk
1 ) ≤ (1− ε)nP (yk

1 )} ≤ |Gε
k|e−ε2nP (yk

1 )/3

≤ V ke−ε2nε/3 = o(1) (6.93)

since R(yk
1) is distributed as B(n,P (yk

1 )) and nP (yk
1) ≥ nε due to (6.91).

To model the progress of RGREEDY, we build a trie Tn from Y
`/2
1 (1), . . . , Y `/2

1 (n) and
label every internal node v by ν(v) that denotes the size of the subtree rooted at v. In other
words, if node v is at depth d and the path to v can be labeled as v = y1y2 . . . yd, then ν(v)
is the number of i such that yd

1(i) = y1y2 . . . yd. We sometimes write ν(yd
1) instead of ν(v).

We now make the trie Tn a dynamic tree, by allowing random deletions leading to tries
Tn−1, . . . T1. Let W `/2

1 be an independent string. We delete from the trie Tn a string Y `/2
1 (i)

that has the largest overlap with a suffix of W `/2
1 . After the deletion, we modify labels ν(v)

along the path of W `/2
1 . The reader should observe that W `/2

1 (i) is a suffix of Z (i.e., it repre-
sents the second half of the string just added to the superstring Z at step i of RGREEDY).

Let κi be the length of the longest path along W `/2
1 (i) in the trie Tn−i+1 when deleting

string Y `/2
1 (i) for 1 ≤ i ≤ n. We will show that whp

κ1 + κ2 + · · ·+ κn ≥ (1− 5ε)
1
h
n lnn. (6.94)

The final argument goes as follows. We want to show that whp we will have κt ≥ k for
1 ≤ t ≤ n0 = d(1 − 3ε)ne, where k = (1 − 2ε) 1

h log n. Now, most of the time the k-suffix of
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Z lies in Gε
k. Indeed, the probability it doesn’t is at most θ, which we prove in (6.90) to be

small. If the k-suffix of Z belongs to Gε
k and

ν(yk
1 ) 6= 0 for all yk

1 ∈ Gε
k, (6.95)

then κ ≥ k, where ν(yk
1 ) is the label of the node reached by yk

1 . We argue next that whp (6.95)
holds up to n0 = d(1−3ε)ne. If we consider a fixed yk

1 ∈ Gε
k, then at this point the number of

decrements D(yk
1 ) in ν(yk

1) (when deleting n0 strings) is distributed as B(n0, P (yk
1 )). Hence,

using n0P (yk
1 ) ≥ (1− 3ε)nε, for yk

1 ∈ Gε
k we have

Pr{D(yk
1 ) ≥ (1 + ε)n0P (yk

1 )} ≤ 2|Gε
k|e−(1−3ε)ε2nε/3

= o(1).

So whp at this point ν(yk
1 ) ≥ n(1 − ε)P (yk

1 ) − n0(1 + ε)P (yk
1 ) > 0 for every yk

1 ∈ Gε
k. Then

(6.94) follows and this completes the proof.

In Exercise 26 we ask the reader to extend the above result to mixing models and in
Exercise 27 to other greedy algorithms discussed in Section 1.4.

In passing we should mention that the shortest common superstring is not a good com-
pression algorithm. We start with a description of the compression code based on the shortest
common superstring. Observe that instead of storing all n strings of total length n` we can
store the shortest common superstring and n pointers indicating the beginning of the original
strings (plus lengths of all strings). The compression ratio cn (understood as the ratio of the
number of bits needed to transmit the compression code to the length of the original set of
strings) is

cn =
n`− 1

Hn log n+ n log2(n`− 1
Hn log n)

n`

where the first term of the numerator represents the length of the shortest superstring and
the second term corresponds to the number of bits needed to encode the pointers. When
the length of a string ` grows faster than log n, then cn → 1 (i.e., no compression). When
` = O(log n) some compression might take place. The fact that SCS does not compress well
is hardly surprising: In the construction of SCS we do not use all available redundancy of
all strings (as in the Lempel-Ziv schemes) but only that contained in suffixes/prefixes of the
original strings.

6.5.3 Fixed-Database Lossy Lempel-Ziv Algorithm

We wrap up this long chapter with a computation of the compression ratio for a lossy ex-
tension of the Lempel-Ziv algorithm in the fixed database model. The reader is referred to
Section 1.2.1 for a more detailed description. Below we only sketch the model.

Let us assume that the encoder and the decoder have access to a common fixed database
X̂n

1 generated according to a Markovian source with distribution P̂ . The source sequence XM
1
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is emitted also by a Markovian source with distribution P . We assume that the database
sequence and the source sequence are independent, but one can extend this analysis to mixing
dependent sequences.

For fixed D > 0, the source sequence XM
1 is partitioned into Πn = Πn(XM

1 ) variable
length phrases Z1, Z2, . . . , ZΠn of respective lengths D1

n, . . . ,D
Πn
n . The first phrase Z1 and

its length D1
n, are computed as

D1
n = max{k : d(X̂i+k−1

i ,Xk
1 ) ≤ D, 1 ≤ i ≤ n− k + 1}

Z1 = X
D1

n
1 ,

where d(·, ·) is an additive distortion measure. This implies that the first phrase comprises
of the longest prefix of the input XM

1 that matches a substring in the database X̂n
1 within

distortion D or less. The string Ẑ1 recovered by the decoder is therefore given by

Ẑ1 = X̂
i+D1

n−1
i . (6.96)

Let now Kn(m) =
∑m

i=1D
i
n for some m ≥ 1. Subsequent phrases are computed in a similar

manner, that is, the (m+ 1)st phrase is defined as

Dm+1
n = max{k : d(X̂i+k−1

i ,X
Kn(m)+k
Kn(m)+1 ) ≤ D, 1 ≤ i ≤ n− k + 1},

Zm+1 = X
Kn(m)+Dm

n −1
Kn(m) ,

Ẑm+1 = X̂
i+Dm

n −1
i .

Observe that the source sequence is partitioned into Πn as XM
1 = Z1Z2 . . . ZΠn while

the decoder recovers the string Ẑ1Ẑ2 . . . ẐΠn that is within distortion D from XM
1 . We

represent each Ẑi by a pointer ptr to the database and its length; hence its description cost
is log n+ Θ(logLi

n) bits. The total data compression code length is

`n(Xn
1 ) =

Πn∑
i=1

log n+ Θ(logLi
n).

Thus the bit rate is defined as

rn(Xn
1 ) =

1
M

Πn∑
i=1

(
log n+ Θ(logLi

n)
)
. (6.97)

Our goal is to evaluate asymptotically rn(XM
1 ) as n,M → ∞. We shall prove that the

asymptotic average bit rate is equal to the generalized Shannon entropy r̂0(D) defined in
(6.75). For convenience we repeat the definition of r̂0(D)

r̂0(D) = lim
n→∞

EP [− log P̂ (BD(Xn
1 ))]

n
,
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where BD(xn
1 ) = {yn

1 : d(xn
1 , y

n
1 ) ≤ D} is the ball of radius D and center xn

1 . To see why
r̂0(D) appears as the limit of the bit rate, we recall that by Theorem 6.27 (in fact, by exactly
the same arguments that led to Theorem 6.27) for any ε

Pr

{
(1− ε) 1

r̂0(D)
log n ≤ D1

n ≤ (1 + ε)
1

r̂0(D)
log n

}
= 1−O

(
log n
nε

)
(6.98)

for Markovian sources. (Indeed, for Markovian sources the ψ(n) coefficients and δ(n) defined
in (6.77) decay exponentially with n.)

Theorem 6.31 Let us consider the fixed database model with the database X̂n
1 generated by

a Markovian source P̂ and the source sequence XM
1 emitted by a Markovian source P where

all transition probabilities of both Markovian sources are positive. The average bit rate attains
asymptotically

lim
n→∞ lim

M→∞
E[rn(XM

1 )] = r̂0(D), (6.99)

where E denotes the expectation with respect to P × P̂ .

Proof. We start with an upper bound. Here we adopt the approach of Wyner and Ziv [454]
and its simplification proposed by Kontoyiannis [278]. Let us partition all phrases into “long”
phrases and “short” phrases. A phrase k is long if Di

n ≥ (1− ε) log n; otherwise it is a short
phrase. Let LM and SM be the sets of long and short phrases, respectively. Observe that

N = |LM | ≤
M(r̂0(D)

(1− ε) log n
. (6.100)

Now we proceed as follows (c is a constant and ε > 0 is arbitrary small, which can change
from line to line):

rn(XM
1 ) ≤ 1

M

∑
i∈LM

(log n+ c logDi
n) +

1
M

∑
i∈SM

(log n+ c logDi
n)

(6.100)
≤ (1 + ε)r̂0(D) + c

N

M

∑
i∈LM

1
N

logDi
n +

1
M

∑
i∈SM

(log n+ c logDi
n)

Jensen
≤ (1 + ε)r̂0(D) + c

N

M
log

 1
N

∑
i∈LM

Di
n

+
1
M

∑
i∈SM

(log n+ c logDi
n)

≤ (1 + ε)r̂0(D) + c
N

M
log

(
M

N

)
+

1
M

∑
i∈SM

(log n+ c logDi
n)

≤ (1 + ε)r̂0(D) +
c log log n

log n
+

1
M

∑
i∈SM

(log n+ c logDi
n).
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We now evaluate the expected value of the third term above. We shall write below D̃1
n for

a match (phrase) that may occur in any position. Observe that D1
n and D̃1

n have the same
distribution, that is, D1

n
d= D̃1

n.

E

 1
M

∑
i∈SM

(log n+ c logDi
n)

 ≤ c

M
log n E

|Πn|∑
i=1

I(Di
n is short)


≤ c

M
log n E

[
M∑
i=1

I(D̃1
n is short)

]

≤ c log n Pr

{
D1

n ≤ (1− ε) 1
r̂0(D)

log n
}

(6.98)

≤ c
log2 n

nε
,

where the third inequality above follows by considering not just all i’s but all possible positions
on XM

1 where a short match (i.e., D̃1
n) can occur. Thus

lim sup
n→∞

lim sup
M→∞

E[rn(XM
1 )] ≤ r̂0(D),

and this establishes the desired upper bound.
We now deal with the lower bound. Let H be the set of those phrases whose length is

not bigger than (1 + ε) 1
r̂0(D) log n. Clearly

E[rn(XM
1 )] ≥ 1

M
E

[∑
H

log n

]
=

1
M

E[|H|] log n.

Thus it suffices to prove that

E[|H|] ≥ r̂0(D)
M(1 − o(1))
(1 + ε) log n

(6.101)

to establish the desired lower bound. We start with the following fact: For any δ > 0 and all
n, we have

Pr{D1
n > nδ} ≤ n exp(−Anδ) (6.102)

where A > 0 is a positive constant. The above is a simple consequence of our previous
findings (see Sections 4.2.6 and 6.5.1). Nevertheless, the reader is asked to prove (6.102)
independently in Exercise 32. Let now H̄ be the complementary set to H. We call phrases
in H̄ as “very long.” Observe that

M ≤ |H| 1
r̂0(D)

(1 + ε) log n+
∑
i∈H̄

Di
n
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Taking the expectation of both sides of the above yields

M ≤ E[|H|] 1
r̂0(D)

(1 + ε) log n+ E

 ∑
{i: i∈H̄&Di

n≤nε/2}
Di

n +
∑

{i: Di
n>nε/2}

Di
n


(6.102),δ=ε/2

≤ E[|H|] 1
r̂0(D)

(1 + ε) log n+ nε/2 · E
[

M∑
i=1

I(D̃1
n is very long)

]

+ nE

[
M∑
i=1

I(D̃1
n > nε/2)

]

≤ E[|H|] 1
r̂0(D)

(1 + ε) log n

+ nε/2MPr

{
D1

n > (1 + ε)
1

r̂0(D)
log n

}
+ nMPr{D1

n > nε/2}

(6.98) & (6.102)
≤ E[|H|] 1

r̂0(D)
(1 + ε) log n+M

log n
nε/2

+ n2Me−Anε/2
.

Hence (6.101) follows and Theorem 6.31 is proved.

6.6 Extensions and Exercises

6.1 Consider a discrete random variable, X, defined over a finite set A. Prove that the
average number of bits, L, required to represent such a random variable satisfies the
following inequality:

h(X) ≤ L ≤ h(X) + 1.

6.2 Prove or disprove that h(X|Y ) = h(Y |X). What about h(X)−h(X|Y ) = h(Y )−h(Y |X)?

6.3 Prove Theorem 6.2.

6.4 Let Y = g(X) where g is a measurable function. Prove

• h(g(X)) ≤ h(X);

• h(Y |X) = 0.

6.5 Random variables X,Y,Z form a Markov chain in that order (denoted X → Y → Z) if
the conditional distribution of Z depends on Y and is independent of X, that is,

Pr{X = x, Y = y, Z = z} = Pr{X = x}Pr{Y = y|X = x}Pr{Z = z|Y = y}
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for all possible x, y, z. Prove the data processing inequality that states

I(X;Y ) ≥ I(X;Z)

if X → Y → Z.

6.6 Consider a probability vector p = (p1, . . . , pn) such that
∑n

i=1 pi = 1. What distribution
p minimizes the entropy h(p)?

6.7 (Log Sum Inequality) (i) Prove that for non-negative numbers a1, . . . , an and b1, . . . , bn

n∑
i=1

ai log
ai

bi
≥
(

n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

with equality if and only if ai
b1

= const.

(ii) Deduce form (i) that for p1, . . . , pn and q1, . . . , qn such that
∑n

i=1 pi =
∑n

i=1 qi = 1
we have

n∑
i=1

pi log
1
qi
≥

n∑
i=1

pi log
1
pi
,

that is,

min
qi

n∑
i=1

pi log
1
qi

=
n∑

i=1

pi log
1
pi
.

(iii) Show that the following extension of (ii) is not true

n∑
i=1

pi

⌈
log

1
qi

⌉
≥

n∑
i=1

pi

⌈
log

1
pi

⌉

where dxe is the smallest integer greater equal than x.

6.8 This is the problem considered by Alon and Orlitsky [10]. Let X be a discrete random
variable over a finite set A. A binary encoding φ : A → {0, 1}∗ is an injection to the
set of finite binary strings. Let `(X) be the minimum expected length of the encoding
φ of X (the encoding φ is not necessarily prefix free!). Prove that

`(X) ≤ h(X) (Wyner)
h(X) − log log(|A|+ 1) ≤ `(X) (Dunham).

6.9 Provide details of the proof of Theorem 6.10.
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6.10 Prove Lemma 6.11. Furthermore, prove the following representation for the divergence
rate D(P ‖ P k) (cf. [180]).

Lemma 6.32 Let {Xk}k≥1 be a source described by process distributions P and P k,
where P is stationary and P k is a kth order stationary Markov process. Then for n ≥ k

D(P ‖ P k) = lim
n→∞DP‖P k(X0|X−1, . . . ,X−n)

= −hP (X)−EP [log P k(Xk|Xk−1
0 )].

6.114! Using Lemma 6.32 established in Exercise 10 above, prove the following Markov
approximation of a stationary distribution (cf. [75, 180] and Section 4.2.1).

Theorem 6.33 (Markov Approximation) Let {Xk}k≥1 be a stationary process with
distribution P . Define the kth order Markov approximation as

P k(xn
1 ) := P (xk

1)
n∏

i=k

P (xi|Xi−1
i−k = xi−1

i−k).

Then
lim

k→∞
D(P ‖ P k) = 0.

6.12 Prove Part (i) of Theorem 6.13 for b < 0.

6.13 Prove the stronger version of Theorem 6.20 in which the average probability of error PE

is replaced by the maximal probability of error Pmax = maxi Pr{χ(Y n
1 ) 6= i|W = i}.

6.144! (Strassen, 1962) Let Xn
1 be generated by a memoryless source P . Define Mε(n) as

the minimum cardinality of sets A ∈ An with P (A) ≥ 1 − ε. Prove that (cf. Strassen
[400])

logMε(n) = nh(P ) +
√
nVar[− log P (X1)]λ− 1

2
log n+O(1)

where λ is a solution of Φ(λ) = 1 − ε with Φ being the distribution of the standard
normal distribution.

6.15 (Barron, 1985) Let L(Xn
1 ) be the length of a fixed-to-variable codeword satisfying the

Kraft inequality, where Xn
1 is generated by a stationary ergodic source. Prove that for

any sequence cn of positive constants with
∑

n 2−cn <∞ the following holds

Pr{L(Xn
1 ) ≤ − logP (Xn

1 )− cn} ≤ 2−cn ,
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and conclude that
L(Xn

1 ) ≥ − logP (Xn
1 )− cn (a.s).

6.16 (Kontoyiannis, 1997) Under the assumption of the previous exercise with Xn
1 generated

by a Markov source, show that there is a sequence of random variables Zn such that

L(Xn
1 )− nh√
n

≥ Zn (a.s.)

where Zn
d→N(0, σ2) and σ2 = Var[− log P (X1)] (also known as the “minimal coding

variance”).

6.17 Consider a binary symmetric channel in which the binary input {0, 1} is transformed
into the binary output {0, 1} such that P (Y = 0|X = 0) = P (Y = 1|X = 1) = 1 − p
and P (Y = 0|X = 1) = P (Y = 1|X = 0) = p. Prove that the capacity C of such a
channel is

C = 1− h(p) = 1 + p log p+ (1− p) log(1− p).

6.18 Consider a binary erasure channel that transmits the binary input {0, 1} into a ternary
alphabet {0, 1, e} where e means that a symbol is erased. Let P (Y = 0|X = 0) =
P (Y = 1|X = 1) = 1− α and P (Y = e|X = 1) = P (Y = e|X = 0) = α. Prove that

C = 1− α.

6.194! (Wolfowitz, 1961) (i) Consider the channel coding problem, and let Nε(n) be the
maximum number of messages that can be reliably sent (i.e., the probability of error
PE < ε). Prove that (cf. [400, 449])

exp(nC −K
√
n) ≤ Nε(n) ≤ exp(nC +K

√
n)

for a constant K > 0 and c is the channel capacity.

(ii) Find an asymptotic expansion of Nε(n).

6.20 Consider a Bernoulli(p) source. For the Hamming distance, prove that the rate distor-
tion function is

R(D) =

{
h(p)− h(D) 0 ≤ D ≤ min{p, 1− p}
0 otherwise

where h(x) = −x log x− (1− x) log(1− x) for 0 ≤ x ≤ 1.
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6.21 Prove Theorem 6.23.

6.225? Prove that RI(D) = RO(D) without using the random coding technique.

6.234! (Szpankowski, 1993) Using the analysis from Section 4.2.6 prove Theorem 6.29 (cf.
[411, 412]).

6.244! (Arratia and Waterman, 1989) Consider the generalized height Hn in a lossy situation
as defined in Section 6.5.1. For a memoryless source prove that

lim
n→∞

Hn

log n
=

2
r1(D)

(a.s.)

where r1(D) is the first generalized Rényi’s entropy. This is a difficult problem.

6.255? Consider a lossy extension of the Lempel-Ziv scheme as discussed in Section 6.5.1.
Can we generalize (6.84) to the lossy case, that is, is the following true:

lim inf
n→∞

Dn(D)
log n

=
1

r−∞(D)
(a.s.) lim sup

n→∞
Dn(D)
log n

=
2

r1(D)
.

6.264! Consider the shortest common superstring problem as in Section 6.5.2 but with
mixing sources, that is, the strings X(1), . . . ,X(n) are generated by n independent
mixing sources. Extend Theorem 6.30 to this situation; prove the following.

Theorem 6.34 (Frieze and Szpankowski, 1998) Consider the shortest common su-
perstring problem under the mixing model. Then (whp )

lim
n→∞

Oopt
n

n log n
=

1
h

(pr.) lim
n→∞

Ogr
n

n log n
=

1
h

provided

|X(i)| > 4
h1

log n

for all 1 ≤ i ≤ n where h1 is the Rényi’s entropy of order one.

6.274! (Frieze and Szpankowski, 1998) Extend Theorem 6.30 for the shortest common super-
string problem to other greedy algorithms discussed in Section 1.4, namely, GREEDY
and MGREEDY.
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6.28 4! (Kontoyiannis, 1999) Let P ∗ be the probability mass function that achieves infimum
in Definition 6.22 (cf. (6.68)) of the information rate distortion function R(D). As
before, we write BD(Xn

1 ) for the distortion-ball of all strings of length n that are within
distortion D from the center Xn

1 . Using the Gärtner-Ellis Theorem 5.21 prove that

lim
n→∞

− log P ∗(BD(Xn
1 ))

n
= R(D) (a.s.).

6.294! Consider the lossless fixed database model where Y n
1 is database and XM

1 the source
string. Both sequences are generated independently by a mixing source P . Let, as
before, Z1 = X

D1
n

1 be the first phrase. Define C(Xn
1 ) to be the set of all possible

Z1. It is also called the complete prefix set. Observe that it can be easily generated
from the suffix tree of Y n

1 . Indeed, C(Xn
1 ) is the set of all depths of insertion. The

following lemma of Yang and Kieffer [438] is very useful in the analysis of lossless data
compression. The reader is asked to prove it.

Lemma 6.35 (Yang and Kieffer, 1997) Assume that the source sequence {Xk}k≥1

is strongly mixing with summable mixing coefficients. Then for any string xk
1 ∈ Ak with

k ≤ n
Pr{∃i≤k : xi

1 ∈ C(Xn
1 )} ≤ c

(n− k + 1)P (x)

where c is a constant.

6.304! Consider the waiting time N` defined as follows:

The waiting time N` is the smallest N ≥ 2` such that d(X`
1,X

N
N−`+1) ≤ D.

Alternatively, in the fixed database model, let {Xk}k≥1 be a source sequence and
(. . . , Y−2, Y−1) be an independent database sequence. Then N` is defined as the smallest
i ≥ ` such that d(Y −i+`−1

−i ,X`−1
0 ) ≤ D. Prove the following results.

Theorem 6.36 ( Luczak and Szpankowski, 1997; Yang and Kieffer, 1998) Let
{Xk}k≥1 and {Yk}k≥1 be a strongly mixing sequence with summable mixing coefficients.
The following holds

lim
`→∞

logN`

`
= r0(D) (a.s.)

where r0(D) is the generalized Shannon entropy.
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6.31 5? Consider the kth phrase length Dk
n in the fixed database model of Section 6.5.3.

Prove that for all k ≤ n
lim

n→∞
Dk

n

log n
=

1
r̂0(D)

(pr.),

but Dk
n/ log n does not converge almost surely when k →∞.

6.324! Prove (6.102) from Section 6.5.3; that is, for any δ > 0 and for all n ≥ 1

Pr{D1
n > nδ} ≤ n exp(−Anδ)

where D1
n is the length of the first phrase and A is a positive constant.

6.33 5? Consider the longest phrase max1≤i≤M Di
n in the fixed database lossy Lempel-Ziv

model. Is it true that whp

max
1≤i≤M

Di
n →

2
r̂(D)

log n

where r̂(D) is related to the generalized Rényi’s entropy of order one? (For a related
problem see Ziv and Merhav [462].)

6.344! Extend Theorem 6.31 to almost sure convergence; that is,

lim
n→∞ lim

M→∞
rn(XM

1 ) = r̂0(D) (a.s.)

6.355? Consider the lossy extension of the Lempel-Ziv’78 algorithm and the lossy growing
database model. What is the asymptotic bit rate rn(Xn

1 ) in these cases? Observe that,
when finding the next phrase, the comparison is made to a distorted database whose
distribution is unknown.
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Chapter 7

Generating Functions

Summary: Generating functions are one of the most popular analytic tools in the analysis of
algorithms and combinatorics. They are helpful in establishing exact and recurrence formulas,
deriving averages, variances, and other statistical properties, finding asymptotic expansions,
showing unimodality and convexity, and proving combinatorial identities. In this chapter, we
present the formal power series approach and analytic theory of ordinary generating functions,
exponential generating functions, probability generating functions, and Dirichlet series. In
particular, we construct generating functions for some popular combinatorial structures. In
the applications section, we present a fairly general approach to certain recurrence equations
arising in the analysis of digital trees, and derive generating functions of the number of
pattern occurrences in a random text.

THE GENERATING FUNCTION of a sequence {an}n≥0 (e.g., representing the size of
objects belonging to a certain class) is defined as

A(z) =
∑
n≥0

anz
n,

where the meaning of z is explained below. In the formal power series we assume that A(z)
is an algebraic object; more precisely, the set of such formal power series forms a ring. In
this case, z does not have any value, but one can identify the coefficient at zn. Moreover, we
can manipulate formal power series to discover new identities, and establish recurrences and
exact formulas for the coefficients. Convergence of A(z) is not an issue.

In analytic theory of generating functions, we assume that z is a complex number, and
the issue of convergence is a pivotal one. In fact, singularity points of A(z) (i.e., points where
A(z) is not defined) determine asymptotics of the coefficients. We study asymptotic methods
in the next chapter.

We can define other generating functions. For example, the exponential generating func-
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tion
A(z) =

∑
n≥0

an

n!
zn

is very popular (e.g., when studying labeled combinatorial structures as we do in Section 7.2).
An exotic one is the tree-like generating function defined as

A(z) =
∑
n≥0

an
nn−1

n!
zn

that finds myriad applications in analysis of algorithms, coding theory, combinatorics, and
information theory. We discuss its applications in this and the forthcoming chapters.

In some situations (e.g., enumeration problems), a combinatorial view on generating func-
tions is more convenient. Let S be a set of objects (e.g., words, apples, numbers, graphs),
and let α ∈ S. We write w(α) for a weight function that we interpret here as the size of α;
that is, w(α) = |α|. Define the counting generating function A(z) as

A(z) =
∑
α∈S

zw(α).

Certainly, this definition is equivalent to the previous one if one sets an to be the number
of objects α satisfying w(α) = n. This approach is quite useful in studying combinatorial
properties of objects (e.g., the number of connected components in a graph, the number of
rooted trees).

This chapter is the first one in the final part of this book, and it is devoted to analytic
methods. We shall discuss formal power series and analytic theory of ordinary generating
functions, exponential generating functions, probability generating functions, and Dirichlet
series. In particular, we construct generating functions for a class of combinatorial struc-
tures, explain the Lagrange formula, and discuss the Borel transform and the Perron-Mellin
summation formula. We illustrate our discussion with several examples and three major ap-
plications. First, we show how exponential generating functions can be used to solve exactly
a certain class of recurrences arising in the analysis of digital trees. Then we consider a
given string, called a pattern, and ask how many times it can occur (overlapping allowed) in
a random string called the text. Finally, we use the theory of Dirichlet series to derive the
total number of 1-digits in the binary representations of 1, 2, . . . , n.

There are a number of books dealing with generating functions. Generating functions in
combinatorics are thoroughly discussed in Comtet [71], Goulden and Jackson [178], Stanley
[397], and Wilf [447]. Applications of generating functions to discrete mathematics and
analysis of algorithms can be found in Sedgewick and Flajolet [383] and Graham, Knuth and
Patashnik [169].
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7.1 Ordinary Generating Functions

We shall discuss below elementary properties of ordinary generating functions (in short:
OGF). In particular, we show how to manipulate formal power series, and how to apply
them to study combinatorial objects, and present elements of analytic theory of generating
functions.

7.1.1 Formal Power Series

Define for a sequence {an}∞n=0 an algebraic object

A(z) =
∑
n≥0

anz
n

that we also write as
{an}∞0 ←→ A(z).

It is convenient to introduce another notation, namely,

[zn]A(z) := an,

which extracts the coefficient of A(z) at zn. In the formal power series approach there is no
restriction on the domain of variation of z, and the series is not required to be convergent.
In fact, we look at A(z) (or simply A) as an algebraic object. The set of formal power
series with standard addition and multiplication operations forms a ring K[z]. We recall that
multiplication of A and B is defined as{

n∑
k=0

akbn−k

}∞

0

. ←→ AB

With respect to multiplication, the ring K[z] is a commutative semigroup with neutral ele-
ment 1 +

∑
n≥1 0 · zn = 1. The reciprocal of series A is 1/A understood as

A · (1/A) = 1

provided a0 6= 0. For example, (1− z) is reciprocal to A =
∑

n≥0 z
n since

(1− z)(1 + z + z2 + · · ·) = 1.

We denote by 1/(1 − z) the series A =
∑

n≥0 z
n. We must underline that 1/(1− z) does not

have any analytical meaning in the formal power series theory; it is just a name of the power
series generated by {1}∞0 . We know, however, that 1

1−z =
∑

n≥0 z
i for |z| < 1, but for this

to make sense we need the analytic theory of generating functions that is discussed in the
sequel.
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Table 7.1: Basic Properties of Formal Power Series

Let {an}∞n=0 be a sequence and A(z) (or simplyA), its ordinary generating functions understood
as a formal power series, that is, {an}∞0 ←→ A. Let zD be a formal derivative operator
multiplied by z, that is,

(zD)A ←→ {nan}∞0 .

The following relationships hold:

{an}∞0 + {bn}∞0 ←→ A+B, (7.1)

{an+k}∞0 ←→ A(z)− a0 − · · · − ak−1z
k−1

zk
, (7.2)

{nkan}∞0 ←→ (zD)kA, (7.3)

{1}∞0 ←→ A :=
1

1− z , (7.4) ∑
n1+···+nk=n

an1 · · · ank


∞

0

←→ Ak, (7.5)


n∑

j=0

aj


∞

0

←→ A

1− z . (7.6)

We can define other operations and manipulation rules on the ring K[z]. The derivative
DA(z) of A(z), also denoted as A′(z), is

DA(z) =
∑
n≥0

nanz
n−1.

The integration of A(z) is ∫ z

0
A(t)dt =

∑
n≥1

an−1

n
zn.

Some manipulation rules are presented in Table 7.1. Rules (7.1)–(7.6) are easy to derive and
left as a warmup exercise. For example, (7.6) is a consequence of our definition (7.4) and the
multiplication rule.

Example 7.1 Power Series of Harmonic Numbers
Let Hn = 1 + 1

2 + · · ·+ 1
n be the nth harmonic number. What is the formal power series
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of Hn? By Rule (7.6) it is A(z)/(1 − z), where

A(z) =
∑
n≥1

zn

n
.

Observe that the derivative DA = 1/(1 − z), so that

A = D−1(1/(1 − z)),

where D−1 is the inverse operator to D. It is convenient to give a name for such a power
series. We shall see later that a good name is

D−1(1/(1 − z)) := log
1

1− z .

Thus ∞∑
n=1

Hnz
n =

1
(1− z) log

1
1− z .

In fact, the reader may verify below identities that follow directly from the above and Rule
(7.6)

1/(1 − z)2 log(1/(1 − z)) =
∞∑

n=1

zn
n∑

k=1

Hk,

1/(1 − z)2 log(1/(1 − z)) + 1/(1 − z)2 =
∞∑

n=0

(n+ 1)Hn+1z
n.

Comparing these two expressions, we can obtain the following

n∑
k=1

Hk = (n+ 1)Hn+1 − n− 1.

Example 7.2 Ordered Partition of an Integer
Let fk(n) be the number of ways that the nonnegative number n can be partitioned as

an ordered sum of k nonnegative integers. For example: f2(3) = 4 since 3 = 3 + 0 = 2 + 1 =
1 + 2 = 0 + 3. Observe that

fk(n) =
∑

n1+···+nk=n

1,

hence by Rule (7.5) we have
∞∑

n=0

fk(n)zn = 1/(1 − z)k.

We shall need analytic theory of generating functions to recover fk(n) from the above. 2
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7.1.2 Combinatorial Calculus

As we mentioned before, generating functions are often used in the enumeration of combinato-
rial structures. This is known as combinatorial calculus. In such enumerations, it is desirable
to introduce classes of combinatorial objects. There are excellent books dealing with such
problems (e.g., Flajolet and Sedgewick [149], Goulden and Jackson [178] and Stanley [397]),
so we restrict our discussion to the two simplest cases and a few examples. We shall follow
here the presentation of Flajolet and Sedgewick [149]. Let A be a class of combinatorial
objects (e.g., set of binary trees, strings, graphs). If A is a set of words, then we often call it
a language. The associated generating function is defined as

A(z) =
∑
α∈A

z|α|, (7.7)

where |α| is the size of the object α. Let now B be another class. We can combine A and B
into a new class. We define “disjoint union” denoted as A+B that gives the class consisting
of disjoint copies of the members of A and B. We can also define a “Cartesian product”
denoted as A×B that produces a class of ordered pairs of objects, one from A and the other
from B. It is easy to see that

C = A+ B ←→ C(z) = A(z) +B(z), (7.8)
C = A× B ←→ C(z) = A(z)B(z). (7.9)

For example, to prove (7.9) we argue as follows

C(z) =
∑

γ∈A×B
z|γ| =

∑
α∈A

∑
β∈B

z|α|+|β| = A(z)B(z).

The reader may wonder why we complicate the matter and use generating functions in
the enumeration problems. The reason is that generating functions are very successful in the
enumeration. And, they are successful because in (7.7) we deal with all objects belonging to a
class A and do not need to worry about boundary effects of the size n. For example, consider
all binary strings without two consecutive 1’s (see Example 4). If we restrict the analysis
to strings of length n, then we must worry about the bits at the end of the string. (This
becomes more complicated when the avoidable pattern is more complicated.) By considering
the whole set of all binary strings without consecutive 1’s, the enumeration is as simple as in
the example below.

Example 7.3 Enumeration of Strings
Let A be the set of all binary strings with no two consecutive 1 bits. Such strings are

either an object of size zero that we denote as ε, or a single 1 or a recursive (composed) object
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consisting of 0 or 10 followed by a string with no two consecutive 1 bits (hence belonging to
A). In other words, the class A can be written formally as

A = ε+ {1}+ {0, 10} × A.

By (7.8) and (7.9), the above immediately translates into

A(z) = 1 + z + (z + z2)A(z).

Example 7.4 Enumeration of Binary Trees
Let B be the class of (unlabeled) binary trees that are either empty or consist of a root

and a left binary tree and a right binary tree. In symbolic calculus

B = ε+ {node} × B × B

which translates into
B(z) = 1 + zB2(z).

Example 7.5 Partitions of Integers
We consider now a somewhat more sophisticated problem. As in Example 2, we partition

the integer n into an unlimited number of terms, but this time we ignore the order. In other
words, we assume

n = n1 + n2 + · · · , subject to 1 ≤ n1 ≤ n2 ≤ · · ·

Let pn be the number of such solutions. For example, p4 = 5 since 4 = 1 + 1 + 1 + 1 =
1 + 1 + 2 = 1 + 3 = 2 + 2 = 4. To find pn, we represent the class P of all partitions for all n
as a Cartesian product of simpler sets. Define {i∗} as

{i∗} = {ε; i; i, i; i, i, i; · · ·},

that is, {i∗} is a set consisting of all finite repetitions of i (including the zeroth repetition).
Clearly,

P = {1∗} × {2∗} × · · ·
For example, the partition 1+1+2 = 4 takes the third element from {1∗}, the second element
from {2∗}, and the first element from all others. If Ii(z) denotes the generating function of
{i∗}, then

Ii(z) =
∞∑

n=0

zin = 1/(1− zi),

and therefore

P (z) =
∞∑

n=0

pnz
n =

∞∏
i=1

1
(1− zi)

.
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Now, once we know the formula we can find an even easier derivation. Observe that n
can also be represented as

n = 1n1 + 2n2 + · · ·+ nnn

where ni is the number of i’s in the partitions. Then

∞∑
n=0

pnz
n =

∞∑
n=0

∑
1n1+2n2+···+nnn=n

z1n1+2n2+···+nnn

= (1 + z + z2 + · · ·) · (1 + z2 + z6 + · · ·) · · · (1 + zi + z2i + · · ·) · · ·

=
∞∏
i=1

1
(1− zi)

.

To see the above, we just apply the rule of formal power series multiplication that yields ∑
k1+k2+..=n

∞∏
i=1

ai,ki


∞

0

←→
∞∏
i=1

Ai(z),

where
{ai,k}∞k=0 ←→ Ai(z).

Setting Ai(z) = 1/(1 − zi), we prove the above identity.
This latter approach is quite useful in some situations. For example, in Section 3.3.3 we

used (3.24), which we repeat here

∞∑
m=0

∑
n1+2n2+···mnm=m

xm

n1!n2! · · ·nm!

m∏
i=1

cni
i = exp

( ∞∑
i=1

cix
i

)
,

to prove the result of Karlin and Ost (see Theorem 3.8). We delayed the proof of (3.24),
and now are are ready to derive it. We use the same approach as above. Starting from the
right-hand side we have

exp

( ∞∑
i=1

cix
i

)
=

(
1 + c1x+

c21x
2

2!
+
c31x

3

3!
+ · · ·

)
· · ·
(

1 + cix
i +

c21x
2i

2!
+
c31x

3i

3!
+ · · ·

)
· · ·

=
∞∑

m=0

∑
n1+2n2+···mnm=m

xn1+2n2+···mnm

n1!n2! · · · nm!

∞∏
i=1

cni
i

=
∞∑

m=0

∑
n1+2n2+···mnm=m

xm

n1!n2! · · · nm!

m∏
i=1

cni
i .

This proves the desired identity. 2
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7.1.3 Elements of Analytic Theory

In the formal theory of power series, we viewed the ordinary generating function A(z) as an
algebraic element and z is added for a convenience. Convergence of the series was not an
issue. If, however, the power series converges to an analytic function, then we may use a
whole machinery of the theory of analytic functions to find analytic information about A(z).
In particular, such information can be used to obtain asymptotic expansion of the coefficients
(see Chapter 8).

The first problem we face is to see under what conditions the series

A(z) =
∞∑

n=0

anz
n

converges for z complex. Fortunately, following Hadamard we can give a fairly complete
answer to this question.

Theorem 7.1 (Hadamard) There exists a number 0 ≤ R ≤ ∞ such that the series A(z)
converges for |z| < R and diverges for |z| > R. The radius of convergence R can be expressed
as

R =
1

lim supn→∞ |an|
1
n

, (7.10)

where by convention 1/0 =∞ and 1/∞ = 0. The function A(z) is analytic for |z| < R.

Proof. The cases R = 0 and R =∞ are left to the reader. Let 0 < R <∞ and |z| < R. We
prove that the series A(z) converges. Choose ε > 0 such that

|z| < R

1 + εR
.

By definition of lim sup, there exists N such that for all n > N we have from (7.10)

|an|
1
n < R−1 + ε.

Thus
|an||z|n <

(
|z|(R−1 + ε)

)n
≤ αn

for α < 1. The series converges absolutely for |z| < R.
To prove the second part of the theorem, let now |z| > R. We show that then anz

n 6→ 0,
hence the series cannot converge. Let for ε > 0

θ = |z/R − εz|.
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Since |z| > R we can choose ε > 0 such that θ > 1. But by (7.10) and the definition of
lim sup for infinitely many n we have

|an|
1
n > R−1 − ε,

hence for infinitely many n

|an||z|n >
∣∣∣(R−1 − ε)z

∣∣∣n = θn,

which increases exponentially. This completes the proof.

Hadamard’s theorem sheds light on asymptotics of the coefficients an. We will devote
Chapter 8 to this problem. Here we only observe that Hadamard’s theorem tells us what is
happening with A(z) for |z| < R and |z| > R, but nothing about |z| = R. Really? In fact,
from the theorem we should conclude that the function A(z) has at least one singularity (a
point where the function ceases to be well defined) on the circle |z| = R. To see this, we
argue by contradiction. If there is no singularity on |z| = R, then we can cover it with a
finite number of disks (by the Heine-Borel theorem) on which A(z) is analytic. This would
imply that A(z) converges in a larger disk |z| < R+ ε, which is the desired contradiction.

So far we were concerned with the calculation of generating functions from their coeffi-
cients. But often we need to find the coefficients knowing the generating function. One way
to solve this problem is to have a list of generating functions together with their correspond-
ing coefficients and find [zn]A(z) by inspection. In Table 7.2 we list some classic generating
functions. We illustrate their usage on several examples.

Example 7.6 A Simple Recurrence
We start with a simple recurrence. Let

an+1 = 2an + n, n ≥ 0,

with a0 = 1. Multiplying both sides by zn and summing over all n ≥ 0, we obtain by (7.2)
and (7.3)

A(z)− 1
z

= 2A(z) +
z

(1− z)2 ,

which can be solved to yield

A(z) =
1− 2z + 2z2

(1− z)2(1− 2z)

=
2

1− 2z
− 1

(1− z)2 .

The last line is a partial fraction expansion of the first line. By Entry 1 of Table 7.2 we
immediately obtain

an = 2n+1 − n− 1
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Table 7.2: Classic Generating Functions

1. Binomial coefficients 1
1−z−uz =

∑
n,k≥0

(n
k

)
ukzn

zk

(1−z)k+1 =
∑

n≥k

(n
k

)
zn

1
(1−z)k+1 =

∑
n≥0

(n+k
n

)
zn

(1 + z)α =
∑
n≥0

(α
n

)
zn

2. Bernoulli numbers z
(ez−1) =

∞∑
n=0

Bn
zn

n!

3. Catalan numbers 1−√
1−4z

2z =
∑
n≥0

1
n+1

(2n
n

)
zn

4. Reciprocals ln 1
1−z =

∑
n≥1

zn

n

5. Harmonic numbers 1
1−z ln 1

1−z =
∑
n≥1

Hnz
n

6. Fibonacci numbers z
1−z−z2 =

∑
n≥0

Fnz
n

7. Tree function zeT (z) = T (z) =
∑
n≥1

nn−1

n! zn

8. Stirling numbers of the first kind 1
(1−z)u =

∑
n,k≥0

[n
k

]
uk zn

n!

u(u+ 1) · · · (u+ n− 1) =
∑
k≥0

[n
k

]
uk

9. Stirling numbers of the second kind eu(ez−1) =
∑

n,k≥0

{n
k

}
uk zn

n!

(ez − 1)n = n!
∑

k≥n

{k
n

}zk

k!

zk

(1−z)(1−2z)···(1−kz) =
∑
n≥0

{n
k

}
zn
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for all n ≥ 0.

Example 7.7 Enumeration of Unlabeled Trees – Catalan Numbers
In Example 4 we proved that the ordinary generating function, B(z), of the number of

unlabeled binary trees satisfies B(z)− 1 = zB2(z). It can be solved to yield

B(z) =
1−
√

1− 4z
2z

.

Let us now find [zn]B(z), that is, the nth Catalan number. We shall prove that

[zn]B(z) =
1

n+ 1

(
2n
n

)
.

Observe that by the binomial series (see Table 7.2) we have

zB(z) = −1
2

∑
n≥1

(
1
2

n

)
(−4z)n.

Extracting coefficients of both sides of the above, we obtain

[zn]B(z) = −1
2

(
1
2

n+ 1

)
(−4)n+1

= −1
2

1
2(1

2 − 1) · · · (1
2 − n)(−4)n

(n+ 1)!

=
1 · 3 · 5 · · · (2n− 1)2n

(n+ 1)!

=
1

n+ 1
1 · 3 · 5 · · · (2n− 1)

n!
2 · 4 · ·6 · · · 2n
1 · 2 · 3 · · ·n

=
1

n+ 1

(
2n
n

)
.

Example 7.8 Stirling Numbers of the Second Kind
Let us enumerate the number of set partitions (i.e., a collection of nonempty pairwise

disjoint subsets whose union is the original set) of the set [n] := {1, 2, . . . , n} into k subsets
known also as classes. For example, the set [3] is partitioned into k = 2 classes as follows:

[3] = {{1}{2, 3}; {1, 3}{2}; {1, 2}{3}}.

This number is known as the Stirling number of the second kind, and it is denoted as
{n

k

}
.

We first find a recurrence on it, and then derive an explicit formula.
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Let us start with a recurrence on
{n

k

}
. The set of partitions of [n] into k classes can be

split into two groups: In the first group, you will have all partitions in which n is in a separate
class itself, that is, we have a subset of the form {n}. The second group contains all other
partitions. It is easy to notice that the number of partitions in the first group is

{n−1
k−1

}
. So

it remains to enumerate the second group.
Observe that the second group is empty for k = n and for k < n it contains all partitions

of [n] in which the element n is not listed separately but together with other elements. Let
us now delete n from all such partitions. We definitely obtain a partition of [n − 1] into k
classes, but some classes will be repeated. Which ones and how many of them? Since we
have k classes, and n could appear in any of them, after the deletion of n we will end up with
k copies of the same class. Thus, the second group contains k

{n−1
k

}
partitions. This proves

the following recurrence{
n

k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1
k

}
, (n, k) 6= (0, 0). (7.11)

We also postulate that
{0

0

}
= 1 and

{n
0

}
= 0 for n 6= 0.

To find the generating function

Sk(z) =
∑
n≥k

{
n

k

}
zn

and an explicit formula for
{n

k

}
, we proceed as in the previous examples. The recurrence

(7.11) translates into
Sk(z) = zSk−1(z) + kzSk(z)

for k ≥ 1 and S0(z) = 1. Thus,

Sk(z) =
z

1− kzSk−1(z),

and finally

Sk(z) =
∑
n≥k

{
n

k

}
zn =

zk

(1− z)(1 − 2z) · · · (1− kz)

which is Entry 9 of Table 7.2.
Now we find an explicit formula for

{n
k

}
= [zn]Sk(z). As before, we need a partial

fractional expansion that looks like this:

1
(1− z)(1 − 2z) · · · (1− kz) =

k∑
j=1

aj

(1− jz) .
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After multiplying both sides by (1− rz) and evaluating at z = 1/r we obtain

ar = (−1)k−r rk−1

(r − 1)!(k − r)! .

In view of this, we immediately find{
n

k

}
= [zn]

zk

(1 − z)(1 − 2z) · · · (1− kz)

= [zn−k]
k∑

r=1

ar

(1− rz) =
k∑

r=1

akr
n−k

=
1
k!

k∑
r=1

(−1)k−r

(
k

r

)
rn

which is not much simpler than the recurrence itself. 2

7.1.4 Generating Functions Over an Arithmetic Progression

Finally, we deal with the following problem: How to compute sums over an arithmetic pro-
gression (e.g.,

∑
k≥0

( n
3k

)
x3k). In general, let A(z) be the ordinary generating function of a

sequence an, and for fixed r define

Ar(z) =
∑

n=rk, k≥0

anz
n =

∞∑
k=0

arkz
rk.

Can we estimate Ar(z) knowing A(z)? We can, and here is how it works. Let ωr = 1 be the
rth root of unity. There are r such roots that we denote as ωk for k = 0, 1, . . . , r− 1. In fact,
ωk = e(2πik)/r . Observe that for r not dividing n (i.e., r 6 |n) we have

1
r

r−1∑
k=0

ωn
k =

1
r

r−1∑
k=0

e(2πikn)/r =
1
r

1− e2πin

1− e(2πin)/r
= 0.

If r|n, then ωn
k = 1 for all k = 0, 1, . . . , r − 1. In summary,

1
r

∑
ωr=1

ωn =

{
1 if r|n
0 otherwise.

(7.12)

This immediately implies

Ar(z) =
1
r

r−1∑
k=0

A(zωk). (7.13)
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Example 7.9 A Combinatorial Sum
We will find

Rn =
∑
k

(−1)k

(
n

3k

)

applying (7.13) with r = 3. We first observe that

A(z) =
∑
k

(
n

k

)
zk = (1 + z)n.

Since Rn = A3(−1), we obtain

A3(−1) =
1
3

(A(z) +A(zω1) +A(zω2))|z=−1

=
1
3

((1− ω1)n + (1− ω2)n)

=
1
3

((
3−
√

3i
2

)n

+

(
3 +
√

3i
2

)n)

=
2
3

3
n
2 cos

(
nπ

3

)
which would be hard to find without (7.13). 2

7.2 Exponential Generating Functions

It is easy to construct a sequence an for which the ordinary generating function (OGF) either
does not exist or cannot be computed in a closed form. Think of an = n! or an = nn/n!.
Often a very simple trick solves the problem. Namely, one defines a weighted generating
function such that

A(z) =
∞∑

n=0

an
zn

wn

where wn is the weight. The most popular and widely used weight is wn = n!, which produces
the exponential generating function. But other weights work remarkably well in a variety of
applications (e.g., wn = n!/nn leads to a tree-like generating function that we shall discuss
in the sequel).

7.2.1 Elementary Properties

Let us first concentrate on exponential generating functions. We sometimes must distinguish
between ordinary and exponential generating functions; therefore, we often write (lowercase
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Table 7.3: Basic Properties of Exponential Generating Functions

Let {an}∞n=0 be a sequence and a(z) its exponential generating function. We write

{an}∞0 ←→ a(z).

We shall also write Da(z) or a′(z) for the derivative of a(z).
The following relationships hold:

{an}∞0 + {bn}∞0 ←→ a(z) + b(z), (7.14)

{an+k}∞0 ←→ Dka(z) =
dk

dzk
a(z), (7.15)

{nkan}∞0 ←→ (zD)ka(z), (7.16){
n∑

k=0

(
n

k

)
akbn−k

}∞

n=0

←→ a(z)b(z). (7.17)

letter) a(z) for the exponential generating function of {an}∞n=0, that is,

a(z) =
∞∑

n=0

an
zn

n!
.

Elementary properties of exponential generating functions are listed in Table 7.3. As in the
case of ordinary generating functions, we can view exponential generating functions as a
formal power series, but we skip this formalism and assume that a(z) is an analytic function.
Clearly, what we said above about analytic theory of OGF applies here with an replaced by
an/n!.

The properties (7.14)–(7.17) presented in Table 7.3 are easy to prove, and left for the
reader. We only show here how to derive (7.17) from its ordinary generating function coun-
terpart (7.5). If a(z) and b(z) are exponential generating functions, then[

zn

n!

]
a(z)b(z) = n![zn]a(z)b(z) = n!

n∑
k=0

ak

k!
bn−k

(n− k)!
=

n∑
k=0

(
n

k

)
akbn−k,

which yields (7.17).

Example 7.10 Bell Numbers
In Example 8 we computed the Stirling numbers of the second kind

{n
k

}
that represent

the number of ways the set [n] = {1, . . . , n} can be partitioned into k classes. What if we are
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interested in the total number of partitions of [n] irrespective of how many classes are there?
These numbers are called the Bell numbers and are denoted as bn. We prove that

bn+1 =
n∑

k=0

(
n

k

)
bk

with b0 = 1 by convention. Indeed, let us consider the collection of [n + 1] partitions. Its
cardinality is bn+1. We split this collection into k = 0, 1, . . . , n groups such that the kth
group consists of all partitions, in which the class that includes symbol n+1 contains exactly
k others symbols. Certainly, the above follows.

To obtain the exponential generating function b(z) of the Bell numbers, we use (7.15) and
(7.17), which yields

b′(z) = ezb(z), b(0) = 1.

Solving it one arrives at
b(z) = exp (ez − 1) .

A closed-form formula for bk can be derived, but this is left as an exercise.

Example 7.11 A Binomial Sum
In some computations, one needs to compute the generating function of the binomial sum

sn defined as

sn =
n∑

k=0

(
n

k

)
ak

where ak is a sequence. Clearly by (7.17) we have∑
n≥0

sn
zn

n!
= eza(z)

where a(z) =
∑

n≥0 an
zn

n! . The situation is a little more complex if one wants to compute the
ordinary generating function of sn. But

sn =
n∑

k=0

(
n

k

)
ak ←→ S(z) =

1
1− zA

(
z

1− z

)
. (7.18)

Indeed, by Entry 1 of Table 7.2 we have

1
1− zA

(
z

1− z

)
=

∞∑
m=0

amz
m 1

(1− z)m+1
=

∞∑
m=0

amz
m

∞∑
j=0

(
m+ j

j

)
zj

=
∞∑

n=0

zn
n∑

k=0

(
n

k

)
ak

as desired. 2
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7.2.2 Labeled Combinatorial Structures

As in the case of ordinary generating functions, the exponential generating functions have
a combinatorial interpretation. We consider here labeled structures (e.g., permutations, cy-
cles in a permutation, set partitions, labeled trees, labeled graphs) where each “atom” of a
structure (e.g., a node in graphs or trees) has a distinctive integer label. Let A be a class
of labeled combinatorial objects, and let an be the counting sequence (i.e., the number of
objects of size n). Then the exponential generating function (EGF) of A is

a(z) =
∑
α∈A

z|α|

|α|! =
∑
n≥0

an
zn

n!
,

since there are n! orderings of labels.
Foata presented in [158] a detailed formalization of labeled constructions. There are

many excellent surveys and books that treat exponential combinatorial families in depth (cf.
Flajolet [126], Flajolet and Sedgewick [149], Hofri [197], Sedgewick and Flajolet [383], and
Wilf [447]), so here we restrict our attention to only a few examples. We shall follow the
presentation of Flajolet and Sedgewick [149].

In labeled combinatorial structures each object consists of atoms that are marked by
distinct integers. The size of a structure is the number of its atoms (e.g., number of nodes in
a graph or a tree). We assume, however, that such structures are well labeled by insisting that
the labels are consecutive integers starting from 1. We allow relabeling that preserves the
order relations between labels. For example, a structure with labels {5, 9, 11} can be relabeled
as {1, 2, 3}, but not {1, 3, 2}. Knowing this, we can introduce two new labeled constructions,
namely, disjoint union and product.

Disjoint union of structures A and B denoted as A + B is defined as in the unlabeled
case except that we need to relabel the composite structure to get well labeled structures.
For example, {1} + {1, 2} = {1, 2, 3}. In a similar fashion, we define the product C =
A ? B of A and B by forming ordered pairs from A × B and performing all possible order
consistent relabeling, ensuring that the resulting pairs are well labeled. Using the same
argument as above for the unlabeled structures (ordinary generating functions), we easily
prove the following translations

C = A+ B ←→ c(z) = a(z) + b(z), (7.19)
C = A ? B ←→ c(z) = a(z)b(z). (7.20)

The last relation also can be proved by observing that the counting number cn of C is related
to the counting numbers an and bn of A and B by

cn =
n∑

k=0

(
n

k

)
akbn−k,
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which leads directly to the product of the associated exponential generating functions.
We illustrate the above constructions in two interesting examples, namely, counting la-

beled trees (i.e., Cayley’s trees) and the number of cycles in a permutation (i.e., Stirling
numbers of the first kind).

Example 7.12 Labeled or Cayley’s Trees
Let T be the class of all labeled rooted trees, also called the Cayley trees. Think of such

trees as labeled connected graphs without cycles and with one node marked as the root (e.g.,
subtrees are not ordered; there are no left and right subtrees). Our goal is to find the number
tn of all labeled rooted trees of size n. In Figure 7.1 we show all t3 = 9 labeled trees with
n = 3 nodes. Let T (z) be the EGF of tn (we write T (z) instead of t(z) for historical reasons).
Observe that a rooted labeled tree consists of the root and either one rooted labeled subtree
or two rooted labeled subtrees or k rooted labeled subtrees, and so on. But k rooted labeled
subtrees can be symbolically represented as a product of k rooted labeled trees T , that is, T k.
Finally, since the subtrees are not ordered we must divide the product T k by k! to construct
the structure T (we recall that T k is an order product). Having this in mind, and writing
root for the root node, we can represent T as

T = root ?

(
ε+ T +

1
2!
T 2 +

1
3!
T 3 + · · · + 1

k!
T k + · · ·

)
,

where ε represents an empty tree. This translates into

T (z) = zeT (z). (7.21)

Thus T (z) is given only implicitly. We will return to this problem in Section 7.3.2, where we
show that tn = [zn

n! ]T (z) = nn−1.

Example 7.13 Cycles in Permutations or Stirling Numbers of the First Kind.
Let Kn represent the subclass of circular permutations of size n. A permutation is circular

if a circular shift leads to the same permutation (e.g., (1, 3, 2) is the same circular permutation
as (3, 2, 1) but not the same as (1, 2, 3)). It is easy to see that the number of circular
permutations kn is kn = (n− 1)!. Indeed, we split n! permutations of [n] into (n− 1)! groups
of size n such that two permutations belong to the same group if one is a circular shift of the
other. But, nkn = n!, hence the claim.

Now, let us consider a more interesting question. We consider a permutation of [n] and
identify all its cycles. For example, the permutation

1 2 3 4 5 6 7 8 9 10
10 1 7 9 3 5 6 4 8 2

contains three cycles, (1, 10, 2), (3, 7, 6, 5) and (4, 9, 8), that can be represented as cycle di-
graphs (Figure 7.2). Let Cr

n be a subclass of all permutations of [n] having r cycles. If
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Figure 7.1: Nine rooted labeled trees built on n = 3 nodes with roots at the top.

K and C(r) denote the classes of all circular permutations and permutations with r cycles,
respectively, then a little thought reveals that

C(r) =
1
r!
Kr.

This translates into the following EGF equation

C(r)(z) =
1
r!
Kr(z).

But
K(z) =

∑
n≥1

(n − 1)!
zn

n!
= log

1
1− z .

The numbers [
n

r

]
:=

n!
r!

[zn]
(

log
1

1− z

)r

(7.22)
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Figure 7.2: Three Cycles of the Permutation of Example 13.

are called the Stirling number of the first kind and represent the number of permutations
with r cycles.

Let us see if we can get a more explicit formula for the generating function C(r)(z). We
first introduce a bivariate generating function

C(z, u) =
∑
r≥0

C(r)(z)ur.

Observe that

C(z, u) =
∑
r≥0

(
log

1
1− z

)r ur

r!
= exp (−u log(1− z)) =

1
(1− z)u

.

Using Entry 1 of Table 7.2, we obtain[
zn

n!

]
C(z, u) =

n∑
r=0

[
n

r

]
ur

=
[
zn

n!

]
(1− z)−u = n!

(
u+ n− 1

n

)
= u(u+ 1) · · · (u+ n− 1).

This agrees with Entry 8 of Table 7.2. 2

7.3 Cauchy, Lagrange and Borel Formulas

We have been lucky so far, because in order to find [zn]A(z) we need only to look up an
entry in Table 7.2. But this is not always the case as already seen in Example 12. We discuss
below two formulas, one by Cauchy and the other one by Lagrange, that provide guidance
for finding [zn]A(z). We learn how to extract coefficients from generating functions given
either explicitly (cf. Cauchy’s formula) or implicitly (cf. Lagrange’s inversion formula). We
shall also discuss the Borel transform, which allows us to transfer an exponential generating
function into an ordinary generating function.
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7.3.1 Cauchy Coefficient Formula

We start with the Cauchy formula that we already discussed in Chapter 2 (see Theorem 2.6).
Observe that if A(z) is analytic in the vicinity of z = 0, then

an = [zn]A(z) =
1

2πi

∮
A(z)
zn+1

dz (7.23)

where the integral is around any simple curve encircling z = 0. Indeed, since A(z) is analytic
at z = 0, it has a convergent series representation, say

A(z) =
∑
k≥0

akz
k.

Thus ∮
A(z)
zn+1

dz =
∑
k≥0

ak

∮
z−(n+1−k)dz = 2πian,

where the last equality follows from (2.23) which we repeat here:

∮
z−ndz =

∫ 1

0
e−2πi(n−1)dt =

{
2πi for n = 1
0 otherwise.

The interchange of the integral and sum above is justified since the series converges uniformly.
Using Cauchy’s formula and Cauchy’s residue theorem we can evaluate exactly or asymptot-
ically the coefficient an. Since the Cauchy formula (7.23) is mostly used in the asymptotic
evaluation of the coefficients, we delay our discussion until the next chapter.

Finally, we should mention that Cauchy’s formula is often used to establish a bound on
the coefficients an. Let

M(R) = max
|z|≤R

|A(z)|.

Then for all n ≥ 0

|an| ≤
M(R)
Rn

, (7.24)

which follows immediately from (7.23) and a trivial majorization under the integral.

7.3.2 Lagrange Inversion Formula

Cauchy’s formula can also be used to prove Lagrange’s formula, which allows us to extract the
coefficient of implicitly defined generating functions. We already saw examples of generating
functions that are defined by functional equations (see Example 12). We were lucky so far
to be able to explicitly solve such functional equations. We cannot count on this forever.
For example, while enumerating unlabeled trees we found an explicit formula discussed in
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Example 7, but this is not true for enumerating labeled trees. In the latter case, the generating
function T (z) of the number of labeled trees satisfies T (z) = zeT (z) (see Example 12). This
function does not have a simple, explicit solution, but with the help of the Lagrange formula
we shall easily find the coefficients.

We first digress and examine the inversion problem that is at the heart of the Lagrange
formula. Define explicitly a function x(z) as a solution of

x(z) = zΦ(x(z)) (7.25)

provided it exists. We assume that Φ(u) is analytic at some point x0, and Φ(0) 6= 0 for the
problem to be well posed. To study the existence issue, let us rephrase (7.25) as

Θ(x(z)) = z, where Θ(u) =
u

Φ(u)
. (7.26)

In other words, we are looking for conditions under which the inverse function x(z) = Θ−1(z)
exists. We shall see that for the existence of the inverse function in a vicinity of x0 we must
require that Θ′(x0) 6= 0.

Since Θ(x) is analytic at x0, we have

Θ(x) = Θ(x0) + (x− x0)Θ′(x0) +
1
2

(x− x0)2Θ′′(x0) + · · · .

As a first order approximation, we find

x− x0 ∼
1

Θ′(x0)
(z − z0)

provided Θ′(x0) 6= 0. We can further iterate the above to derive a better approximation:

x− x0 =
1

Θ′(x0)
(z − z0)− 1

2
Θ′′(x0)

[Θ′(x0)]3
(z − z0)2 +O((z − z0)3). (7.27)

Iterating many times we can get a convergent series representation of the inverse Θ−1(x)
around x0 provided Θ′(x0) 6= 0. We should mention that the problem of finding the inverse
function is known in the literature as the implicit-function theorem or inverse mapping
theorem. The reader is referred to any standard book on analysis or complex analysis (e.g.,
[363, 448]) for further reading.

We can continue the above iterative process, but unfortunately it becomes more and more
complicated. We would like to extract coefficients of the inverse function Θ−1(x) or x(z) in a
more simpler and direct way. Is it possible? The answer is emphatically yes, and it is known
as the Lagrange inversion formula.
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Theorem 7.2 (Lagrange Inversion Formula) Let Φ(u) be analytic in some neighborhood
of u = 0 with [u0]Φ(u) 6= 0, and let X(z) be a solution of

X = zΦ(X). (7.28)

The coefficients of X(z) (or in general Ψ(X(z))), where Ψ is an analytic function in a
neighborhood of the origin, satisfy

[zn]X(z) =
1
n

[un−1] (Φ(u))n , (7.29)

[zn]Ψ(X(z)) =
1
n

[un−1]
(
Φ(u)nΨ′(u)

)
. (7.30)

Proof. We prove only (7.30) since (7.29) is a special case. Formally we can proceed as
follows, taking u = X(z) as an independent variable:

[un−1]
(
Φ(u)nΨ′(u)

)
= [un−1]

(
Ψ′(u)(u/z)n) = [u−1]

(
Ψ′(u)/zn)

=
1

2πi

∮ Ψ′(u)
z(u)n

du

=
1

2πi

∮ Ψ′(X(z))X ′(z)
zn

dz u = X(z)

= [zn]
(
z
d

dz
Ψ(X(z))

)
= n[zn]Ψ(X(z)).

Most of the above equalities are trivial to justify (the second one is just the residue theorem)
except for the third equality. But this one is a consequence of the inverse function theorem
discussed above ([u0]Φ(u) 6= 0 is the equivalent of the requirement that the first derivative of
the inverse function is nonzero, as we shall see below), and the change of variables.

Before we proceed to discuss more sophisticated examples, let us check if (7.27) agrees
with the Lagrange formula.

Example 7.14 Checking (7.27).
As in (7.26), we define Θ(u) = u/Φ(u) (i.e., X(z) = Θ−1(z)), hence for u = 0 we have

Θ′(0) = 1/Φ(0). From Lagrange’s formula (7.29) we obtain for n = 1

[z]X(z) = [u0]Φ(u) = 1/Θ′(0),

which coincides with (7.27). To find [z2]X(z) = [z2]Θ−1(z) we need a little bit of algebra.
First of all, observe that by (7.29)

[z2]X(z) =
1
2

[u]Φ2(u).
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But

Φ2(u) =
u2

Θ(u)2
=

u2

(uΘ′(0) + 1
2u

2Θ′′(0) +O(u3))2

=
1

[Θ′(0)]2
− u Θ′′(0)

[Θ′(0)]3
+O(u2).

Thus

[z2]X(z) = −1
2

Θ′′(0)
[Θ′(0)]3

,

which again agrees with (7.27). 2

The most popular application of the Lagrange formula is to the tree function T (z) defined
in Example 12, which we repeat here:

T (z) = zeT (z). (7.31)

In fact, the tree function is closely related to the Lambert W -function W (x) exp(W (x)) = x
(i.e., T (z) = −W (−z)). The interested reader is referred to [73] for a comprehensive survey
on the Lambert function and its myriad applications.

Example 7.15 Tree Function T (z)
We compute here the coefficients tn = [zn]T (z) that represent the number of labeled

rooted trees. Setting Φ(u) = eu and Ψ(u) = u in the Lagrange formula, we obtain

[zn]T (z) =
1
n

[un−1]enu =
1
n

nn−1

(n− 1)!

=
nn−1

n!
(7.32)

which agrees with Entry 7 in Table 7.2.
We still need to know the radius of convergence of T (z). We will show that T (z) is analytic

for all |z| < e−1. But this follows directly from the Hadamard Theorem 7.1. We present
now an indirect proof of the same that is more general and may apply to a larger class of
implicitly defined functions. Let us define, as in (7.26), the function Θ(u) = u/Φ(u) = ue−u,
and observe that T (z) = Θ−1(z). From our discussion preceding the Lagrange formula (cf.
(7.27)), we conclude that T (z), or the inverse of Θ(u), exists as long as Θ′(u) 6= 0. Let τ be
the smallest real number such that

0 = Θ′(τ) = e−τ (1− τ)

or equivalently
Φ(τ)− τΦ′(τ) = eτ (1− τ).
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We find τ = 1 and z = Θ(τ) = e−1. Since Θ(u) increases from u = 0 to u = τ , the tree
function T (z) has it first singularity at z = e−1. Thus it is analytic for |z| < e−1. 2

The tree function is so important that it deserves more discussion. One defines the tree-
like generating function of an as

A(z) =
∞∑

n=0

an
nn

n!
zn. (7.33)

In particular, for |z| < e−1

T (z) =
∞∑

n=1

1
n

nn

n!
zn, (7.34)

B(z) =
∞∑

n=0

nn

n!
zn =

1
1− T (z)

. (7.35)

To see how (7.35) follows from (7.34), observe that after differentiating (7.34) one finds
B(z) = 1 + zT ′(z). On the other hand, differentiating the functional equation T (z) = zeT (z)

we obtain
zT ′(z) =

T (z)
1− T (z)

,

and the proof of (7.35) follows. In Exercise 3 the reader is asked to rederive (7.35) from
Lagrange’s formula.

Example 7.16 Sum and Recurrence Arising in Coding Theory
In information theory (e.g., channel coding, minimax redundancy of universal coding, and

universal portfolios) the following sum is of interest:

Sn =
n∑

i=0

(
n

i

)(
i

n

)i (
1− i

n

)n−i

.

We can analyze it through the tree-like generating function s(z) =
∑

n≥0 Sn
nn

n! z
n. Indeed,

observe that nnSn/n! is a convolution of two identical sequences nn

n! , hence

s(z) = [B(z)]2

where B(z) is defined in (7.35).
A more interesting example is the following. When analyzing the minimax redundancy

of source coding for memoryless sources (see also Section 8.7.2), Shtarkov [390] came up with
the following summation problem

Dn(m) =
m∑

i=1

(
m

i

)
D∗

n(i), (7.36)
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where D∗
0(1) = 0, D∗

n(1) = 1 for n ≥ 1, and D∗
n(i) for i > 1 satisfies the following recurrence:

D∗
n(i) =

n∑
k=1

(
n

k

)(
k

n

)k (
1− k

n

)n−k

D∗
n−k(i− 1) (7.37)

provided that D∗
n(i) = 0 for i > n. We express Dn(m) and D∗

n(m) as tree-like generating
functions. Let us introduce a new sequence D̂∗

n(m) defined as

D̂∗
n(m) =

n∑
k=0

(
n

k

)(
k

n

)k (
1− k

n

)n−k

D∗
n−k(m− 1) = D∗

n(m) +D∗
n(m− 1).

Its tree-like generating functions is

D̂∗
m(z) =

∞∑
k=0

kk

k!
zkD̂∗

k(m) .

Observe that it can be re-written as

nn

n!
D̂∗

n(m) =
n∑

k=0

kk

k!
· (n− k)n−k

(n− k)!
D∗

n−k(m− 1) .

We now multiply both sides of the above by zn, sum it up, and then by the convolution
formula of generating functions one arrives at

D̂∗
m(z) = B(z)D∗

m−1(z) .

Thus
D∗

m(z) = (B(z)− 1)m−1D∗
1(z) = (B(z)− 1)m, (7.38)

since D∗
1(z) = B(z)− 1. By (7.38) we obtain

Dm(z) =
m∑

i=1

(
m

i

)
D∗

i (z) =
m∑

i=1

(
m

i

)
(B(z)− 1)i = Bm(z)− 1. (7.39)

We return to this problem in Section 8.7.2.
Finally, we are in a position to formulate an even more general recurrence. Under some

initial conditions, define a sequence xm
n satisfying for n ≥ 1 and m ≥ 1

xm
n = an +

n∑
i=0

(
n

i

)(
i

n

)i (
1− i

n

)n−i

(xm−1
i + xm−1

n−i ) , (7.40)

where an is a given sequence (called the additive term), and m is an additional parame-
ter. Using the same arguments as above, one can solve this recurrence in terms of tree-like
generating functions:

Xm(z) = A(z) + 2B(z)Xm−1(z) (7.41)
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where

Xm(z) =
∞∑

k=0

kk

k!
zkxm

k , A(z) =
∞∑

k=0

kk

k!
zkak .

The recurrence (7.41) can be solved by telescoping in terms of m. 2

7.3.3 Borel Transform

In some applications, it is better to work with ordinary generating functions and in others
with exponential generating functions. Therefore, one would like to have an easy transfer
formula from one generating function to another. In Example 11, we show how to obtain
the ordinary generating function S(z) for the binomial sum from its exponential generating
function s(z) = eza(z) (cf. (7.18)). This is an example of a transfer formula. A question arises
whether one can find a transform that allows us to recover the ordinary generating function
from the exponential generating function. The answer is given by the Borel transform (cf.
[424, 448]), which we discuss next.

Let an be a sequence such that its ordinary generating function A(z) exists in |z| < R.
Let also a(z) be its exponential generating function. Define

f(z) =
∫ ∞

0
e−ta(zt)dt

for |z| < R. We prove that this integral exists and f(z) = A(z) for |z| < R. Indeed, observe
that by Cauchy’s bound (7.24) |anR

n| < M , hence

|a(z)| < M
∑
n≥0

|zn|
Rnn!

= e|z|/R.

Therefore, for |z| < R ∣∣∣∣∫ ∞

0
e−ta(zt)dt

∣∣∣∣ < M

∫ ∞

0
e−t(1−|z|/R)dt,

and the integral exists for |z| < R. Thus by Theorem 2.4(ii) we conclude that f(z) is analytic,
and the interchange of the integral and the sum below is justifiable for |z| < R:∫ ∞

0
e−t

∑
n≥0

an
zntn

n!
dt =

∑
n≥0

anz
n 1
n!

∫ ∞

0
e−ttndt = A(z)

where the last equation follows from n! =
∫∞
0 e−ttndt = Γ(n− 1). In summary, we prove the

following theorem.
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Theorem 7.3 (Borel Transform) Let A(z) =
∑

n≥0 anz
n converge for |z| < R. Then for

|z| < R

A(z) =
∫ ∞

0
e−ta(zt)dt, (7.42)

where a(z) =
∑

n≥0 an
zn

n! is the EGF of {an}∞n=0.

7.4 Probability Generating Functions

Generating functions and other transforms are important and useful tools in probability
theory. They are particularly handy in the analysis of algorithms and combinatorics, that is,
discrete structures. If X is a discrete random variable with pk = Pr{X = k} (k = 0, 1, . . .),
then the probability generating function, denoted as GX(z) or G(z)), is defined with respect
to the sequence {pk}k≥0 as

GX(z) =
∑
k≥0

pkz
k = E[zX ].

We already saw moment generating functions in action when large deviations theory was
discussed in Chapter 5. Here, we first briefly review terminology and elementary facts in
order to later present more interesting applications of probability generating functions.

The usefulness of probability generating functions stems from the fact that some quantities
of interest for X are easily computable through the generating functions. For example,
moments of X are related to the derivatives of GX(z) at z = 1. Indeed, if X possesses all
moments, then

E[Xr] =
(
z
d

dz

)r

GX(z)
∣∣∣∣
z=1

,

as is easy to check. Often, factorial moments E[(X)r] := E[X(X − 1) · · · (X − r + 1)] are
easier to compute since

E[X(X − 1) · · · (X − r + 1)] =
dr

dzr
GX(z)

∣∣∣∣
z=1

.

In particular,

E[X] = G′
X(1),

Var[X] = G′′
X(1) +G′

X(1)− [G′
X(1)]2.

Of course, one can recover the probability distribution pk from the generating function since
pk = [zk]GX(z); hence Cauchy and Lagrange formulas work fine. But also

pk =
dk

dzk
GX(z)

∣∣∣∣∣
z=0

.
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Probability generating functions are commonly used in probability theory since they re-
place complicated operations like convolutions by algebraic equations. For example, if X and
Y are independent, then

GX+Y (z) = E[zX+Y ] = E[zX ]E[zY ] = GX(z)GY (z).

Also, the distribution function F (k) = Pr{X ≤ k} =
∑k

i=0 pi can be represented in PGF
terms, since by (7.6) we have ∑

k≥0

F (k)zk =
GX(z)
1− z .

In Chapter 5 we used another transform for probability distributions, namely, the moment
generating function defined as

MX(s) = GX(es) = E[esX ]

where s is assumed to be complex. The moment generating function MX(s) is well defined
at least for <(s) ≤ 0. We saw in Section 5.4 that if the definition of MX(s) can be extended
to a vicinity of s = 0, say for <(s) ∈ [−c, c] for some c > 0, then X has an exponential tail.

Finally, it is also convenient to deal with the cumulant generating function κX(s) defined
as

κX(s) = logMX(s) = logGX(es).

Observe that

E[X] = κ′(0),
Var[X] = κ′′(0),

provided κ(s) exists in the vicinity of s = 0. Then

κ(s) = µs+ σ2 s
2

2
+O(s3), (7.43)

where µ = E[X] and σ2 = Var[X].

Example 7.17 The Average Complexity of Quicksort
Hoare’s Quicksort algorithm is the most popular sorting algorithm due to its good per-

formance in practice. The basic algorithm can be briefly described as follows [269, 305]: A
partitioning key is selected at random from the unsorted list of keys, and used to partition
the keys into two sublists to which the same algorithm is called recursively until the sub-
lists have size one or zero. Let now Xn denote the number of comparisons needed to sort
a random list of length n. It is known that after randomly selecting a key, the two sublists
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are still “random”; hence assuming any key is chosen with equal probability 1/n we obtain a
stochastic equation

Xn = n− 1 +XK +Xn−1−K

where K is the random variable denoting the selected key. It can be translated into the
generating function Gn(z) = E[zXn ] as

Gn(z) = zn−1
n−1∑
k=0

1
n

E[zXk ]E[zXn−1−k ] =
zn−1

n

n−1∑
k=0

Gk(z)Gn−1−k(z).

Then cn := E[Xn] = G′
n(1) satisfies

cn = n− 1 +
2
n

n−1∑
i=0

ci

with c0 = 0. We solve this recurrence using the generating function C(z) =
∑

n≥0 cnz
n. By

(7.6) and Entry 1 in Table 7.2, we derive

C(z) =
z2

(1− z)2 + 2
∫ z

0

C(x)
1− xdx,

which becomes, after differentiation,

C ′(z) =
2z

(1− z)2 +
2z2

(1− z)3 +
2C(z)
1− z .

This is a linear differential equation that is simple to solve. Using, for example, the method
of variation of parameters, we arrive at

C(z) =
2

(1− z)2
(

log
1

1− z − z
)
.

To find Cn = [zn]C(z) we proceed as in Example 1, and finally prove

Cn = 2(n + 1)Hn+1 − 4n− 2 = 2(n + 1)Hn − 4n,

where Hn is the nth harmonic number. 2

7.5 Dirichlet Series

Finally, we study one more generating function of {an}∞1 defined as

A(s) =
∞∑

n=1

an

ns
,

and known as the Dirichlet series. When dealing with ordinary and exponential generating
functions, we observed that the choice of a particular generating function largely depends on
the convolution formula. This is also the case here. We shall demonstrate that the Dirichlet
series is a very useful tool in number-theoretical problems.
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7.5.1 Basic Properties

Let us start with analytic theory of the Dirichlet series. For what complex s does the series

A(s) =
∞∑

n=1

an

ns

converge? Observe that ∣∣∣∣an

ns

∣∣∣∣ =
|an|
n<(s)

.

Therefore, if the series converges absolutely for s = r + it, then it must also converge for
<(s) ≥ r. Let ra be a lower bound of such r. The series converges for <(s) > ra and diverges
for <(s) < ra. The real number ra is called the abscissa of absolute convergence. This
observation leads to the following known result (for a formal proof see [15, 195]).

Theorem 7.4 Suppose the series
∑∞

n=1 |an/n
s| does not converge or diverge for all s. Then

there exists a real number ra called the abscissa of absolute convergence, such that the Dirichlet
series

∑∞
n=1

an
ns converges absolutely for <(s) > ra and does not converge absolutely for <(s) <

ra.

As for an example, let us look at the Riemann zeta function (discussed in Section 2.4.2),
which is the Dirichlet series of {1}∞1 , that is,

ζ(s) =
∞∑

n=1

1
ns
.

It converges absolutely for <(s) > 1, and for s = 1 it diverges, so it diverges for <(s) < 1. In
fact, the Dirichlet series converges absolutely for all <(s) > 1 as long as |an| is bounded for
all n ≥ 1.

Let us now turn our attention to some important properties of Dirichlet series. How does
the product of two Dirichlet series relate to the Dirichlet convolution? Observe that

A(s)B(s) =
∞∑

n=1

ann
−s

∞∑
m=1

bmm
−s =

∞∑
n=1

∞∑
m=1

anbm(nm)−s =
∞∑

k=1

k−s
∑

mn=k

anbm.

Therefore, if d|n reads “d divides n,” then we just proved the following relationship:

A(s)B(s) ←→

∑
d|n

adbn
d


∞

n=1

. (7.44)

In other words, Dirichlet convolution is a sum of products of the series coefficients whose
product of the subscripts is fixed.
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Example 7.18 Some Dirichlet series
Here are two applications of the Dirichlet convolution formula.

1. Divisor Function. Let d(n) be the number of divisors of the integer n. Clearly

d(n) =
∑
d|n

1 · 1,

hence

D(s) =
∞∑

n=1

d(n)
ns

= ζ2(s).

2. Function v2(n). Let v2(n) be the exponent of 2 in the prime decomposition of n. Since

v2(2n) = v2(n) + 1,

we find, after easy algebra,

V (s) =
ζ(s)

2s − 1
which is valid for <(s) > 1. 2

7.5.2 Euler Products

For the purpose of this section, it is convenient to write {f(n)}∞1 := {fn}∞1 . A function f(n)
whose domain is the set of positive integers is called multiplicative if

f(mn) = f(m)f(n)

for all pairs of relatively prime positive integers m and n (i.e., gcd(m,n) = 1). Observe that
since every integer n has a unique prime factorization

n = pe1
1 p

e2
2 · · · per

r , (7.45)

where p1, . . . , pr are distinct primes and e1, . . . , er are nonnegative integers, then for a mul-
tiplicative function f

f(n) = f(pe1
1 ) · · · f(per

r ).

Let us now consider the product

P (s) =
∏
p

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
where f is multiplicative and the product is over all prime numbers p. Let us look for a
moment at P (s) as a formal power series and multiply it out. What is the coefficient at n−s?
Assuming the factorization (7.45), we have

(pe1
1 p

e2
2 · · · per

r )−sf(pe1
1 )f(pe2

2 ) · · · f(per
r ) = n−sf(n).
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Therefore, formally

∏
p>1

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
=

∞∑
n=1

f(n)
ns

.

For s = 0 the above becomes the Euler product. In fact, it is not difficult to embrace analytic
theory into our considerations. This leads to the following very important result (cf. [15] for
a formal proof).

Theorem 7.5 (Euler, 1737) Let f be a multiplicative function such that the series
∑∞

n=1 f(n)n−s

is absolutely convergent. Then
∞∑

n=1

f(n)
ns

=
∏
p

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
(7.46)

and the infinite product is convergent, too.

Euler’s theorem is a source of many interesting identities for the Riemann zeta function.
We consider some of them below.

Example 7.19 Another Representation for ζ(s)
Let us first assume f(n) = 1 for all n. Then

ζ(s) =
∏
p

(
1 + p−s + p−2s + · · ·

)
=

∏
p

1
1− p−s

. (7.47)

We now recall the definition of the Möbius function µ(n), which we discussed in Section 3.2.
For prime p we define µ(pe) as

µ(pe) =


+1 if e = 0,
−1 if e = 1,
0 if e ≥ 2.

Then by Euler’s theorem
∞∑

n=1

µ(n)
ns

=
∏
p

(
1− p−s) =

1
ζ(s)

(7.48)

for <(s) > 1. 2

The last example shows how to invert relationships like

an =
∑
d|n

bd,
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that is, to find bn as a function of ad. Let us again consider Example 3.4 of Chapter 3 where
we counted the number of primitive sequences. If f(n) is this number, then we already proved
that

2n =
∑
d|n

f(d).

How can we recover f(n)? Let A(s) =
∑

n≥1 2nn−s. Then

A(s) = F (s)ζ(s),

where F (s) =
∑

n≥1 f(n)n−s. Hence,

F (s) =
A(s)
ζ(s)

= A(s)
∑
n≥1

µ(n)
ns

.

This translates into
f(n) =

∑
d|n

µ

(
n

d

)
2d,

as already proved in Example 4. 2

7.5.3 Perron-Mellin Formula

In this section, we present a surprising connection between discrete sums and complex inte-
grals. We concentrate here on exact formulas for such sums. This opens a venue for a much
deeper analysis presented in subsequent chapters (see Sections 8.2.1, 8.5, and 10.1), where
complex integrals are used to derive asymptotic expansions of discrete sums. Needless to say,
evaluation of discrete quantities by complex integrals is at the core of an analytic approach
to analysis of algorithms and analytic combinatorics. We shall return to this issue several
times in the sequel.

Let {ak}nk=1 be a sequence of reals. We are interested in the evaluation of the following
discrete sum

Sn =
n∑

k=1

ak.

From elementary calculus we know that such sums are well approximated by
∫ n
1 a(x)dx, where

a(x)|x=n = an and a(x) is a monotone function (see also Section 8.2.1). Here, we aim at exact
evaluation of such sums through the Cauchy residue Theorem 2.5 (see Section 2.3). We recall
that Cauchy’s residue theorem states that

1
2πi

∮
C
f(z)dz =

N∑
j=1

Res[f(z); z = aj] ,
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−b + iT

−b − iT c − iT

c + iT b + iT

b −iT

− m −2 −1    0      c
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Figure 7.3: Illustration of the “closing-the-box” method.

as long as f(z) is analytic inside C except at N poles a1, . . . , aN . Thus, if one selects a “good”
function f(z), then the right-hand side of the above can represent a discrete sum. In many
applications, it is often convenient to take an infinite loop C as shown in Figure 7.3, where
T, b→∞. In such a case, we write∫ c+i∞

c−i∞
f(s)ds := lim

T→∞

∫ c+iT

c−iT
f(s)ds

where c is such that it assures the existence of the integral.
We illustrate the above idea in the Perron-Mellin formula. We shall follow the presentation

of Apostol [15] and Flajolet et al. [134]. Let {an}∞1 be a sequence whose Dirichlet series is
A(s). We prove that for m ≥ 1

1
m!

n−1∑
k=1

ak

(
1− k

n

)m

=
1

2πi

∫ c+i∞

c−i∞
A(s)ns ds

s(s+ 1) · · · (s+m)
(7.49)

where c > 0 lies in the half-plane of absolute convergence of A(s). When deriving the
Perron-Mellin formula, we introduce the reader to a new technique, sometimes called the
closing-the-box method, that allows us to evaluate integrals like the one above.

Consider the integral of the right-hand side of (7.49). We have

m!
2πi

∫ c+i∞

c−i∞
A(s)ns ds

s(s+ 1) · · · (s +m)
=

m!
2πi

∫ c+i∞

c−i∞

( ∞∑
k=1

ak

ks

)
ns

s(s+ 1) · · · (s+m)
ds

=
∞∑

k=1

ak
m!
2πi

∫ c+i∞

c−i∞
(n/k)s

s(s+ 1) · · · (s+m)
ds,

where the interchange of the sum and the integral is justified since both converge absolutely.
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We need now to evaluate the integral

Jm(x) =
m!
2πi

∫ c+i∞

c−i∞
xs

s(s+ 1) · · · (s +m)
ds

for x > 0. We shall prove below that for all m ≥ 1

Jm(x) =

{
0 for 0 < x < 1
(1− x−1)m for x > 1.

(7.50)

Provided the above is true, the proof of (7.49) follows (with the exception of x = k/n = 1
and m = 0, which we treat below).

In order to prove (7.50), we apply the closing-the-box method. We consider two cases.

A. Case 0 < x < 1
To evaluate the “infinite” integral in the definition of Jm(x), we first consider a finite

one, that is,
∫ c+iT
c−iT and later allow T to grow. The later integral is calculated by considering

the rectangular contour Γ shown in Figure 7.3 (solid line). First, observe that there is no
singularity inside the contour Γ since the integrand function appearing in the definition of
Jm(x) is analytic. Hence ∫

Γ

xs

s(s+ 1) · · · (s+m)
= 0,

and therefore ∫ c+iT

c−iT
=
∫ c+iT

b+iT
+
∫ b+iT

b−iT
+
∫ b−iT

c−iT
.

We prove now that the right-hand side of the above tends to zero as T, b→∞ proving (7.50)
for x < 1. Let s = r + iy. We have the following estimates (here we use the bound (2.22)
from Section 2.3):∣∣∣∣∣

∫ c+iT

c−iT

xs

s(s+ 1) · · · (s +m)
ds

∣∣∣∣∣ ≤ 2
∫ b

c

x<(s)

T (T + 1) · · · (T +m)
ds+ 2T

xb

bm+1

≤ 2
Tm+1

∫ ∞

c
xrdr + 2T

xb

bm+1

=
2

Tm+1

(−xc

lnx

)
+ 2T

xb

bm+1

→ 0,

since xb decays exponentially to 0 as b → ∞ for 0 < x < 1. In the above, we first take the
limit with respect to b and then allow T →∞.

B: Case x > 1
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In this case, we close the loop (rectangle) to the right of the line (c− i∞, c+ i∞), creating
a new contour Γ′ as shown in Figure 7.3 (dashed line). But, inside the loop Γ′ there are m+1
poles at ai = −i for i = 0, 1, . . . ,m. By Cauchy

1
2πi

∫
Γ′

xs

s(s+ 1) · · · (s+m)
ds =

m∑
i=0

Res[f(s), s = −i],

where f(s) = xs/(s(s+1) · · · (s+m)). The above residues are easy to calculate. For example,
using (2.24), we obtain

Res[f(s), s = −i] = (−1)i x−i

i!(m− i)! ,

thus
m!
2πi

∫
Γ′

xs

s(s+ 1) · · · (s +m)
ds = (1− x−1)m.

On the other hand, we can evaluate the integral over the contour Γ′ as∫
Γ′
f(s)ds =

∫ c+iT

c−iT
f(s)ds+

∫ c−iT

−b−iT
f(s)ds

+
∫ −b−iT

−b+iT
f(s)ds+

∫ −b+iT

c+iT
f(s)ds.

We now show that the last three integrals vanish as T, b → ∞, proving (7.50). Using the
same argument as above, we have∣∣∣∣∣

∫ c−iT

−b−iT

xs

s(s+ 1) · · · (s+m)
ds

∣∣∣∣∣ ≤ 1
Tm+1

∫ c

−∞
xrdr =

xc

Tm+1 lnx
,∣∣∣∣∣

∫ −b−iT

−b+iT

xs

s(s+ 1) · · · (s+m)
ds

∣∣∣∣∣ ≤ 2T
x−b

bm+1
,∣∣∣∣∣

∫ c+iT

−b+iT

xs

s(s+ 1) · · · (s+m)
ds

∣∣∣∣∣ ≤ 1
Tm+1

∫ c

−b
xrdr ≤ 1

Tm+1

xc

lnx
.

Since x > 1, we see that all three integrals tend to zero as b→∞ and then T →∞.
Finally, the case x = 1 and m = 0 must be considered separately. Direct calculations,

that are left as an exercise for the reader, show that

1
2πi

∫ c+i∞

c−i∞
ds

s
=

1
2

for c > 0.
In summary, we have just proved the Perron-Mellin formula.
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Theorem 7.6 (Perron-Mellin Formula) Let A(s) be the Dirichlet series of {an}∞1 . Let
c > 0 lie inside the half-plane of absolute convergence of A(s). Then

n−1∑
k=1

ak +
1
2
an =

1
2πi

∫ c+i∞

c−i∞
A(s)ns ds

s
, (7.51)

and for all m ≥ 1

1
m!

n−1∑
k=1

ak

(
1− k

n

)m

=
1

2πi

∫ c+i∞

c−i∞
A(s)ns ds

s(s+ 1) · · · (s +m)
. (7.52)

In Section 7.6.3 we shall use the Perron-Mellin formula to evaluate the total number of
1-digits in the binary representation of 1, 2, . . . , n. Here, we illustrate Theorem 7.6 on a
simpler, but important example.

Example 7.20 An Identity for ζ(s) Function
Let us apply the Perron-Mellin formula for m = 1 and ak ≡ 1. Then

n− 1
2

=
1

2πi

∫ 2+i∞

2−i∞
ζ(s)ns ds

s(s+ 1)
. (7.53)

Now we evaluate the integral on the right-hand side by the closing-the-box approach. We
consider a rectangle box with the line of integration shifted to the left up to <(s) = −1

4 .
Let us call the lines in the box East (equal to the original line of integration), West (i.e.,
<(s) = −1

4), North (i.e., =(s) = T as T → ∞), and South (i.e., =(s) = −T ). Call this
contour (traversed counterclockwise) C. Inside C there are two poles at s = 0 and s = 1 with
residues Res[f(s); s = 0] = −1/2 (since ζ(0) = −1/2) and Res[f(s); s = 1] = n/2, where
f(s) = ζ(s)ns/(s(s + 1)). Thus

1
2πi

∫
C
ζ(s)ns ds

s(s+ 1)
=
n− 1

2
,

that is, the same value as the integral (7.53). Therefore,∫ − 1
4
+iT

− 1
4
−iT

+
∫
North

+
∫
South

= 0.

It easy to see (by a similar argument as above) that the integral over the South/North lines
tends to zero as T →∞. We conclude that

lim
T→∞

∫ − 1
4
+iT

− 1
4
−iT

ζ(s)ns ds

s(s+ 1)
=
∫ − 1

4
+i∞

− 1
4
−i∞

ζ(s)ns ds

s(s+ 1)
= 0, (7.54)

which is a source of several exact instead of asymptotic formulas (e.g., see Section 7.6.3). 2
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7.6 Applications

We discuss three different applications of generating functions. In the first one, we consider
a class of recurrences arising in the analysis of digital trees, and show how to solve them
exactly. Then we study an old problem of counting the number of pattern occurrences in
a random string. We use the combinatorial structure approach (i.e., language approach) to
derive the generating function for the frequency of pattern occurrence when the text string
is generated by a Markovian source. Finally, we use the Perron-Mellin formula to derive
Delange’s formula for the total number of 1 digits in the binary representation of 1, 2, . . . , n.

7.6.1 Recurrences Arising in the Analysis of Digital Trees

We consider certain recurrences that arise in problems on words, in particular, in digital trees
discussed in Section 1.1. Let xn be a generic notation for a quantity of interest (e.g., depth,
size, or path length in a digital tree built over n strings). Given x0 and x1, the following
three recurrences originate from problems on tries, PATRICIA tries, and digital search trees,
respectively,

xn = an + β
n∑

k=0

(
n

k

)
pkqn−k(xk + xn−k) , n ≥ 2, (7.55)

xn = an + β
n−1∑
k=1

(
n

k

)
pkqn−k(xk + xn−k)− α(pn + qn)xn , n ≥ 2, (7.56)

xn+1 = an + β
n∑

k=0

(
n

k

)
pkqn−k(xk + xn−k) n ≥ 0, (7.57)

where an is a known sequence (also called the additive term), α and β are some constants,
and p+ q = 1.

To solve these recurrences we apply exponential generating functions. We start with
(7.55), multiplying it by zn, summing up, and using the convolution formula for exponential
generating function (7.17) from Table 7.3. Taking into account the initial conditions, we
arrive at

x(z) = a(z) + βx(zp)ezq + βx(zq)ezp + d(z), (7.58)

where d(z) = d0 + d1z and d0 and d1 depend on the initial condition for n = 0, 1. This
functional equation is still hard to solve; hence we introduce the Poisson transform

X̃(z) = x(z)e−z = e−z
∞∑

n=0

xn
zn

n!
.

The Poisson transform is a very useful tool in the analysis of algorithms. We devote to it all
of Chapter 10. Observe now that (7.58) reduces to the following functional equation

X̃(z) = Ã(z) + βX̃(zp) + βX̃(z) + d(z)e−z , (7.59)
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where Ã(z) = a(z)e−z = e−z ∑∞
n=0 an

zn

n! . (Throughout this book we write Ã(z) for the
Poisson transform of the sequence {an}∞n=0). Since x̃n = n![zn]X̃(z) the quantities x̃n and xn

are related by

xn =
n∑

k=0

(
n

k

)
x̃k.

After comparing coefficients of X̃(z) at zn, we finally obtain

xn = x0 + n(x1 − x0) +
n∑

k=2

(−1)k

(
n

k

)
âk + kd1 − d0

1− β(pk + qk)
, (7.60)

where n![zn]Ã(z) = ãn := (−1)nân. In passing, we point out that ân and an form the binomial
inverse relations, and

ân =
n∑

k=0

(
n

k

)
(−1)kak , an =

n∑
k=0

(
n

k

)
(−1)kâk , (7.61)

that is, ˆ̂an = an.

Example 7.21 The Average External Path Length in a Trie
To illustrate our discussion so far, let us consider a trie with a memoryless source and

estimate the average `n of the external path length, i.e., `n = E[Ln] (see Section 1.1). Clearly,
`0 = `1 = 0 and for n ≥ 2

`n = n+
n∑

k=0

(
n

k

)
pkqn−k(`k + `n−k) .

Thus by (7.60)

`n =
n∑

k=2

(−1)k

(
n

k

)
k

1− pk − qk

for n ≥ 2. 2

Let us now consider recurrence (7.56), which is more intricate. It has an exact solution
only for some special cases that we discuss below. We consider only a simplified version of
(7.56), namely,

xn(2n − 2) = 2nan +
n−1∑
k=1

(
n

k

)
xk

with x0 = x1 = 0 (for a more general recurrence of this type see [404]). The EGF x(z) of xn

is
x(z) = (ez/2 + 1)x(z/2) + a(z)− a0, (7.62)
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where a(z) is the exponential generating function of an. To solve this recurrence we observe
that after multiplying both sides by z/(ez − 1) and defining

X̌(z) = x(z)
z

ez − 1
,

we obtain a new, simpler functional equation, namely:

X̌(z) = X̌(z/2) + Ǎ(z). (7.63)

In the above we assume for simplicity a0 = 0. This is due to the identity ez − 1 = (ez/2 −
1)(ez/2 + 1) that luckily translates (7.62) into (7.63). But (7.63) is of the same type as the
functional equation (7.59), and this allows us to extract the coefficient x̌n = n![zn]X̌(z).
One must, however, translate the coefficients x̌n into the original sequence xn. We use the
Bernoulli polynomials Bn(x) and the Bernoulli numbers Bn = Bn(0) (see Table 7.2 for
detailed discussion) defined as

zetz

ez − 1
=

∞∑
k=0

Bk(t)
zk

k!
.

Furthermore, we introduce the Bernoulli inverse relations for a sequence an as

ǎn =
n∑

k=0

(
n

k

)
Bkan−k ←→ an =

n∑
k=0

(
n

k

)
ǎk

k + 1
. (7.64)

In Exercise 10 we ask the reader to prove

an =

(
n

r

)
qn ←→ ǎn =

(
n

r

)
qrBn−r(q) (7.65)

for 0 < q < 1. Using now (7.63), and comparing coefficients we show that for an =
(n
r

)
qn the

above recurrence has a particularly simply solution:

xn =
n∑

k=1

(−1)k

(
n

k

)
Bk+1(1− q)

k + 1
1

2k+1 − 1
.

A general solution to the above recurrence can be found in Szpankowski [404] (cf. also [167]),
and it involves ǎn.

Example 7.22 The Average Unsuccessful Search
As an example, consider the number of trials un in an unsuccessful search of a string

in a PATRICIA trie in which strings are generated by an unbiased memoryless source (i.e.,
p = q = 1/2). Knuth [269] proved that

un(2n − 2) = 2n(1− 21−n) +
n−1∑
k=1

(
n

k

)
uk
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and u0 = u1 = 0. A simple application of the above leads, after some algebra, to

un = 2− 4
n+ 1

+ 2δn0 +
2

n+ 1

n∑
k=2

(
n+ 1
k

)
Bk

2k−1 − 1
,

where δn,k is the Kronecker delta, that is, δn,k = 1 for n = k and zero otherwise. 2

In summary, so far we were able to exactly solve functional equations (7.55) and (7.56)
since they can be reduced to a simple functional equation of the form (7.59). In particular,
equation (7.56) became (7.59) since luckily ez − 1 = (ez/2 − 1)(ez/2 + 1), as already pointed
out by Knuth [269], but one cannot expect that much luck with other functional equations.
Nevertheless, there is a large class of recurrences that can be reduced to the following general
functional equation

F (z) = a(z) + b(z)F (σ(z)), (7.66)

where a(z), b(z), σ(z) are known function. Formally, iterating this equation we obtain its
solution as

F (z) =
∞∑

k=0

a(σ(k)(z))
k−1∏
j=0

b(σ(j)(z)), (7.67)

where σ(k)(z) is the kth iterate of σ(·). When applying the above to solve real problems,
one must assure the existence of the infinite series involved. In some cases we can provide
asymptotic solutions to such formulas by appealing to the Mellin transform that we shall
discuss in Chapter 9.

Example 7.23 A Simple Functional Equation
Consider the following functional equation

f(z) = βa(z/2)f(z/2) + b(z),

where |β| ≤ 1. By (7.67) we obtain

f(z) =
∞∑

n=0

βnb(z2−n)
n∏

k=1

a(z2−k),

provided the series converges. Define

ϕ(z) =
∞∏

j=0

a(z2j),

provided the infinite product converges. Then for ϕ(z, u) 6= 0

f(z)ϕ(z) =
∞∑

n=0

βnb(z2−n)ϕ(z2−n). (7.68)
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This form is quite useful in some computations, as we shall in see subsequent chapters. 2

Finally, we deal with recurrence (7.57). The EGF x(z) of xn satisfies

x′(z) = a(z) + x(zp)ezq + x(zq)ezp ,

which becomes after the substitution X̃(z) = x(z)e−z

X̃ ′(z) + X̃(z) = Ã(z) + X̃(zp) + X̃(zq) . (7.69)

The above is a differential-functional equation that we did not discuss so far. It can be solved
since a direct translation of coefficients gives: x̃n+1 + x̃n = ãn + x̃n(pn + qn). Fortunately,
this is a simple linear recurrence that has an explicit solution. Since

xn =
n∑

k=0

(
n

k

)
x̃k,

we finally obtain

xn = x0 −
n∑

k=1

(−1)k

(
n

k

)
k−1∑
i=1

âi

k−1∏
j=i+1

(1− pj − qj) = x0 −
n∑

k=1

(−1)k

(
n

k

)
k−1∑
i=1

âi
Qk

Qi
, (7.70)

where Qk =
∏k

j=2(1− pj − qj), and ân is the binomial inverse of an as defined in (7.61).

Example 7.24 The Average Path Length in a Digital Search Tree
To illustrate this, let `n be the expected path length in a digital search tree. Then for all

n ≥ 0

`n+1 = n+
n∑

k=1

(
n

k

)
pkqn−k(`k + `n−k)

with `0 = 0. By (7.57) it has the following solution

`n =
n∑

k=2

(−1)k

(
n

k

)
Qk−1,

where Qk is defined above. 2

In passing, we should observe that solutions of the recurrences (7.55)-(7.57) have a form
of an alternating sum, that is,

xn =
n∑

k=1

(−1)k

(
n

k

)
fk,

where fn has an explicit formula. In Section 8.5 we shall discuss in depth such sums and
provide a tool to find asymptotic expansions for these sums.
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We were quite lucky so far since we dealt mostly with linear recurrences of the first
order. However, this is not longer true when we consider b-digital search trees (discussed in
Section 1.1) in which one assumes that a node of such a tree can store up to b strings. Then,
the general recurrence (7.57) becomes

xn+b = an + β
n∑

k=0

(
n

k

)
pkqn−k(xk + xn−k) n ≥ 0, (7.71)

provided x0, . . . , xb−1 are given. Our previous approach would lead to a linear recurrence
of order b that does not possess a nice explicit solution. The culprit lies in the fact that
the exponential generating function of {xn+b}∞n=0 is the bth derivative of the exponential
generating function of {xn}∞n=0. We know, however, that the ordinary generating functions
of {xn+b}∞n=0 translate into z−b(X(z) − x0 − · · · − xb−1z

b−1), where X(z) is OGF of {xn}∞0 .
This simple observation led Flajolet and Richmond [145] to reconsider the standard approach
to the above binomial recurrences, and to introduce the ordinary generating function into
the play. A careful reader observes, however, that then one must translate into ordinary
generating functions sequences such as sn =

∑n
k=0

(n
k

)
ak (which was easy under exponential

generating functions since they become a(z)ez). In Example 11 we prove that

sn =
n∑

k=0

(
n

k

)
ak ←→ S(z) =

1
1− zA

(
z

1− z

)
.

We shall return to this problem in Sections 9.4.1 and 10.5.2.

Example 7.25 A Simple Differential-Functional Equation
For example, recurrence (7.71) for p = q = 1/2 and any b ≥ 1 can be translated into

ordinary generating functions as

X(z) =
1

1− zG
(

z

1− z

)
,

G(z)(1 + z)b = 2zbG(z/2) + P (z),

where P (z) is a function of an and initial conditions. The latter functional equation falls
under (7.66), and thus can be solved by the method presented above. However, for p 6= 1/2
an explicit solution is harder to find, and we must resort to an asymptotic solution. We shall
discuss it again in Section 10.5.2. 2

7.6.2 Pattern Occurrences in a Random Text

Let us consider two strings, a pattern string H = h1h2 . . . hm and a text string T = t1t2 . . . tn
of respective lengths equal to m and n over an alphabet S of size V . (In this section,
we drop our standard notation A for the alphabet since it is traditionally reserved in the
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pattern matching problems for the autocorrelation language defined below.) We shall write
S = {1, 2, . . . , V } to simplify the presentation. We assume that the pattern string is fixed
and given, while the text string is random and generated by a stationary Markovian source.
We also present results for memoryless sources. For the stationary Markov model, as always,
we denote the transition matrix as P = {pi,j}i,j∈S , the stationary distribution as π, and we
write Π for the stationary matrix that consists of V identical rows equal to π.

A word about notation: To extract a particular element, say with index (i, j), from a
matrix, say P, we shall write [P]i,j = pi,j. Finally, we recall that (I − P)−1 =

∑
k≥0 Pk

provided the inverse matrix exists (i.e., det(I−P) 6= 0 or ||P|| < 1 for any matrix norm || · ||).
Below, we write P (Hj

i ) = Pr{T j+k
i+k = Hj

i } for the probability of the substring Hj
i = hi . . . hj

occurring in the random text T j+k
i+k between symbols i+ k and j + k for any k (in particular,

P (H) denotes the probability of H appearing in the text).
Our goal is to estimate the frequency of pattern occurrences in a text generated by a

Markov source. We allow patterns to overlap when counting occurrences (e.g., if H = abab,
then it occurs twice in T = abababb when overlapping is allowed; it occurs only once if
overlapping is not allowed). We write On or On(H) for the number of pattern H occurrences
in the text of size n. We derive formulas for the following two generating functions:

T (r)(z) =
∑
n≥0

Pr{On(H) = r}zn,

T (z, u) =
∞∑

r=1

T (r)(z)ur =
∞∑

r=1

∞∑
n=0

Pr{On(H) = r}znur

that are defined for |z| ≤ 1 and |u| ≤ 1. We adopt here the presentation of Régnier and
Szpankowski [359], however, the reader is also advised to read Nicodéme, Salvy, and Flajolet
[326].

We use the unlabeled combinatorial structures approach to find T (z, u). In the case of
strings, such structures are known as languages, and we use this term throughout this section.
We extend, however, the definition of languages to include languages defined on a Markovian
source. Therefore, we adopt the following definition.

Definition 7.7 For any language L we define its generating function L(z) as

L(z) =
∑
w∈L

P (w)z|w|,

where P (w) is the stationary probability of word w occurrence, |w| is the length of w, and
we assume that P (ε) = 1, where ε is the empty word. In addition, we define H-conditional
generating function of L as

LH(z) =
∑
w∈L

P (w|w−m = h1 · · ·w−1 = hm)z|w| =
∑
w∈L

P (w|w−1
−m = H)z|w|,

where w−i stands for a symbol preceding the first character of w at distance i.
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Since we allow overlaps, the structure of the pattern has a profound impact on the number
of occurrences. To capture this, we introduce the autocorrelation language and the autocor-
relation polynomial.

Definition 7.8 Given a string H, we define the autocorrelation set A as:

A = {Hm
k+1 : Hk

1 = Hm
m−k+1} , (7.72)

and by HH we denote the set of positions k satisfying Hk
1 = Hm

m−k+1. The generating
function of language A is denoted as A(z) and we call it the autocorrelation polynomial.
Its H-conditional generating function is denoted AH(z). In particular,

AH(z) =
∑

k∈HH

P (Hm
k+1|Hk

k )zm−k (7.73)

for a Markov source.

Before we proceed, we present a simple example illustrating the definitions we introduced
so far.

Example 7.26 Illustration of Definition 7.8
Let us assume that H = 101 over a binary alphabet S = {0, 1}. Observe that HH = {1, 3}

and A = {ε, 01}, where ε is the empty word. Thus, for the unbiased memoryless source we
have A(z) = 1 + z2

4 , while for the Markovian model of order one, we obtain A101(z) =
1 + p10p01z

2. 2

As mentioned above, we want to estimate the number of pattern occurrences in a text.
Alternatively, we can seek the generating function of the language T that consists of words
containing at least one occurrence of H. We will follow this approach, and introduce some
other languages to describe T .

Definition 7.9 Given a pattern H:

(i) Let Tr be a language that consists of all words containing exactly r ≥ 1 occurrences of
H.

(ii) Let R be a set of words containing only one occurrence of H, located at the right end.
We also define U as

U = {u : H · u ∈ T1}, (7.74)

where the operation · means concatenation of words. In other words, a word u ∈ U if
H · u has exactly one occurrence of H at the left end of H · u.
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(iii) Let M be the language:

M = {w : H · w ∈ T2 and H occurs at the right end of H · w},

that is, M is a language such that H · M has exactly two occurrences of H at the left
and right end of a word from M.

We now can describe languages T and Tr in terms of R, M, and U . This will further
lead to a simple formula for the generating function of On(H).

Theorem 7.10 Language T satisfies the fundamental equation

T = R ·M∗ · U . (7.75)

Notably, language Tr can be represented for any r ≥ 1 as follows:

Tr = R ·Mr−1 · U . (7.76)

Here, by definition M0 := {ε} and M∗ :=
⋃∞

r=0Mr.

Proof. We first prove (7.76) and obtain our decomposition of Tr as follows: The first
occurrence of H in a word belonging to Tr determines a prefix p that is in R. Then one
concatenates a nonempty word w that creates the second occurrence of H. Hence, w is in
M. This process is repeated r− 1 times. Then one adds after the last H occurrence a suffix
u that does not create a new occurrence of H. Equivalently, Hu is such that u is in U , and
w is a proper subword of Hu. Finally, a word belongs to T if for some 1 ≤ r <∞ it belongs
to Tr. The set union

⋃∞
r=1Mr−1 yields precisely M∗.

We now prove the following result that summarizes relationships between the languages
R, M, and U .

Theorem 7.11 The languages M, U , and R satisfy⋃
k≥1

Mk = W ·H +A− {ε} , (7.77)

U · S = M+ U − {ε} , (7.78)
H · M = S · R − (R−H) , (7.79)

where W is the set of all words, S is the alphabet set and + and − are disjoint union and
subtraction of languages. In particular, a combination of (7.78) and (7.79) gives

H · U · S −H · U = (S − ε)R . (7.80)

Additionally, we have:
T0 ·H = R · A. (7.81)
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Proof. All the relations above are proved in a similar fashion. We first deal with (7.77). Let
k be the number of H occurrences in W ·H. By definition, k ≥ 1 and the last occurrence is
on the right: This implies that W · H ⊆ ⋃k≥1Mk. Furthermore, a word w in

⋃
k≥1Mk is

not in W ·H if and only if its size |w| is smaller than |H|. Then the second H occurrence in
Hw overlaps with H, which means that w is in A− ε.

Let us turn now to (7.78). When one adds a character s right after a word u from U , two
cases may occur. Either Hus still does not contain a second occurrence of H, which means
that us is a nonempty word of U . Or a new H appears, clearly at the right end. Then us is
in M. Furthermore, the whole set M+ (U − ε) is attained (i.e., a strict prefix of M cannot
contain a new H occurrence). Hence, it is in U , and a strict prefix of a U -word is in U .

We now prove (7.79). Let x = sw be a word in H · M where s is a symbol from S. As
x contains exactly two occurrences of H located at its left and right ends, w is in R and x
is in A · R − R. Reciprocally, if a word swH from S · R is not in R, then swH contains a
second H occurrence starting in sw. As wH is in R, the only possible position is at the left
end, and then x is in H ·M. We now rewrite:

S · R −R = S · R − (R ∩ S · R) = S · R − (R−H),

which yields H ·M −H = (S − ε) · R.
Finally, we leave the derivation of (7.81) to the reader as an exercise.

Now we translate the language relationships into the associated generating functions. We
should point out, however, that one must be careful with products of two languages (i.e.,
concatenation of two languages). For the memoryless source, the situation is quite simple.
Indeed, let L1 and L2 be two arbitrary languages with generating functions L1(z) and L2(z),
respectively. Then for memoryless sources the language L = L1 · L2 is transferred into the
generating function L(z) such that

L(z) = L1(z)L2(z), (7.82)

since P (wv) = P (w)P (v) for w ∈ L1 and v ∈ L2. In particular, the generating function L(z)
of L = S · L1 is L(z) = zL1(z), where S is the alphabet set, since S(z) =

∑
s∈S P (s)z = z.

For Markovian sources P (wv) 6= P (w)P (v); thus property (7.82) is no longer true. We
have to replace it with a more sophisticated one. We have to condition L2 on symbols
preceding a word from L2 (i.e., belonging to L1). In general, for a K order Markov chain,
one must distinguish V K ending states for L1 and V K initial states for L2. For simplicity of
presentation, we consider only first-order Markov chains (i.e., K = 1), and we write `(w) for
the last symbol of a word w. In particular, to rewrite property (7.82) we must introduce the
following conditional generating function for a language L:

Lj
i (z) =

∑
w∈L

P (w, `(w) = j|w1 = i)z|w|.
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Let now L =W · V. Then

Ll
k(z) =

∑
i,j∈S

pjiW
j
k (z)V l

i (z), (7.83)

where W j
k (z) and V l

i (z) are conditional generating functions for W and V respectively. To
prove this, let w ∈ W and v ∈ V and observe

P (wv) =
∑
j∈S

P (wv, `(w) = j)

=
∑
j∈S

P (w, `(w) = j)P (v|`(w) = j)

=
∑
j∈S

∑
i∈S

P (w, `(w) = j)pjiP (v|v1 = i) .

After conditioning on the first symbol of W and the last symbol of V, we prove (7.83).
The lemma below translates (7.77)–(7.79) into generating functions.

Lemma 7.12 The generating functions associated with languages M,U , and R satisfy

1
1−MH(z)

= AH(z) + P (H)zm
(

1
1− z + F (z)

)
, (7.84)

UH(z) =
MH(z)− 1
z − 1

, (7.85)

R(z) = P (H)zm · UH(z), (7.86)

provided the underlying Markov chain is stationary. The function F (z) is defined as follows

F (z) =
1
πh1

∑
n≥0

(P−Π)n+1zn

for |z| <‖ PΠ ‖−1.

Proof. We first prove (7.85). Interestingly, it does not need the stationarity assumption.
Let us consider the language relationship (7.78) from Theorem 7.11, which we rewrite as
U · S − U = M− ε. Observe that

∑
j∈S pi,jz = z. Hence, set U · S yields (conditioning on

the left occurrence of H):∑
w∈U

∑
j∈S

P (wj|H)z|wj| =
∑
i∈S

∑
w∈U ,`(w)=i

P (w|H)z|w|∑
j∈S

pi,jz = UH(z) · z .

Of course, M− ε and U translate into MH(z) − 1 and UH(z), and (7.85) is proved.
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We now turn our attention to (7.86), and we use relationship (7.79) of Theorem 7.11.
Observe that S · R can be rewritten as∑

j,i∈S2

∑
iw∈R

P (jiw)z|jiw| = z2
∑
j∈S

∑
i∈S

πjpj,i

∑
iw∈R

P (w|w−1 = i)z|w| .

But due to the stationarity of the underlying Markov chain
∑

j πjpj,i = πi. As πiP (w|w−1 =
i) = P (iw), we get zR(z). Furthermore, in (7.79) H · M − H translates into P (H)zm ·
(MH(z)− 1). By (7.85), this becomes P (H)zm ·UH(z)(z − 1), and after a simplification, we
prove (7.86).

Finally, we deal with (7.84), and prove it using (7.77) from Theorem 7.11. The left-hand
side of (7.77) involves language M, hence we must condition on the left occurrence of H. In
particular,

⋃
r≥1Mr + ε of (7.77) translates into 1

1−MH(z) . Now we deal with W · H of the
right-hand side of (7.77). Conditioning on the left occurrence of H, the generating function
W (z)H(z) of W ·H becomes

WH(z)H(z) =
∑
n≥0

∑
|w|=n

zn+mP (wH|w−1 = `(H))

=
∑
n≥0

∑
|w|=n

znP (wh1|w−1 = `(H))P (v = h2 . . . hm|v−1 = h1)zm .

We have P (v = h2 . . . hm|v−1 = h1)zm = 1
πh1

zmP (H), and for n ≥ 0:

∑
|w|=n

P (wh1|w−1 = `(H)) = [Pn+1]`(H),h1

where, we recall, `(H) = hm is the last character of H. In summary: Language W · H
contributes P (H)zm

[
1

πh1

∑
n≥0 Pn+1zn

]
`(H),h1

, while language A−{ε} introduces AH(z)−1.

We now observe that for any symbols i and j 1
πj

∑
n≥0

Πzn


i,j

=
∑
n≥0

zn =
1

1− z .

Using the equality Pn+1 − Π = (P − Π)n+1 (which follows from a consecutive application of
the identity ΠP = Π), we finally obtain the sum in (7.84). This completes the proof of the
theorem.

The lemma above together with Theorem 7.10 suffice to establish the following main
result.
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Theorem 7.13 (Régnier and Szpankowski, 1998) Let H be a given pattern of size m,
and T be a random text of length n generated according to a stationary Markov chain over a
V -ary alphabet S. The generating functions T (r)(z) and T (z, u) satisfy

T (r)(z) = R(z)M r−1(z)UH(z) , r ≥ 1, (7.87)

T (z, u) = R(z)
u

1− uMH(z)
UH(z), (7.88)

where

MH(z) = 1 +
z − 1
DH(z)

, (7.89)

UH(z) =
1

DH(z)
, (7.90)

R(z) = zmP (H)
1

DH(z)
. (7.91)

with
DH(z) = (1− z)AH(z) + zmP (H)(1 + (1− z)F (z)). (7.92)

The function F (z) is defined for |z| ≤ R where R = 1
||P−Π|| as follows

F (z) =
1
πh1

[(P− Π)(I− (P− Π)z)−1]hm,h1, (7.93)

where h1 and hm are the first and the last symbols of H, respectively.
For memoryless sources, F (z) = 0, and hence

D(z) = (1− z)AH(z) + zmP (H)

with the other formulas as above.

Theorem 7.13 is a starting point of the next findings concerning the average and the
variance of On. The limiting distribution of On is established in Example 8.8 of Chapter 8.

Theorem 7.14 (Régnier and Szpankowski, 1998) Let the hypotheses of Theorem 7.13
be fulfilled and nP (H)→∞. The expectation E[On(H)] satisfies for n ≥ m:

E[On(H)] = P (H)(n−m+ 1) , (7.94)

while the variance becomes for some r > 1

Var[On(H)] = nc1 + c2 +O(r−n), (7.95)
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where

c1 = P (H)(2AH(1) − 1− (2m− 1)P (H) + 2P (H)E1)) , (7.96)
c2 = P (H)((m− 1)(3m − 1)P (H) − (m− 1)(2AH (1) − 1)− 2A′

H(1))
− 2(2m− 1)P (H)2E1 + 2E2P (H)2, (7.97)

and the constants E1, E2 are

E1 =
1
πh1

[(P− Π)Z]hm,h1 , (7.98)

E2 =
1
πh1

[(P2 − Π)Z2]hm,h1, (7.99)

where Z = (I− (P− Π))−1 is the fundamental matrix of the underlying Markov chain.
For the memoryless source, E1 = E2 = 0 since P = Π, and (7.95) reduces to an equality

for n ≥ 2m− 1. Thus
Var[On(H)] = nc1 + c2 (7.100)

with

c1 = P (H)(2A(1) − 1− (2m− 1)P (H)) ,

c2 = P (H)((m− 1)(3m − 1)P (H) − (m− 1)(2A(1) − 1)− 2A′(1)).

Proof. We first prove part (i). We evaluate the first two moments of T (z, u) at u = 1, that
is, E[On] = [zn]T ′(z, 1) and E[On(On− 1)] = T ′′(z, 1). From Theorem 7.13 we conclude that

Tu(z, 1) =
zmP (H)
(1 − z)2 ,

Tuu(z, 1) =
2zmP (H)MH(z)DH(z)

(1− z)3 ,

where Tu(z, 1) and Tuu(z, 1) are the first and the second derivatives of T (z, u) at u = 1. Now
we observe that both expressions admit as a numerator a function that is analytic beyond
the unit circle. This allows for a very simple computation of the expectation and variance
based on the following basic formula

[zn](1 − z)−p =
Γ(n+ p)

Γ(p)Γ(n+ 1)
. (7.101)

To obtain E[On] we proceed as follows for n ≥ m:

E[On] = [zn]Tu(z, 1) = P (H)[zn−m](1− z)−2 = (n −m+ 1)P (H).
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Let
Φ(z) = 2zmP (H)MH(z)DH (z),

which is a polynomial for the memoryless source. Observe that

Φ(z) = Φ(1) + (z − 1)Φ′(1) +
(z − 1)2

2
Φ′′(1) + (z − 1)3f(z),

where f(z) is a polynomial of degree 2m−2. It follows that [zn](z−1)f(z) is 0 for n ≥ 2m−1
and, using formula (7.101), we get

E[On(On − 1)] = [zn]Tuu(z, 1) = Φ(1)
(n + 2)(n + 1)

2
− Φ′(1)(n + 1) +

1
2

Φ′′(1).

Observing that MH(z)DH (z) = DH(z) + (1 − z), we obtain (7.95). In the Markov case, we
have to compute the additional term

[zn]
2(z2mP (H)2F (z))

(1− z)2 ,

where F (z) is analytic beyond the unit circle for |z| ≤ R, with R > 1. The Taylor expansion
of F (z) is E1 + (1− z)E2, and applying (7.101) again yields the result.

In passing, we add that Nicodéme, Salvy, and Flajolet [326] extended these results to
patterns that are regular expressions.

7.6.3 Delange’s Formula for a Digital Sum

Let ν(k) be the number of 1-digits in the binary representation of the integer k. Define

S(n) =
n−1∑
k=1

ν(k),

that is, the total number of 1-digits in the binary representations of the integers k =
1, 2, . . . , n − 1. We want to derive an exact formula for S(n). We adopt here the presen-
tation of Flajolet et al. [134].

Let v2(k) be the exponent of 2 in the prime decomposition of k. We first prove that for
all k ≥ 1

ν(k)− ν(k − 1) = 1− v2(k). (7.102)

Indeed, let k = (dm, dm−1, . . . , 1, 0, 0, . . . , 0)2 be the binary representations of k with digits
di ∈ {0, 1}. Observe that 1 is at position v2(k). Then k − 1 = (dm, dm−1, . . . , 0, 1, 1, . . . , 1)2,
where 0 is at position v2(k). Let M be the number of 1’s among the digits dm, . . . , dv2(k)−1.
Then ν(k − 1) = M + 1 and ν(k) = M + v2(k), and (7.102) follows.
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Now we proceed as follows. Summing up (7.102) from k = 1 to some m − 1, and then
again summing from m = 1 to n− 1 we obtain

S(n) =
n−1∑
m=1

(S(m)− S(m− 1)) =
n(n− 1)

2
−

n−1∑
k=1

(n − k)v2(k). (7.103)

But the sum on the right-hand side can be handled by the Perron-Mellin formula with m = 1.
Having this in mind, we shall prove the following result.

Theorem 7.15 (Delange, 1975) The sum-of-digits function S(n) satisfies

S(n) =
1
2
n log2 n+ n

(
log2 π

2
− 1

2 ln 2
− 3

4

)
+ nF (log2 n), (7.104)

where F (x) is representable by the Fourier series

F (x) =
∞∑

k∈Z\{0}
fke

2πikx =
∑
k 6=0

fke
2πikx

with

fk = − 1
ln 2

ζ(χk)
χk(χk + 1)

, χk =
2πik
ln 2

, k 6= 0.

Proof. Expression (7.103) suggests to apply the Perron-Mellin formula with ak = v2(k) and
m = 1. In Example 18 we proved that the Dirichlet series V (s) of v2(k) is

V (s) =
∞∑

k=1

v2(k)
ks

=
ζ(s)

2s − 1
,

hence by the Perron-Mellin formula (7.52) we obtain

S(n) =
n(n− 1)

2
− n

2πi

∫ 2+i∞

2−i∞
nsζ(s)
2s − 1

ds

s(s+ 1)
. (7.105)

We now evaluate the integral in (7.105) by the closing-the-box method. We shift the
line of the integration to the left such that the new contour C consists of vertical lines at
<(s) = 2 and <(s) = −1

4 and closed on the North and South at high ±T . This contour will
enclose residues of the integrand at s = 1, s = 0 (a double pole) and simple poles at s = χk

for integers k 6= 0. To compute the residue at the double pole s = 0, we use the following
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expansions

ζ(s) = −1
2
− s1

2
ln(2π) +O(s2),

ns = 1 + s ln(n) +O(s2),
1

2s − 1
=

1
s ln 2

− 1
2

+O(s),

1
s(s+ 1)

=
1
s
− 1 +O(s).

Multiplying the above and finding the coefficient at s−1 we compute that the residue is equal
to

−1
2

log2 n− log2

√
π +

1
2 ln 2

− 1
4
.

The residue at χk for k 6= 0 gives F (log2 n), that is,

F (log2 n) =
1

ln 2

∑
k∈Z\{0}

ζ(χk)
χk(χk + 1)

nχk .

Summing up, we obtain

1
2πi

∫
C
nsζ(s)
2s − 1

ds

s(s+ 1)
=

1
2
n log2 n+ n

(
log2 π

2
− 1

2 ln 2
− 3

4

)
nF (log2 n)− nR(n).

It remains to prove that the integral over the South/North line vanishes at T →∞, and that
R(n) ≡ 0.

Let us first estimate the integral over the horizontal lines at positions ±T . Due to the
bound (2.47) for the ζ(s) function, we have∣∣∣∣∣

∫ 2±iT

− 1
4
±iT

nsζ(s)
2s − 1

ds

s(s+ 1)

∣∣∣∣∣ ≤ c|ζ(s)|
(
n

2

)2 1
T 2

= O(T−5/4).

Thus the integral vanishes at T →∞.
To prove R(n) ≡ 0 we use (7.54). We have

R(n) =
1

2πi

∫ −1/4+i∞

−1/4−i∞
nsζ(s)
2s − 1

ds

s(s+ 1)
=

1
2πi

∫ −1/4+i∞

−1/4−i∞
nsζ(s)
s(s+ 1)

ds
∑
k≥0

(
−2ks

)

=
∑
k≥0

1
2πi

∫ −1/4+i∞

−1/4−i∞
ζ(s)(2kn)s ds

s(s+ 1)

(7.54)
= 0,

where the second line is justifiable for <(s) < 0 since both the series and the integral converge
absolutely. This proves the theorem.
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7.7 Extensions and Exercises

7.1 Prove (7.16).

7.2 Derive a closed-form formula for the Bell numbers.

7.3 Derive (7.35) from the Lagrange formula.

7.4 Let

Sn =
n∑

k=0

(
n

k

)
akp

kqn−k,

where p+ q = 1, and ak is a given sequence. Let S(z) and A(z) be ordinary generating
functions of Sn and an, respectively. Prove that

S(z) =
1

1− qzA
(

pz

1− qz

)
.

7.5 Consider the following sum

Sn,k =
n∑

i=0

(
n− k
i

)(
i

n

)i (
1− i

n

)n−i

.

Define
sk(z) =

∑
n≥0

Sn,k
nn

n!
zn.

Prove that
sk(z) = zkB(z)B(k)(z),

where B(z) = 1/(1− T (z)) is defined in (7.35), and B(k)(z) denotes the kth derivative
of B(z).

7.6 Let for |z| < 1
M(z) =

∑
n≥1

zn log n.

Prove the following:

M1(z) =
∑
n≥1

zn log n! =
M(z)
1− z ,

M2(z) =
∑
n≥1

zn log(2n)! =
1
2

(
M(
√
z)

1−√z +
M(−√z)
1 +
√
z

)
.
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7.74! Let 0 < p < 1. For fixed integer M and all 0 ≤ ` < M , define

π(`) =
∑
k≥0

(
n

`+ kM

)
p`+kM(1− p)n−`−kM .

Prove that for all 0 ≤ ` ≤M we have

π(`) =
1
M

+O(ρn),

where ρ < 1.

7.84! Prove that the variance Var[Xn] of the quicksort complexity (discussed in Exam-
ple 17) is

Var[Xn] = 7n2 − 2(n+ 1)Hn + 13n− 4(n + 1)2H(2)
n ,

where H(2)
n =

∑n
k=1

1
k2 .

7.94! Let A(s) =
∑

n≥1
an
ns converge absolutely for σ = <(s) > σc. Prove that for σ > σc

lim
T→∞

1
2T

∫ T

−T
A(σ + it)nσ+itdt = an

for all n ≥ 1.

7.10 Prove (7.61) and (7.65).

7.11 Show under what conditions on the function a(s) the following is true:

∞∑
k=m

(−1)ka(k) =
1

2πi

∫ m−1/2+i∞

m−1/2−i∞
a(s)

πds

sin(πs)
.

7.124! Let H be a set of patterns (e.g., set of all strings that are within given distance
from a given pattern H). For such a set we define the correlation language A and the
correlation matrix A(z) as follows: Given two strings H and F , let A be the set of
words:

A = {Fm
k+1 : Hm

m−k+1 = F k
1 },

and the set of positions k satisfying F k
1 = Hm

m−k+1 is denoted as HF . Let A(z) =
{AHiHj (z)}i,j=1,M be the correlation matrix, where AHiHj (z) is the correlation poly-
nomial for Hi and Hj. Let On(H) be the number of patterns from H occurring in a
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random text of length n generated by a memoryless source. As in Section 7.6.2 we write

T (r)(z) =
∑
n≥0

Pr{On(H) = r}zn,

T (z, u) =
∞∑

r=1

T (r)(z)ur =
∞∑

r=1

∞∑
n=0

Pr{On(H) = r}znur.

Prove the following theorem.

Theorem 7.16 (Régnier and Szpankowski, 1997) Let H be a given set of patterns
of length m, and T be a random text of length n generated by a memoryless source. The
generating functions T (r)(z) and T (z, u) can be computed as follows:

T (r)(z) = Rt(z)Mr−1U(z),
T (z, u) = Rt(z)u(I − uM(z))−1U(z),

where

M(z) = (D(z) + (z − 1)I)[D(z)]−1,

(I−M(z))−1 = A(z) +
zm

1− z1 ·Ht,

U(z) =
1

1− z (I−M(z)) · 1,

Rt(z) =
zm

1− zHt · (I−M(z)),

and
D(z) = (1− z)A(z) + zm1 ·Ht.

In the above, H = (P (H1), . . . , P (HM ))t, upper index t means transpose, and A(z) =
{AHi,Hj (z)}i,j=1.M is the matrix of the correlation polynomials of patterns from the set
H.

Derive from the above the average and the variance of On(H).
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Chapter 8

Complex Asymptotic Methods

Summary: Asymptotic methods play an essential role in the analysis of algorithms, infor-
mation theory, and other problems of engineering and science. In this chapter, we primarily
focus on the methods of precise asymptotic estimates. Precise analysis of algorithms was
launched in 1962 by D.E. Knuth, who analyzed in his “Notes on Open Addressing” hash-
ing tables with linear probing. We discuss a variety of (mostly analytic) asymptotic tech-
niques such as the Euler-Maclaurin summation formula, methods of applied mathematics
(i.e., method and matched asymptotics), asymptotics of generating functions (polar singu-
larities and algebraic singularities), saddle point method, methods of evaluating finite sums
(e.g., Rice’s method), and limiting distributions. In the application section, we enumerate
words with approximate self-overlaps, discuss minimax redundancy for memoryless sources,
and derive the limiting distribution of the depth in a digital search tree.

IN THE ANALYSIS OF ALGORITHMS we often aim at predicting the rates of growth of
time or space complexities for large inputs n. Such analyses rarely produce exact expres-

sions that are easy to use or provide insight into the dependence of the algorithms performance
on the parameters of the problem. In fact, quite often we end up with a complicated sum,
an integral, a recurrence, or even a functional equation. In such situations, one may turn to
an asymptotic analysis. It allows one to focus on those terms of the solution that contribute
most to the answer. The extra insight from the asymptotic analysis may improve the perfor-
mance of an algorithm since we simply focus on precisely those parts of the algorithm that
affect the leading terms of the asymptotic solution.

Asymptotic analysis can be approached from many angles. We have already used “big-
oh” notation. Basically, f(n) = O(g(n)) if f(n)/g(n) is bounded from above for n sufficiently
large. A more precise expression is Θ notation that assures |f(n)/g(n)| is bounded from below
and above for sufficiently large n. There are situations, however, when such asymptotics are
still too crude and one must turn to asymptotic expansions.

255
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Let us consider an example from data compression. Assume that we are to compress a
binary string of length n. Knowing that the ratio of the lengths of the compressed string and
the original string is Θ(1) is not too helpful! As a matter of fact, we would like to know how
close this ratio is to the entropy of the source (see Chapter 6) in order to estimate how far
away we are from the optimal compression. Thus, we need at least the first-order asymptotic
expansion. But Jacob Ziv in his 1997 Shannon Lecture [459] presented compelling arguments
for backing off to a certain degree from the first-order asymptotic analysis of information
systems, in order to predict the behavior of real systems, where we always face finite (and
often small) lengths (of sequences, files, programs, codes, etc.). One way of overcoming these
difficulties is to increase the accuracy of asymptotic analysis and replace first-order analyses
(e.g., a leading term of the average code length) by more complete asymptotic expansions,
thereby extending their range of applicability to smaller values while providing more accurate
analyses (like constructive error bounds, large deviations, local or central limit laws).

Another example provides a vast area of combinatorial optimization (see Section 1.5). Let
us consider the problem that we have already discussed in Section 1.4, namely, the shortest
common superstring problem. It is an NP-hard problem, but in Section 6.5.2 we proved that
with high probability the ratio of the optimal solution to a greedy solution tends to 1 as the
size of the problem n → ∞. In this case, it is again important that the ratio is close to 1,
not just bounded. How good is this approximation? Well, we then need more terms in the
asymptotic expansions.

The analysis of algorithms that aims at precise information about algorithm performance
was launched on July 27, 1963 by Donald E. Knuth in his “Notes on Open Addressing.”
Generally, an asymptotic expansion we have in mind is a series that represents a complicated
expression in a certain limiting sense. More precisely, if xn denotes a quantity of interest with
input size n, we may look for a simple explicit function an (e.g., an = log n or an =

√
n) such

that xn ∼ an (i.e., limn→∞ xn/an = 1) or we may be aiming at a very precise asymptotic
expansion such as xn = a1

n +a2
n + · · ·+o(ak

n), where for each 1 ≤ i ≤ k we require that ai+1
n =

o(ai
n). The “little oh” notation is another example of “less precise”asymptotic information

and it means that ai+1
n /ai

n → 0 as n→∞. Hereafter, we mostly discuss analytic methods of
asymptotic analysis. As argued by Odlyzko [330]: “analytic methods are extremely powerful
and when they apply, they often yield estimates of unparalleled precision.”

This chapter begins with definitions of asymptotic notation. We used some of them
already in this book, but here we extend them to complex functions and introduce more
rigor. Following that, we present a few tools used in asymptotic analysis. We start with
elementary methods such as the Euler-Maclaurin summation formula, methods of applied
mathematics (e.g., WKB and matched asymptotics), and sequences distributed modulo 1.
We illustrate every method by an example taken from analysis of algorithms or information
theory. Then comes our main topic, namely, how to extract asymptotic information from
generating functions that are known either exactly or approximately. We first deal with
the small singularities of analytic functions, that is, either polar singularities or algebraic
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singularities. Then we turn our attention to large singularities and discuss saddle point
methods. We also discuss certain finite sums (e.g., alternating sums) that occur in analysis
of algorithms and are not easy to evaluate by direct methods. We represent these sums by
complex integrals and use the tools of this chapter to compute them (we have already seen
this approach in Section 7.6.3). Finally, we study limiting distributions through generating
functions and analytic tools described in this chapter. In the application section, we discuss
how to enumerate words that approximately overlap, deal with interesting problems of code
redundancy, and finally derive the limiting distribution for the depth in a digital search tree.

The standard reference in asymptotic analysis is of De Bruijn [84]. The reader is also
referred to an excellent recent survey by Odlyzko [330] on asymptotic methods. Detailed
coverage of many topics considered here may be found in Knuth, Graham and Patashnik
[169], Greene and Knuth [171], Hofri [197], Knuth [267, 268, 269], Sedgewick and Flajolet
[383], Olver [331], and Wong [450]. The reader will find many interesting methods and
examples of a combinatorial nature in the forthcoming book by Flajolet and Sedgewick [149].
The book by Greene and Knuth [171] is a joy to read and highly recommended.

8.1 Introduction to Asymptotic Expansions

In this section, we formally introduce the Poincaré notion of an asymptotic expansion. This
concept is quite important since it enables us to manipulate a large class of divergent series
— often arising in the analysis of algorithms — in much the same way as convergent power
series. Even more important, in the spirit of Ziv’s remark mentioned in the introduction,
asymptotic expansions enable us to obtain numerical and quantitative results of increasing
accuracy.

8.1.1 Definitions and Notations

Let S be a point set in the complex plane and z0 a limit point of S. For two complex functions
f(z) and g(z) defined on S we write

f(z) = O(g(z)), z → z0 (8.1)

to mean that there exists a constant K and a neighborhood U(z0) of z0 such that |f(z)| ≤
K|g(z)| for all z ∈ S ∩ U(z0). If |f(z)| ≥ K ′|g(z)| for a constant K ′ > 0, then we denote
f(z) = Ω(g(z)). Furthermore, if f(z) = O(g(z)) and f(z) = Ω(g(z)), then f(z) = Θ(g(z)).
We shall also use the little-oh notation

f(z) = o(g(z)), z → z0 (8.2)

if for every ε > 0 there is neighborhood Uε(z0) of z0 such that |f(z)| ≤ ε|g(z)| for all
z ∈ S ∩ Uε(z0). Finally, if f(z)/g(z)→ 1 for z → z0, then

f(z) ∼ g(z), z → z0. (8.3)



258 Complex Asymptotic Methods

Observe that (8.3) can be also written as f(z) = (1 + o(1))g(z).
We mostly have either z0 = 0 or z0 =∞ and restrict S either to a sector

Sα,β = {z : 0 < |z| <∞, α < arg(z) < β},

in the complex plane, to the set of nonnegative integers S = N, or to the set of all positive
reals S = R+. We write Sθ = S−θ,θ for a symmetric sector in the complex plane. Finally, we
say that the relations O or o are to hold uniformly in a set of parameters λ, if the constant
K in the big-Oh does not depend on λ in this set.

Here are some examples:

T (z)− 1 +
√

2(1 − ez) +
2
3

(1− ez) = O((1− ez)3/2), z0 = e−1, S = Sπ/2,

log(1 + a
√
x+ bx+ cx3/2)− a

√
x− (b− 1

2
a2)x = O(x3/2), z0 = 0, S = R

+,

n! ∼ nn+1/2e−n
√

2π, z0 =∞, S = N,

where T (z) is the tree function defined in Chapter 7 (e.g., see Example 7.15).
In many applied problems one must deal with divergent series that nevertheless give an

excellent numerical approximation. To handle it, Poincaré introduced in 1886 asymptotic
power series. For z ∈ Sθ when z0 = ∞ Poincaré defined: A power series

∑∞
n=0 anz

−n is
called an asymptotic expansion of f(z) defined on Sθ if for every fixed integer N ≥ 0

f(z) =
N∑

n=0

anz
−n +O(z−(N+1)), z →∞. (8.4)

If (8.4) holds, we write

f(z) ∼
∞∑

n=0

anz
−n, z →∞.

Poincaré’s asymptotic expansions are too restrictive for our applications. For example,
the average height in a PATRICIA trie built from n independent strings generated by an
unbiased memoryless source is log2 n+

√
2 log2 n + · · ·, while the average height in a digital

search tree is log2 n +
√

2 log2 n − log2

√
2 log2 n + · · · as n → ∞ (cf. [259, 260]). These are

legitimate asymptotic expressions, but they do not fall under the Poincaré definition. To
encompass them, we define below generalized Poincaré-type asymptotic expansions.

A sequence of functions φk(z) is said to be an asymptotic sequence as z → z0 in S if

φk+1(z) = o(φk(z)), z → z0, (8.5)

for all k. The original Poincaré definition is recovered if one sets φk(z) = 1/zk and z0 =∞.
The function f(z) is said to have an asymptotic expansion of order N with respect to the
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asymptotic sequence {φk(z)} if there exist constants ak such that

f(z) =
N∑

k=0

akφk(z) + o(φN (z)), z → z0. (8.6)

If the above holds for all N , then we write

f(z) ∼
∞∑

k=0

akφk(z), z → z0.

Observe that the above expansion is unique since one can determine the constants ak by
means of

ak = lim
z→z0

(
f(z)−

k−1∑
i=0

aiφi(z)

)
/φk(z).

If the constants ak = 0 for all k, then such an asymptotic expansion is called asymptotically
zero with respect to a given asymptotic series {φk(z)}. For example,

e−x ∼ 0 · 1 + 0 · x−1 + 0 · x−2 + · · · , x→∞

is asymptotically (exponentially) zero as x → ∞ in S = R+. If f(z) is asymptotically zero,
we shall write f(z) ∼ 0. It is usual to replace such functions by zero in any stage of a proof
establishing the validity of Poincaré asymptotic expansion. We shall follow this approach in
this book.

Here are some examples of asymptotic expansions as x→∞ in S = R+

1
1 + x

∼
∞∑

k=1

(−1)k−1

xk
,

∫ ∞

0
(t + x)−1e−tdt ∼

∞∑
k=1

(−1)k−1(k − 1)!
xk

,

x− log x ∼ 0.

It is worth pointing out that the series on the right in the second example above is not
convergent, but we get better approximations (for larger value of x) to the integral by taking
more terms of the asymptotic series.

Asymptotic expansions can be manipulated as convergent series; however, some caution
must be exercised with differentiation. In Exercises 1 and 2 we ask the reader to prove some
of these facts.

We also should point out that asymptotic expansions of a complex function f in a sector
Sθ may crucially depend on θ. For example, exp(−1/z) ∼ 0 for z → 0 in any sector contained
in Sπ/2, but for purely imaginary z = ix we have | exp(−1/z)| = 1, so the asymptotics break
down.
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8.1.2 From Taylor Expansion to Asymptotic Series

We end this section with a useful result that allows us to compute asymptotic series of a
complex function f(z) as z →∞ from its Taylor series at z → 0. We shall follow Ford [159].

Let f(z) be defined by the power series

f(z) =
∞∑

n=0

anz
n, z → 0 (8.7)

with a positive radius of convergence. We aim at finding conditions under which there exist
coefficients bn such that

f(z) ∼
∞∑

n=1

bn
zn
, z →∞ (8.8)

in a sector of the complex plane. Throughout, we assume that

(A) there exists an analytic function a(w) in the right half plane <(w) > 0 such that

a(w)|w=n = an (8.9)

where w = x+ iy.

As the first step, we represent the function f(z) as a complex integral. We have already
seen this trick in Section 7.6.3. This method is surprisingly successful while dealing with
finite sums and infinite series. The thrust of this approach is to evaluate the integral through
the Cauchy residue theorem (see Section 2.3). Under certain conditions such an integral can
be evaluated inside and outside the contour of integration leading to two different representa-
tions. We shall see how it works in the problem at hand (see Section 8.5 for a more detailed
discussion).

We start with a simple observation: If P (w) is analytic around a given point a and Q(w)
has a simple pole at a, then by Cauchy’s theorem

1
2πi

∫
C(a)

P (w)
Q(w)

dw =
P (a)
Q′(a)

, (8.10)

where the integration takes place around a sufficiently small closed contour C(a) encircling
the point w = a in the positive direction. Let us now set

P (w) = πa(w)(−z)w, Q(w) = sinπw,

where (−z)w is understood as a single-valued function in the sector 0 < arg(z) < 2π (which
excludes the positive half of the real axis), defined as follows

(−z)w = exp (w log(−z)) = exp (w(log |z|+ i(arg(z)− π))) , 0 < arg(z) < 2π. (8.11)
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- <(w)

w = x+ ip

w = x− ip

−l − 1
2 + ip 2n+ 1

2 + ip

2n+ 1
2 − ip−l − 1

2 − ip

6

=(w)

Figure 8.1: The integration contour Cn,l.

We write Sθ = {z : 0 < |z| < ∞, θ < arg(z) < 2π − θ} for some 0 < θ < π/2; that is, Sθ

is a set in the complex plane that excludes the sector Sθ around the positive half of the real
axis (e.g., for θ = 0 we exclude only the real positive half axis).

Let Cn,l be a contour, shown in Figure 8.1, that surrounds each of the following points:
w = −l,−l+ 1, . . . ,−1, 0, 1, . . . , 2n− 1, 2n, where l is a positive integer. Since for any integer
k ∈ Z

π

sin πw
=

(−1)k

(w − k)
+O(1),

the Cauchy residue theorem,1 (cf. (8.10)) leads to

1
2πi

∫
Cn,l

πa(w)(−z)w

sin πw
dw =

l∑
m=1

a(−m)
zm

+
2n∑

k=0

a(k)zk. (8.12)

We now evaluate the integral in (8.12) along the four line segments of the curve Cn,l shown
in Figure 8.1, namely, the lines w = −l − 1

2 + iy, w = 2n + 1
2 + iy and w = x ± ip, where

−∞ < x, y < ∞ and we allow p to be positive and large. We denote by Dp and D−p the

1The reader may want to go back to Section 2.3 to review some facts from complex analysis.
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contributions of the integral along the upper and lower horizontal lines, respectively. For Dp

we observe that for w = x+ ip

sinπw = sinhπp(sinπx coth πp + i cos πx),

which yields

Dp =
(−z)ip

2i sinhπp

∫ −l− 1
2

2n+ 1
2

a(x+ ip)(−z)x

sinπx coth πp+ i cos πx
dx.

To assure that Dp → 0 as p→∞, we adapt another assumption regarding the function a(w):

(B) for sufficiently large y and any positive ε > 0

|a(x+ iy)| < Keε|y|, (8.13)

where K is a constant that may depend only on ε.

In other words, a(w) cannot grow faster than exponentially along any line parallel to the
imaginary axis.

Suppose for the present that z ∈ Sθ is real and negative so that | − zip| = 1. Then

|Dp| <
Keεp

2 sinhπp

∫ 2n+ 1
2

−l− 1
2

(−z)xdx,

since
| sin πx coth πp+ i cos πx|2 = sin2 πx cosh2 πp+ cos2 πx > 1.

In summary,
lim

p→∞Dp = 0.

In a similar manner we prove that
lim

p→∞D−p = 0.

Next, let us consider the integral along the vertical right line w = 2n+ 1
2 + iy, which we

denote as Dn. Since

sin πw = sin(π/2 + iπy) = cos iπy = coshπy,

we arrive at (imposing p→∞)

Dn =
(−z)2n+ 1

2

2

∫ ∞

−∞
a(2n+ 1

2 + iy)(−z)iy

cosh πy
dy.
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Under hypothesis (B) we deduce that the integral above converges absolutely. Restricting
further z to the real segment −1 < z < 0 we certainly have

lim
n→∞Dn = 0

for −1 < z < 0. Soon we extend the validity of these estimates to Sθ.
Finally, we deal with the left vertical line w = −l− 1

2 + iy, which contribution we denote
as Dl. We obtain

Dl = (−1)l (−z)−l− 1
2

2

∫ ∞

−∞
a(−l − 1

2 + iy)(−z)iy

cosh πy
dy.

Under hypothesis (B) this integral converges absolutely for −1 < z < 0.
In view of the above we conclude that (8.12) becomes

f(z) = (−1)l (−z)−l− 1
2

2

∫ ∞

−∞
a(−l − 1

2 + iy)(−z)iy

cosh πy
dy −

l∑
m=1

a(−m)
zm

(8.14)

for n→∞ as long as −1 < z < 0.
We now analytically continue the solution (8.14) to the sector Sθ (excluding real positive

z). For this we define a subsector Sθ+δ ⊂ Sθ for any δ > 0 in which we prove that the
integral in (8.14) converges. It suffices to show that the integral converges for y ∈ (−∞,−d)
and y ∈ (d,∞) for arbitrarily large d. Let z = |z|(cos φ + i sinφ) ∈ Sθ+δ. Then under
hypothesis (B) and (8.11), the above two integrals are bounded by

K

∫ −d

−∞
e−(φ−π+ε)y

cosh πy
dy; K

∫ ∞

d

e−(φ−π−ε)y

cosh πy
dy,

which converge uniformly for z ∈ Sθ+δ. Thus the integral in (8.14) defines an analytic
function and this representation is valid inside Sθ. But the factor (−z)−l− 1

2 will assure that
the last omitted term in (8.14) is o(z−l) leading to an asymptotic expansion. More precisely,
it remains but to note that (8.14) is of the form

f(z) = −
l∑

m=1

a(−m)
zm

+
η(z, l)
zl

,

where η(z, l) = O(1/
√
z)→ 0 as |z| → ∞.

In summary, we proved the following theorem.

Theorem 8.1 Let f(z) be analytic and have the following power series representation

f(z) =
∞∑

n=0

anz
n, z → 0

with a positive radius of convergence. Assume an possesses an analytic continuation a(w)
with w = x+ iy such that hypotheses (A) and (B) are satisfied, that is,
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(A) there exists an analytic function a(w) in the right half plane <(w) > 0 such that
a(w)|w=n = an

(B) for sufficiently large y and any positive ε > 0

|a(x+ iy)| < Keε|y|,

where K is a constant that may depend only on ε.

Then the function f(z) defined in any sector Sθ (for arbitrary small θ > 0) that excludes the
positive half of the real axis can be represented by the following asymptotic series

f(z) ∼ −
∞∑

m=1

a(−m)
zm

, z →∞ (8.15)

in Sθ.

In passing, we point out that if a(w) is not analytic but has some singularities, then one
must subtract this contribution from the left-hand side of (8.15).

Example 8.1 Asymptotic Expansion of a Series
Let us consider

f(z) =
∞∑

n=0

zn

n+ ω
, z → 0,

where ω is a constant not equal to zero or a negative integer. In this case, we have a(w) =
1/(w+ ω), which clearly satisfies hypotheses (A) and (B) everywhere except w = −ω, where
there is a pole of a(w). Proceeding as above, we end up with an equation like (8.12) with
additional term on the right-hand side coming from the residue at w = −ω. This residue
depends on whether ω is a positive integer. In the former case, we have a double pole at
w = ω, in the latter just a simple pole. Let us handle first the latter situation; we assume
that ω /∈ N. Then

Res
(

π(−z)w

(w + ω) sinπw
,w = −ω

)
= −π(−z)−ω

sinπω
.

For ω ∈ N, say ω = K, we have at w = −K a double pole of 1/ sin πK and 1/(w + ω). To
find the residue of

π(−z)w

(w +K) sinπw
at w = −K, we expand the functions involved in the above expression into the Taylor series
around w = −K. Note that

(w +K) sinπw = (−1)Kπ(w +K)2
(

1 +
(w +K)2

3!
+O((w +K)4)

)
,

π(−z)w = π(−z)−K
(
1 + (w +K) log(−z) +O((w +K)2

)
.
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Upon finding the coefficient at (w +K)−1 we arrive at

Res
(

π(−z)w

(w +K) sinπw
,w = −K

)
= z−K log(−z).

In summary, we obtain

f(z) ∼ π(−z)−ω

sin πω
−

∞∑
n=1

1
(ω − n)zn

, ω /∈ N

and
f(z) ∼ − log(−z)

zK
−
∑
n 6=K

1
(K − n)zn

, ω = K ∈ N,

where the last sum is over all nonnegative integers not equal to K. 2

It is to be noted, finally, that if instead of the original series f(z) =
∑

n≥0 anz
n we start

with

f(z) =
∞∑

n=0

an(−z)n,

where a(w) satisfies hypotheses (A) and (B), and if we replace πa(w)(−z)w by πa(w)zw

defined in the sector Sπ, then the asymptotic expansion

f(z) ∼ −
∞∑

m=1

a(−m)
(−z)m

is valid in any sector Sθ that excludes the negative half of the real axis. The reader is asked
in Exercise 3 to prove the following:

log(1 + x) =
∞∑

k=1

(−1)k−1

k
xk, x→ 0,

= log x+
∞∑

k=1

(−1)k−1

k
x−k, x→∞.

Observe that above we have = (not ∼) for both limits.

8.2 Basic Methods

In this section we discuss asymptotic methods that are not based on extracting singularities
of generating functions. We start with the Euler-Maclaurin summation formula, followed
by methods of applied mathematics such as the WKB method and matched asymptotics.
Finally, we deal with sequences distributed modulo 1 in order to estimate certain sums
involving fractional parts.
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8.2.1 Euler-Maclaurin Summation Formula

From a first course of calculus we know that there is a relationship between integrals and
series. In fact, when the function f is monotone, then

∑
1≤k≤n f(k) is well approximated by∫ n

1 f(x)dx. (The reason that one prefers the integral over the sum lies in the fact that such in-
tegrals are usually much easier to evaluate.) The Euler-Maclaurin summation formula makes
this statement very precise for sufficiently smooth functions. It finds plenty of applications
in discrete mathematics, combinatorics, and analysis of algorithms.

Let f be a differentiable function defined on the interval [m,n], where m < n are integers.
Observe that for any m ≤ j < n

f(j) + f(j + 1)
2

=
∫ j+1

j

d

dx

[(
(x− j − 1

2

)
f(x)

]
dx

=
∫ j+1

j
f(x)dx+

∫ j+1

j

(
x− j − 1

2

)
f ′(x)dx, (8.16)

where the last line follows from integration by parts, and the fact that B′
1(x− j) = d

dx(x− j−
1
2) = 1 and B1(1) = −B1(0) = 1

2 , where B1(x) is the first Bernoulli polynomial. Definition
and properties of Bernoulli numbers and Bernoulli polynomials are reviewed in Table 8.1. If
we write B1(x − bxc) = x − bxc − 1

2 = x − j − 1
2 for j ≤ x < j + 1, and sum (8.16) over

j = m,m+ 1, . . . , n− 1, we immediately obtain
n−1∑

k=m+1

f(k) +
f(m) + f(n)

2
=
∫ n

m
f(x)dx+

∫ n

m
B1(x− bxc)f ′(x)dx. (8.17)

This is a particular case of the Euler-Maclaurin formula.

Example 8.2 Moments of Nonnegative Random Variables
Let Mn be a sequence of nonnegative random variables having all moments such that

E[Mk
n ] = o(E[Mk+1

n ]) with respect to n. For fixed k, we calculate the (k + 1)st moment of
Mn as

E[Mk+1
n ] =

∞∑
m=0

mk+1Pr{Mn = m} =
∞∑

m=0

mk+1(Pr{Mn > m− 1} − Pr{Mn > m})

=
∞∑

m=0

((m+ 1)k+1 −mk+1)Pr{Mn > m}

= (k + 1)
∑
m≥0

mkPr{Mn > m}+O(E[Mk
n ]) ,

where the last line follows from the identity: ak − bk = (a − b)(ak−1 + ak−2b + · · · + bk−1).
Using the Euler-Maclaurin formula we shall show that∑

m≥0

mkPr{Mn > m} =
∫ ∞

0
xkPr{M̃n > x}dx+O(E[Mk

n ]),
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Table 8.1: Bernoulli Numbers and Polynomials

1. The Bernoulli numbers Bm for m = 0, 1, . . . are defined by the expression

t

et − 1
=

∞∑
k=0

Bk

k!
tk, |t| < 2π. (8.18)

Since t
et−1 = −t+ −t

e−t−1 , hence all Bernoulli numbers with odd index m ≥ 3 are zero; that is,
B3 = B5 = · · ·B2m+1 = · · · = 0.
2. Bernoulli polynomials Bm(x) of order m = 0, 1, 2, . . . are defined as

text

et − 1
=

∞∑
k=0

Bk(x)
k!

tk, |t| < 2π. (8.19)

In particular, B0(x) = 1, B1(x) = x− 1
2 and B2(x) = x2 − x+ 1

6 .
3. Properties of Bernoulli polynomials directly following from the definition:

Bm(1− x) = (−1)mBm(x), (8.20)
Bm(0) = Bm, (8.21)
B′

m(x) = mBm−1(x), m ≥ 1, (8.22)
|B2n(x)| ≤ |B2n|, 0 < x < 1, (8.23)

The first property follows from text

et−1 = (−t)e(1−x)(−t)

e−t−1 while the other two are obvious. The
last is a consequence of the fact that B2n(x) for x ∈ (0, 1) achieves maximum at x = 1

2 and
B2n(1

2 ) = (21−2n − 1)B2n.
4. Asymptotics. Consider now n ≥ 1 and evaluate B2n by Cauchy’s formula

B2n

(2n)!
=

1
2πi

∮
dz

z2n(ez − 1)
.

Computing the residue at z = ±2πik, k = 1, 2, . . . we find

B2n = 2(−1)n−1ζ(2n)
(2n)!

(2π)2n
∼ 2(−1)n−1 (2n)!

(2π)2n
, (8.24)

where the asymptotics follow from ζ(n) = 1 +O(2−n) as n→∞.
5. The Euler function Pm(x) are defined as periodic functions of period 1 such that

Pm(x) =
Bm(x)
m!

, 0 ≤ x < 1, (8.25)

Pm(0) = Pm(1) =
Bm

m!
, m 6= 1. (8.26)

By (8.22) we have P ′
m+1(x) = Pm(x) for m ≥ 1.
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Table 8.2: Abel’s Partial Summation Formula

One often has to deal with sums like
∑

i aibi, where ai, bi, 1 ≤ i ≤ n are two real-valued
sequences. A basic technique to handle such sums is Abel’s partial summation formula. Let

A(k) =
k∑

j=1

aj ,

Ã(k) =
n∑

j=n−k

aj .

Then

n∑
j=1

ajbj =
n−1∑
k=1

A(k)(bk − bk−1) +A(n)bn (8.27)

=
n−1∑
i=0

Ã(n− i− 1)(bi+1 − bi), (8.28)

where b0 = 0. The formulas work fine for n = ∞ provided the series involved converge. In
this case the last term in (8.27) is not necessary. A derivation of Abel’s formula is pretty
straightforward and left as an exercise.

where, for illustrative purposes, we assume that M̃n is a continuous approximation to Mn.
Indeed, after applying (8.17) with m = 0, n =∞ and f(x) = xkPr{M̃n > x} we arrive at∑

m≥0

mkPr{Mn > m} =
∫ ∞

0
xkPr{M̃n > x}dx+O

(∫ ∞

0
|f ′(x)|dx

)
.

But ∫ ∞

0

(
xk d

dx
Pr{M̃n > x}+ kxk−1Pr{M̃n > x}

)
dx = O(E[Mk

n ]).

In summary,

E[Mk+1
n ] = (k + 1)

∫ ∞

0
xkPr{M̃n > x}dx+O(E[Mk

n ])

for fixed k. 2

We now refine (8.17) by having a closer look at the last term, that is,∫ j+1

j
B1(x− bxc)f ′(x)dx
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for j = m, . . . , n − 1. It turns out that instead of working with the Bernoulli polynomials
Bm(x−bxc) it is more convenient to use Euler’s function Pm(x) = Bm(x−bxc)/m! (cf. (8.25)-
(8.26)) of Table 8.1) since they are periodic with period 1 and such that P ′

m+1(x) = Pm(x).
Integrating by parts the above integral gives∫ j+1

j
P1(x− bxc)f ′(x)dx = P2(0)(f ′(j + 1)− f ′(j)) −

∫ j+1

j
P2(x)f ′′(x)dx

since Pm(0) = Pm(1) = Bm/m! for m > 1 (cf. (8.26)). Summing up over j = m, . . . , n − 1,
and plugging into (8.17), we finally obtain

n−1∑
k=m+1

f(k) +
f(m) + f(n)

2
=

∫ n

m
f(x)dx+

B2

2!
(f ′(n)− f ′(m))

− 1
2

∫ n

m
B2(x− bxc)f ′′(x)dx.

Using mathematical induction and properties of the Bernoulli numbers and polynomi-
als (in particular, (8.23) and (8.24)) we can generalize the above procedure leading to the
following theorem.

Theorem 8.2 (Euler-Maclaurin) Suppose f has continuous derivatives up to order s.
Then

n∑
k=m+1

f(k) =
∫ n

m
f(x)dx+

s∑
l=1

(−1)lBl

l!

(
f (l−1)(n)− f (l−1)(m)

)
(8.29)

+
(−1)s−1

s!

∫ n

m
Bs(x− bxc)f (s)(x)dx (8.30)

=
∫ n

m
f(x)dx+

1
2
f(n)− 1

2
f(m)

+
S∑

`=1

B2`

(2`)!

(
f (2`−1)(n)− f (2`−1)(m)

)
+O

(
(2π)−2S

) ∫ n

m
|f (2S)(x)|dx,

where S = bs/2c.

Proof. The first part (8.29) follows directly from our discussion above. To derive the error
bound in (8.30) we observe that only even terms in the above sum contribute since B2k+1 = 0
for k ≥ 1. We set S = bs/2c and use (8.22) together with (8.24) to prove (8.30).

Example 8.3 Asymptotic Expansion of the Euler Gamma Function
Let us compute log Γ(z) for z ∈ C− (−∞, 0). We start with the Euler representation for

the gamma function,

Γ(z) = lim
n→∞

n∏
k=1

k

z + k − 1

(
k + 1
k

)z−1

,
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which implies

log Γ(z) = lim
n→∞

(
(z − 1) log(n + 1)−

n∑
k=1

log
z + k − 1

k

)
.

We apply the Euler-Maclaurin formula to the above sum; that is, we assume m = 0 and
f(x) = log(x+ z − 1)− log x in (8.29). This leads to

n∑
k=1

log
z + k − 1

k
= log z +

∫ n

1
(log(x+ z − 1)− log x)dx

+
m∑

j=1

B2j

2j(2j − 1)

(
1

(n+ z − 1)2j−1
− 1
n2j−1

− 1
z2j−1

+ 1
)

+
1
2

(log(n+ z − 1)− log n− log z)

+
1

2m

∫ n

0
B2m(x− bxc)

(
1

(z + x− 1)2m
− 1
x2m

)
dx.

In the above we used B1 = 1/2 and B2k+1 = 0 for k ≥ 1. After computing the first integral
and taking the limit n→∞ we finally arrive at

log Γ(z) =
(
z − 1

2

)
log z − z + 1 +

m∑
j=1

B2j

2j(2j − 1)

(
1

z2j−1
− 1

)

− 1
2m

∫ n

0
B2m(x− bxc)

(
1

(z + x− 1)2m
− 1
x2m

)
dx.

Further simplification can be obtained for z →∞ knowing that

lim
z→∞ (log Γ(z)− (z − 1/2) log z + z) =

1
2

log 2π.

Then one obtains Stirling’s formula

log Γ(z) =
(
z − 1

2

)
log z − z +

m∑
j=1

B2j

2j(2j − 1)
1

z2j−1

+
1
2

log 2π − 1
2m

∫ n

0

B2m(x− bxc)
(z + x)2m

dx

for z → ∞ in C − (−∞, 0). This leads directly to the Stirling asymptotic formula for n!,
namely,

n! ∼
√

2πn
(
n

e

)n (
1 +

1
12n

+
1

288n2
− 139

5140n3
+ · · ·

)
(8.31)

as n→∞. 2
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8.2.2 Matched Asymptotics and the WKB Method

Numerous problems in mathematics, physics, combinatorics, and analysis of algorithms re-
duce to either functional/differential equations or recurrence equations with a small (large)
parameter ε > 0 (λ > 0). We discuss here two methods of applied mathematics that are
routinely used to solve such problems. We have in mind the matched asymptotics and the
WKB approximation named after physicists Wentzel, Kramers, and Brillouin (however,
Olver in his book [331] rightfully calls this method the Liouville-Green approximation because
they had already proposed it in 1837). We also briefly mention another method, lineariza-
tion, that finds many applications in the analysis of algorithms. We must add, however, that
the WKB method makes certain assumptions about the forms of the asymptotic expansions
without a rigorous justification of the assumed forms. In particular, it does not address the
issue of the existence of such asymptotic expansions.

We will not discuss the methods in depth, referring the interested reader to many excellent
books such as Bender and Orszag [39], Nayfeh [324], and Olver [331]. We start with a general
and brief overview of the two methods. Then we illustrate them by deriving asymptotic
distributions for the heights in tries and b-tries (see Section 1.1).

Let ε > 0 be a small number and λ > 0 a large number. Consider the following two
differential equations (arising in physics)

εy′′(x) + (1 + ε2)y′(x) + (1− ε2)y(x) = 0, y(0) = α, y(1) = β, (8.32)
1
λ2
y′′(x)− q(x)y(x) = 0, (8.33)

where α and β are two given constants. The first problem above is a simple boundary-value
problem, and can be solved exactly. However, we shall try to solve it approximately to
illustrate the idea of the matched asymptotic expansions. We look for a solution in the form

y(x; ε) =
∞∑

j=0

εjyj(x), (8.34)

where yj(x) are unknown functions. For the second problem above, we shall seek a (non-
trivial) asymptotic solution in the following form

y(x;λ) = eλΦ(x)
∞∑

j=0

Aj(x)
1
λj
, (8.35)

where Φ(x) and A0(x), A1(x), . . . are unknown functions. The form (8.35) is known as the
WKB approximation. Here’s what Fedoryuk [121] has to say about such approximations:
”... It is necessary first of all to guess (and no other word will do) in what form to search
for the asymptotic form. Of course, this stage — guessing the form of the asymptotic form
— is not subject to any formalization. Analogy, experiments, numerical simulation, physical
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considerations, intuitions, random guesswork; these are the arsenal of means used by any
research worker.”

To illustrate the methods, we discuss a concrete example. Let us first illustrate the
matching principle. We shall follow Nayfeh [324] and start with the boundary problem (8.32)
and assume that (8.34) is its solution. Looking only at the leading term y0(x) we find, after
some simple algebra, that y0(x) = c0e

−x, where c0 is a constant that we should determine
from the boundary condition. We get either c0 = α or c0 = βe, and usually both cannot
be satisfied. Therefore, we must choose one, say the value at x = 1, and ignore for now the
other boundary value. We then obtain a full asymptotic expansion as

y(x) = βe1−x + εβ(1− x)e1−x + · · · , (8.36)

which works fine everywhere but near the origin, where y(0) = βe(1 + ε + O(ε2)) 6= α. In
order to overcome these difficulties, we consider another scale, namely ξ = x/ε. Keeping ξ
fixed and solving the equation we obtain

y(x) = βe(1 − x) + (α− βe)(1 + x)e−x/ε + · · · (8.37)
= βe+ (α− βe)e−ξ + ε[(α − βe)e−ξ − βeξ] +O(ε2) (8.38)

Observe that at the origin y(0) = α, as desired.
In conclusion, we got two solutions (8.36) and (8.38). One is good in the interior and near

the right end while the other is near the left end of the interval [0, 1]. In order to obtain a
uniform expansion over [0, 1], we may try to blend or match these two solutions. The basic
idea of a matched asymptotic expansion is that an approximate solution to a given problem
is sought not as a single expansion in terms of a single scale but as two or more separate
expansions in terms of two or more scales each of which is valid in part of the domain. We
chose the scales so that the overall expansion covers the whole domain and that the domains
of validity of neighboring expansions overlap. Because the domains overlap, we can match
or blend the neighboring expansions. If this is possible, the resulting solution is called the
matched asymptotic expansion. The uniform expansion is obtained adding (8.36) and (8.38)
and subtracting their “common” part, so it is not counted twice. This common part is either
the expansion of (8.36) as x→ 0 or that of (8.38) as ξ →∞. The matching condition insures
that the two are equal.

We illustrate this basic idea by an example dealing with the height distribution in a trie.
The reader may want to go back to Section 1.1 to review some definitions related to tries.

Example 8.4 Limiting Distribution of the Height in a Trie
Let Hn be the height of a trie built from n binary strings generated by independent

memoryless unbiased sources, and let hk
n = Pr{Hn ≤ k}. Observe that hk

n satisfies the
following recurrence

hk+1
n = 2−n

n∑
i=0

(
n

i

)
hk

i h
k
n−i, k ≥ 0 (8.39)
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h0
0 = h0

1 = 1, and h0
n = 0, n > 1. (8.40)

This follows from Hn = max{HLT
i ,HRT

n−i}+ 1, where HLT
i and HRT

n−i denote, respectively, the
left subtree and the right subtree of sizes i and n− i, which happens with probability 2−n

(n
i

)
for memoryless unbiased sources. To solve this recurrence, we set

Hk(z) =
∑
n≥0

hk
n

zn

n!

to be the exponential generating function of hk
n. Then (8.39) implies (see Table 7.3 in Chap-

ter 7)

Hk(z) =
(
H0(z2−k)

)2k

, (8.41)

where H0(z) = 1 + z. Thus by Cauchy’s formula

hk
n =

n!
2πi

∮
(1 + z2−k)2

k
z−n−1dz

=

{
0, n > 2k

(2k)!
2nk(2k−n)!

, 0 ≤ n ≤ 2k , (8.42)

where the second line follows directly from the binomial formula. Applying Stirling’s formula
to (8.42), we prove the following.

Theorem 8.3 (Flajolet, 1983; Devroye, 1984; Pittel, 1986) The distribution of the height
in a trie has the following asymptotic expansions:

(i) Right-Tail Region: k →∞, n = O(1)

Pr{Hn ≤ k} = hk
n = 1− n(n− 1)2−k−1 +O(2−2k).

(ii) Central Region: k, n→∞ with ξ = n2−k, 0 < ξ < 1

hk
n ∼ A(ξ)enφ(ξ),

where

φ(ξ) =
(

1− 1
ξ

)
log(1− ξ)− 1,

A(ξ) = (1− ξ)−1/2.

(iii) Left-Tail Region: k, n→∞ with 2k − n = j = O(1)

hk
n ∼ nj e

−n−j

j!

√
2πn.
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This shows that there are three ranges of k and n, where the asymptotic form of hk
n is different.

We now use matched asymptotics to show that these three regions cover the whole domain,
where either k or n are large. If we expand (i) of Theorem 8.3 for n large, we obtain
1 − hk

n ∼ n22−k−1. For ξ → 0 we have A(ξ) ∼ 1 and φ(ξ) ∼ −ξ/2 so that the result in (ii)
becomes

A(ξ)enφ(ξ) ∼ e−nξ/2 = exp
(
−1

2
n22−k

)
∼ 1− 1

2
n22−k,

where the last approximation assumes that n, k →∞ in such a way that n22−k → 0. Since (ii)
agrees precisely with the expansion of (i) as n →∞, we say that (i) and (ii) asymptotically
match. To be precise, we say they match the leading order; higher-order matchings can be
verified by computing higher-order terms in the asymptotic series in (i) and (ii). We can
also easily show that the expansion of (ii) as ξ → 1− agrees with the expansion of (iii) as
j →∞, so that (ii) and (iii) also asymptotically match. Indeed, we observe that in this case
n(1/ξ − 1) = j and

nj e
−n−j

j!

√
2πn →j→∞ exp

(
n(1− 1

ξ
) log(1− ξ)− 1

)
1√

1− ξ = A(ξ)enΦ(ξ).

The matching verifications imply that, at least to leading order, there are no “gaps” in the
asymptotics. In other words, one of the results in (i)–(iii) applies for any asymptotic limit
which has k and/or n large. 2

We now briefly discuss the WKB approximation. We shall follow Nayfeh [324] and Fedo-
ryuk [121]. In general, it assumes that an asymptotic solution is of the form

y(x;λ) ∼ eλΦ(x)
(
A(x) +

1
λ
A1(x) · · ·

)
or equivalently

y(x;λ) ∼ exp
(
λ(Φ0(x) + λ−1Φ1(x) + · · ·

)
,

where Φi(x) are unknown functions that one tries to determine from the equation. For exam-
ple, consider differential equation (8.33) and assume it has the above asymptotic expansion.
Plugging it into (8.33), after some algebra, one arrives at the following system of equations

Φ′2
0 (x)− q(x) = 0,

Φ′′
0(x) + 2Φ′

0(x)Φ′
1(x) = 0,

which for q(x) > 0 yields

Φ0(x) = ±
∫ x

x0

√
q(x)dx,

Φ1(x) = − log
√
|Φ′

0(x)| = −1
4

log |q(x)|
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for some constant x0. Substituting this into the postulated asymptotic solution we finally
show that

y(x;λ) ∼ q−1/4(x) exp
(
±λ

∫ x

x0

√
q(x)dx

)
.

We close this section with a more sophisticated application of the WKB method, matched
asymptotics, and linearization. This is a continuation of Example 4.

Example 8.5 Limiting Distribution of the Height in b-Tries
We consider an extension of tries discussed in the previous example, namely, b-tries.

In these tries the external node is allowed to store up to b strings. The parameter b is
assumed to be fixed. We study the height Hn (i.e., the longest path in such a tree), and let
hk

n = Pr{Hn ≤ k}. As before, hk
n satisfies the recurrence equation (8.39) with a new initial

condition,
h0

n = 1, n = 0, 1, 2, . . . , b; and h0
n = 0, n > b.

The exponential generating function Hk(z) of hk
n satisfies the same equation (8.41) except

that now H0(z) = 1 + z + · · ·+ zb/b!. In other words,

hk
n = n![zn]

(
1 + z2−k +

z2

2!
2−2k + · · ·+ zb

b!
2−bk

)2k

. (8.43)

We can use the saddle point method (see Section 8.4 and Exercise 7) to extract asymptotic
expansion of hk

n from the above; however, in this example we apply indirect methods of WKB,
matched asymptotics, and linearization to solve the problem. It will pay off in problems where
one cannot obtain explicit expressions for the generating function (e.g., heights of PATRICIA
tries and digital search trees, as analyzed in [259, 260]).

We consider first the case k, n→∞ with ξ = n2−k fixed. We set

hk
n = G(ξ;n) = G(n2−k;n)

and note that hk−1
i = G(2iξ/n; i) and hk−1

n−i = G(2ξ(1 − i/n);n − i). From the original
recurrence (8.39) we obtain

G(ξ;n) =
(

1
2

)n n∑
i=0

(
n

i

)
G

(
2i
n
ξ; i
)
G

(
2
(

1− i

n

)
ξ;n− i

)
.

We analyze the above by the WKB method. Thus we seek an asymptotic solution of the
form

G(ξ;n) ∼ enφ(ξ)
[
A(ξ) +

1
n
A(1)(ξ) +

1
n2
A(2)(ξ) + · · ·

]
.
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By symmetry, the major contribution to the sum will come from i ≈ n/2. We also note that
Stirling’s formula (8.31) yields, for i = xn (0 < x < 1),

2−n

(
n

i

)
=
enf0(x)

√
2πn

1√
x(1− x)

[
1 +

1
12n

(
1− 1

x
− 1

1− x

)
+O(n−2)

]
, (8.44)

where f0(x) = − log 2−x log x−(1−x) log(1−x). For x = 1/2+y/
√
n (i.e., i = n/2+O(

√
n)),

(8.44) simplifies to the Gaussian form

2−n

(
n

n/2 + y
√
n

)
=
√

2
πn

e−2y2
[
1 +

1
n

(
−1

4
+ 2y2 − 4

3
y4
)

+O(n−2)
]
.

Thus we are led to

A(ξ)enφ(ξ) ∼
n∑

i=0

√
2
πn

e−2y2
A

(
2i
n
ξ

)
A

(
2(n − i)

n
ξ

)
× exp

[
iφ

(
2i
n
ξ

)
+ (n− i)φ

(
2
(

1− i

n

)
ξ

)]
.

For x = i/n, we set ψ(x) = xφ(2xξ) + (1 − x)φ(2(1 − x)ξ) and expand this function about
x = 1/2. We have ψ(1/2) = φ(ξ), ψ′(1/2) = 0 and ψ′′(1/2) = 8ξφ′(ξ) + 4ξ2φ′′(ξ). Thus the
exponent in the above expression becomes

exp(nψ(x)) = exp
(
nφ(ξ) + y2(4ξφ′(ξ) + 2ξ2φ′′(ξ)) +O(y3)

)
.

Using the Euler-Maclaurin formula, substituting y = y′/
√
n, and approximating the above

sum by an integral we obtain as n→∞

enφ(ξ)A(ξ) ∼
√

2
π
enφ(ξ)A2(ξ)

∫ ∞

−∞
exp

(
−2y2 + y2(4ξφ′(ξ) + 2ξ2φ′′ξ)

)
dy.

The exponential factors enφ cancel and we have

1 =
√

2
π
A(ξ)

√
π

2− 4ξφ′(ξ)− 2ξ2φ′′(ξ)
. (8.45)

Thus the asymptotic series of the WKB approximation is known, up to the function φ(ξ).
It does not seem to be possible to determine φ using only recurrence (8.39). This function
is apparently very sensitive to the initial conditions. However, using matched asymptotics,
we shall show how to determine φ(ξ) for ξ → 0 (in a similar manner, one can find φ(ξ) as
ξ → b).
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For this, we turn our attention to the case n = O(1) and k → ∞. We set hk
n = 1 −Gk

n.
Then Gk

n satisfies

Gk+1
n = 2

(
1
2

)n n∑
i=0

(
n

i

)
Gk

n−i −
(

1
2

)n n∑
i=0

(
n

i

)
Gk

iG
k
n−i (8.46)

= 2
(

1
2

)n n−b−1∑
i=0

(
n

i

)
Gk

n−i −
(

1
2

)n n−b−1∑
i=b+1

(
n

i

)
Gk

iG
k
n−i.

Here we have used the fact that Gk
n = 0 for 0 ≤ n ≤ b. For b+ 1 ≤ n ≤ 2b+ 1, the nonlinear

term in (8.46) vanishes and we are left with a linear recurrence. We can solve (8.46) exactly
by first solving the linear problem for n ∈ [b+ 1, 2b+ 1], and using this solution to compute
explicitly the nonlinear term in (8.46) for n ∈ [2b + 2, 3b + 2], etc. However, the resulting
expressions become complicated and we only need asymptotics of Gk

n. For ranges of k, n,
where hk

n is asymptotically close to 1, we can replace (8.46) by the asymptotic relation (thus
linearize the recurrence), which yields

Gk+1
n ∼ 21−n

n−b−1∑
i=0

(
n

i

)
Gk

n−i.

This has the following asymptotic solution

Gk
n ∼ 2−b

(
n

b+ 1

)
, n ≥ b+ 1.

Thus for k →∞ and n = O(1) we have

Pr{Hn ≤ k} = hk
n ∼ 1−

(
n

b+ 1

)
2−kb.

As in Example 4, we now match the two expansions just derived, that is, we require

1− nb+1

(b+ 1)!
2kb

∣∣∣n→∞ ∼ A(ξ)enφ(ξ)
∣∣∣
ξ→0

.

Since A(ξ)→ 1 as ξ → 0, we obtain

φ(ξ) ∼ − ξb

(b+ 1)!
, ξ → 0,

and hence

Pr{HT
n ≤ k} ∼ A(ξ)enφ(ξ) ∼ exp

(
− nξb

(b+ 1)!

)
ξ → 0.
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In passing we should point out that this range is the most interesting since the probability
mass is concentrated around k = (1 + 1/b) log2 n+ x, where x = O(1). In fact,

Pr{HT
n ≤ (1 + 1/b) log2 n+ x} = Pr{HT

n ≤ b(1 + 1/b) log2 n+ xc}

∼ exp
(
− 1

(1 + b)!
2−bx+b〈(1+b)/b·log2 n+x〉

)
,

where 〈x〉 is the fractional part of x, that is, 〈x〉 = x − bxc. Due to the erratic behavior of
〈log2 n〉 (see the next section), the limiting distribution of the height Hn does not exist! The
reader can find detailed analyses on this and similar topics in a series of recent papers by
Knessl and Szpankowski [258, 259, 260, 261]. 2

8.2.3 Uniform Distribution of Sequences

In the analysis of algorithms and information theory one often deals with sequences like
〈log n〉 and 〈αn〉, where 〈x〉 = x−bxc is the fractional part of x. We just saw it in the above
example. In fact, we are often interested in asymptotics of sums like∑

k≥0

pn,kf(〈xk〉)

as n → ∞, where pn,k is a probability distribution (i.e.,
∑

k pn,k = 1) and f is a function.
For example, the following sum

n∑
k=0

(
n

k

)
pk(1− p)n−k

〈
log

(
pk(1− p)n−k

)〉
arises in coding theory. Our goal here is to present certain tools from the theory of uniform
distribution of sequences to extract asymptotics of such sums. We shall follow Drmota and
Tichy [109].

We start with some definitions.

Definition 8.4 (P-u.d. mod 1) A sequence xn ∈ R is said to be P-uniformly distributed
modulo 1 (P-u.d. mod 1) with respect to the probability distribution P = {pn,k}k≥0 if

lim
n→∞

∑
k≥0

pn,kIA(〈xk〉) = λ(A) (8.47)

holds uniformly for every interval A ⊂ [0, 1], where IA(xn) is the characteristic function of
A (i.e., it equals 1 if xn ∈ A and 0 otherwise) and λ(A) is the Lebesgue measure of A.

Two special cases are of interest to us:
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1. Uniform distributed sequences modulo 1 (u.d. mod 1) in which case pn,k = 1/n, that
is, (8.47) becomes

lim
n→∞

1
n

n∑
k=0

IA(〈xk〉) = λ(A). (8.48)

2. Bernoulli distributed sequences modulo 1 (B-u.d. mod 1) that assumes the binomial
distribution for pn,k, that is, for p > 0 (8.47) becomes

lim
n→∞

n∑
k=0

(
n

k

)
pk(1− p)n−kIA(〈xk〉) = λ(A). (8.49)

The following result summarizes the main property of P-u.d. modulo 1 sequences. It
provides the leading term of asymptotics for sums like

∑
k pn,kf(〈xk + y〉), where xk is P-u.d.

mod 1 and y is a shift.

Theorem 8.5 Suppose that the sequence xn is P-uniformly distributed modulo 1. Then for
every Riemann integrable function f : [0, 1]→ R

lim
n→∞

∑
k≥0

pn,kf(〈xk + y〉) =
∫ 1

0
f(t) dt, (8.50)

where the convergence is uniform for all shifts y ∈ R.

Proof. The proof is standard but details are quite tedious. The main idea is to notice that
by definition (8.50) holds for characteristic functions IA(xk). Next, we approximate f by a
step function (i.e., a linear combination of characteristic functions) and use the definition of
the Riemann integral to bound the integral from below and above, proving (8.50).

Details are here. Let L be the linear space of all (Lebesgue) integrable functions f : [0, 1]k → C

satisfying

lim
n→∞ sup

y∈R

∣∣∣∣∣∣
∑
k≥0

pn,kf(〈xk + y〉)−
∫ 1

0

f(t) dt

∣∣∣∣∣∣ = 0. (8.51)

Of course, L contains all constant functions (i.e. L 6= ∅). Next we prove the following closure property
of L.

Fact A. Suppose f : [0, 1]→ R is an integrable function such that for every ε > 0 there
exist functions g1, g2 ∈ L with g1 ≤ f ≤ g2 and∫ 1

0

(g2(t)− g1(t)) dt < ε.

Then f ∈ L.
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For this purpose, let mn(f, y) denote the positive linear functionals

mn(f, y) :=
∑
k≥0

pn,kf(〈xk + y〉)

and m(f) the positive linear functional

m(f) :=
∫ 1

0

f(t) dt.

By mn(g1, y) ≤ mn(f, y) ≤ mn(g2, y) and m(g1) ≤ m(f) ≤ m(g2) we immediately get

m(g1) = lim inf
n→∞ mn(g1, y) ≤ lim inf

n→∞ mn(f, y)

≤ lim sup
n→∞

mn(f, y) ≤ lim sup
n→∞

mn(g2, y)

= m(g2),

which implies
|m(f)− lim inf

n→∞ mn(f, y)| < ε

and
|m(f)− lim sup

n→∞
mn(f, y)| < ε

for every ε > 0. Thus
lim

n→∞ sup
y∈R

|mn(f, y)−m(f)| = 0,

and f ∈ L.
Next, suppose that f : [0, 1]→ R is a continuous function. Then by the Weierstrass approximation

theorem, for every ε > 0 there exist two trigonometric polynomials g1, g2 with g1 ≤ f ≤ g2 and∫ 1

0

(g2(t)− g1(t)) dt < ε.

By Fact A, all continuous functions f : [0, 1]→ R are contained in L.
Now it is easy to derive that every characteristic function f = IA of any interval A ⊆ [0, 1] is in L,

too. It is obvious that for every ε > 0 there exist two continuous functions g1, g2 with g1 ≤ IA ≤ g2
and ∫ 1

0

(g2(t)− g1(t)) dt < ε.

Again by Fact A all step functions (i.e. finite linear combinations of characteristic functions) are in
L.

Finally, if f : [0, 1]→ R is a Riemann integrable function, then by definition for every ε > 0 there
exist two step functions g1, g2 with g1 ≤ f ≤ g2 and∫ 1

0

(g2(t)− g1(t)) dt < ε,

and by Fact A this completes the proof.
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In passing we observe that Theorem 8.5 holds if f is continuous. Furthermore, due to
〈xk〉, we may restrict f to complex-valued continuous function with period 1.

To apply Theorem 8.5, one needs easy criteria to verify whether a sequence xk is P-u.d.
mod 1. Fortunately, such a result exists and is due to H. Weyl.

Theorem 8.6 (Weyl, 1916) A sequence xn is P-u.d. mod 1 if and only if

lim
n→∞

∑
k≥0

pn,ke
2πimxk = 0 (8.52)

holds for all m ∈ Z \ {0}.

Proof. The proof is standard and we only sketch it here (for details see [109, 282]). First
observe that f(x) = e2πimx satisfies (8.50). To prove sufficiency, we note that by Weierstrass’s
approximation theorem every Riemann integrable function f of period 1 can be uniformly
approximated by a trigonometric polynomial (i.e., a finite combination of functions of the
type e2πimx). That is, for any ε > 0 there exists a trigonometric polynomial Ψ(x) such that

sup
0≤x≤1

|f(x)−Ψ(x)| ≤ ε. (8.53)

Then ∣∣∣∣∣∣
∫ 1

0
f(x)dx−

∑
k≥0

pn,kf(xk)

∣∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0
(f(x)−Ψ(x)) dx

∣∣∣∣
+

∣∣∣∣∣∣
∫ 1

0
Ψ(x)dx−

∑
k≥0

pn,kΨ(xk)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
k≥0

pn,k (Ψ(xk)− f(xk))

∣∣∣∣∣∣
≤ 3ε

since the first and the third term are bounded by ε due to (8.53) and the second by ε due to
(8.52). This completes the proof.

One of the most important and well-studied sequences is 〈αn〉n≥0 for α irrational. We
discuss its properties in the example below.

Example 8.6 Special Sequence 〈αn〉n≥0

Let us consider 〈αn〉n≥0 for α irrational. We prove that it is u.d mod 1 and B-u.d. mod 1.
For the former, observe that by Weyl’s criterion for every integer m 6= 0∣∣∣∣∣ 1n

n∑
k=1

e2πikmα

∣∣∣∣∣ =
|e2πimnα − 1|
n|e2πimα − 1| ≤

1
n| sinπmα| → 0, n→∞
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as long as α is not rational. Thus 〈αn〉n≥0 is uniformly distributed sequence modulo 1.
Consider now the B-u.d. mod 1 case. We have by Weyl’s criterion (where, as usual, q = 1−p)

lim
n→∞

n∑
k=0

(
n

k

)
pkqn−ke2πim(kα) = lim

n→∞

(
pe2πimα + q

)n
= 0

provided α is irrational. 2

Let us stay with sequences 〈αn〉n≥0, but now we assume that α is rational, say α = N/M
such that gcd(N,M) = 1. Can we say something meaningful about the sum

∑
k pn,kf(〈αk〉)

in this case? To simplify our presentation we restrict the analysis to the binomial distribution
pn,k =

(n
k

)
pkqn−k (q = 1− p). We prove the following general result.

Theorem 8.7 Let 0 < p < 1 be a fixed real number and suppose that α = N
M is a rational

number with gcd(N,M) = 1. Then for every bounded function f : [0, 1] → R, we have for
some ρ < 1

Sn(f) =
n∑

k=0

(
n

k

)
pk(1− p)n−kf(〈kα+ y〉) =

1
M

M−1∑
l=0

f

(
l

M
+
〈My〉
M

)
+O(ρn)

uniformly for all y ∈ R.

Proof. Observe that (with pn,k =
(n
k

)
pkqn−k)

Sn(f) =
n∑

k=0

pn,kf

(〈
k
N

M
+ y

〉)

=
M−1∑
`=0

∑
m: k=`+mM≤n

pn,kf

(〈
`
N

M
+N + y

〉)

=
M−1∑
`=0

∑
m: k=`+mM≤n

pn,kf

(〈
`

M
+ y

〉)

=
M−1∑
`=0

f

(〈
`

M
+ y

〉) ∑
m: k=`+mM≤n

(
n

k

)
pkqn−k.

To proceed, we need to evaluate the second sum. This sum takes every Mth term from the
binomial distribution. In Section 7.6.1 we learned how to handle such sums through the Mth
root of unity ωk = e2πik/M for k = 0, 1, . . . ,M − 1. In particular, applying (7.12) we easily
obtain ∑

m: k=`+mM≤n

(
n

k

)
pkqn−k =

1 + (pω1 + q)n−` + · · ·+ (pωM−1 + q)n−`

M

=
1
M

+O(ρn), (8.54)
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where ρ < 1 since |(pωr + q)| = p2 + q2 + 2pq cos(2πr/M) < 1 for r 6= 0. Thus

Sn(f) =
1
M

M−1∑
`=0

f

(〈
`

M
+ y

〉)
+O(ρn).

To complete the proof, we observe that the function

F (y) =
1
M

M−1∑
l=0

f

(〈
l

M
+ y

〉)

is periodic with period 1/M . Thus for 0 ≤ y < 1
M we have the representation

F (y) =
1
M

M−1∑
l=0

f

(
l

M
+ y

)
.

For general y ∈ R we need only use the relation F (y) = F (〈My〉/M) to finish the proof. (In
Exercises 8 and 9 we ask the reader to use another method, that of Fourier series, to establish
the above result.)

We complete this section with an interesting example arising in source coding.

Example 8.7 Redundancy of the Shannon Code
We consider here a very simple code, known as the Shannon code, that assigns code length

d− log2 p
k(1−p)n−k)e to a sequence xn

1 of length n occurring with probability p(k) = pkqn−k,
where k is the number of “1” in xn

1 (cf. [75]). From Shannon Theorem 6.18 we know that
the average code length cannot be smaller than the entropy of the source, which in our case
is −∑n

k=0

(n
k

)
pkqn−k log2(pkqn−k). From Chapter 6, we know that the difference between the

average code length and the entropy is known as the average redundancy (see Section 8.7.2
for a more in-depth discussion of redundancy issues). We denote it as R̄n. For the Shannon
block code of length n generated by a memoryless source we have

R̄n =
n∑

k=0

(
n

k

)
pkqn−k (d− log2 p(k)e+ log2 p(k))

= 1 +
n∑

k=0

(
n

k

)
pkqn−k (log2 p(k) + b− log2 p(k)c)

= 1−
n∑

k=0

(
n

k

)
pkqn−k〈αk + βn〉, (8.55)

where α = log2((1 − p)/p) and β = log2(1/(1 − p)). But the above sum is the one we
analyzed in Theorems 8.5 and 8.7. If α is irrational by Theorem 8.5 (applied to the binomial
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distribution with f(t) = t) we obtain R̄n = 1
2 + o(1). For α = N/M , we apply Theorem 8.7

to arrive at

R̄n = 1− 1
M

M−1∑
l=0

(
l

M
+
〈Mβn〉
M

)
+O(ρn)

= 1− M − 1
2M

+
〈Mβn〉
M

+O(ρn)

=
1
2
− 1
M

(
〈Mβn〉 − 1

2

)
+O(ρn).

In summary, we prove the following.

Theorem 8.8 (Szpankowski, 2000) Consider the Shannon block code of length n binomi-
ally(n,p) distributed over a binary alphabet. Then, for p < 1

2 as n→∞

R̄n =


1
2 + o(1) α irrational

1
2 −

1
M

(
〈Mnβ〉 − 1

2

)
+O(ρn) α = N

M , gcd(N,M) = 1
, (8.56)

where ρ < 1. 2

8.3 Small Singularities of Analytic Functions

It is time to deliver what the title of this section says, namely, complex asymptotics. From
now on we shall deal with the generating function

A(z) =
∞∑

n=0

anz
n,

and study various methods of extracting asymptotic expansions of an from an explicit knowl-
edge of A(z), and even more often, from partial knowledge of the generating function A(z)
around its singularities. Often the generating functions we work with (in combinatorics, anal-
ysis of algorithms, information theory, etc.) are analytic functions2. Therefore, by Cauchy’s
formula the coefficient an can be evaluated as

an =
1

2πi

∫
C
f(z)
zn+1

dz, (8.57)

2The reader may want to review elements of complex analysis discussed in Section 2.3. There are also
excellent books on the subject; e.g., Henrici [195], Hille [196], Titchmarsh [424], and Whittaker and Watson
[448].
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where C is a closed contour that encircles the origin in the positive direction (i.e., counterclock-
wise). One may ask why we use Cauchy’s integral formula for an when simpler expressions
exist (e.g., an = 1

n!A
(n)(z)|z=0, where A(n)(z) is the nth derivative of A(z)). The point to

observe is that integration preserves many nice properties of analytic function; the contour
C can be deformed in many ways to take advantage of analytic continuations of A(z); and
finally this integral is usually easily computable through the Cauchy residue theorem (see
Theorem 2.5).

We shall argue that complex methods are successful in extracting asymptotics of an since
the asymptotic growth of an is determined by the location of the singularities closest to the
origin. To see this, we first recall that a singularity of an analytic function is a point, where
the function ceases to be analytic. Next, we recall from Hadamard’s Theorem 7.1 that the
radius of convergence of the series involved in A(z) is

R−1 = lim sup
n→∞

|an|1/n,

or informally 1
n log |an| ∼ − logR. That is, for every ε > 0 there exists N such that for n > N

we have
|an| ≤ (R−1 + ε)n ;

and for infinitely many n we have

|an| ≥ (R−1 − ε)n .

Thus the exponential growth of an is determined by R−n. A classical theorem (attributed
to Pringsheim) says that an analytic function of finite radius of convergence must have a
singularity on the boundary of its disk of convergence. Moreover, as we have already seen in
Section 7.3.3, a bound on an is easily achievable through Cauchy’s Integral Theorem 2.6 (cf.
(2.22) in Section 2.3), namely,

|an| ≤
M(r)
rn

, (8.58)

where M(r) is the maximum value of |A(z)| for any circle r < R. This is the Cauchy bound,
and we shall use it often in this chapter. In summary, locations of singularities of A(z)
determine the asymptotic behavior of its coefficients. To obtain a more refined information
about such asymptotics we must more carefully study various types of singularities, which
we do next.

Finally, one of the most important aspects of complex asymptotics is to provide the
transfer theorems, under which the following central implication is valid:

A(z) ∼ f(z) =⇒ [zn]A(z) ∼ [zn]f(z), (8.59)

where A(z) is an implicitly known generating function and f(z) is an asymptotic expansion of
A(z) near a singularity. (The above is not true in general; e.g., A(z) = 1/(1−z) ∼ 2/(1−z2) =
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1/(1−z)+1/(1+z) =: B(z) at z = 1 but [zn]A(z) = 1 while [zn]B(z) = 1+(−1)n.) Following
Odlyzko [330], we shall talk about small singularity if A(z) has polynomial growth around
such a singularity; otherwise it is called a large singularity. For example, (1− z)3/2 log(1− z)
has a small singularity at z0 = 1, while exp(1/(1 − z)) is said to have a large singularity
at z0 = 1. These are not precise concepts, but still clearly different methods are used to
handle them. Therefore, we divide our discussion into two parts: In this section, we deal
with methods for small singularities (i.e., poles and algebraic singularities) while in the next
section we turn our attention to large singularities.

8.3.1 Polar Singularities

Here we deal with polar singularities, which we define precisely below. Let A(z) be an analytic
function in a ring 0 < |z − z0| < R ≤ ∞. Then the Laurent expansion applies and one finds
(cf. [196, 424])

A(z) =
−1∑

n=−M

an(z − z0)n +
∞∑

n=0

an(z − z0)n, (8.60)

where the coefficients an, n = −M,−M+1, . . . , 0, 1, . . . are computed by the Cauchy formula
(8.57). The point z0 is called:

• Removable singularity if a−n = 0 for all n = 1, . . . ,M and then limz→z0 A(z) = a0;

• A pole of order M , if M is finite and M > 0;

• An essential singularity if if M =∞.

We only deal here with poles since a function behaves very weirdly near essential singularities
(e.g., according to the Casorati-Weierstrass theorem the function can take any value around
such a singularity).

A function A(z) is called meromorphic if its only singularities are poles. A special case
of meromorphic functions is rational functions, which are the ratios of two polynomials.

We first discuss rational functions; that is, we assume that A(z) = N(z)/D(z), where
both N(z) and D(z) are polynomials. Hence, we can decompose A(z) into a finite sum like

A(z) =
∑
ρ,r

aρ,r

(z − ρ)r
,

where the summation is over all poles (roots) of A(z) (of D(z)) and r ranges over a set of
integers determined by the largest multiplicity of a pole of A. To extract the coefficient an,
it suffices to study asymptotics of 1/(z − ρ)r. But in fact we can do it exactly, not only
asymptotically. Indeed, from Table 7.2, Entry 1, we find

[zn]
1

(z − ρ)j
= [zn]

(−1)j

ρj(1− z/ρ)j
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= (−1)j

(
n+ j − 1

n

)
ρ−(n+j) = (−1)j

(
n+ j − 1
j − 1

)
ρ−(n+j).

In summary, if A(z) is rational that is analytic at zero and has poles at points ρ1, . . . , ρm,
then there exist polynomials Pj(n) of degree equal to the order of pole ρj minus one such that
exactly

an := [zn]A(z) =
m∑

j=1

Pj(n)ρ−n
j . (8.61)

We illustrate this result with a simple example which is a continuation of the pattern
occurrence problem discussed in Section 7.6.2.

Example 8.8: Frequency of a Given Pattern Occurrence
Let H be a given pattern of size m, and consider a random text of length n generated

by a memoryless source. In Section 7.6.2 we studied the probability generating function
Tr(z) =

∑∞
n=0 Pr{On = r}zn of the number On of pattern H occurrences in the text. In

Theorem 7.13 we proved (for a memoryless source) that

Tr(z) =
zmP (H)(D(z) + z − 1)r−1

Dr+1(z)
,

where D(z) = P (H)zm + (1 − z)AH(z) and A(z) is the autocorrelation polynomial (a poly-
nomial of degree m). Let now ρ < ρ1 < ρ2 < · · · < ρm−1 be m distinct roots of D(z) = 0.
Then an easy application of the above analysis leads to

Pr{On(H) = r} =
r+1∑
j=1

(−1)jaj

(
n

j − 1

)
ρ−(n+j) +

m−1∑
k=1

r+1∑
i=1

(−1)ibki

(
n

i− 1

)
ρ
−(n+i)
k

=
r+1∑
j=1

(−1)jaj

(
n

j − 1

)
ρ−(n+j) +O(ρ−n

1 ), (8.62)

where ar+1 = ρmP (H) (ρ− 1)r−1 (D′(ρ))−r−1, while the other coefficients aj and bki can be
computed when needed. 2

Let us now turn our attention to a more general case, namely, meromorphic functions.
We derive an asymptotic expansion for the coefficients an similar to the one for rational func-
tions except that this time we only obtain asymptotic approximation, not an exact formula.
There are two approaches: One is called subtracted singularities and the other is known as
the contour integral method.

We start with the subtracted singularities method. To make our discussion more concrete
we study the following function

A(z) =
r∑

j=1

a−j

(z − ρ)j
+

∞∑
j=0

aj(z − ρ)j .
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Then we assume that A(z) has a Laurent expansion around a pole ρ of multiplicity r. We
further assume that the pole ρ is the closest to the origin; that is, the radius of convergence
R is R = |ρ|, and there are no other poles on the circle of convergence. In other words,
the second term of A(z), which we denote for simplicity as A1(z), is analytic in the circle
|z| ≤ |ρ|, and its radius of convergence is R1 > |ρ|. Thus coefficients of A1(n) are bounded by
O(R−n

1 ) due to Cauchy’s bound (8.58). Using the exact expansion of the first part of A(z),
which is a rational function, we arrive at

[zn]A(z) =
r∑

j=1

(−1)ja−j

(
n

j − 1

)
ρ−(n+j) +O(R−n

1 )

for R1 > ρ. Observe that in the last example formula (8.62) is presented in this form.
The main thrust of the method just described is as follows: Imagine we are interested in

the asymptotics for coefficients an of a function A(z) whose circle of convergence is R. Let us
also assume that we can find a simpler function, say Ā(z), that has the same singularities as
A(z) (e.g., in the above example Ā(z) =

∑r
j=1

a−j

(z−ρ)j ). Then A1(z) = A(z)− Ā(z) is analytic
in a larger disk, of radius R1 > R, say, and its coefficients are bounded by O(R−n

1 ).
We now rederive the above formula using the contour integral approach. Define

In =
1

2πi

∫
|z|=r

A(z)
zn+1

dz.

After applying Cauchy’s formula and extending the contour of integration to a circle of radius
r that contains inside all singularities of A(z), we arrive at

In = Res[A(z); z = 0] +
∑
ρ

Res[A(z)z−n−1; z = ρ],

where the summation is over all singularities ρ contained inside the circle |z| = r. But by
Cauchy’s bound (8.58) we also know that |In| = O(r−n). Thus

an = [zn]A(z) = −
∑
ρ

Res[A(z)z−n−1; z = ρ] +O(r−n).

This leads to the same estimate as above.
We can summarize our discussion in the following theorem.

Theorem 8.9 Let A(z) be a meromorphic function for |z| ≤ r with poles at ρ1, ρ2, . . . , ρm

and analytic on |z| = r and z = 0. Then there exist polynomials Pi(n) such that

an := [zn]A(z) =
m∑

j=1

Pj(n)ρ−n
j +O(r−n),

where the degree of Pj is equal to the order of the pole at ρj minus one.
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We finish this section with an example that will combine what we have learned in the last
two sections.

Example 8.9 Enumeration of (d, k) Sequences
For the run-length coding the (d, k) sequences (d ≤ k) of prime importance. A binary

string is a (d, k) sequence if it does not contain any runs of 0’s shorter than d and longer
than k. In other words, between any pair of 1’s there must be at least d and at most k zeros.
We want to enumerate all such (d, k) sequences. We first construct the ordinary generating
function Wd,k(z) =

∑
w∈Wd,k

z|w| of all (d, k) words denoted as Wd,k. We apply the symbolic
methods of Chapter 7. Let Ad,k be the set of all words (strings) consisting only of 0’s whose
length is between d and k. The generating function A(z) is clearly equal to

A(z) = zd + zd+1 + · · ·+ zk = zd 1− zk−d+1

1− z .

We now observe that Wd,k can be symbolically written as

Wd,k = Ad,k

(
{1} × ε+ Ād,k + Ād,k × Ād,k + · · ·+ Āk

d,k + · · ·
)
, (8.63)

where Ād,k = {1} × Ad,k. Above basically says that the collection of (k, d) sequences, Wd,k,
is a concatenation of {1}×Ad,k. Thus (8.63) translates into the generating functions Wd,k(z)
as follows

Wd,k(z) = A(z)
1

1 − zA(z)
=

zd(1− zk+1−d)
1− z − zd+1 + zk+2

=
zd + zd+1 + · · ·+ zk

1− zd+1 − zd+2 − · · · − zk+1
. (8.64)

Of particular interest is the capacity Cd,k defined as (cf. [26])

Cd,k = lim
n→∞

log[zn]Wd,k(z)
n

.

If ρ is the smallest root in absolute value of 1− zd+1 − zd+2 − · · · − zk+1 = 0, then clearly

Cd,k = − log ρ.

But we can do much better. The function Wd,k(z) is rational and we can compute
[zn]Wd,k(z) exactly. Let us consider a particular case, namely, d = 1 and k = 3. Then
the denumerator in (8.64) becomes 1− z2 − z3 − z4, and its roots are

ρ−1 = −1, ρ0 = 0.682327 . . . , ρ1 = −0.341164 . . . + i1.161541 . . . , ρ2 = ρ̄1.
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Using the contour integral approach and computing the residues we obtain

[zn]W1,3(z) =
ρ0 + ρ2

0 + ρ3
0

(ρ1 + 1)(ρ0 − ρ1)(ρ0 − ρ̄1)
ρ−n−1
0 + (−1)n+1 1

(ρ0 + 1)(ρ1 + 1)(ρ̄1 + 1)
+O(r−n),

where r ≈ 0.68. More specifically,

[zn]W1,3(z) = 0.594(1.465)n+1 + 0.189(−1)n+1 +O(0.68n).

If we wish, we could compute the big-oh term more precisely. 2

8.3.2 Algebraic Singularities: Singularity Analysis

In the last subsection, we considered one type of singularity, namely, poles. For such isolated
singularities, a function was well defined in its whole punctured neighborhood of, say z0. In
particular, in 0 < |z − z0| < R the function A(z) has its Laurent series expansion. In this
subsection, we study algebraic singularities for which Laurent’s expansion does not apply
since around these singularities the function is not defined in the whole ring neighborhood
0 < |z − z0| < R of z0.

We first review some simple facts from complex analysis. Let us consider a particular
example. Say, w := f(z) =

√
z. It is known that this function is multivalued. For z = reiθ

there are exactly two different values of w corresponding to z, namely, w1 =
√
reiθ/2 and

w2 =
√
reiθ/2+π = −w1. These two functions are known as branches. Observe the following

phenomenon: When we start from a given point z and choose one of the branches, say w1;
then when traversing any closed contour we come back to w1, unless we enclose the origin.
If the contour encloses the origin, then w attains the value w2 after one circle, and it comes
back to w1 after the second loop. We should conclude that the multivalued function is well
defined except at z = 0, where the function interchanges branches. Such a point is called a
branch point. The function ceases to be analytic at this point, and hence it has a singularity
(in fact, there is another explanation why

√
z must have a singularity at z0 = 0: its derivative

does not exist in this point). We shall call it an algebraic singularity. To make
√
z analytic,

we must restrict the domain of definition to C− (−∞, 0), that is, complex plane cut along the
negative real axis (in fact, it can be cut along any ray emanating from the origin). This way
we prevent z encircling the origin and thus avoid ambiguity. As a consequence, we cannot
expect to develop

√
z in the Laurent series around z = 0; however, another expansion due to

Puiseux will work, as we shall soon see. Naturally,
√
z is not an exception. Functions like zα

for α real and not an integer, log z, etc. belong to this category.
Let us now more precisely define a branch point and its order. The reader may review this

material from any standard textbook on complex analysis (e.g., [196]). Consider an analytic
function A(z) that can be analytically continued along any path in the ring 0 < |z− z0| < R.
If the function (or a branch of the function) returns to itself after its analytic continuation
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along any closed path encircling z0, then A is a single-valued function and z0 is a pole or an
essential singularity. If, however, after a continuation along a closed path the function does
not return to its original branch (as in the case of

√
z), then the function is multivalued and

z0 is a branch point. To further characterize it, let C be a circle |z − z0| = r contained in
the ring 0 < |z − z0| < R, and pC be a closed contour that encircles p times z0 along C. The
point z0 is called a branch point of order p− 1, if the function returns to its original branch
along pC, but not along any closed path mC, where m < p. For example, (z − 1)1/3 has a
branch point at z0 = 1 which is of order two; the function

√
z(z − 1) has two branch points

at 0 and 1, each of order 1.
Although the Laurent expansion does not apply for a function around its algebraic sin-

gularity, another expansion due to Puiseux works fine (cf. [196]).

Theorem 8.10 (Puiseux, 1850) Let A(z) be an analytic (multivalued) function and z0 its
branch point of order p − 1. Then in the neighborhood of z0, A(z) can be represented as the
following series

A(z) =
∞∑

k=−∞
ak(z − z0)

k
p (8.65)

that converges in a neighborhood of z0.

The idea of the proof of Puiseux’s expansion is quite simple. It suffices to substitute
z = z0 +wp, and observe that A(z) as a function of w is a singled-valued function defined in
a ring 0 < |z − z0| < R; hence one can apply Laurent’s expansion to it yielding

A(z0 + wp) =
∞∑

k=−∞
akw

k

which is the desired (8.65).
Puiseux’s expansion suggests that for algebraic singularities, one must study asymptotics

of functions like (z − z0)k/p. In general, in applications we often deal with functions like
(z − z0)k/pw(z), where w(z) is either analytic in a neighborhood of z0 or not (e.g., consider

A(z) = e−z−z2/2√
1−z

and
√

1− z log 1
1−z ). We next discuss in some depth how to obtain precise

asymptotic expansions for such functions around its algebraic singularities. There are many
techniques to deal with such singularities. However, in analysis of algorithms the singularity
analysis of Flajolet and Odlyzko is the most useful, and we devote some time to it in the
sequel.

Before we proceed with general discussions, we observe that because

[zn]A(z) = ρn[zn]A(z/ρ) ,

one only needs to study singularities at, say, z = 1. That’s what we will do next. We
shall follow Flajolet and Odlyzko [140]. The reader will also find an excellent account of
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H

Figure 8.2: Hankel’s contour.

it in Odlyzko [330] and Flajolet and Sedgewick [149]. Actually, because of these excellent
references, we focus here on explaining things rather than on detailed proofs.

We start with obtaining asymptotic series for (1 − z)−α, where α is real and α /∈
{0,−1,−2, . . .}. First, we observe that for α = k ∈ {1, 2, . . .} we have from Entry 1 of
Table 7.2

(1− z)−k =
∞∑

n=0

(
n+ k − 1

n

)
zn.

It is then natural to expect that

[zn](1− z)−α =

(
n+ α− 1

n

)
=

Γ(n+ α)
Γ(α)Γ(n + 1)

=
nα−1

Γ(α)

(
1 +

α(α− 1)
2n

+O

(
1
n2

))
provided α /∈ {0,−1,−2, . . .}. We will prove it using Hankel’s contour, which we review in
Table 8.3.

Theorem 8.12 (Flajolet and Odlyzko, 1990) Let α /∈ {0,−1,−2, . . .}. Then

[zn](1 − z)−α ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek(α)
nk

)
(8.67)

=
nα−1

Γ(α)

(
1 +

α(α − 1)
2n

+
α(α − 1)(α − 2)(3α − 1)

24n2
+ · · ·

)
,

where

ek(α) =
2k∑

j=k

ck,j(α− 1)(α − 2) · · · (α− j),

and ck,j are coefficients in the following expansion

ex(1 + yt)−1−1/y =
∑
k,j

ck,jx
jyk. (8.68)
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Table 8.3: Hankel’s Contour Integral for Gamma Function

Let H be a contour starting at +∞ in the upper half-plane, winding counterclockwise around
the origin, and proceeding back towards +∞ in the lower half-plane. (cf. Figure 8.2). We
denote the integral along such loop as

∫
H or

∫ (0)
+∞. The following theorem is a particular result

for the Euler gamma function, but it plays an important role in the analysis of algebraic
singularities.

Theorem 8.11 (Hankel’s Contour Integral) For all s ∈ C

1
Γ(s)

= − 1
2πi

∫ (0)

+∞
(−w)−se−sdw, (8.66)

where the function (−w)−s has its principal value, that is,

(−w)−s = exp (−s ln r − si(θ − π))

with w = reiθ.

To see why (8.66) is true, let us specify Hankel’s contour as follows (Figure 8.2):

H =


H+ w = t+ δi t ≥ 0
H− w = t− δi t ≥ 0
Ho w = δeiφ φ ∈ [−π/2, π/2].

Easy calculations show that for δ → 0∫
H+

(−w)(−s)e−wdw = eisπ
∫ δ

∞
e−tt−sdt,∫

H−
(−w)(−s)e−wdw = e−isπ

∫ ∞

δ
e−tt−sdt,∫

Ho
(−w)(−s)e−wdw = iδ1−s

∫ π/2

−π/2
exp

(
−δiφ − si(φ− π)

)
dφ.

The last integral converges to zero for δ → 0 as long as <(1 − s) > 0. Then the first two
integrals summing up to

−e
−iπs − eiπs

2πi

∫ ∞

0
e−tt−sdt =

sinπs
π

Γ(1− s) =
1

Γ(s)
,

where the last implication follows from the fundamental relationship (2.33) for the gamma
function (see Section 2.4.1). Thus we prove (8.66) for <(1 − s) > 0. By analytic continuation
(since both sides of (8.66) are analytic) we can extend it to all s ∈ C.
Observe that if we traverse the Hankel loop in the reverse order (i.e., from +∞ in the lower
plane, winding the origin clockwise and moving toward +∞ in the upper plane) we must
reverse the sign in (8.66).
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Furthermore, for any β

[zn](1− z)−α
(

1
z

log
1

1− z

)β

∼ nα−1

Γ(α)
(log n)β

(
1 +

∞∑
k=1

Ck(α, β)
(log n)k

)
, (8.69)

where

Ck(α, β) =

(
β

k

)
Γ(α)

dk

dsk

1
Γ(s)

|s=α .

Proof. We give a detailed proof of (8.67) and only a sketch of (8.69). By Cauchy’s formula

[zn](1− z)−α =
1

2πi

∫
C
(1− z)−α dz

zn+1
,

where C is a small contour encircling the origin (e.g., C = {z : |z| = 1
2}). We deform it in such

a way that the new contour, say C1, consists of a large circle of radius R with a notch that
comes back as close to z = 1 as possible (see Figure 8.3). By Cauchy’s bound the integral on
the large circle can be bounded by O(R−n−α), and we are left with estimating the integral
along the notch that resembles the Hankel contour except that it is traversed in the opposite
direction (see Table 8.3). We denote it by H̄ and specify as follows:

H̄ =


H− w = t− i

n t ≥ 0
H+ w = t+ i

n t ≥ 0
Ho w = 1− eiφ

n φ ∈ [−π/2, π/2]

Then after a change of variable z = 1 + t/n we arrive at

[zn](1− z)−α =
nα−1

2πi

∫
H̄

(−t)−α
(

1 +
t

n

)−n−1

dt+O(R−n−α).

We now proceed formally, omitting O(R−n−α), and later justify it. Using (8.68) we have

et
(

1 +
t

n

)−1−n

=
∑
k,j

ck,jt
jn−k, (8.70)

which yields

[zn](1 − z)−α =
nα−1

2πi

∫
H̄

(−t)−αe−t
∑
k,j

ck,jt
jn−kdt

= nα−1
∑
k,j

ck,jn
−k 1

2πi

∫
H̄

(−t)−α+je−tdt

(8.66)
= nα−1

∑
k,j

ck,jn
−k 1

Γ(α− j)

=
nα−1

Γ(α)

∑
k,j

ck,j
(α− 1)(α − 2) · · · (α− j)

nk
,
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R

0

1/2

1

1/n

Figure 8.3: Contours used in Theorem 8.12.

which formally establishes our result. To justify it rigorously, we must prove convergence of
the above series in order to interchange the integral and the sum.

Actually, this is not difficult at all. All we need to do is to split the integral according to,
say |t| ≤ log2 n and |t| ≥ log2 n. This is necessary in order to justify (8.70), that is, to make
t small. The part corresponding to |t| ≥ log2 n is negligible since(

1 +
t

n

)−n

= O(exp(− log2 n)).

On the remaining part of the contour, that is, for |t| ≤ log2 n, the term t/n is small and
(8.70) is applicable. This completes the proof of (8.67).

The proof of (8.69) is similar. We only sketch it. The basic expansion is

z−n−1(1− z)−α
(

1
z

log
1

1− z

)β ∣∣∣z=1+t/n ∼ e−t
(
n

−t

)α

logβ
(−n
t

)
=
e−t(−t)α

nα
logβ n

(
1− log(−t)

log n

)β

=
e−t(−t)α

nα
logβ n

(
1− β log(−t)

log n
+
β(β − 1)

2

(
log(−t)

log n

)2

+ · · ·
)
.

By considering |t| ≤ log2 n and |t| ≥ log2 n, we can justify the expansion. The last observation
is that we end up with the Hankel integrals of the form

1
2πi

∫
H̄

(−t)−(α−j)e−t logk(−t)dt,

which reduces to the derivatives of 1/Γ(α − j). This completes the sketch of the proof for
(8.69). For details the reader is referred to [140]).
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The most important aspect of the singularity theory comes next: In the analysis of
algorithms, analytic combinatorics, information theory, and many engineering problems, we
rarely have an explicit expression for the generating function A(z). We are lucky if we get
an expansion of A(z) around its singularities. For example, we are often left with A(z) ∼
(1− z)−α = (1− z)−α + o((1− z)−α). In order to evaluate an as n→∞ we need a “transfer
theorem” that will allow us to pass to coefficients of o((1−z)−α) under the little-oh notation.
These transfer theorems are jewels of Flajolet and Odlyzko singularity analysis [140], and we
discuss them next. However, in order not to clutter our expositions too much, we consider a
particular example adopted from Odlyzko [330].

Let A(z) ∼
√

1− z =
√

1− z + f(z), where f(z) = o(
√

1− z). From Theorem 8.12 we
conclude that

[zn](1− z) 1
2 = − 1√

πn3/2

(
1
2

+
3

16n
+O(n−2)

)
.

Hence, we would like to prove that

[zn]f(z) = [zn]o(
√

1− z) = o(n−3/2) (8.71)

as n → ∞. The analyticity of f(z) in a region around z0 = 1 is crucial for obtaining any
further information. Let us consider a few different scenarios:

• Assume f(z) is analytic in a larger disk, say, of radius 1 + δ for some δ > 0. Then by
Cauchy’s bound we immediately conclude that [zn]f(z) = O((1+δ′)−n) for 0 < δ′ < δ, a
conclusion that is much stronger than the desired (8.71). Furthermore, this assumption
will not allow us to handle expressions like

√
1− z log 1

1−z , which often arises in analysis
of algorithms.

• If we only know that f(z) = o(
√

1− z) in |z| ≤ 1, then we may only conclude that
[zn]f(z) = O(1). This is true since |f(z)| ≤ C in |z| < 1, where C is a constant, and for
all r < 1 and n ≥ 0 we know that by Cauchy’s bound [zn]f(z) ≤ Cr−n. But this only
suggests that [zn]f(z) = O(1), a result that is far from what is required. However, if
we know some smoothness condition for the function f on the circle |z| = 1, then some
further progress can be achieved. This is due to Darboux and we briefly discuss it at
the end of this section.

We now consider the third scenario analyzed by Flajolet and Odlyzko [140]. Let us define
a domain around z0 = 1 as follows

∆(R,φ) = {z : |z| < R, z 6= 1, | arg(z − 1)| > φ} (8.72)

for some R > 1 and 0 < φ < π/2. The domain ∆ is an extended disk around z = 1 with a
circular part rooted at z = 1 deleted, as shown in Figure 8.4. In our case, we assume that
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C3

δ C2C1

C4

∆-domain

R

1 1
.

Figure 8.4: The ∆ domain and the contour used in the singularity analysis.

f(z) can be analytically continued to ∆(R,π/4). We apply Cauchy’s formula to extract the
coefficients of f(z), and as the contour C we choose (see Figure 8.4)

C1 = {z : |z − 1| = 1/n, | arg(z − 1) ≥ π/4},
C2 = {z : z = 1 + reiπ/4, 1/n ≤ r ≤ δ},
C3 = {z : |z| = |1 + δeiπ/4|, | arg(z − 1) ≥ π/4},
C4 = {z : z = 1 + re−iπ/4, 1/n ≤ r ≤ δ},

where 0 < δ < 1/2. We evaluate the following four integrals for j = 1, 2, 3, 4

fj =
1

2πi

∫
Cj

f(z)
dz

zn+1
.

The easiest to handle is f3, since f(z) is bounded on C3 (outer large circle). By Cauchy’s
bound

f3 = O((1 + δ)−n).

On C1 (inner small circle), we have |f(z)| = o(n−1/2) and the length of the circle is 2π/n, so
that

f1 = o(n−3/2)

as n → ∞. Finally, we are left with C2 and C4, which can be handled in a similar manner.
Let us consider C2. Observe that for z = 1 + reiπ/4

|z−n| = |1 + r cos π/4 + ir sinπ/4|−n
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≤ (1 + r)−n/2 ≤ exp(−nr/10)

for 0 ≤ r < 1. Since f(z) = o(
√

1− z), for any ε > 0 we have

|f(1 + reiπ/4)| ≤ ε
√
r.

This yields, after the change nr = z,

|f2| ≤ ε
∫ δ

0

√
r exp(−nr/10)dr ≤ εn−3/2

∫ δ

0

√
z exp(−z/10)dz = o(n−3/2)

as desired. In a similar manner we show that f4 = o(n−3/2). Thus we prove that if f(z) is
expendable to the ∆-domain, then fn := [zn]f(z) = o(n−3/2). We should observe that the
critical derivation was the one on the rectilinear curves C2 and C4.

The method just described extends to big-oh notation as long as one can analytically
continue a function to the ∆(R,φ) domain. For example, let f(z) = O((1−z)−α). Considering
the contour C as above, and bounding the integral on C1 and C3 through Cauchy’s bound, we
are left with estimating

|f2| ≤
1

2πn

∫ ∞

1
K

(
t

n

)−α

|1 + eiφt/n|−n−1dt,

where K is the constant from the big-oh notation, that is, such that |f(z)| ≤ K(1 − z)−α.
Since |1 + eiφt/n| ≥ 1 + <(eiφt/n) = 1 + n−1t cos φ we finally obtain

|f2| ≤
K

2π
Jnn

α−1,

where Jn =
∫∞
1 t−α(1 + t 1

n cos φ)−ndt is bounded for 0 < φ < π/2. We just established one
of the transfer theorems of Flajolet and Odlyzko.

In summary, the singularity analysis of Flajolet and Odlyzko is based on the following
transfer theorems. The proof follows in the footsteps of the above derivations, and details
can be found in [140].

Theorem 8.13 (Flajolet and Odlyzko, 1990) Let A(z) be ∆-analytical, where ∆(R,φ)
is defined (8.72). If A(z) satisfies in ∆(R,π) either

A(z) = O
(
(1− z)−α logβ(1− z)−1

)
or

A(z) = o
(
(1− z)−α logβ(1− z)−1

)
,

then either
[zn]A(z) = O

(
nα−1 logβ n

)
or

[zn]A(z) = o
(
nα−1 logβ n

)
,

respectively.
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A classical example of singularity analysis is the Flajolet and Odlyzko [139] analysis of
the height of binary trees. However, we finish this subsection with a simpler application that
illustrates the theory quite well.

Example 8.10: Certain Sums from Coding Theory
In coding theory the following sum is of interest (cf. [255]):

Sn =
n∑

i=0

(
n

i

)(
i

n

)i (
1− i

n

)n−i

.

Let sn = nnSn and S(z) be the exponential generating function of sn. In addition, let

B(z) =
1

1− T (z)
,

where T (z) is the “tree function” defined in Example 7.15 (Chapter 7) (cf. (7.31) and (7.32)).
Since [zn]T (z) = nn−1/n!, hence [zn]B(z) = nn/n!. Thus by (7.17) of Table 7.3 we find that

S(z) = (B(z))2.

From Example 7.15 we also know that T (z) is singular at z = e−1. Using Maple we find
(see also [73] for a more detailed analysis)

T (z)− 1 =
√

2(1 − ez) +
2
3

(1− ez) +
11
√

2
36

(1− ez)3/2 +
43
135

(1− ez)2 +O((1− ez)5/2)

in a ∆ domain around z = e−1. Indeed, expanding z = ye−y in a power series around z = e−1

we have

z = e−1 − e−1

2
(y − 1)2 +

e−1

3
(y − 1)3 +O((y − 1)4,

and after solving it for y we obtain the above expansion for T (z). Now let h(z) =
√

1− ez.
Then

S(z) =
1

2h(z)
(

1 +
√

2
3

√
h(z) + 11

36h(z) +O(h3/2(z)
)2

=
1

2(1− ez) +
√

2
3
√

(1− ez)
+

1
36

+
√

2
540
√

1− ez +O(1− ez) .

An application of the singularity analysis (i.e., Theorems 8.12 and 8.13) yields

Sn =
√
nπ

2
+

2
3

+
√

2π
24

1√
n
− 4

135
1
n

+O(1/n3/2),
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as shown in [413], from where this example is taken. We shall discuss another example in the
applications Section 8.7.2. 2

What if A(z) cannot be analytically continued to a ∆ domain? We still have some options.
One is real analysis, another is the Tauberian theorem. However, the most successful seems
to be the Darboux method that we briefly discuss next.

We start with a quick review of the Riemann-Lebesgue lemma, which is often useful, as
an intermediate result, in establishing asymptotics.

Lemma 8.14 Let f(t) be continuous in (0,∞). Then

lim
x→∞

∫ ∞

0
f(t)eixtdt = 0 (8.73)

provided the integral converges uniformly at 0 and ∞ for all sufficiently large x.

The proof of the Riemann-Lebesgue lemma can be found in [331, 450]. We just observe
that it follows from a few simple facts. First of all, by the hypothesis, there are positive a
and b such that ∣∣∣∣∫ a

0
f(t)eixtdt

∣∣∣∣ ≤ ε

3
,

∣∣∣∣∫ ∞

b
f(t)eixtdt

∣∣∣∣ ≤ ε

3
for any ε > 0. In addition, since f(t) is continuous, it is bounded in [a, b]. Approximating f
by its value at a partition a = t0 < t1 < . . . < tn = b (e.g., |f(t) − f(tj)| ≤ ε/(6(b − a))) we
arrive at ∫ b

a
f(t)eixtdt =

n−1∑
j=0

∫ tj+1

tj

|f(t)− f(tj)|eixtdt+
n−1∑
j=0

f(tj)
∫ tj+1

tj

eitxdt.

But the first sum is bounded by, say ε/6, while the second is bounded by 2nmax{f}/x < ε/6,
hence can be made as small as desired for large x, which completes the sketch of the proof.

Now we present the Darboux method. In this case, we assume only that A(z) is smooth
enough on the disk of convergence.

Theorem 8.15 (Darboux, 1878) Assume that A(z) is continuous in the closed disk |z| ≤
1, and in addition k times continuously differentiable on |z| = 1. Then

[zn]A(z) = o(n−k). (8.74)

Proof. By the continuity assumption on |z| = 1 we have

an = [zn]A(z) =
1

2πi

∫
|z|=1

A(z)
dz

zn+1

z=eiθ

=
1

2π

∫ 2π

0
A(eiθ)e−niθdθ.
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By the Riemann-Lebesgue lemma we must conclude that an = o(1) as n →∞. This proves
the result for k = 0. To get a stronger result we integrate the above by parts k times to see
that

[zn]A(z) =
1

2π(in)k

∫ 2π

0
A(k)(eiθ)e−niθdθ,

where A(k) is the kth derivative of A. Again, the proof follows from the Riemann-Lebesgue
lemma.

As an example, consider A(z) = v(z)/
√

1− z, where v(z) is analytic at z = 1. Then

A(z) =
v(1)√
1− z

− v′(1)
√

1− z +O((1− z)3/2).

Since (1−z)3/2 is once continuously differentiable on |z| ≤ 1, we can apply Darboux’s Theorem
with k = 1 to show that [zn]O((1 − z)3/2) = o(1/n).

Finally, we should mention that so far we have dealt only with a single singularity. Multi-
ple singularities can be handled in a similar fashion, however, some complications arise. The
reader is referred to Flajolet and Sedgewick [149] for details.

8.4 Large Singularities: Saddle Point Method

This section presents asymptotic methods for generating functions whose dominant singular-
ities are large. We recall that, roughly speaking, a singularity is large if the growth of the
function near such a singularity is rapid, say, larger than any polynomial. We shall see that
methods of the previous section that work fine for small singularities are useless for large
singularities. To focus, we concentrate on asymptotics of the Cauchy integral and hence
coefficients of some generating functions. In short, we shall investigate integrals like

I(λ) =
∫
C
f(z)e−λh(z)dz, (8.75)

where f(z) and h(z) are analytic functions, and λ is a large positive parameter (often we
assume that λ = n with n being a natural number and the coefficients of f and h are
nonnegative).

We start with the Laplace method which assumes that the path C in (8.75) is an interval
[a, b], and f(z) and h(z) are real-valued functions. Then we discuss the saddle point method
(also known as the steepest descent method) which by far is the most useful and popular
technique to extract asymptotic information of rapidly growing functions. It is one of the
most complicated methods, therefore, given the purpose and limitations, we do not present a
full discussion of it. The reader is referred to De Bruijn [84], Olver [331], and Wong [450] for
a complete and insightful presentations. However, we describe here a very useful (and largely
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forgotten) method of van der Waerden [443], and a well-known method of Hayman [192]. We
complete this section with an application of the saddle point method to large deviations. The
reader is also referred to an excellent survey by Odlyzko [330] and the book by Flajolet and
Sedgewick [149].

8.4.1 Laplace Method

Let us consider a special case of (8.75), namely

I(x) =
∫ b

a
f(t)e−xh(t)dt, (8.76)

where −∞ ≤ a < b ≤ ∞ and x is a large positive parameter. Furthermore, let the minimum
of h(x) be attained at the point a < t0 < b. Assume that f(t0) 6= 0 and h′′(t0) > 0. Roughly
speaking, as x→∞

f(t) exp ((−x(h(t)− h(t0)))→ f(t0)δ(t − t0), (8.77)

where δ(t) is the Dirac-delta function taking the value ∞ at t = 0 and zero otherwise. We
approximate I(x) by

I(x) ∼
∫ b

a
f(t0) exp

(
−x(h(t0) +

1
2

(t− t0)2h′′(t0)
)
dt

∼ f(t0)e−xh(t0)
∫ ∞

−∞
exp

(
−1

2
x(t− t0)2h′′(t0)

)
dt

= f(t0)e−xh(t0)

√
2π

xh′′(t0)
.

The second line is a consequence of (8.77) while the last line follows from the Gauss integral
that we discuss in the next lemma.

Lemma 8.16 (Gauss Integral) The following identities hold:

1√
2π

∫ ∞

−∞
xke−tx2

dx =

{
0 k = 1, 3, 5, . . .
t−1/2−k/2k!
(k/2)!2k+1/2 k = 0, 2, 4, 6, . . . (8.78)

and for fixed k and α > 0 ∫ ∞

θ
xke−αx2

dx = O
(
e−αθ2

)
(8.79)

as θ →∞.
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The first identity above is nothing but moments of the Gaussian distribution. For the
latter observe that∫ ∞

θ
xke−αx2

dx = e−αθ2
∫ ∞

θ
xke−α(x2−θ2)dx = O

(
e−αθ2

)
since the integral converges for α > 0.

On the other hand, if the minimum of h(x) is achieved at the end of the interval, say at
t = a, and then for f(a) 6= 0 we obtain

I(x) ∼
∫ b

a
f(a) exp

(
−x(h(a) + (t− a)h′(a)

)
dt

∼ f(a)e−xh(a)
∫ b

a
exp

(
−x(t− a)h′(a)

)
dt

=
f(a)e−xh(a)

xh′(a)
. (8.80)

Finally, before we provide a rigorous proof of Laplace’s approach, let us say a word about
the principle of stationary phase that applies to integrals of the form

F (x) =
∫ b

a
f(t)eixh(t)dt,

where x is assumed to be large and positive. The underlying principle, due to Lord Kelvin,
is the assertion that the major asymptotic contribution comes from points where the phase
of h(t) is stationary, that is, where h′(t) vanishes. We should add that oscillations near such
points slow down. Heuristically, if t0 ∈ (a, b) is such that h′(t0) = 0, then

F (x) ∼
∫ t0+ε

t0−ε
f(t)eixh(t)dt, ε > 0,

∼ f(t0)eixh(t0)
∫ ∞

−∞
eixh′′(t0)(t−t0)2/2dt

= f(t0)

√
2π

x|h′′(t0)|e
i(xh(t0)+ π

4
sgn h′′(t0)),

where sgn(x) = 1 for x > 0 and sgn(x) = −1 for x < 0. The last equation above follows from
the Fresnel integral (cf. [2]) ∫ ∞

−∞
e

1
2
it2dt =

√
2πeiπ/4.

As mentioned before it is not difficult to make the above analyses completely rigorous.
We now focus on the Laplace method and prove the following theorem.
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Theorem 8.17 (Laplace’s Method) Let

I(x) =
∫ b

a
f(t)e−xh(t)dt,

where −∞ ≤ a < b ≤ ∞ and x is a large positive parameter. Assume that

(i) h(t) has only one minimum inside (a, b) at point t = t0, that is, h′(t0) = 0 and h′′(t0) >
0.

(ii) h(t) and f(t) are continuously differentiable in a neighborhood of t0 with f(t0) 6= 0 and

h(t) = h(t0) +
1
2
h′′(t0)(t− t0)2 +O((t− t0)3);

(iii) The integral I(x) exists for sufficiently large x, say for x ≥ ξ.

Then the following holds∫ b

a
f(t)e−xh(t)dt = f(t0)

√
2π

xh′′(t0)
e−xh(t0)

(
1 +O

(
1√
x

))
(8.81)

for x→∞.

Proof. We adopt here the proof from Lauwerier [283]. Without loss of generating we take
t0 = 0 (hence a < 0 and b > 0) and h(t0) = 0 (otherwise substitute t′ = t − t0). We first
assume f(t) ≡ 1 to succinctly spell out the main idea. From (ii) we conclude that there exist
constants c and δ such that

|h(t)− 1
2
h′′(0)t2| ≤ c|t|3, |t| < δ. (8.82)

We split the integral into two parts, namely,

I(x) =
∫ δ

−δ
e−xh(t)dt+

∫
t/∈[−δ,δ]

e−xh(t)dt. (8.83)

The latter integral can be evaluated as follows: By (i), µ(δ) = inf |t|>δ h(t) > 0 and hence∣∣∣∣∣
∫

t/∈[−δ,δ]
e−xh(t)dt

∣∣∣∣∣ ≤
∫

t/∈[−δ,δ]
e−ξh(t)−(x−ξ)h(t)dt

≤ e−(x−ξ)µ(δ)
∫

t/∈[−δ,δ]
e−ξh(t)dt = O(e−xβ)

for some β > 0, where the last assertion follows from (iii).
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We now deal with the first integral of (8.83). Let ω = h′′(t0). Then

I1(x) =
∫ δ

−δ
e−xh(t)dt

=
∫ δ

−δ
e−

1
2
xωt2dt+

∫ δ

−δ
e−

1
2
xωt2

[
exp

(
−x(h(t)− 1

2
ωt2)

)
− 1

]
dt.

From Lemma 8.16 we estimate the first integral as

∫ δ

−δ
e−

1
2
xωt2dt =

√
2π

h′′(0)x
+O(e−xδ2

).

With the help of
|et − 1| < |t|e|t|

and using (8.82) several times, we evaluate the second integral in I1(x) as∣∣∣∣∣
∫ δ

−δ
e−

1
2
xωt2

[
exp

(
−x(h(t)− 1

2
ωt2)

)
− 1

]
dt

∣∣∣∣∣ ≤ 2cx
∫ δ

0
t3 exp

(
−
(

1
2
ωxt2 − cxt3

))
dt

≤ 2cx
∫ δ

0
t3 exp

(
−xt2

(
1
2
ω − δc

))
dt

≤ 2cx
∫ δ

0
t3e−xbt2dt ≤ 2c

b2x

∫ ∞

0
u3e−u2

du

= O(x−1),

where b = 1
2ω − δc > 0 for sufficiently small δ. Combining everything we obtain (8.81)

for f(t) ≡ 1. To extend to general f , we just follow the steps of the above proof using
f(t) = f(t0) +O(t− t0). This completes the proof.

Laplace’s method has many applications in the analysis of algorithms. We illustrate it in
the evaluation of a certain integral arising from the analysis of b-tries with large b.

Example 8.11 Height in b-Tries for Large b
In Example 5 we studied the height of a b-tries. In particular, the height distribution

hk
n = Pr{Hn ≤ k} is given by (8.43), where the following truncated exponential is involved

1 + z2−k + · · ·+ zb2−kb

b!
= ez2−k

∫ ∞

z2−k
e−ww

b

b!
dw = ez2−k

[
1−

∫ z2−k

0
e−ww

b

b!
dw

]
.

It proves useful to have the asymptotic behavior of the above integral, and this is summarized
in the lemma below.
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Lemma 8.18 We let

I = I(A, b) =
1
b!

∫ A

0
eb log w−wdw =

e−bbb+1

b!

∫ A/b

0
eb(log u−u+1)du.

Then the asymptotic expansions of I are as follows:
(i) b,A→∞, α = b/A > 1

I = e−AA
b

b!

[
1

b/A− 1
− b

A2

1
(b/A− 1)3

+O(A−2)
]
.

(ii) b,A→∞, b/A < 1

I = 1− e−AA
b

b!

[
1

1− b/A −
b

A2

1
(1− b/A)3

+O(A−2)
]
.

(iii) b,A→∞, A− b =
√
bB, B = O(1)

I =
1√
2π

(∫ B

−∞
e−x2/2dx− 1

3
√
b
(B2 + 2)e−B2/2

+
1
b

(
−B

5

18
− B3

36
− B

12

)
e−B2/2 +O(b−3/2)

)
.

Proof. To establish this result we note that I is a Laplace-type integral (8.81). Setting
h(u) = log u−u+ 1 we see that h(u) is maximal at u = 1. For A/b < 1 we have h′(u) > 0 for
0 < u ≤ A/b and thus the major contribution to the integral comes from the upper endpoint
(more precisely, from u = A/b − O(b−1)). Then (8.80) yields part (i) of Lemma 8.18. If
A/b > 1 we write

∫A/b
0 (· · ·) =

∫∞
0 (· · ·) −

∫∞
A/b(· · ·), evaluate the first integral exactly, and

use Laplace’s method on the second integral. Now h′(u) < 0 for u ≥ A/b and the major
contribution to the second integral is from the lower endpoint. Obtaining the leading two
terms leads to (ii) in Lemma 8.18.

To derive part (iii), we scale A − b =
√
bB to see that the main contribution will come

from u− 1 = O(b−1/2). We thus set u = 1 + x/
√
b and obtain

I =
e−bbb+1

b!

∫ B

−√
b
exp

(
b

[
log

(
1 +

x√
b

)
− x√

b

])
dx√
b

(8.84)

=
bb
√
be−b

b!

∫ B

−∞
e−x2/2

[
1 +

x3

3
√
b

+
1
b

(
−x

4

4
+
x6

18

)
+O(b−3/2)

]
dx.

Evaluating explicitly the above integrals and using Stirling’s formula in the form b! =√
2πbbbe−b(1 + (12b)−1 + O(b−2)), we obtain part (iii) of Lemma 8.18. This example is

adopted from Knessl and Szpankowski [261]. 2
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8.4.2 Method of Steepest Descent

Here again we shall analyze (8.75), that is,

I(n) =
∫
C
f(z)e−nh(z)dz (8.85)

for n large, where f(z) and h(z) are analytic functions and C is a path in a complex plane.
We deform C into another contour C′ such that the region between C and C′ does not contain
singularities of f or h. The idea is to find such a path C′ that transforms the complex integral
I(n) into the real case considered in the previous section, that is, to reduce I(n) to the one
manageable by the Laplace method. In general, this is not an easy task and it requires quite
a bit of experience. Given the length of this chapter, we restrict ourselves to a short account
of the general method, explaining the underlying principle, and later focus only on Cauchy’s
coefficient formula, which is easier to handle than the general case.

To explain the method in somewhat more detail, we start with the general case. We
assume that f(z) ≡ 1, and h(z) = u(x, y) + iv(x, y) with z = x+ iy. Our goal is to find such
a path C′ that

(i) the imaginary part of h(z) on C′ is constant.

This condition allows us to reduce the complex integral to the real case that we know how
to handle. Indeed, assuming z(τ) is a parametric description of the path C′, and z0 is a fixed
point on the path; hence, v(x, y) = constant = =h(z0), the integral I(n) becomes

I(n) = e−nh(z0)
∫ b

a
exp [−n(h(z(τ)) − h(z0))]

dz(τ)
dτ

dτ

= e−nh(z0)
∫ b

a
exp [−n<(h(z(τ) − h(z0))]

dz(τ)
dτ

dτ

for some a ≤ τ ≤ b. Clearly, the latter integral can be treated by the Laplace method. In
particular, we expect the main contribution to come from a small region around a point z0 that
minimizes the exponent, that is, ux(x0, y0) = uy(x0, y0) = 0. But by the Cauchy-Riemann
equations (i.e., ux = vy and uy = −vx; cf. [195]) at point z0 also h′(z0) = ux(x0, y0) −
iuy(x0, y0) = 0. The point z0 such that h′(z0) = 0 is called the saddle point of h(z). In
view of this, we add one more condition to (i), namely,

(ii) the path C′ passes through the saddle point(s) h′(z0) = 0,

which reduces (8.85) to the Laplace integral. This constitutes the backbone of the saddle
point method.

We now work out more details concerning the curve C′, which is always the hardest part
of the method. Let us try to understand condition (i) and its relationship to condition (ii).
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The Laplace method will work only if on the curve C′ near the saddle point the value of h
drops significantly. But this is the case, and here is why. Let us consider u(x, y) as a function
of (x, y). Notice that |e−nh(z)| = e−nu(x,y) so the absolute value of the integral I(n) depends
on the behavior of u(x, y) along C′. Let now x(t), y(t) u(t) be a parametric description of a
curve on the surface u(x, y). It is known that (details can be found in Wong [450])

du

dt
= ux cos θ + uy sin θ

for some θ. To measure the steepness on the surface u(x, y) along the path u(t), one computes
the cosine of the angle α between the path and the u-axis. It can be shown that the derivative
of this cosine is zero (i.e., maximized or minimized) when

−ux sin θ + uy cos θ = 0.

But then, again by the Cauchy-Riemann equation, this implies

dv

ds
= vx cos θ + vy sin θ = 0

on the path. Thus the steepest curve (where the derivative of cosα is zero) is also where the
imaginary part of h(z) is constant (i.e.,=(h(z)) = v(s) =constant). In other words, the path
C′ postulated in (i) is the steepest curve on u(x, y). Simultaneously, the curve C′ on u(x, y)
reaches the maximum/minimum value at the saddle point z0, where ux = uy = 0. Thus
“luckily” the second condition (ii) is also satisfied, and one expects most of the contribution
to the integral to be coming from a small region around the saddle point z0.

Example 8.12 Steepest Descent Method
Let

I(n) =
∫ ∞

−∞
e−n(z2−2zi)f(z)dz.

The saddle point is at z0 = i and =(z2 − 2zi) = 2x(y − 1) =constant represents the steepest
descent curves, where z = x+iy. In particular, y = 1 is the steepest descent curve that passes
through the saddle point. Accordingly, we deform the path (−∞,∞) to the line =z = 1,
reducing the integral to

I(n) = e−n
∫ ∞

−∞
e−nt2f(t+ i)dt

provided f(z) is well-behaved (e.g., no singularities in the strip 0 ≤ =z ≤ 1). Then by
Theorem 8.17 we directly find that

I(n) ∼ e−nf(i)
√
π

n
.
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If, however, f(z) has a singularity in 0 ≤ =z ≤ 1, we must add this contribution. For
example, assuming that

f(z) =
1

z − p + · · · ,

where p 6= i, we must add 2πi exp
(
−n(p2 − 2pi)

)
. The situation is even more interesting

when p = i (i.e., the pole coincides with the saddle point). We shall discuss this case later in
this chapter (in particular, in Example 22). 2

Hereafter, we concentrate on the Cauchy integral and study asymptotics of

an := [zn]A(z) =
1

2πi

∮
A(z)
zn+1

dz =
1

2πi

∮
eh(z)dz, (8.86)

where
h(z) = logA(z)− (n+ 1) log z,

and A(z) is a generating function of rapid growth with positive coefficients. Since in this
case, |A(z)| ≤ A(|z|) we have

max
|z|=r

|A(z)| = A(r) (8.87)

for some r < R, where it is assumed that A is analytic for |z| < R ≤ ∞ (and often R =∞).
Clearly, the saddle point z0 of (8.86) is located at h′(z) = 0 or equivalently satisfying

A′(z0)
A(z0)

=
n+ 1
z0

. (8.88)

In view of (8.87), we may also compute the saddle point by observing that it must minimize
r−nA(r).

We summarize what we learned so far in the next example, where we also work out all
details of the method that we later generalize to establish the Hayman result.

Example 8.13 Asymptotic of exp(zα)
Let us assume that A(z) = exp(zα) with α > 0. In particular, for α = 1 we have

[zn]A(z) = 1/n!, so we can verify our analysis. Since h(z) = zα − (n + 1) log z, the saddle
point is at

z0 =
(
n+ 1
α

)1/α

∼
(
n

α

)1/α

.

Thus writing n1 = n/α we have

[zn]ez
α

=
1

2πi

∫
|z|=n1

ez
α

zn+1
dz

=
n−n1

1

2π

∫ π

−π
exp

(
n1e

iαθ − niθ
)
dθ,
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where we substituted z = z0e
iθ. We now choose such θ0 ∈ (0, π) that for −θ0 ≤ θ ≤ θ0 the

following expansion is valid

eiαθ = 1 + iαθ − 1
2
α2θ2 +O(θ3). (8.89)

For the above to hold, we need ensure that θ0 = o(1). For such θ0, we split the integral into
three parts as follows:

I1 =
n−n1

1

2π

∫ θ0

−θ0

exp
(
n1 −

1
2
nαθ2 +O(nθ3)

)
dθ

I2 =
n−n1

1

2π

∫ π

θ0

exp
(
n1e

iαθ − niθ
)
dθ

I3 =
n−n1

1

2π

∫ −θ0

−π
exp

(
n1e

iαθ − niθ
)
dθ,

where certainly I2 and I3 are of the same order, so we only estimate I2.
We first evaluate I1. Our goal is to reduce it to the Gauss integral, so we shall require

that

nθ2
0 → ∞, (8.90)

nθ3
0 → 0, (8.91)

and, of course, θ0 → 0 to assure validity of (8.89). A good choice is θ0 = n−2/5. Then
exp

(
n1 − nθ2/2 +O(nθ3)

)
= (1 +O(n−1/5)) exp

(
n1 − nθ2/2

)
and this yields

I1 =
(
1 +O(n−1/5)

)(n
α

)−n/α

en/α
(∫ ∞

−∞
e−

1
2
αnθ2

dθ − 2
∫ ∞

θ0

e−
1
2
αnθ2

dθ

)
=

(
1 +O(n1/5)

)(n
α

)−n/α

en/α

(√
2π
αn
−O(e−αn1/5/2)

)

=
(
1 +O(n−1/5)

)(n
α

)−n/α

en/α

√
2π
αn

.

Now we estimate I2. For this, we observe | exp(zα)| = exp(<(zα)), hence

|I2| ≤
n−n1

1

2π

∫ π

θ0

en1 cos αθdθ.

We want to show that I2 contributes negligibly. Since θ0 ≤ |θ| ≤ π we have

cosαθ ≤ cosαθ0 = 1− α2θ2
0/2 +O(θ4

0)
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provided αθ ≤ 2π − θ0 since otherwise the above inequality would not hold. To assure this
condition will hold, we now restrict α ≤ 1 (later we shall discuss the case α > 1). Then we
can proceed with our calculation to obtain

|I2| ≤
1

2π
≤
(
n

α

)−n/α

en/αe−αn1/5/3 = O(I1e−αn1/5/3), α ≤ 1,

since nα−1 cosαθ ≤ nα−1 − αn1/5/2 +O(n−3/5). This finally proves that

[zn]ez
α

=
(
1 +O(n−1/5)

)(n
α

)−n/α

en/α

√
2π
αn

for α ≤ 1. When α = 1 we obtain Stirling’s approximation, as expected. 2

The above example sheds some light on some complications that may arise when the
saddle point method is used but we do not use the steepest descent contour through the
saddle. The reader should notice that in the above we were unable to show that I2 is small
for α > 1. A question arises whether we can overcome this difficulty by applying a more
sophisticated saddle point approximation. It turns out that we can, and let us illustrate it
for α = 2. Then

ez
2

=
∞∑

n=0

z2n

n!

so that

[zn]ez
2

=

{
1
k! n = 2k
0 otherwise

or simply

[zn]ez
2

=
1 + (−1)n

2
1

(n/2)!
.

In other words, the coefficients an = [zn]ez
2

oscillate. Why then could we not handle it by the
saddle point method? The culprit lies in the multiplicity of the saddle points. For α = 2 we
have two saddle points, at z0 = (n/α)1/α and at −z0. Multiple saddle points almost always
lead to some periodicity in the asymptotics coefficients, and one must be more careful with
the selection of the steepest descent contour. We shall not discuss it in this book; the reader
is referred to De Bruijn [84] or Wong [450] for a detailed discussion.

Let us now generalize Example 13. Consider

an =
1

2πi

∫
|z|=r

A(z)
zn+1

dz =
1

2πrn

∫ π

−π
A(reiθ)e−inθdθ

=
1

2πrn

∫ π

−π
exp

(
logA(reiθ)− inθ

)
dθ. (8.92)
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Formally,

logA(reiθ) = logA(r) +
∞∑

k=1

αk(r)
(iθ)k

k!
, (8.93)

where

α1(r) := a(r) = r
d

dr
logA(r) = r

A′(r)
A(r)

, (8.94)

α2(r) := b(r) =
(
r
d

dr

)2

logA(r) = ra′(r), (8.95)

αk(r) := kαk−1(r). (8.96)

Let us continue our formal derivation and assume that the whole contribution to an concen-
trates near one saddle point, say r0, determined by

d

dθ

(
logA(reiθ)− inθ

)
= 0,

that is,
a(r0) = n. (8.97)

Then, after an application of the Gauss integral (8.78), we formally obtain the saddle point
approximation

an ∼
A(r0)
2πrn

0

∫ θ0

−θ0

e−b(r0)θ2/2dθ ∼ A(r0)
rn
0

√
2πb(r0)

(8.98)

provided θ0 is appropriately chosen and Y (r0) 6= 0. The main ingredients of the saddle point
approximation are summarized in Table 8.4. We shall justify them below.

However, one must be very careful with a blind application of this heuristic. We have
already seen when the saddle point method breaks down due to the impossibility of estab-
lishing smallness of the integral for θ ∈ (−π,−θ0)∪ (θ0, π). Now we discuss an example when
the main contribution from θ ∈ (−θ0, θ0) does not give the right asymptotic approximation
and the above heuristic again breaks down.

Example 8.14 Invalid Application of the Saddle Point Method
Let us consider [zn](1− z)−α for α not being a negative integer. We “blindly” apply the

saddle point approximation. We find that r0 = n/(n + α) and b(r0) = n(n + α)/α. Using
(8.98) we should obtain

[zn](1− z)−α ∼ nα−1
(
e

α

)α√ α

2π

which is not equal to nα−1/Γ(α) as proved in Theorem 8.12. For example, for α = 1 we have
e/
√

2π = 1.0844 . . . 6= 1 = [zn](1 − z)−1. 2
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Table 8.4: Summary of the Saddle Point Approximation

Input: A function g(z) analytic in |z| < R (0 < R < +∞) with nonnegative Taylor coefficients
and “fast growth” as z → R−. Let h(z) := log g(z) − (n+ 1) log z.
Output: The asymptotic formula (8.107) for gn := [zn]g(z) derived from the Cauchy coefficient
integral

gn =
1

2iπ

∫
C
g(z)

dz

zn+1
=

1
2iπ

∫
C
eh(z) dz, (8.99)

where C is a loop around z = 0.
(SP1) Saddle point contour. Assume that g′(z)/g(z) → +∞ as z → R−. Let r = r(n) be
the unique positive root of the saddle point equation

h′(r) = 0 or
rg′(r)
g(r)

= n+ 1, (8.100)

so that r→ R as n→∞. The integral (8.99) is evaluated on C = {z | |z| = r}.
(SP2) Basic split. Assume that h′′′(r)1/3h′′(r)−1/2 → 0. Define δ = δ(n) called the “range”
of the saddle point by

δ =
∣∣∣h′′′(r)−1/6h′′(r)−1/4

∣∣∣ , (8.101)

so that

δ → 0, (8.102)
h′′(r)δ2 → ∞, (8.103)
h′′′(r)δ3 → 0. (8.104)

Split C = C0 ∪ C1, where

C0 = {z ∈ C | | arg(z)| ≤ δ}, C1 = {z ∈ C | | arg(z)| ≥ δ}.

(SP3) Elimination of tails. Assume that |g(reiθ)| ≤ |g(reiδ)| on C1. Then, the tail integral
satisfies the trivial bound, ∣∣∣∣∫C1

eh(z) dz

∣∣∣∣ = O
(
|e−h(reiδ)|

)
. (8.105)

(SP4) Local approximation. Assume that h(reiθ) − h(r) − 1
2r

2θ2h′′(r) = O(|h′′′(r)δ3|) on
C0. Then, the central integral is asymptotic to a complete Gaussian integral, and

1
2iπ

∫
C0

eh(z) dz =
g(r)r−n√
2πh′′(r)

(
1 +O(|h′′′(r)δ3|)

)
. (8.106)

(SP5) Collection. Assumptions (SP1), (SP2), (SP3), and(SP4) imply the estimate:

[zn]g(z) =
g(r)r−n√
2πh′′(r)

(
1 +O(|h′′′(r)δ3|)

)
∼ g(r)r−n√

2πh′′(r)
. (8.107)
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Now we are ready to rigorously establish the saddle point approximation (8.98) and
generalize Example 13. After Hayman [192] (cf. also [191]), we define admissible functions
A(r) that satisfy the following three conditions:

(H1) there exists a finite number R0 such that A(r) > 0 for R0 < r <∞;

(H2) limr→∞ b(r) = +∞, where b(r) is defined in (8.95);

(H3) for some 0 < δ(r) < π we have with a(r) defined in (8.94)

A(reiθ) ∼ A(r) exp
(
iθa(r)− 1

2
θ2b(r)

)
, r →∞ (8.108)

uniformly in |θ| ≤ δ(r), and

A(reiθ) = o

(
A(r)√
b(r)

)
, r →∞ (8.109)

uniformly in δ(r) ≤ |θ| ≤ π.

We observe that by (8.93) condition (H3) implies
∞∑

k=3

αk(r)
(iθ)k

k!
→ 0

as r→∞ for δ(r) < π. By (H2) we also have

δ2(r)b(r)→∞
as r → ∞. To evaluate [zn]A(z) for A satisfying (H1)–(H3) we use Cauchy’s integral (8.92)
split at δ = δ(r), that is, anr

n = I1 + I2, where

I1 =
1

2π

∫ δ

−δ
A(reiθ)e−inθdθ

I2 =
1

2π

∫ 2π−δ

−δ
A(reiθ)e−inθdθ.

By (H3) we have I2 = o(A(r)/
√
b(r)) as r →∞. After another application of (H3) the first

integral becomes

I1 =
A(r)
2π

∫ δ

−δ
exp

(
i(a(r)− n)θ − b(r)θ2/2

)
dθ + o(f(r)/

√
b(r))

y=θ
√

b(r)/2
=

A(r)
π
√

2b(r)
exp

(
−(a(r)− n)2

2b(r)

)∫ δ

−δ
exp

[
− (y − icy)2

]
dθ

∼ A(r)√
2πb(r)

exp

(
−(a(r)− n)2

2b(r)

)
,

where c = (a(r)− n)
√

2/b(r). We formulate the final result as the following theorem.
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Theorem 8.19 (Hayman, 1956) (i) For admissible functions A(z) =
∑

n≥0 anz
n satisfy-

ing conditions (H1)-(H3) we have uniformly as n→∞

an =
A(r)

rn
√

2πb(r)

(
exp

(
−(a(r)− n)2

2b(r)

)
+ o(1)

)
(8.110)

as r →∞.

(ii) If A(z) and B(z) are admissible, then eA(z) and A(z)B(z) are admissible. If P (z) is a
polynomial and A(z) + P (z) is admissible, then A(z)P (z) and P (A(z)) are admissible, too.
Finally, eP (z) is admissible, if [zn]eP (z) ∈ R+.

In passing, we observe that to get the saddle point approximation from Hayman’s theorem
one defines rn as a unique solution of a(rn) = n. Such a unique solution exists since by (H2)
b(r)ra′(r)→ +∞, hence a′(r) > 0 and a(r) must be an increasing function in some interval.
This suffices to prove the assertion.

Example 8.15 Asymptotics of the Bell Numbers
In Example 10 we defined Bell numbers bn satisfying

exp(ez − 1) =
∞∑

n=0

bn
zn

n!
.

By Theorem 8.19(ii) exp(ez − 1) is admissible with a(r) = rer and b(r) = (r2 + r)er. By
Theorem 8.19(i) we have

bn ∼
n! exp(ern − 1)

rn
n

√
2π(rn + 1)rn exp(rn)

,

where rn is defined by rn exp(rn) = n. 2

Finally, we discuss one systematic approach to the saddle point method due to van der
Waerden [443] that is particularly useful when the saddle point coincides with a pole. We
present this method in a rather formal way, but it is not difficult to make it rigorous, as with
Hayman’s method, by stating necessary restrictive conditions on the admissible functions.
When discussing this method we again return to the general integral representation (8.85).
We shall follow here the presentation of Lauwerier [283].

Consider again the integral

I(n) =
∫
C
f(z)e−nh(z)dz,

where C is a contour that starts and ends at infinity. We define the van der Waerden trans-
formation as

w = h(z), (8.111)
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×

×

×

×

×

C'

(a)

×

×

×

×

(b)

Figure 8.5: A contour in the van der Waerden method.

where w = u+iv. The importance of this transformation lies in changing the steepest descent
lines into the horizontal lines in the (u, v) plane. Furthermore, this transformation is singular
at the saddle points of h(z). We assume now that:

(W1) f(z) and h(z) are algebraic functions of z;

(W2) The function

P (w) = f(z(w))
dz

dw

does not grow faster than an exponential function, that is, |P (w)| ≤ Bec|w| for some
positive constants B and c.

Under this assumption, any saddle point h′(z) = 0 becomes a branch point in the complex
plane. Then also the integral becomes

I(n) =
∫
C′
e−nwf(z(w))

dz

dw
dw, (8.112)

where C′ is a contour that meanders between branch points and poles of the w plane, as
illustrated in Figure 8.5(a). We should observe that apart from branch points and poles due
to the factor dz/dw there might be some singularities coming from f(z(w)).

To obtain the saddle point approximation we deform the contour C′ into another one C′′
that will minimize |e−nw| = e−nu. This means to shift C′ to the right as much as possible.
It should be clear that the best contour satisfying this condition is one that consists of loops
surrounding the branch points and poles, coming from infinity in straight lines from the right
and going back to infinity to the right, as illustrated in Figure 8.5(b).
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Let us discuss a concrete situation and assume that w = 0 is a single branch point of
order one. A local substitution w = s2 will transform the integrand function into

F (s) := f(z(w))
dz

dw
= f(z(s2))

1
2s
dz

ds
,

so that it has a pole of the first order at s = 0. This implies that F (s) admits an expansion

F (s) = a−1s
−1 + a0 + a1s+ · · · ,

which yields

I(n) =
∫ ∞

−∞
e−ns2

(
a−1 + a0s+ a1s

2 + · · ·
)
ds =

√
π

n

(
2a−1 +

a1

n
+ · · ·

)
.

More interesting, if the saddle point (i.e., branch point at w = s2) coincides with the pole at
s = 0, then F (s) becomes

F (s) = a−2s
−2 + a−1s

−1 + a0 + a1s+ · · · ,

which is easily computable through the following formula (cf. [2])

1
2πi

∫ ∞

−∞
eax2

x− ibdx = eab2(1− Φ(b
√

2a) (8.113)

provided a > 0, where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt

is the standard normal distribution.

Example 8.16 Illustration of the van der Waerden’s Method
Consider the integral

I(n) =
∫ ∞

−∞
e−n(z2−2zi)

(z2 + 1)
dz.

The saddle point is at z = i, which coincides with the pole of 1/(z2 + 1). According to van
der Waerden’s approach we consider the transformation

z2 − 2zi = 1 + s2,

which simply becomes z = i+ s. Then

1
z2 + 1

=
1

2is
+

1
4

+
is

8
+O(s2)



318 Complex Asymptotic Methods

and

I(n) = e−n
∫ ∞

−∞
e−ns2

(
1

2is
+

1
4

+
is

8
+O(s2)

)
ds

= e−n
(
π

2
+

1
4

√
π

n
+O(n−3/2)

)
,

where the last line follows from (8.78) and (8.113). 2

In the next section (see Example 22 below) we present another example that even better
illustrates the power of the van der Waerden method.

In passing we should observe that other complications with the saddle point method may
arise. For example, let the saddle point z0 be of order m; that is,

h′(z0) = h′′(z0) = · · · = h(m−1)(z0) = 0, and h(m)(z0) 6= 0.

In this case one must apply the generalized Laplace method discussed in Exercise 15. More
difficult to handle are coalescing saddle points: Imagine that the integral I(n, α) defined in
(8.85) depends on the parameter α such that for α 6= α0 there are two distinct saddle points
z+ and z− of multiplicity one. For α = α0 these two points coincide to a single saddle
point z0 of multiplicity two. Based of what we have learned so far, we conclude that (under
appropriate assumptions) for α 6= α0

I(n, α) ∼ f(z+)e−nh(z+)
[

2π
nh′′(z+)

]1/2

+ f(z−)e−nh(z−)
[

2π
nh′′(z−)

]1/2

.

For α = α0 the asymptotic behavior of I(n, α0) differs radically since h′′(z0) = 0. Following
the approach from Exercise 15, one arrives at

I(n, α0) ∼ Af(z0)e−nh(z0)Γ
(

4
3

)[
3!

nh′′′(z+)

]1/3

,

where A is a constant that depend son the contour C. Thus the order of n changes discon-
tinuously from 1

2 to 1
3 . The interested reader is refereed to Wong [450], and Bleistein and

Handelsman [51] for detailed discussions (cf. also Banderier et al. [32] for an application of
coalescing saddle points to planar maps).

8.4.3 Local Central Limit Theorem and Large Deviations Revisited

The saddle point method finds many applications in probability theory. In particular, it can
be used to derive a local central limit theorem and a local large deviations result. The reader
may want to review and compare Chapter 5 before reading this section. Following Greene
and Knuth [171] we give here a short presentation (see also Section 8.6). Further readings
on this topic are Bender [36], Bender and Richmond [40], and Daniels [81].



319 Complex Asymptotic Methods

Let us consider Sn = X1 + · · ·+Xn, where Xi are i.i.d. discrete random variables with the
probability generating function G(z) = E[zX1 ] =

∑
k≥0 Pr{X1 = k}zk. Let µ = E[X1] and

σ2 = Var[X1]. Clearly, the probability generating function of Sn is E[zSn ] = Gn(z). Then

Pr{Sn = k} := [zk]E[zSn ] =
1

2πi

∮
Gn(z)
zk+1

dz.

Of particular interest are two cases: (i) k = nµ + r with r = o(
√
n) (central limit regime),

and (ii) k = n(µ+ ∆) = na, where ∆ > 0 or a > µ (large deviations regime).
We adopt the following three assumptions:

(K1) The generating function G(z) is defined in |z| < 1 + δ, so that

G(et) = exp

(
µt+

σ2t2

2
+
κ3t

3

3!
+
κ4t

4

4!
+ · · ·

)
, (8.114)

where κj is the jth cumulant of X1 (cf. Section 5.4).

(K2) G(0) 6= 0.

(K3) X1 is not periodic, that is, the greatest common divisor of all k with Pr{X1 = k} 6= 0
is one.

Under these assumptions, we observe that the Cauchy integral above can be evaluated by
the saddle point method with the saddle point at z = 1−O(1/n) ∼ 1, hence

Pr{Sn = µn+ r} =
1

2π

∫ π

−π

Gn(eit)
eit(µn+r)

dt.

This integral can be evaluated by the Laplace method after noting that under (K3) for
δ < |t| < π there exists α < 1 such that |G(eit)| < α, and

Gn(eit)
eit(µn+r)

= exp

(
irt− σ2nt2

2
+
κ3nt

3

3!
+
κ4nt

4

4!
+ · · ·

)
.

If we choose δ2n → ∞ (say δ = n1/2+ε), then the Laplace method yields, after a careful
evaluation,

Pr{Sn = µn+ r} =
1

σ
√

2πn
exp

(
−r2
2σ2n

)(
1− κ3

2σ4

(
r

n

)
+

κ3

6σ6

(
r3

n2

))
+O(n−3/2). (8.115)

We mentioned this result in Section 5.4.
This is the local central limit law, from which we can obtain the central limit law after

summing over r. Unfortunately, like all central limit results, the formula suffers from weakness
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since the range of its applicability is limited to r = o(
√
n) due to the fact that the error term

is only a polynomial of n−1/2. But there is a remedy: To expand the range of its validity one
should shift the distribution to a new location. This is called the method of shifted mean. In
Section 5.4 we used a variant of it called the exponential change of measure to obtain large
deviations results. Below we shall show how to recover a stronger large deviations result for
discrete distributions by the shifted mean method.

The idea is to shift the mean of Sn to a new value such that (8.115) is valid again. Let
us define a new random variable X̃ whose generating function is

G̃(z) =
G(zα)
G(α)

,

where α is a constant that is to be determined. Observe that

E[X̃ ] = α
G′(α)
G(α)

, (8.116)

Var[X̃ ] = α2G
′′(α)
G(α)

+ α
G′(α)
G(α)

− α2
(
G′(α)
G(α)

)2

. (8.117)

If one needs a large deviations result around m = na = n(µ+ ∆), where ∆ > 0, then clearly
(8.115) cannot be applied directly, but a proper choice of α can help. Let us select α such
that the new S̃n = X̃1 + · · ·+ X̃n has mean m = n(µ+ ∆). This results in setting α to be a
solution of

αG′(α)
G(α)

=
m

n
= a = µ+ ∆ . (8.118)

Then a change of variable yields

[zm]Gn(z) =
Gn(α)
αm

[zm]
(
G(αz)
G(α)

)n

. (8.119)

Now we can apply (8.115) (with r = 0) to [zm]
(

G(αz)
G(α)

)n
since m = an and E[X̃1] = a = µ+∆

so that E[S̃n] = an. We rewrite the above as follows

Pr{Sn = na} =
1

σ̃
√

2πn
e−nI(a) (1 +O(1/n)) , (8.120)

where σ̃2 = Var[X̃1] given by (8.117) and I(a) = a log α− logG(α). This is a stronger version
of Theorem 5.19 if one sets λa = log α.

Example 8.17: Large Deviations for the Binomial Distribution
This is taken from Greene and Knuth [171] (a more sophisticated example is presented

in Section 8.6). Let Sn be binomially distributed with parameter 1/2; that is, Gn(z) =
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((1 + z)/2)n. We want to estimate the probability Pr{Sn = n/3} = [zn/3](z/2 + 1/2)n which
is far away from its mean E[Sn] = n/2. Shift of mean yields α such that

αG′(α)
G(α)

=
α

1 + α
=

1
3

(i.e., α = 1/2). Using (8.115) we obtain

[zn/3]
(

2
3

+
1
3
z

)n

=
3

2
√
πn

(
1− 7

24n

)
+O(n−5/2)

and an application (8.120) gives

[zn/3](z/2 + 1/2)n =

(
3 · 21/3

4

)n
3

2
√
πn

(
1− 7

24n
+O(n−2)

)
for n→∞. 2

8.5 Finite Sums as Complex Integrals

In Section 8.1.2 we saw how a series may be represented by a complex integral. Such a
representation is often quite useful, and often can be easily evaluated by the residue theorem.
Here is another representative example of this kind

n∑
k=m

(−1)kfk =
1

2πi

∫ m− 1
2
+i∞

m− 1
2
−i∞

f(s)
π

sinπs
ds,

which is true under suitable conditions on f(s) (e.g., polynomial growth), where f(s) is an
analytic continuation of fk, that is, f(s)s=k = fk. The above is a direct consequence of the
residue theorem and the fact that Res[π/ sin(πs), s = k] = (−1)k, provided f(s) does not
have any other singularity right to the line of the integration.

In this section, we discuss an important finite sum that often arises in the analysis of
algorithms (see Section 7.6.1). Namely, we deal with the following alternating sum

Sn[f ] =
n∑

k=m

(−1)k

(
n

k

)
fk,

where fk is a known, but otherwise, general sequence. Due to the alternating sign this sum
is not easy to evaluate by traditional methods. In fact, we shall show that there are some
fluctuations involved in its asymptotics that can be easily treated by complex asymptotic
methods. We will not dwell too much on this topic since there is an excellent survey on such
sums by Flajolet and Sedgewick [148]. The reader is referred to it (and other references such
as Knuth [269] and Szpankowski [407]) for more examples.
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Theorem 8.20 (Rice’s Formula) Let f(s) be an analytic continuation of f(k) = fk that
contains the half line [m,∞). Then

Sn[f ] :=
n∑

k=m

(−1)k

(
n

k

)
fk =

(−1)n

2πi

∫
C
f(s)

n!
s(s− 1) · · · (s− n)

ds, (8.121)

where C is a positively oriented curve that encircles [m,n] and does not include any of the
integers 0, 1, . . . ,m− 1.

Proof. It is a direct application of the residue calculus after noting that the poles of the
integrand are at k = m,m+ 1, . . . , n and

Res
[

n!
s(s− 1) · · · (s − n)

f(s); s = k

]
= (−1)n−k

(
n

k

)
f(k).

This completes the proof.

There is another representation of Sn[f ] that is sometimes easier to handle computation-
ally. (It is called by Knuth [269] the gamma method.) In this case, however, we must restrict
f to have a polynomial growth, that is, f(s) = O(|s|k) for some k as s → ∞. In fact, when
evaluating the integral in the Rice method we usually must impose some growth condition
on f over large circles.

Theorem 8.21 (Knuth, 1973; Szpankowski, 1988) Let f(z) be of polynomial growth at
infinity and analytic left to the vertical line (1

2 −m− i∞,
1
2 −m+ i∞). Then

Sn[f ] =
1

2πi

∫ 1
2
−m+i∞

1
2
−m−i∞

f(−z)B(n+ 1, z)dz (8.122)

=
1

2πi

∫ 1
2
−m+i∞

1
2
−m−i∞

f(−z)n−zΓ(z)
(

1− z(z + 1)
2n

(8.123)

+
z(1 + z)

24n2
(3(1 + z)2 + z − 1) +O(n−3)

)
dz, <(z) > 0,

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function.

Proof. We again use the residue theorem, the fact that Res[Γ(z), z = k] = (−1)k/k! and
Res[B(n + 1, z), z = k] = (−1)k

(n
k

)
. However, some care is needed. Let us consider a large

rectangle Rα,M left to the line of the integration, with corners at four points (1
2 −M ± iα,

c ± i), α > 0, M is a positive integer, and c = 1
2 −m. By Cauchy’s theorem the integral in

(8.122) is equal to the sum of residues in Rα,M minus the values of the integral on the bottom,
top and left lines of the rectangle. We must prove now that the integrals along left, top, and
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bottom lines are small. This is not difficult due to the behavior of the gamma function for
imaginary values (cf. (2.34)) and the polynomial growth of f . We consider the integral along
the top line, which we denote as IT . Using the estimate (2.35) for the gamma function we
obtain

|IT | = O

(
e−πα/2

∫ c

−∞
(α/n)x|f(−x− iα)|dx

)
→ 0.

Let now IL be the integral along the left line. We need a different estimate here. Using
successively Γ(z + 1) = zΓ(z) we first observe that

Γ(
1
2
−M + iy) = Γ(

1
2

+ iy)/O((M − 1)!).

Then

|IL| = O

(
nM

(M − 1)!

∫ ∞

−∞
|Γ(1/2 + iy)||f(M − 1/2− iy)|dy

)
,

which also tends to zero as M → ∞ since the integral converges due to the exponential
smallness of Γ(z) along the imaginary line and the polynomial growth of f(z). This completes
the proof.

Example 8.18: Asymptotics of an Alternating Sum
In Section 7.6.1 we encountered alternating sums of the following type

Sn+r =
n+r∑
k=2

(−1)k

(
n+ r

k

)(
k

r

)
1

1− p−k − q−k
, (8.124)

where p+q = 1. We now use Theorem 8.21 to obtain asymptotics of Sn+r as n becomes large
and r is fixed. We first slightly generalize Rice’s method by observing that for any sequence
fk

Sn+r[f ] =
n+r∑
k=2

(−1)k

(
n+ r

k

)(
k

r

)
fk = (−1)r

(
n+ r

r

)
n∑

k=[2−r]+

(−1)k

(
n

k

)
f(k + r),

where x+ = max{0, x}. Thus by (8.123) the sum (8.124) becomes

Sn+r =
(
1 +O(n−1)

) (−1)r

r!
1

2πi

∫ 1
2
−[2−r]++i∞

1
2
−[2−r]+−i∞

nr−zΓ(z)
1

1− pr−z − qr−z
dz + en,

where en is an error term that we discuss later. Naturally, we evaluate the integral by the
residue theorem. However, first we observe that the function under the integral has infinitely
many poles that are roots of

1 = pr−z + qr−z .

This equation appears many times in this book, and we need to study the locations of these
roots in order to find asymptotic expansions of Sn+r and similar expressions. The reader is
asked in Exercise 20 to provide a full proof of the following lemma.
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Lemma 8.22 (Jacquet 1989, Schachinger 1993) Let zk for k = Z = 0,±1,±2, . . . be
solutions of

p−z+r + q−z+r = 1, (8.125)

where p+ q = 1 and z is complex.
(i) For all k ∈ Z = {0,±1,±2, . . .}

−1 + r ≤ <(zk) ≤ σ0 + r, (8.126)

where σ0 is a positive solution of 1 + q−s = p−s. Furthermore,

(2k − 1)π
log p

≤ =(zk) ≤ (2k + 1)π
log p

.

(ii) If <(zk) = −1 + r and =(zk) 6= 0, then log p/ log q must be rational. More precisely, if
log p
log q = s

t , where gcd(s, t) = 1 for s, t ∈ Z, then

zk = −1 + r +
2ksπi
log p

(8.127)

for all k ∈ Z.

Proof. We give only a sketch of the proof for r = 1. Let us assume that z = −1 + it is a
solution of p−z + q−z = 1. Then

|p−z + q−z| = 1 = p+ q = |p1−it|+ |q1−it|
= |p−z|+ |q−z|.

Now we know that the first and the last expression are equal and both equal to 1. But for
complex numbers u and v the equality |u + v| = |u| + |v| holds if and only if u = λv, with
some real λ ≥ 0. Therefore, p−z and q−z have the same argument in the complex plane. But
p−z + q−z = 1, hence the argument in question must be zero. This means that p−z as well as
q−z are nonnegative real numbers as soon as z is a solution. Their imaginary parts are zero,
which yields

sin(t log p) = sin(t log q) = 0.

Therefore, t log p as well as t log q are an integer multiple of π, from which it follows imme-
diately, that the ratio of log p and log q has to be rational, if t is different from zero. Also, if
this ratio is not in Q, then there does not exist a solution with real part −1 and imaginary
part different from zero.

Based on the above lemma, we conclude that either <(zk) > r − 1 for log p/ log q /∈ Q or
zk = r − 1 + 2πiks/ log p when log p/ log q = s/t ∈ Q. In any case, the line <(zk) lies to the
right of the line of the integration (1

2 − [2 − r]+ − i∞, 1
2 − [2 − r]+ + i∞). We now apply
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Table 8.5: Upper Bound on |Pr(n)| as a Function of r.

r |Pr(n)|
-2 .1725 10−6

-1 .1573 10−5

0 .1426 10−4

1 .1300 10−3

2 .1207 10−2

3 .1153 10−1

4 .1142 10−0

5 1.1823
6 12.8529
7 147.2071
8 1779.8207

the closing-the-box method discussed in Section 7.6.3. We consider a big rectangle with the
left side being the line of integration, the right side positioned at <(z) = M (where M is
a large number), and the bottom and top sides positioned at =(z) = ±A, say. We further
observe that the right side contributes only O(nr−M ) due to the factor nr−M in the integral.
Both the bottom and top sides contribute negligibly, too, since the gamma function decays
exponentially fast with the increase of the imaginary part when A → ∞. This fact was
already used in the proof of Theorem 8.21. In summary, the integral is equal to a circular
integral (around the rectangle) plus a negligible part O(nr−M). But then by Cauchy’s residue
theorem the latter integral is equal to minus the sum of all residues at zk, that is,

Sn+r = −(−1)r

r!

∞∑
k=−∞

Res

(
nr−zΓ(z)

1− pr−z − qr−z
, z = zk

)
+O(nr−M) . (8.128)

The minus sign above indicates that the contour is encircled in the clockwise direction. When
log p/ log q /∈ Q, then <(zk) > r − 1, hence Sn+r = o(n).

Now we consider log p/ log = s/t ∈ Q. In this case, the main contribution to the asymp-
totics comes from z0 = r − 1, which is a double pole. We shall use the following expansions
for w = z − z0

nr−z = n(1− w lnn+O(w2)) ,

(1− pr−z − qr−z)−1 = −w−1h−1 +
1
2
h2h

−2 +O(w),

Γ(z) = (−1)r+1(w−1 − γ + δr,0) +O(w) r = 0, 1,
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where h = −p ln p − q ln q, h2 = p ln2 p+ q ln2 q, and γ = 0.577215 . . . is the Euler constant.
Considering, in addition, the residues coming from zk for k 6= 0 we finally arrive at

Sn+r =


1
hn(lnn+ γ − δr,0 + 1

2h2) + (−1)r

r! nPr(n) + en r = 0, 1

n (−1)r

r(r−1)h + (−1)rnPr(n) + en r ≥ 2,

provided log p/ log = s/t ∈ Q. In the above Pr(n) is a contribution coming from zk for k 6= 0,
and one computes

Pr(n) =
1
h

∑
k∈Z\{0}

Γ(r − 1 + 2πks/ log p) exp(2πiks logp n)

=
1
h

∑
k 6=0

Γ(r − 1 + 2πks/ log p) exp(2πiks logp n),

where throughout we write
∑

k 6=0 :=
∑

k∈Z\{0}. We observe that Pr(n) is a periodic function
of logp n with period 1, mean 0, and small amplitude for small r. For example, when
p = q = 1/2 we have

Pr(n) =
1

ln 2

∑
k 6=0

Γ(r − 1 + 2πik/ log 2) exp(−2πik log2 n).

The absolute value of Pr(n) is shown in Table 8.5 for some r. Observe that the amplitude of
Pr(n) is very small for small r but rapidly increases even for moderate r.

Concerning the error term en; it can be represented as

en = O

(
1

2n
1

2πi
(−1)n

r!

∫ 1
2
−[2−r]++i∞

1
2
−[2−r]+−i∞

nr−z(z(z + 1)Γ(z)
1

1 − pr−z − qr−z
dz

)
;

hence the same procedure as above may be used to evaluate the integral. Clearly, en = O(1).
2

Alternating sums arise in many computations, and we often must use various asymptotic
methods to evaluate the integral involved. The reader is referred to Flajolet and Sedgewick
[148] and exercises at the end of this chapter for more examples. For example, if F (z) denotes
the ordinary generating function of fk and S(z) the ordinary generating function of Sn[f ],
then one obtains, as in Example 7.11 of Chapter 7,

S(z) =
1

1− zF
(
− z

1− z

)
.

Thus if F (z) has algebraic singularities, so S(z) does, and one can use the singularity analysis
to derive asymptotics of Sn.
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Furthermore, this approach works fine also for the binomial sums defined as

S̄n[f ] =
n∑

k=0

(
n

k

)
pkqn−kfk, q = 1− p.

Again, the ordinary generating function S̄(z) of S̄n[f ] can be expressed in terms of the
generating function F (z) of fk as

S̄(z) =
1

1− qzF
(

pz

1− qz

)
.

Binomial sums were studied by Flajolet [129] using singularity analysis. We shall return to
them in the final chapter of this book, where they are solved by the depoissonization tool.

We complete this section with the analysis of an interesting alternating sum that requires
an application of the saddle point method in the Rice formula. Moreover, in this case the
saddle point coincides with a pole.

Example 8.19 Digital Search Tree
In the analysis of digital search trees Louchard [290] considered the following sum

Fn(k) =
k∑

i=0

(
k

i

)
piqk−i(1− piqk−i)n, (8.129)

where k = O(log n) and p+ q = 1. This is related to the depth in a digital search tree, and
therefore of particular interest is the case when k = 1

h log n + x
√

log n and x = O(1). As
before, let h = −p log p− q log q be the entropy. First, observe that

Fn(k) =
∑
i≥0

(
k

i

)
piqk−i

∑
`≥0

(
n

`

)
(−1)n−`p`iq`(k−i)

=
∑
`≥0

(
n

`

)
(−1)`

∑
i≥0

(
k

i

)
pi(`+1)q(k−i)(`+1)

=
∑
`≥0

(
n

`

)
(−1)`(p`+1 + q`+1)k.

The last sum is an alternating sum and can be treated by the Rice method. Using Theo-
rem 8.21 we arrive at the following;

Fn(k) =
1

2πi
(1 +O(1/n))

∫ 1
2
+i∞

1
2
−i∞

n−sΓ(s)(p1−s + q1−s)kds. (8.130)
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Theorem 8.23 Let h2 = p log2 p + q log2 q and σ2 = (h2 − h2)/h3 with p 6= q. For k =
1
h log n+ yσ

√
log n we have as n→∞

Fn(k) ∼ Φ(y) =
1√
2π

∫ y

−∞
e−t2/2dt (8.131)

provided y = O(1).

Proof. We apply the saddle point method, and estimate the integral

I(n) =
1

2πi

∫ 1
2
+i∞

1
2
−i∞

n−sΓ(s)(p1−s + q1−s)kds

for k = c1 log n+ x
√

log n, where c1 = 1/h and x = yσ. Clearly,

I(n) =
1

2πi

∫ 1
2
+i∞

1
2
−i∞

Γ(s) exp
(
−(s log n− k log(p1−s + q1−s))

)
ds.

Observe that

s log n− k log(p1−s + q1−s) = −(s− s0)2

2
k(h2 − h2) +

(log n− kh)2

2k(h2 − h2)
+O(ks3),

where
s0 =

log n− kh
k(h2 − h2)

=
−y

hσ
√

log n
.

Let now s = s0 + it. Since s0 is also close to a pole of Γ(s) we must use

Γ(s) ∼ 1
s0 + it

=
s0

s20 + t2
− it

s20 + t2
.

Substituting u = t2 and x = yσ, and putting everything together, we finally obtain

I(n) ∼ 1
πi
e−y2/2

∫ ∞

0
et

2h2σ2 log n/2 s0
s20 + t2

(1 +O(x/
√

log n))dt

= (1 +O(x/
√

log n))
s0
πi
e−y2/2

∫ ∞

0
e−uβ 1√

u(s20 + u)
du,

where β = h2σ2 log n/2. But it is known that (cf. [2])
1
πi

∫ ∞

0
e−uβ 1√

u(s20 + u)
du =

1
2s0

eβs2
0Erfc(s0

√
β),

where
Erfc(x) =

2√
π

∫ ∞

x
e−t2dt.

Then
I(n) ∼ 1

2
Erfc(−y/

√
2) = 1− Φ(−y) = Φ(y),

where Φ is the standard normal distribution. The reader is asked in Exercise 19 to use the
van der Waerden method to prove this result. 2
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8.6 Limiting Distributions

In this section we shall apply the asymptotic methods learned so far to derive limiting distri-
butions of a sequence of random variables from its sequence of generating functions. We shall
mostly deal with normal approximation since the Poisson approximation (used to estimate
rare or exceptional occurrences) is a subject of a recent book by Barbour, Holst and Janson
[33].

8.6.1 Discrete Limit Laws Through PGF

From now on, we shall deal with a sequence of nonnegative discrete random variables Xn ≥ 0
and the corresponding sequence of generating functions Gn(z) = E[zXn ]. A natural question
to ask is whether one can infer from the limit of Gn(z) (n → ∞), if it exists, whether the
coefficients pn,k = [zk]Gn(z) (for any fixed k) tend to a limit, say pk = limn→∞ Pr{Xn = k}
such that

∑
k≥0 pk = 1. If the latter holds, then Xn is said to satisfy a discrete limit law. A

continuity theorem for the probability generating functions (PGF) answers the above question
in the positive. Interestingly enough, convergence to a discrete law, if exists, is always
uniform, as we shall see below.

Let Gn(z) = E[zXn ] be a sequence of generating functions. Observe that Gn(z) are
uniformly bounded since |Gn(z)| ≤ 1 for |z| < 1. If, in addition, Gn(z)→ G(z) then Vitali’s
theorem (cf. [424] pp. 168) applies. (Vitali’s theorem asserts that: Let fn(z) be a sequence
of functions, each analytic in a region D; let |fn(z)| ≤ M for every n and z in D; and let
fn(z) tend to a limit as n→∞, at a set of points having a limit-point inside D. Then fn(z)
tends uniformly to a limit in any region bounded by a countour interior to D, the limit being,
therefore, an analytic function of z.

Theorem 8.24 (Continuity of PGF) Let G(z) =
∑

k≥0 pkz
k together with the sequence

Gn(z) of generating functions be defined for |z| < 1. If

lim
n→∞Gn(z) = G(z) (8.132)

pointwise for z ∈ Ω ⊂ {z : |z| < 1}, then for every k we have

lim
n→∞[zk]Gn(z) = pk. (8.133)

Proof. Following Flajolet and Sedgewick [149], we apply Cauchy’s theorem enforced by
Vitali’s theorem to obtain

pk =
1

2πi

∮
G(z)
zk+1

dz

= lim
n→∞

1
2πi

∮
Gn(z)
zk+1

dz

= lim
n→∞[zk]Gn(z),
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where the second, crucial line is justified by the Vitali theorem.

Example 8.20 Poisson Theorem
Let Xn have the Binomial(n, p) distribution, that is, Pr{Xn = k} =

(n
k

)
pkqn−k, where

q = 1 − p. We shall assume that p depends on n such that λ = limn→∞ np is a constant.
Observe that

Gn(z) = (1− p+ pz)n,

hence

lim
n→∞Gn(z) = lim

n→∞

(
1 +

λ(z − 1)
n

)n

= eλ(z−1).

Since eλ(z−1) is PGF for the Poisson distribution, by Continuity Theorem 8.24 we proved
Poisson’s theorem, which asserts that the binomial distribution converges to the Poisson when
np→ λ. 2

In passing, we should point out that one must be careful with limiting distributions of
discrete random variables since often such a distribution might not exist even if an asymptotic
formula for the “limiting” distribution can be derived. This problem is notorious for the
extreme distributions that we already touched on in Section 3.3.2. To see this, let us
consider a sequence of i.i.d. discrete random variables, say, X1, . . . ,Xn. Define

Mn = max{X1, . . . ,Xn}.

The question we ask is whether one can find sequences an and bn such that

Mn − an

bn

converges to a nondegenerate random variable. Anderson [12] proved that this is not the case
as long as the probability mass pk = Pr{Xi = k} is such that

pk∑∞
j=k pj

(8.134)

does not converge to 0 or ∞ as k →∞. We illustrate this point with an example.

Example 8.21 Extreme Distribution for i.i.d. Geometric Distributions
Let Pr{Xi = k} = pk(1 − p) for each 1 ≤ i ≤ n have Geometric(p) distribution. Then

(8.134) converges to 1− p > 0; hence a limiting distribution cannot exist. But an asymptotic
formula for Pr{Mn < log1/p n+ x} can be found for fixed x and large n as follows

Pr{Mn < log1/p n+ x} ∼ exp
(
−px−〈log1/p n+x〉) ,
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where 〈t〉 = t− btc. Indeed, let Pr{Xi ≥ k} = 1− F (k) = pk. Then

Pr{Mn < k} = (F (k))n = (1− (1− F (k))n

= exp(n log(1− (1− F (k)))
∼ exp(−n(1− F (k)) 1− F (k) = pk → 0 as k →∞.

Thus for x real and k = blog1/p n+ xc we have

Pr{Mn < blog1/p n+ xc} = Pr{Mn < log1/p n+ x}

∼ exp
(
−npblog1/p n+xc)

= exp
(
−px−〈log1/p n+x〉) .

Observe the limiting distribution of Mn does not exist. 2

8.6.2 Continuous Limit Laws by Integral Transforms

In this book, we treat mostly discrete structures, and hence deal mostly with discrete ran-
dom variables. However, when considering limit laws, a discrete random variable after a
normalization may converge to a continuous random variable. The most famous example is
the central limit law that asserts that the sequence (Xn − E[Xn])/

√
Var[Xn] convergences

in distribution to the standard normal distribution. We have already seen it in Section 8.4.3.
Convergence in distribution was already discussed in Section 2.2.2. To recall, we say

that Xn converges in distribution to X, and we write Xn
d→X, if Fn(x) → F (x) for each

point of continuity of F (x), where Fn(x) and F (x) are distribution functions of Xn and X,
respectively. If X is a continuous random variable, then instead of PGF we should deal with
the moment generating function (MGF), also known as the Laplace transform but strictly
speaking it is the double-sided standard Laplace transform with s replaced by −s,

M(s) := E[esX ] =
∫ ∞

−∞
esxdF (x);

or the characteristic function (CF), which is really the Fourier transform,

φ(t) := E[eitX ] =
∫ ∞

−∞
eitxdF (x).

Clearly, the characteristic function is always defined for any distribution, while the moment
generating function might not exist for heavily tailed distributions. In fact, we proved in
Section 5.4 that the existence of MGF near the origin implies an exponential tail.

We finish these introductory comments with a few remarks. First, the standard normal
distribution has the following MGF and CF;

M(s) = es
2/2, φ(t) = e−t2/2.



332 Complex Asymptotic Methods

Second, we recall that the rth moment of X, if it exists, can be computed as follows

E[Xr] =
dr

dsr
M(s)

∣∣∣∣
s=0

= i−r dr

dtr
φ(t)

∣∣∣∣
t=0

.

Third, for µ = E[X] and σ2 = Var[X] > 0, if we denote by

X∗ =
X − µ
σ

then the normalized random variable has

φX∗(t) = e−iµt/σφX(t/σ),
MX∗(s) = e−sµ/σMX(s/σ).

With this in mind, we can move to more interesting considerations. As in the case of
discrete random variables, we would like to infer convergence in distribution of Xn from
convergence of MGF or CF. Fortunately, this is possible and known as Lévy’s continuity
theorem. We state it below, and the reader is referred to Feller [123] or Durrett [117] for a
proof.

Theorem 8.25 (Lévy’s Continuity Theorem) Let Xn and X be random variables with
characteristic functions φn(t) and φ(t), and moment generating functions Mn(s), M(s) (if
they exist), respectively.
Characteristic Function. A necessary and sufficient condition for Xn

d→X is

lim
n→∞φn(t) = φ(t)

pointwise for all real t.
Laplace Transform. If Mn(t) and M(t) exist in a common interval [−t0, t0], and the
following holds pointwise for all real t ∈ [−t0, t0]

lim
n→∞Mn(t) = M(t),

then Xn
d→X.

In combinatorics and the analysis of algorithms, the following three corollaries are very
useful. They take advantage of the fact that often generating functions of discrete structures
are analytic for all complex z in a neighborhood of zero. We know that analytic functions
have all derivatives; hence the underlying random variables should possess all moments.
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Corollary 8.26 (Goncharov) Let Xn be a sequence of discrete random variables with gen-
erating function Gn(z) = E[zXn ], mean µn = E[Xn] and variance Var[Xn] = σ2

n > 0. If

lim
n→∞ e−τµn/σnGn(eτ/σn) = eτ

2/2 (8.135)

for all τ = it, and −∞ < t < ∞, then Xn
d→N(0, 1), where N(0, 1) stands for the random

variable having the standard normal distribution.

Proof. It follows directly from the Lévy continuity theorem.

Corollary 8.27 If (8.135) holds for τ ∈ [−θ, θ], θ > 0, then there exists α > 0 such that

Pr

{
Xn − µn

σn
> k

}
≤ e−αk (8.136)

uniformly for all n and k.

Proof. It follows from Markov’s inequality. Let X∗
n = (Xn − µn)/σn. Since E[etX

∗
n ] < C for

t ∈ [−θ, θ], where C is a constant, we obtain for any k > 0

Pr{X∗
n > k} ≤ e−tkE[etX

∗
n ] ≤ Ce−kθ,

as needed.

Corollary 8.28 Let Xn and X be respectively a sequence of real random variables and a real
random variable such that Mn(t) = E[etXn ] and M(t) = E[etX ] are their moment generating
functions defined in a real neighborhood of t = 0. Suppose that limn→∞Mn(t) = M(t) for t
belonging to such a real neighborhood of 0. Then Xn converges to X both in distribution and
in moments (i.e., E[Xr

n]→ E[Xr] for any r > 0).

Proof: The convergence in distribution follows directly from Lévy’s theorem. We concen-
trate on proving the second part. Let us first extend the definition of Mn(t) to a complex
neighborhood of t = 0. Observe that in such a neighborhood

|etXn | = e<(t)Xn .

Therefore, Mn(t) exists and is bounded in a complex neighborhood of 0. Clearly, Mn(t) and
M(t) are analytic functions. We know that |Mn(t)| is uniformly bounded in this neighborhood
by, say, a number A > 0. We redefine this neighborhood by removing all points with distance
smaller than ε > 0 of the boundary of the former neighborhood, where ε is arbitrarily
small. Due to Cauchy’s estimate the derivatives |M ′

n(t)| are also uniformly bounded by
Aε−1, and therefore Mn(t) are bounded and uniformly continuous. By Ascoli’s theorem,
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from every sequence of Mn(t) we can extract a convergent subsequence. This limit function
can only be the unique analytic continuation of M(t); thus Mn(t) converges to M(t) in
this complex neighborhood of 0. The convergence in moments follows since convergence of
analytic functions implies the convergence of their derivatives.

We should add one more comment. When deriving generating functions of discrete struc-
tures, we can often obtain an error term. To translate such an analytic error term into a
distribution error term, we often use the Cauchy estimate. But in some situations the fol-
lowing estimate of Berry and Essén is very useful. The proof can be found in Durrett [117]
or Feller [123]. We write ‖ f ‖∞:= supx |f(x)|.

Lemma 8.29 (Berry-Essén Inequality) Let F and G be distribution functions with char-
acteristic functions φF (t) and φG(t). Assume that G has a bounded derivative. Then

‖ F −G ‖∞≤
1
π

∫ T

−T

∣∣∣∣φF (t)− φG(t)
t

∣∣∣∣ dt +
24
π

‖ G′ ‖∞
T

(8.137)

for any T > 0.

These analytic tools allow us to derive many convergence results in probability theory,
analytic combinatorics, and analysis of algorithms. For example, consider the central limit
theorem. It concerns the sum Sn = X1 + · · ·+Xn of i.i.d. random variables with mean µ and
variance σ2. Consider the normalized random variable

S∗
n =

1
σ
√
n

n∑
i=1

X̄i,

where X̄i = Xiµ. The CF of S∗
n is

φS∗
n
(t) = φn

X̄

(
t

σ
√
n

)
.

But Taylor’s expansion of φX(τ) around τ = 0 gives

φn
X̄

(
t

σ
√
n

)
=

(
1− t2

2n
+ o(t2/2n)

)n

→ e−t2/2,

which proves the central limit theorem.
In the analysis of algorithms, we often deal with weakly dependent random variables

X1, . . . ,Xn, Y such that
Zn = Y +X1 + · · · +Xn

satisfies the following asymptotic formula for the generating function of Zn

GZn(z) = GY (z)[GX (z)]βn

(
1 +O(κ−1

n )
)
,
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where βn, κn → ∞ as n → ∞ and GX(z) is the probability generating function of X1.
Can we infer the central limit law from this asymptotic expression? The answer is yes as
demonstrated by Bender [36], Bender and Richmond [40], Hwang [201], and Flajolet and
Soria [151].

Theorem 8.30 (Hwang, 1994) Assume that the moment generating functions Mn(s) =
E[esXn ] of a sequence of random variables Xn are analytic in the disc |s| < ρ for some ρ > 0,
and satisfy there the expansion

Mn(s) = eβnU(s)+V (s)
(

1 +O

(
1
κn

))
(8.138)

for βn, κn → ∞ as n → ∞, and U(s), V (s) are analytic in |s| < ρ. Assume also that
U ′′(0) 6= 0. Then

E[Xn] = βnU
′(0) + V ′(0) +O(κ−1

n ), (8.139)
Var[Xn] = βnU

′′(0) + V ′′(0) +O(κ−1
n ), (8.140)

and for any fixed x

Pr

{
Xn − βnU

′(0)√
βnU ′′(0)

≤ x
}

= Φ(x) +O

(
1
κn

+
1√
βn

)
, (8.141)

where Φ(x) is the distribution function of the standard normal distribution.

Proof. We shall follow Hwang [201]. The convergence in distribution and in moments follow
from Theorem 8.25 and Corollary 8.28, so we need only derive the rate of convergence. We
shall use the Berry-Essén estimate with Tn =

√
βn to prove that

‖ Fn − Φ ‖∞≤
1
π

∫ Tn

Tn

∣∣∣∣∣M∗
n(it)− e−t2/2

t

∣∣∣∣∣ dt+
24
π

c

Tn
= O

(
κ−1

n + β−1/2
n

)
, (8.142)

where c is a constant, and M∗
n(s) stands for the MGF of X∗

n = (Xn − βnU
′(0))/

√
βnU ′′(0).

Indeed, setting σn =
√
βnU ′′(0), and using (8.138), we obtain

M∗
n(it) = exp

(
−βnU

′(0)
σn

it + U

(
it

σn

)
βn + V

(
it

σn

))(
1 +O(κ−1

n )
)

= exp

(
− t

2

2
+O

(
|t|+ |t|3
σn

))(
1 +O(κ−1

n )
)

|t| ≤
√
βn.

In the above, we used the following Taylor expansions valid for |t| ≤
√
βn

U

(
it

σn

)
=

it

σn
U ′(0) − t2

2σn
U ′′(0) +O

(
|t|3
σn

)
,

V

(
it

σn

)
= O

( |t|
σn

)
.
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Since |ew − 1| ≤ |w|e|w|, we find

|M∗
n(it)− e−t2/2| = O

((
|t|+ |t|3
σn

+
1
κn

)
exp

(
− t

2
+O

(
|t|+ |t|3
σn

+
1
κn

)))

= O

((
|t|+ |t|3
σn

+
1
κn

)
e−t2/4

)
|t| ≤ βn.

After simple algebra, this leads to (8.142) and the proof is complete.

Example 8.22 Pattern Occurrences Revisited
We shall continue the discussion of the problem from Section 7.6.2, where we analyzed the

number of occurrences On of a given pattern H in a random text. In particular, we extend
Theorem 7.14 and prove the following: Let r = E[On] + x

√
Var[On] for x = O(1), then

Pr{On(H) = r} =
1√

2πc1n
e−

1
2
x2
(

1 +O

(
1√
n

))
, (8.143)

where c1 is defined in (7.96) of Theorem 7.14. Let µn = E[On(H)] = (n −m + 1)P (H) and
σ2

n = Var[On(H)] ∼ c1n. By Cauchy’s theorem

Tn(u) =
1

2πi

∮
T (z, u)
zn+1

dz =
1

2πi

∮
uP (H)

D2
H(z)(1 − uMH(z))zn+1−m

dz,

where the integration is along a circle around the origin. To evaluate this integral we enlarge
the circle of integration to a bigger one, say R > 1, such that the bigger circle contains
the dominating pole of the integrand function. By Cauchy’s estimate we conclude that the
integral over the bigger circle is O(R−n). We now need to evaluate the residues inside the
circle. Let us now substitute u = et and z = eρ (so that Tn(et) becomes the moment
generating function of On). Then the poles of the integrand are the roots of the equation

1− etMH(eρ) = 0.

This equation implicitly defines, in some neighborhood of t = 0, a unique differentiable
function ρ(t), satisfying ρ(0) = 0. Notably, all other roots ρ satisfy inf |ρ| = ρ′ > 0. Then
the residue theorem with eρ

′
> R > eρ > 1 leads to

Tn(et) = C(t)e−(n+1−m)ρ(t) +O(R−n), (8.144)

where
C(t) =

P (H)
D2

H(ρ(t))M ′
H(ρ(t))

.

But (8.144) satisfies the assumption of Theorem 8.30, which implies the desired result.
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Finally, we observe that (8.144) can be used to obtain the large deviations result. Indeed,
we conclude that

lim
n→∞

log Tn(et)
n

= −ρ(t) .

Thus directly from the Gärtner-Ellis Theorem 5.21 we obtain for a > P (H)

lim
n→∞

log Pr{On > na}
n

= −I(a),

where
I(a) = aωa + ρ(ωa)

with ωa being a solution of
−ρ′(ωa) = a.

In passing we observe that this can be also derived directly by the shift of mean method. In
Exercise 23 we propose a stronger version of the large deviations result. 2

8.7 Applications

It is again time to apply what we have learned so far. Since this chapter is very long, we will
be rather sketchy. We start with a combinatorial problem on words, where we find a set of
words that approximately self-overlap. This problem combines methodologies of the previous
two chapters. Then we plunge into singularity analysis to provide an asymptotic expansion
for the minimax redundancy for memoryless sources. Finally, in our most sophisticated
application we derive the limiting distribution of the depth in a digital search tree.

8.7.1 Variations on Approximate Self-Overlapping Words

We are interested here in the structure of a word wk := wk
1 ∈ Ak of length k such that when

shifted by, say s, the shifted word is within a given Hamming distance from the original
(unshifted word). More precisely, let the set of all words of length k be denoted asWk := Ak.
A prefix of length q ≤ k of wk is written as wk(q) or simply wk if there is no confusion. The
distance between words is understood as the relative Hamming distance, that is, dn(xn

1 , x̃
n
1 ) =

n−1∑n
i=1 d1(xi, x̃i), where d1(x, x̃) = 0 for x = x̃ and 1 otherwise (x, x̃ ∈ A). We also write

M(xn
1 , x̃

n
1 ) = ndn(xn

1 , x̃
n
1 ) for the number of mismatches between xn

1 and x̃n
1 . We now fix

D ≥ 0. Consider a word wk+s = wk+s
1 of length k + s, and shift it by s ≤ k. The shifted

word of length k is wk+s
s . We are interested in the set Wk,s(D) of all words wk+s such that

d(wk
1 , w

k+s
s ) ≤ D . (8.145)



338 Complex Asymptotic Methods

This problem is well understood for the “faithful” (lossless) overlapping case, that is, when
D = 0. Then for m = bk/sc (cf. Lemma 4.10 and [289, 411, 412])

Wk,s(0) = {ws ∈ Ws : wk+s = w(m+1)
s ws

=
⋃

ws∈Ws

{w(m+1)
s ws},

where ws is a prefix of length q = k −m · s, and w
(m)
s is a concatenation of m words ws.

We now construct all words wk+s that belong to Wk,s(D). First, let us define an integer
` such that `/k ≤ D < (` + 1)/k. Also, we write k = s ·m + q, where 0 ≤ q < s. Take now
0 ≤ l ≤ `, and partition the integer l into m+ 1 integer terms as follows:

l = a1 + a2 + · · · + am + ãm+1 0 ≤ ai ≤ s for 1 ≤ i ≤ m (8.146)

and 0 ≤ ãm+1 ≤ q. Let the set of all such partitions be denoted as Pk,s(l). We now define
recursively m sets Ws(ai) for i ≤ m. We set Ws(a0) :=Ws, where a0 = 0, and then

Ws(ak) = {vs ∈ Ws : M(ws, vs) = ak for ws ∈ Ws(ak−1)} ,

together with

Wq(ãm+1) = {vq ∈ Wq : M(ws(q), vq) = ãm+1 for ws ∈ Ws(am)} .

Thus

Wk,s(D) =
l⋃

l=0

{Wk,s(l)}

such that

Wk,s(l) =
⋃

w0
s∈Ws

⋃
Ps,k(l)

⋃
w1

s∈Ws(a1)1

. . .
⋃

wm
s ∈Ws(am)

⋃
wm+1

s ∈Ws(̃am+1)

w0
sw

1
s · · ·wm

s w
m+1
s , (8.147)

where w0
sw

1
s · · ·wm

s w
m+1
s is the concatenation of words w0

s and . . . wm+1
s . Summing over all

` we obtain Wk,s(D).
In some applications the cardinality of Wk,s(D) and Ps,k(l) are of interest. Let G(z) be

the generating function of the cardinality |Ps,k(l)| of Ps,k(l). By (8.146), we immediately
obtain

G(z) = (1 + x+ x2 + · · · + xs)m(1 + x+ x2 + · · ·+ xq) (8.148)

=
(1− xs+1)m(1− xq+1)

(1− x)m+1
, (8.149)
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where m = bk/sc and q = k −ms. Let now el = |Ps,k(l)| = [zl]G(z). As in Comtet [71] we
introduce the polynomial coefficients

(n,q
k

)
defined as

(1 + x+ · · ·+ xq−1)n =
∞∑

k=0

(
n, q

k

)
xk (8.150)

for integer q. Note that
(n,2

k

)
=
(n
k

)
. Observe that

el = |Ps,k(l)| =
q∑

j=0

(
m, s+ 1
l − j

)

=
q∑

j=0

∑
(s+1)i+t=l−j

(−1)i

(
m

i

)(
m+ t

m

)
,

where m = bk/sc and q = k −ms.
The enumeration of Wk,s is even easier since

|Wk,s(l)| = 2s
∑

a1+a2+···+am+am+1=l

(
s

a1

)
· · ·
(
s

am

)(
q

am+1

)
= 2s

(
k

l

)
.

The above directly follows from (1 +x)s(1 +x)s · · · (1 +x)s(1 +x)q = (1 +x)ms+q = (1 +x)k.
The next interesting question is how to get asymptotics for el and

(n,q
k

)
. We prove the

following result. Let g(z) = (1
q + z

q + · · · + zq−1

q ) be the probability generating function so
that

[zk]qngn(z) =

(
n, q

k

)
.

From the Cauchy formula we have(
n, q

k

)
=

qn

2πi

∮
g(z)n

zk+1
dz,

where the path of integration encloses the origin. Judging from the binomial coefficients (i.e.,
q = 2) we should expect different asymptotics for various values of k (e.g., bounded k, k
around the mean nµ = n(q − 1)/2, and k = αn, where α 6= (q − 1)/2). This is summarized
in Lemma 8.31 below.

Lemma 8.31 For any q and large n the following holds.

(i) If k = n(q − 1)/2 + r, where r = o(
√
n), then(

n, q

k

)
∼ qn

σ
√

2πn
exp

(
− r2

2nσ2

)
, (8.151)
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where σ2 = (q2 − 1)/12. In particular (cf. Comtet [71])

sup
k

(
n, q

k

)
=

(
n, q

n(q − 1)/2

)
∼ qn

√
6

(q2 − 1)πn
. (8.152)

(ii) If k = αn, where α 6= (q − 1)/2, then(
n, q

k

)
∼ g(β)n

βαn

1
σα

√
2πn

, (8.153)

where β is a solution of βg′(β) = αg(β) and σ2
α = β2g′′(β)/g(β) + α− α2.

(iii) If k = O(1), then (
n, q

k

)
∼ nk

k!
(8.154)

Proof. Part (i) directly follows from the saddle point method in exactly the same manner
as we did in Section 8.4.3 so we omit details. Setting r = 0 in (8.151) we obtain (8.152).
Comtet [71] suggested another derivation of it: Note that after the substitution z = eix, the
Cauchy formula yields(

n, q

k

)
=

1
π

∫ π/2

−π/2

(
sin(qx)
sin(x)

)n

cos(x(n(q − 1)− 2k))dx .

Observe that for k = n(q−1)/2 the cosine function achieves its maximum; hence by a simple
application of Laplace’s method we again obtain (8.152).

Part (ii) follows from (i) and the method of shifted mean as discussed in Section 8.4.3.
More precisely, we use

[zαn](g(z))n =
g(β)n

βαn

(
g(βz)
g(β)

)n

and find β to be βg′1(β) = αg1(β).
Part (iii) can be proved as follows. From the Cauchy integral we have, after substituting

z = w/n,(
n, q

k

)
=

1
2πi

∮
G(z)n

zk+1
dz

=
1

2πi

∮ (1 + w/n + · · ·+ (w/n)q−1)n

wk+1
nkdw → nk

2πi

∮
ew

wk+1
=
nk

k!
.

This completes the proof.
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8.7.2 Redundancy Rate for Memoryless Sources

We briefly discussed redundancy of source coding in Section 6.4, Example 7.16 of Chapter 7,
and Example 7 of this chapter. Here, we show how the analytic tools presented in this chapter
can be used to evaluate the minimax redundancy for memoryless sources.

We start with a brief introduction, but the reader may also want to review Chapter 6. A
code C n : An → {0, 1}∗ is defined as a mapping from the set An of all sequences of length
n over the finite alphabet A to the set {0, 1}∗ of all binary sequences. Given a probabilistic
source model, we let P (xn

1 ) be the probability of the message xn
1 while for a given code C n

we denote by L(C n, x
n
1 ) the code length for xn

1 .
Shannon’s Theorem 6.18 asserts that the entropy Hn(P ) = −∑xn

1
P (xn

1 ) log2 P (xn
1 ) is the

lower bound on the expected code length. Hence, − log2 P (xn
1 ) can be viewed as the “ideal”

code length. The next natural question is to ask by how much the length L(C n, x
n
1 ) of a

code differs from the ideal code length, either for individual sequences or on average. The
pointwise redundancy Rn(C n, P ;xn

1 ) and the average redundancy R̄n(C n, P ) are defined as

Rn(C n, P ;xn
1 ) = L(C n, x

n
1 ) + log2 P (xn

1 )
R̄n(C n, P ) = EP [Rn(C n, P ;Xn

1 )] = E[L(C n),Xn
1 ]−Hn(P ).

Another natural measure of code performance is the maximal redundancy defined as

R∗
n(C n, P ) = max

xn
1

{Rn(C n, P ;xn
1 )}.

Observe that while the pointwise redundancy can be negative, maximal and average redun-
dancies cannot, by Shannon’s Theorem 6.18 and Kraft’s inequality (see Theorem 6.17).

In practice, the source probabilities are unknown; hence there is the desire to design codes
for a whole class of source models S. When the source is known, the redundancy can be as
low as 1 bit, as demonstrated by Shannon codes (see Example 7). Therefore, for unknown
probabilities, the redundancy rate also can be viewed as the penalty paid for estimating
the underlying probability measure. More precisely, universal codes are those for which the
redundancy is o(n) for all P ∈ S. The (asymptotic) redundancy-rate problem consists in
determining for a class S of source models the rate of growth of the minimax quantities

R∗
n(S) = min

C n

max
P∈S
{R∗

n(C n, P )}

as n → ∞. This minimax redundancy can be viewed as the additional “price” on top of
entropy incurred (at least) by any code in order to be able to cope with all sources.

In passing we would like to add that the redundancy rate problem is typical of a situation,
where second-order asymptotics play a crucial role since the leading term of E[L(C n),Xn

1 ] is
known to be nh, where h is the entropy rate. This problem is an ideal candidate for analytic
information theory, which applies analytic tools to information theory.
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Hereafter, we aim at establishing a precise asymptotic expansion of R∗(M) for memoryless
sources M. First we review Shtarkov’s result [390] concerning the minimax redundancy

R∗
n(S) = min

C n

sup
P∈S

max
xn
1

{L(C n, x
n
1 ) + log2 P (xn

1 )}

for general class of sources S, where the supremum is taken over all distributions P . Shtarkov
proposed the following bound

log2

∑
xn
1

sup
P
P (xn

1 )

 ≤ R∗
n(S) ≤ log2

∑
xn
1

sup
P
P (xn

1 )

+ 1. (8.155)

To prove it, Shtarkov first introduced a new probability distribution, namely,

q(xn
1 ) :=

supP P (xn
1 )∑

xn
1

supP P (xn
1 )
.

By Kraft’s inequality (see Theorem 6.17) there exists x̃n
1 such that

−L(C n, x̃
n
1 ) ≤ log2 q(x̃

n
1 ).

The above must be true since otherwise the Kraft inequality would be violated. The lower
bound follows. For the upper bound, Shtarkov proposed the Shannon code C̃ n for the
distribution q(xn

1 ) defined above whose length is

L(C̃ n, x
n
1 ) =

log2

(∑
xn
1

sup
P
P (xn

1 )
)
− log2

(
sup
P
P (xn

1 )
) .

This gives the desired upper bound.
Now, we concentrate on studying

Rn := log2

∑
xn
1

sup
P
P (xn

1 )


for a class of memoryless sources over an m-ary alphabet A(m). Observe that Rn is within
distance one from the minimax redundancy R∗

n. Following Shtarkov we shall prove that

Rn = logDn(m),

where Dn(m) satisfies

Dn(m) =
m∑

i=1

(
m

i

)
D∗

n(i) (8.156)
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with D∗
0(1) = 0, D∗

n(1) = 1 for n ≥ 1, and for i > 1 we have

D∗
n(i) =

n∑
k=1

(
n

k

)(
k

n

)k (
1− k

n

)n−k

D∗
n−k(i− 1) . (8.157)

Indeed, we first observe that we can partition all sequences into m sets such that the ith
set is built from sequences composed of symbols from the alphabet A(i) consisting of any i
symbols from A(m). This implies (8.156) since

Dn(m) =
m∑

i=1

(
m

i

) ∑
xn∈A(i)

supP (xn) =
m∑

i=1

(
m

i

)
D∗

n(i),

where D∗
n(i) is defined above. To derive the recurrence of D∗

n(i) we argue as follows: Consider
an alphabet A(i−1) and assume that these i−1 symbols of A(i−1) occur on n−k positions
of xn

1 , which contributes D∗
n−k(i − 1) to the sum. On the remaining k positions we place

the ith symbol with the maximum probability supP (xn
1 ). This probability for memoryless

sources is

supP (xn
1 ) =

(
k

n

)k (
1− k

n

)n−k

.

since, in the situation described above, one can view xn
1 as being built over a binary alphabet

(i.e., {A(i− 1), i}) and clearly supx x
k(1− x)n−k = (k/n)k(1− k/n)n−k. This establishes the

desired recurrence (8.157).
We now prove an asymptotic expansion of D∗

n(m) and Dn(m).

Theorem 8.32 (Szpankowski, 1998) For fixed m ≥ 1 the quantity D∗
n(m) attains the

following asymptotics

D∗
n(m) =

√
π

Γ(m
2 )

(
n

2

)m
2
− 1

2

−
√
π

Γ(m
2 −

1
2 )

(
2m
3

)(
n

2

)m
2
−1

(8.158)

+
√
π

Γ(m
2 )

(
n

2

)m
2
− 3

2
(

3 +m(m− 2)(8m− 5)
72

)
+ O(n

m
2
−2).

Furthermore, for m ≥ 2

Rn = logDn(m) =
m− 1

2
log

(
n

2

)
+ log

( √
π

Γ(m
2 )

)
(8.159)

+
Γ(m

2 )m
3Γ(m

2 −
1
2)
·
√

2√
n
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+

(
3 +m(m− 2)(2m + 1)

36
−

Γ2(m
2 )m2

9Γ2(m
2 −

1
2)

)
· 1
n

+ O

(
1
n3/2

)
for large n.

Proof. Observe that the recurrence (8.157) is the same as the one analyzed in Example 7.16
of Chapter 7. In particular, we prove there that the tree-like generating function

D∗
m(z) =

∞∑
k=0

kk

k!
zkD∗

k(m)

satisfies (cf. (7.38))
D∗

m(z) = (B(z)− 1)m,

where B(z) is related to the tree-function T (z) and defined in (7.35). Observe that B(z) =
1/(1 − T (z)) and [zn]B(z) = nn/n!. Furthermore, by (7.39)

Dm(z) = Bm(z)− 1.

We now use the singularity analysis to obtain asymptotics of D∗
n(m) and log2Dn(m). In

Example 10 we derive asymptotic expansion of T (z) − 1 around z = e−1 from which we
directly obtain

B(z) =
1√

2(1 − ez)
+

1
3
−
√

2
24

√
(1− ez)+ 4

135
(1−ez)−23

√
2

1728
(1−ez)3/2+O((1−ez)2) . (8.160)

Then applications of Theorem 8.12 and Theorem 8.13 yield

e−n[zn](B(z)− 1)m =
n

m
2
−1

2
m
2 Γ(m

2 )
− n

m
2
− 3

2

2
m
2
− 1

2

(
2m

3Γ(m
2 −

1
2 )

)

+
n

m
2
−2

2
m
2

(
m(m− 2)(8m − 5)

36Γ(m
2 )

)
+O(n

m
2
− 5

2 ).

This establishes the first part of the theorem. The second part immediately follows from

e−n[zn]Bm(z) =
n

m
2
−1

2
m
2 Γ(m

2 )
+
n

m
2
− 3

2

2
m
2
− 1

2

(
m

3Γ(m
2 −

1
2 )

)

+
n

m
2
−2

2
m
2

(
m(m− 2)(2m + 1)

36Γ(m
2 )

)
+O(n

m
2
− 5

2 )

and
log(1 + a

√
x+ bx+ cx3/2) = a

√
x+ (b− 1

2
a2)x+O(x3/2)

as x→ 0. This completes the proof.
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8.7.3 Limiting Distribution of the Depth in Digital Search Trees

We shall derive here the limiting distribution of the typical depth Dm in a digital search
tree (see Section 1.1). We assume that m independent strings are generated by a binary
memoryless source with p being the probability of emitting “0” and q = 1 − p. Recall that
the typical depth is defined as follows. Let Dm(i) be the depth of the ith node in a digital
tree. Actually, observe that Dm(i) = Di(i) for m ≥ i. Clearly, for various i ≤ m distributions
of Dm(i) are different, and therefore it makes sense to define the typical depth Dm as

Pr{Dm < x} =
1
m

m∑
i=1

Pr{Dm(i) < x} .

Let Bk
m denote the number of internal nodes at level k in a digital tree. To derive a

recurrence on Dm we introduce the average profile B̄k
m := E[Bk

m] to be the average number
of internal nodes at level k in a digital tree. The following obvious relationship between the
depth Dm and the average profile B̄k

m holds:

Pr{Dm = k} =
B̄k

m

m
. (8.161)

This follows from the definition of Dm and the definition of B̄k
m.

We shall work initially with the average profile, and we define the generating function
Bm(u) =

∑∞
k=0 B̄

k
mu

k, which satisfies the following recurrence

Bm+1(u) = 1 + u
m∑

j=0

(
m

j

)
pjqm−j(Bj(u) +Bm−j(u)) (8.162)

with B0(u) = 0. This recurrence arises naturally in our setting by considering the left and
the right subtrees of the root, and noting that j strings will go to the left subtree with the
probability

(m
j

)
pjqm−j . A general recurrence of this type was discussed in Section 7.6.1 from

which we conclude that

Bm(u) = m− (1− u)
m∑

k=2

(−1)k

(
m

k

)
Qk−2(u), (8.163)

where

Qk(u) =
k+1∏
j=2

(1− upj − uqj) , Q0(u) = 1 . (8.164)

Actually, the derivation of (8.163) is not too complicated, so we provide a sketch of the
proof. Let us start with multiplying both sides of (8.163) by zm/m! to get B′

z(z, u) = ez +
uB(pz, u)eqz + uB(qz, u)epz , where B(z, u) =

∑∞
m=0Bm(u)zm

m! , and B′
z(z, u) is the derivative
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of B(z, u) with respect to z. We now multiply this functional equation by e−z and introduce
B̃(z, u) = B(z, u)e−z . This leads to a new functional equation, namely B̃′(z, u) + B̃(z, u) =
1 + u(B̃(zp, u) + B̃(zq, u)). Comparing now the coefficients at zm one immediately obtains
B̃m+1(u) = δm,0 − B̃m(u)(1 − upm − uqm), where δ0,m is the Kronecker symbol. To prove
(8.163) it only suffices to note that Bm(u) =

∑m
k=0

(m
k

)
B̃k(u).

Using again the idea from Section 7.6.1, Example 19 and the Rice method we shall sketch
a proof of the following result. In Exercise 24 the reader is asked to provide details.

Theorem 8.33 (Kirschenhofer and Prodinger, 1988; Szpankowski, 1991) The aver-
age E[Dm] of the depth attains the following asymptotics as m→∞

E[Dm] =
1
h

(
logm+ γ − 1 +

h2

2h
+ θ + δ(m)

)
+O

(
logm
m

)
, (8.165)

where h is the entropy, h2 = p log2 p+ q log2 q, γ = 0.577 . . . is the Euler constant, and

θ = −
∞∑

k=1

pk+1 log p+ qk+1 log q
1− pk+1 − qk+1

.

The function δ(x) is a fluctuating function with a small amplitude when log p/ log q is rational,
and δ(x) ≡ 0 for log p/ log q irrational. More precisely, for log p/ log q = r/t, where r, t are
integers,

δ1(x) =
∞∑

`=−∞
` 6=0

Γ(s`
0)Q(−2)

Q(s`
0 − 1)

exp
(
−2πi`r

log p
log x

)
, (8.166)

where s`
0 = −1 + 2πi`r/ log p.

(ii) The variance of Dm for large m satisfies

Var[Dm] =
h2 − h2

h3
logm+A+ ∆(m) +O(log2m/m), (8.167)

where A is a constant (see Exercise 24) and ∆(x) is a fluctuating function with a small
amplitude. In the symmetric case, the coefficient at logm becomes zero, and then

Var[Dm] =
1
12

+
1

log2 2
· π

2

6
− α− β + ∆(log2m)− [δ21 ]0 +O(log2m/m), (8.168)

where

α =
∞∑

j=1

1
2j − 1

, β =
∞∑

j=1

1
(2j − 1)2

,

the function ∆(x) is continuous with period 1 and mean zero, and |δ21 ]0| < 10−10 is the mean
of δ21(x).
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Sketch of Proof. It suffices to derive asymptotics of the average path length lm := mE[Dm]
and the second factorial moment of the path length l2m := mE[Dm(Dm−1)]. But lm = B′

m(1)
and l2m = B′′

m(1). After some algebra, we arrive at the following two recurrences for all m ≥ 0

lm+1 = m+
m∑

k=0

(
m

k

)
pkqm−k(lk + lm−k), (8.169)

l
2
m+1 = 2(lm+1 −m) +

(
m

k

)
pkqm−k(l2k + l

2
m−k) (8.170)

with l0 = l
2
0 = 0. The recurrence (8.169) falls directly under the general recurrence (7.57) of

Section 7.6.1. Its solution is

lm =
m∑

k=2

(−1)k

(
m

k

)
Qk−2, (8.171)

where Qk = Qk(1) =
∏k+1

j=2(1− pj − qj). This is an alternating sum with the kernel Qk of a
polynomial growth, so Rice’s method applies. We only need analytic continuation of Qk but
this is easy. Indeed, define

Q(z) =
P (0)
P (z)

,

where P (z) =
∏∞

j=2(1 − pz+j − qz+j). Then Qk = Q(z)|z=k and by Rice’s method or Theo-
rem 8.21

lm =
1

2πi

∫ − 3
2
+i∞

− 3
2
−i∞

Γ(z)n−zQ(−z − 2)dz +O(logm).

The integral can be evaluated in the same manner as in Example 19, so we only sketch
it. Considering singularities right to the line of the integration, we must take into account
singularities of the gamma function at z0 = 0 and z−1 = −1 together with all roots of

pj−2−z + qj−2−z = 1

that we denote as zk,j. The main contribution comes from z−1 = z0,2 = −1. Using the
expansions

Γ(z) =
1

z + 1
+ γ − 1 +O(z + 1),

n−z = n− n log n(z + 1) +O((z + 1)2),
1

1− p−z − q−z
= −1

h

1
z + 1

+
h2

2h2
+O(z + 1),

Q(−z − 2) = −1
h

1
z + 1

+
θ

h
+

h2

2h2
+ (z + 1)

θh2

2h2
+O((z + 1)2),
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and extracting the coefficient at (z + 1)−1 we establish the leading term of the asymptotics
without δ1(m). To obtain δ1(m) we must consider the roots at zk,j other than z−1 = −1.
Using Lemma 8.22 we finally prove (8.165).

The asymptotics of l2m can be obtained in a similar manner but with more involved algebra.
To use (7.70) of Section 7.6.1 we need to find the binomial inverse to lm. But solution (8.171)
implies that l̂m = Qm−2. With this in mind we directly obtain

l2m = −2
m∑

k=2

(
m

k

)
(−1)kQk−2Tk−2,

where

Tn =
n+1∑
i=2

pi + qi

1− pi − qi
.

To apply Rice’s method we need analytic continuation of Tn. A “mechanical derivation”
works fine here after observing that

Tn+1 = Tn +
pn+2 + qn+2

1− pn+2 − qn+2
.

Replacing n by z and solving the recurrence with respect to z we find

T (z) = θ −
∞∑
i=2

pz+i + qz+i

1− pz+i − qz+i
,

where θ is defined in the statement of the theorem. The above derivation can be easily made
rigorous by observing that all series involved do converge for <(z) > −2.

We are now ready to derive the limiting distribution of Dm for p 6= q. We prove the
following result.

Theorem 8.34 (Louchard and Szpankowski, 1995) For biased memoryless source (p 6=
q) the limiting distribution of Dm is normal, that is,

Dm −E[Dm]√
Var[Dm]

→ N(0, 1), (8.172)

where E[Dm] and Var[Dm] are given by (8.165) and (8.167), respectively, and the moments
of Dm converge to the appropriate moments of the normal distribution. More generally, for
any complex ϑ

e−ϑc1 log mE(eϑDm/
√

c2 log m) = e
ϑ2

2

(
1 +O(

1√
logm

)
)
, (8.173)

where c1 = 1/h and c2 = (h2 − h2)/h3.
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Proof. We shall work with the probability generating function Dm(u) for the depth which
is equal to Bm(u)/m, that is,

Dm(u) = 1− 1− u
m

m∑
k=2

(−1)k

(
m

k

)
Qk−2(u) . (8.174)

Let µm = E[Dm] and σ2
m = Var[Dm]. Theorem 8.33 implies µm ∼ c1 logm and σ2

m ∼
c2 logm, where c1 = 1/h and c2 = (h2 − h2)/h3. We use Goncharov’s Theorem 8.26 to
establish the normal distribution of Dm by showing that

lim
m→∞ e−ϑµm/σmDm(eϑ/σm) = eϑ

2/2, (8.175)

where ϑ is a complex number. By Corollary 8.28, this will establish both the limiting distri-
bution and the convergence in moments for Dm.

We now derive asymptotics for the probability generating function Dm(u) around u = 1.
We assume u = ev, and due to σm = O(

√
logm), we define v = ϑ/σm → 0. Note that

1 − Dm(u) given in (8.174) has the form of an alternating sum. We now apply the Rice
method, more precisely, Theorem 8.21. To do so, however, we need an analytical continuation
of Qk(u) defined in (8.164). Denote it as Q(u, s), and observe that

Q(u, s) =
P (u, 0)
P (u, s)

=
Q∞(u)
P (u, s)

, (8.176)

where P (u, s) =
∏∞

j=2(1− ups+j − uqs+j). Using Theorem 8.21 we arrive at

1−Dm(u) =
1− u
m2πi

∫ −3/2+i∞

−3/2−i∞
Γ(s)m−sQ(u,−s− 2)ds + em, (8.177)

where em = O(1/m2)
∫ −3/2+i∞
−3/2−i∞ Γ(s)m−ssQ(u,−s− 2)ds = O(1/m), as we shall soon see. As

usual, we evaluate the integral in (8.177) by the residue theorem. We compute residues right
to the line of integration in (8.177). The gamma function has its singularities at s−1 = −1 and
s0 = 0, and in addition we have infinite number of zeros sk,j(v) (j = 2, 3, . . ., k = 0±1,±2, . . .)
of P (ev ,−s − 2) of the denominator of Q(ev,−s − 2), where we substituted u = ev. More
precisely, sk,j(v) are zeros of

p−s−2+j + q−s−2+j = e−v . (8.178)

The dominating contribution to the asymptotics comes from s0,j(v) and s1. Indeed, the
contributions of the first two singularities at s−1 and s0 are, respectively, (1−u)Q(u,−1) = 1
and (1 − u)Q(u,−2)/m = O(1/m). We now concentrate on the contribution coming from
s0,j(v). In this case, one can solve equation (8.178) to derive

s0,j(v) = j − 3− v

h
− 1

2

(
1
h
− h2

h3

)
v2 +O(v3) (8.179)
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for integer j ≥ 2 and v → 0. We also note that =(sk,j(v)) 6= 0 for k 6= 0.
Let now Rj

k(v) denote the residue of (1 − evp−sk,j−2+j + evq−sk,j−2+j)−1 at sk,j(v), and
let g(s) = Γ(s)Q(u,−s − 1). In the sequel, we use the following expansion

Q(u,−s− 2) =
1

1− u(p−s + q−s)
· Q∞(u)
P (u,−s− 1)

= −w
−1

h
− θ

h
+

h2

2h2
+ w

θh2

2h2
+O(w2),

where w = s− s0,j(v). Then

−Dm(ev) = R2
0(v)g(s0,2(v))(1 − ev)m−1m−s0,2(v)

+
∞∑

j=3

Rj
0(v)g(s0,j(v))(1 − ev)m−1m−s0,j(v)

+
∞∑

k=−∞
k 6=0

∞∑
j=2

Rj
k(v)g(sk,j(v))(1 − ev)m−1m−sk,j(v) +O(1) . (8.180)

We consider the above three terms separately:

(a) j = 2 and k = 0
Set v = ϑ/σm = ϑ/

√
c2 logm. Then by (8.179)

m−s0,2(v) = m exp

(
ϑ

h

√
logm
c2

+
ϑ2

2

)
.

In addition, the following holds: R2
0(v) = −1/h+O(v), and g(s0,2(v)) = −h/v +O(1),

and finally 1− e−v = v +O(1). Therefore, we obtain

e−ϑµm/σmR2
0(v)g(s0,2(v))(1 − e−v)m−s0,2(v)−1 → −eϑ2/2 (8.181)

(b) j ≥ 3 and k = 0
In this case we can repeat the analysis from case (a) to get

e−ϑµm/σmR2
0(v)g(s0,2(v))(1 − e−v)m−s0,2(v)−1 → O(m2−jeϑ

2/2) , (8.182)

so this term is of order magnitude smaller than the first term in (8.180).

(c) k 6= 0
Fix j = 2. Observe that

∞∑
k=−∞
k 6=0

R2
k(v)g(sk,2(v))(1 − ev)m−1m−sk,2(v) = O(vm−1−<(sk,2(v))) .
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By the same argument as in Lemma 8.22 we conclude that <(sk,j) ≥ j − 3 + O(v).
If <(sk,j) > j − 3 + O(v), then the term O(vm−1−<(sk,2(v))) is negligible compared to
O(m2−j). Otherwise, that is, for sk,j such that <(sk,j) = j − 3 +O(v) we observe that
the error term is O(vmj−2). Actually, we can do better using the Jacquet and Régnier
[212] observation (the reader is asked to prove it in Exercise 25; for a generalization
see Jacquet and Szpankowski [215]):

<(sk,2(v)) ≥ s0,2(<(v))

so the above sum becomes
∞∑

k=−∞
k 6=0

R2
k(v)g(sk,2(v))(1 − ev)m−1m−sk,2(v) = m−1−<(s0,2(v))O(vm<(s0,2(v))−s0,2(<(v)))

= m−1−<(s0,2(v))O(vm−βv2
)

for some β. Finally, consider general j ≥ 3. As in case (b), we note that m−sk,j(v)

contributes O(m2−j), so this term is negligible.

Putting everything together, we note that as v = O(1/
√
m)→ 0 for m→∞

e−ϑµm/σmDm(eϑ/σm) = eϑ
2/2(1 +O(vm−βv2

) +O(1/m))→ eϑ
2/2, (8.183)

which proves the theorem.

8.8 Extensions and Exercises

8.1 Prove that if f ∼
∑
akφk and g ∼

∑
bkφk, then αf + βg ∼

∑
(αak + βbk)φk.

8.2 Consider asymptotic expansions with respect to {xk} in R+ and z0 = 0. Prove the following
theorems.

Theorem 8.35 Let f(x) ∼
∑∞

k=0 akx
k as x→ 0.

(i) If g(z) ∼
∑∞

k=0 bkx
k as x→ 0, then f(x)g(x) ∼

∑∞
n=0 cnx

n, where cn =
∑n

k=0 akbn−k.

(ii) We have ∫ x

0

f(t)dt ∼
∞∑

k=0

ak

k + 1
xk+1.

(iii) If f(x) has a continuous derivative and if f ′(x) possesses an asymptotic expansion, then

f ′(x) ∼
∞∑

k=1

kakx
k−1



352 Complex Asymptotic Methods

as x→ 0.

(iv) For any power series
∑∞

k=0 akx
k there exists a function f(x) with this as its asymptotic

expansion.

8.3 Using similar arguments to those presented in Section 8.1.2 show that

log(1 + x) =
∞∑

k=1

(−1)k−1

k
xk, x→ 0,

= log x+
∞∑

k=1

(−1)k−1

k
x−k, x→∞.

8.4 Prove Abel’s summation formulas (8.27) and (8.28).

8.5 Consider again recurrence (8.39) for the height in a b-trie. In this exercise we will analyze it for

k =
b+ 1
b

log2 n+ β

on the β-scale, where β = O(1). We set

hk
n = F (β;n) = F (k − (1 + 1/b) log2 n;n)

so that (8.39) becomes

F (β + 1;n) =
(

1
2

)n n∑
i=0

(
n

i

)
· F

(
β −

(
1 +

1
b

)
log2

(
i

n

)
; i
)

· F

(
β −

(
1 +

1
b

)
log2

(
1− i

n

)
; n− i

)
.

Postulating that F (β;n) assumes an expansion of the form

F (β;n) = F0(β) +
1
n
F1(β) +O(n−2),

prove that F0 satisfies the following nonlinear functional equation

F0(β + 1) = [F0(β + 1 + 1/b)]2.

Next prove that a general solution of the above is

F0(β) = exp(−c2−bβ) = exp(−ce−bβ log 2).

Finally, using matched asymptotics show that

c =
1

(b + 1)!
.
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8.6 Knessl and Szpankowski analyzed in [259] the height of PATRICIA trie. Among others, the
following recurrence arises

(2− 2n)L2(n) + 2nL2(n− 1) = 0, n ≥ 3,

with L2(2) = 1. Show that it has the following solution

L2(n) = n!2−n2/22n/2
n∏

m=3

(
1

1− 21−m

)
, n ≥ 2.

Similarly, show that the recurrence

(2− 2n)L3(n) + 2nL3(n− 1) + 2
(
n

2

)
L2(n− 2) = 0, n ≥ 5

with L3(3) = 1 and L3(4) = 6, leads to

L3(n) = n!2−n2/223n/2

(
1
4
− n2−n

2
− 1

4
2−n

) n∏
m=3

(
1

1− 21−m

)
, n ≥ 4.

In general, the following recurrence for n ≥ 2j − 3

(2− 2n)Lj−1(n) + 2
j−2∑
i=1

(
n

i

)
Lj−i(n− i) = 0, n ≥ 2j − 3

has the following asymptotic solution

Lj(n) ∼ ρ0Kjn!2−n2/22(j−3/2)n, j fixed,

ρ0 =
∞∏

`=2

(1 − 2−`)−1,

where Kj is a constant.

8.74! Using the saddle point method and (8.43) derived in Example 5 prove the following theorem.

Theorem 8.36 (Knessl and Szpankowski, 2000) The distribution of the height of b-tries
has the following asymptotic expansions for fixed b:

(i) Right-Tail Region: k →∞, n = O(1):

Pr{HT
n ≤ k} = hk

n ∼ 1− n!
(b + 1)!(n− b− 1)!

2−kb.

(ii) Central Regime: k, n→∞ with ξ = n2−k, 0 < ξ < b:

hk
n ∼ A(ξ; b)enφ(ξ;b),
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where

φ(ξ; b) = −1− logω0 +
1
ξ

(
b log(ω0ξ)− log b!− log

(
1− 1

ω0

))
,

A(ξ; b) =
1√

1 + (ω0 − 1)(ξ − b)
.

In the above, ω0 = ω0(ξ; b) is the solution to

1− 1
ω0

=
(ω0ξ)b

b!
(

1 + ω0ξ + ω2
0ξ2

2! + · · ·+ ωb
0ξb

b!

) .
(iii) Left-Tail Region: k, n→∞ with j = b2k − n

hk
n ∼
√

2πn
nj

j!
bn exp

(
−(n+ j)

(
1 + b−1 log b!

))
,

where j = O(1).

8.8 Using the following Fourier series

〈x〉 =
1
2
−

∑
m∈Z\{0}

cme
2πimx, cm = − i

2πm
,

prove that

n∑
k=0

(
n

k

)
pk(1− p)n−k

〈
k
N

M
+ y

〉
=

1
2
− 1
M

(
1
2
− 〈yM〉

)
+O(ρn),

where ρ < 1.

8.9 Using the Fourier series of 2−〈x〉 prove the following

1
M

M−1∑
l=0

2−〈l/M+y〉 =
1

2M(1− 2−1/M )
2−〈yM〉/M

for any real y.

8.10 Show that for any irrational α

lim
n→∞

n∑
k=0

(
n

k

)
pk(1− p)n−k2−〈αk+βn〉 =

1
2 log 2

for any real β.
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8.11 Analyze asymptotically the following sum

S2(n, p) :=
∑

0≤k≤n

(
n

k

)
pk(1− p)n−k 〈− logPe(k, n− k)〉 ,

where

Pe(a, b) :=
Γ(a+ 1

2 )Γ(b+ 1
2 )

πΓ(a, b)
.

8.12 Prove the following expansions

(1 − z)3/2 =
1√
πn5

(
3
4

+
45

32n
+O

(
1
n2

))
,

√
1− z log(1− z)−1 = − 1√

πn3

(
1
2

logn+
γ + 2 log 2− 2

2
+O

(
logn
n

))
,

log2(1− z)−1 =
1
n

(
2 logn+ 2γ + +O

(
1
n

))
,

(1− z)−1/2 =
1√
πn

(
+

8
n

+O

(
1
n2

))
,

(1− z)−3/2 =
n√
π

(
2 +

3
4n

+O

(
1
n2

))
,

(1− z)−3/2 log(1− z)−1 =
n√
π

(
2 logn+ 2γ + 4 log 2− 2 +O

(
logn
n

))
.

8.13 Analyze asymptotically

A(z) =
ez

√
1− z2

.

Notice that there are two algebraic singularities at z = 1 and z = −1. Prove that

[zn]A(z) ∼ 1√
2πn

(
e+ (−1)ne−1

)
.

Find a full asymptotic expansion.

8.144! Let for some k ≥ 0

Sn,k =
n∑

i=1

(
n− k
i

)(
i

n

)i(
1− i

n

)n−i

.

(i) Prove that for fixed k

Sn,k =
1

22k

(
2k
k

)√
nπ

2
− 2

3
+O

(
1√
n

)
for large n (Szpankowski 1995).

(ii) Find a uniform (with respect to k) asymptotic expansion of Sn,k (cf. Hwang [208]).
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8.154! Consider the following extension of the Lapalce method: Let, as in Theorem 8.17,

I(x) =
∫ b

a

f(t)e−xh(t)dt,

and we analyze this integral for x →∞. We adopt the same assumptions as in Theorem 8.17,
except that the point t0, where h(t) is minimized, is of order m; that is,

h′(t0) = h′′(t0) = · · · = h(m−1)(t0) = 0, h(m)(t0) > 0.

Prove that

I(x) ∼ f(t0)e−xh(t0)Γ
(
m+ 1
m

)[
m!

xh(m)(t0)

]1/m

as x→∞

8.164! Consider the following multidimensional extension of the Laplace method. Let s = (s1, . . . , sn)
and for large positive x

I(x) =
∫

S

f(s)e−xh(s)ds.

Let s0 be a unique point, where h(s) attains minimum. We further assume that second partial
derivatives of h exist and are continuous and the Hessian matrix H =

(
∂2h(s0)
∂si∂sj

)
is positive

definite. Prove the following (cf. [195]).

Theorem 8.37 Under the above hypothesis (see also hypothesis of Theorem 8.17)

I(x) ∼ f(s0)√
det H

e−xh(s0)

(
2π
x

)n/2

as x→∞.

8.174! The involution number In has the following exponential generating functions

A(z) = ez+z2/2.

Using Hayman’s method prove that

In = n!
e−1/4

√
2πn

n−n/2en/2+
√

n

(originally due to Moser and Wyman).

8.18 Using the van der Waerden method prove that

I(n) =
∫ 1

2+i∞

1
2−i∞

exp(−n(z2 + 2/z))dz
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(the line of integration is =z = 1
2 ) yields

I(n) ∼
√

π

3n
exp

(
n

(
3
2

+ i
3
√

3
2

))
.

8.19 Provide a rigorous proof of the result from Example 22 through an application of the van der
Waerden method.

8.20 Prove all the claims of the Jacquet-Schachinger Lemma 8.22.

8.214! Let

Sn(λ) =
n∑

k=1

(−1)n

(
n

k

)
k−λ,

where λ /∈ Z. Prove the Flajolet and Sedgewick [148] result, namely

Sn(λ) = −(logn)λ
∞∑

j=0

(−1)j Γ(j)(1)
j!Γ(1 + λ− j)

1
logj n

,

where Γ(j)(1) is the jth derivative of the gamma function at z = 1.

8.224! (Flajolet and Sedgewick, 1995) Let

Yn =
n∑

k=1

(−1)n

(
n

k

)
log k.

Prove that

Yn = log logn+ γ +
γ

logn
− π2 + 6γ2

12 log2 n
+O(log−3 n).

8.23 Consider the exact pattern matching problem of Section 7.6.2. Prove the following stronger
version of the large deviations. Let r = (1 + δ)E[On] and a = (1 + δ)P (H) with δ 6= 0. For
complex t, define ρ(t) to be the root of

1− etMH(eρ) = 0 ,

while ωa and σa are defined as

−ρ′(ωa) = a,

−ρ′′(ωa) = σ2
a.

Then

Pr{On(H) = (1 + δ)E[On]} =
1

σa

√
2π(n−m+ 1)

e−(n−m+1)I(a)

(
1 +O

(
1
n

))
,

where I(a) = aωa + ρ(ωa).
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8.244! (Szpankowski, 1991) Using Rice’s method or Theorem 8.21 prove Theorem 8.33. In particular,
establish a formula on the constant A in (8.167).

8.254! (Jacquet and Régnier, 1986) Let sj,k (j = 1, 2, . . . and k = 0,±1, . . .) be a solution of
(8.178). Prove that

<(sk,2(v)) ≥ s0,2(<(v))

8.264! (Flajolet, 1999) Using singularity analysis and the method of Section 8.5 prove that

n∑
k=0

(
n

k

)
pkqn−k 1

4k

(
2k
k

)
=

1
√
pn

(
1− 3p− 2

8pn
+O

(
1
n3

))
,

n∑
k=0

(
n

k

)
pkqn−kHk = p log(pn) + γ +

1
2n

+O

(
1
n2

)
,

where Hk is the harmonic number.

8.27 Prove the following generalization of Theorem 8.24: If for some r > 0, the PGFs Gn(z) and G(z)
of discrete distributions are analytic in |z| < r and continuous of |z| = r, then

|pn,k − pk| ≤ r−k sup
|z|=r

|Gn(z)−G(z)|,

where pn,k = [zk]Gn(z) and pk = [zk]G(z).

8.285? Find the limiting distribution of the profileBm(k) (defined in Section 8.7.3) for k = 1
h logm+

O(
√

logm), where Bm(k) is the number of nodes on level k in digital search tree built from m
strings generated by a biased memoryless source.

8.294! Using techniques of this chapter, prove Watson’s Lemma: If f(t) is a real or complex
function of positive real variable t, and

f(t) ∼ tλ−1
∞∑

n=0

ant
n <(λ) > 0,

and the integral (i.e., Laplace transform)

F (z) =
∫ ∞

0

f(t)e−ztdt

is convergent for sufficiently large <(z), then

F (z) ∼
∞∑

n=0

Γ(n+ λ)
an

zn+λ
, z →∞

in the sector | arg(z)| < 1
2π (cf. [331, 422, 448]).
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8.304! (Jacquet and Régnier, 1986) Using Rice’s formula, prove that the limiting distribution of the
typical depth in a trie built from n independently generated binary sequences is normal. More
precisely: For biased memoryless source (p 6= q) the limiting distribution of the depth Dm in a
trie is

Dm − c1 logn√
c2 logn

→ N(0, 1),

where c1 = 1/h and c2 = (h2 − h2)/h3 (as before, h is the entropy of the source and h2 =
p log2 p+ q log2 q). Extend it to Markovian sources (cf. [215]).
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Chapter 9

Mellin Transform and Its Applications

Summary: The Mellin transform (Hjalman Mellin 1854–1933, Finish mathematician) is
the most popular transform in the analysis of algorithms. It is closely related to the two-
sided Laplace and Fourier transforms except that it has a polynomial kernel. D. E. Knuth,
together with De Bruijn, introduced it in the orbit of discrete mathematics in the mid-
1960s, however, Flajolet’s school systematized and applied the Mellin transform to myriad
problems of analytic combinatorics and analysis of algorithms. Recently, the Mellin transform
found its way into information theory. The popularity of this transform stems from two
important properties. It allows the reduction of certain functional equations to algebraic
ones, and it provides a direct mapping between asymptotic expansions of a function near
zero or infinity and the set of singularities of the transform in the complex plane. The latter
asymptotic property, enriched in the singularity analysis or depoissonization (discussed in
the next chapter), is crucial for applications. We discuss here some properties of the Mellin
transform, and illustrate its applications with many examples.

THE MELLIN TRANSFORM f∗(s) of a complex-valued function f(x) defined over pos-
itive reals is

M[f(x); s] := f∗(s) =
∫ ∞

0
f(x)xs−1dx

with s being a complex number. The Mellin transform can be viewed as the Laplace transform
or the Fourier transform. However, it proves convenient to work with the Mellin transform
rather than the Laplace-Fourier version. This is particularly true in the analysis of algorithms
and analytic combinatorics, where one often deals with functional equations like

f(x) = a(x) + αf(xp) + βf(xq),

where α, β are constants, and a(x) is a known function. We have already encountered such
functional equations in this book (e.g., Sections 7.6.1 and 8.7.3). We will see more of these

361
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in this chapter. The point is that the Mellin transform maps the above functional equation
into an algebraic one that is easier to solve and hence allows us to recover f(x), at least
asymptotically as x→ 0 or x→∞.

The usefulness of the Mellin transform stems from its asymptotic properties. There is a
direct mapping between asymptotic expansions of a function near zero or infinity and the set
of singularities of the transform in the complex plane. This plays a crucial role in applications.
For example, sums like

G(x) =
∞∑

k=0

(
1− e−x/2k

)
and H(x) =

∞∑
k=1

(−1)ke−k2x log k

that are not easily computable, either numerically of asymptotically, can be treated by Mellin
transforms for x→ 0 or x→∞. We study some representative examples in this chapter.

In the analysis of algorithms, f(x) is often a generating function of a sequence fn. Using
the asymptotic properties of the Mellin transform, we are able to find an asymptotic expansion
of f(x), but we still need a tool to recover fn (this is called a two-step approach). We
may either use the singularity analysis discussed in the previous chapter or turn to another
approach called analytic depoissonization that we shall introduce in this next chapter.

Over the last 30 years, myriad analyses of algorithms have been successfully accomplished
through Mellin transforms. The list is quite long, and we mention here only: sorting and
searching methods [269], digital trees such as tries [212, 213, 215, 243, 269, 250, 407, 406],
PATRICIA trie [251, 269, 350, 408], digital search trees [147, 217, 220, 253, 269, 409] and
suffix trees [216], string matching [28, 330], data compression [297, 217, 220], multidimensional
searching [142], communication protocols [170, 311, 404], randomized data structures [247],
and probabilistic counting [254]. In some cases, notably digital search trees and sorting,
alternative methods (e.g., Rice method) can be used. However, when the problem becomes
more complicated, it is fair to say that the Mellin transform must be involved. We shall see
it in this chapter, and even more in the next one.

We start with a short discussion of basic properties of the Mellin transform followed by a
longer excursion into asymptotic properties. We also present a brief extension of the Mellin
transform to the complex plane that is crucial for applications. As always, we finish with
an applications section, where we discuss the average and the variance of the depth in an
extension of digital search trees, and then we evaluate the minimax redundancy of a renewal
process. The latter example is one of the most involved in this book.

We intend to make this chapter short since there are excellent and in-depth surveys on
the Mellin transform. The recent extended survey by Flajolet, Gourdon, and Dumas [132]
contains more than we plan to discuss here. We shall borrow from it freely, and refer the
reader to it for further details. An even more detailed account on the method can be found
in the forthcoming book of Flajolet and Sedgewick [149]. Brief discussions are also in Hofri
[197] and Mahmoud [305].
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9.1 Basic Properties

Let f(x) be a complex-valued function that exists over (0,∞) and is locally integrable. To
avoid further complication, we assume throughout that f is continuous in (0,∞). The Mellin
transform is defined as

M[f(x); s] := f∗(s) =
∫ ∞

0
f(x)xs−1dx. (9.1)

In the sequel, we study the existence of the transform, compute the transform of some common
functions, and investigate several functional properties of the transform.

(M1) Fundamental Strip

Let f(x) be a continuous function on the interval (0,∞) such that

f(x) =

{
O(xα) x→ 0
O(xβ) x→∞ .

Then the Mellin transform f∗(s) exists for any complex number s in the fundamental strip
−α < <(s) < −β, which we also denote as 〈−α,−β〉. This is true since∣∣∣∣∫ ∞

0
f(x)xs−1dx

∣∣∣∣ ≤ ∫ 1

0
|f(x)|x<(s)−1dx+

∫ ∞

1
|f(x)|x<(s)−1dx

≤ c1

∫ 1

0
x<(s)+α−1dx+ c2

∫ ∞

1
x<(s)+β−1dx,

where c1 and c2 are constants. The first integral above exists for <(s) > −α and the second for
<(s) < −β. This proves the claim. For example, f1(x) = e−x, f2(x) = e−x−1, f3(x) = 1/(1+
x) have the fundamental strips 〈0,∞〉, 〈−1, 0〉, and 〈0, 1〉, respectively (see also Table 9.1).
In passing, we observe that the Mellin transform is analytic inside its fundamental strip. We
also notice that the Mellin transform of a polynomial does not exist. However, as we shall
see, polynomials play a crucial role; they shift the fundamental strip (see Entries 1, 2, and 3
in Table 9.1).

Table 9.1 presents some of the most commonly used Mellin transforms with their corre-
sponding fundamental strips. These formulas will be established in the course of the next few
pages. For now we observe that Entry 1 of the table is the classical Euler’s gamma function.
Entries 5 and 7 follow from the classical beta function. Indeed,

f∗(s) =
∫ ∞

0
xs−1(1 + x)−1dx =

∫ 1

0
ts(1− t)1−sdt = Γ(s)Γ(1− s) =

π

sinπs
,

where the last equation is a consequence of (2.33). Entries 8–11 are trivial to prove, but they
play the most important role in the asymptotic analysis of the Mellin transform. As we shall
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Table 9.1: Mellin Transform of Some Functions

Item Function Mellin Transform Fund. Strip

1. e−x Γ(s) 〈0,∞〉

2. e−x − 1 Γ(s) 〈−1, 0〉

3. e−x − 1 + x Γ(s) 〈−2,−1〉

4. e−x2 1
2Γ
( s

2

)
〈0,∞〉

5. 1
1+x

π
sinπs 〈0, 1〉

6. log(1 + x) π
s sinπs 〈−1, 0〉

7. 1
(1+x)ν B(s, ν − s) 〈0, ν〉, ν > 0

8. H(x) = I(0 ≤ x ≤ 1) 1
s 〈0,∞〉

9. 1−H(x) −1
s 〈−∞ 0〉

10. xa logk(x)H(x) (−1)kk!
(s+a)k+1 〈−a,∞〉, k ∈ N

11. xa logk(x)(1 −H(x)) − (−1)kk!
(s+a)k+1 〈−α,∞〉, k ∈ N

12. e−x

1−e−x Γ(s)ζ(s) 〈1,∞〉

13. log
(

1−e−x

x

)
−Γ(s+1)ζ(s+1)

s 〈−1, 0〉

14. log(1− e−x) −Γ(s)ζ(s+ 1) 〈0,∞〉

see in Section 9.2, these formulas remain valid even when = is replaced by ∼ for x→ 0 and
x→∞, respectively.

(M2) Smallness of Mellin transforms

Let s = σ + it. We first only assume that f(x) is continuous. Observe that

f∗(σ + it) =
∫ ∞

0
f(x)e−σxeit log xdx,

thus by the Riemann-Lebesgue Lemma 8.14

f∗(σ + it) = o(1) as t→ ±∞. (9.2)
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If f(x) is r times differentiable, then by integration by parts we haveM[f (r)(x); s] = (−1)r(s−
r)rf∗(s− r) (cf. also (9.8) below). This, together with (9.2), yields

f∗(σ + it) = o(|t|−r) as t→ ±∞ (9.3)

for σ fixed.

(M3) Functional Properties

The following properties play a prime role in applications of the Mellin transform. They are
easy to establish in the corresponding fundamental strips:

Function ⇔ Mellin Transform

xνf(x) ⇔ f∗(s+ ν), (9.4)
f(µx) ⇔ µ−sf∗(s) µ > 0, (9.5)

f(xρ) ⇔ 1
ρ
f∗(s/ρ) ρ > 0, (9.6)

f(x) log x ⇔ d

ds
f∗(s), (9.7)

d

dx
f(x) ⇔ −(s− 1)f∗(s − 1) (9.8)

x
d

dx
f(x) ⇔ −sf∗(s) (9.9)∫ x

0
f(t)dt ⇔ −1

s
f∗(s+ 1) (9.10)

f(x) =
∑
k∈K

λkg(µkx) ⇔ f∗(s) = g∗(s)
∑
k∈K

λkµ
−s
k , K finite (9.11)

Formulas (9.4)–(9.11) are direct and simple consequences of the Mellin transform definition.
For example, (9.9) follows from integration by parts

M[x
d

dx
f(x); s] = f(x)xs|∞0 − sM[f(x); s] = −sM[f(x); s]

with the validity in a strip, that is, a subset of the fundamental strip, dictated by the growth
of f .

Using the above properties, we may establish some more entries from Table 9.1. In
particular, Entry 4 follows directly from Entry 1 and (9.6). To prove Entry 6 we apply
property (9.10) to Entry 5. To establish Entries 12–14, we need to generalize property (9.11)
to infinite K, which we discuss next.
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The sum
F (x) =

∑
k

λkf(µkx) (9.12)

is called the harmonic sum. After formally applying the scaling property (9.5), and assuming
the corresponding series exist, we obtain

F ∗(s) = f∗(s)
∑
k

λk

µs
k

. (9.13)

This formula is responsible, to a large extent, for usefulness of the Mellin transform and
finds plenty of applications in discrete mathematics, analysis of algorithms, and analytic
combinatorics. Theorem 9.1 below provides conditions under which it is true.

Theorem 9.1 (Harmonic Sum Formula) The Mellin transform of the harmonic sum (9.12)
is defined in the intersection of the fundamental strip of f(x) and the domain of absolute con-
vergence of the Dirichlet series

∑
k λkµ

−s
k (which is of the form <(s) > σa for some real σa),

and it is given by (9.13).

Proof. Since f∗(s) and the Dirichlet series
∑

k λkµ
−s
k are both analytic in the intersection,

if not empty, of the corresponding convergence regions, the interchange of summation and
integration is legitimate by Fubini’s theorem.

Using the above result, we can now prove Entries 12–14 of Table 9.1. In particular, to
establish Entry 12 of Table 9.1 we proceed as follows. For any x > 0 we have

e−x

1− e−x
=

∞∑
k=1

e−kx.

By (9.13) its Mellin is M[e−x; s]
∑∞

k=1 k
−s = Γ(s)ζ(s) for <(s) > 1. For Entry 14 we need to

wrestle a little more, but

M[log(1− e−x); s] =M
[∫ x

0

e−t

1− e−t
dt; s

]
= −1

s
Γ(s+ 1)ζ(s+ 1) = −Γ(s)ζ(s+ 1).

As a consequence of this, we immediately prove that

M

∑
k≥1

log(1− e−kx); s

 = −Γ(s)ζ(s)ζ(s+ 1) (9.14)

for <(s) > 1. The reader is asked to prove Entry 13 in Exercise 1.

(M4) Inverse Mellin Transform
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Since the Mellin transform is a special case of the Fourier transform, we should expect a
similar inverse formula. Indeed this is the case. Let s = σ + it and set x = e−y. Then

f∗(s) = −
∫ ∞

−∞
f(e−y)e−σye−itydy.

This links Mellin and Fourier transforms, and from the inverse Fourier transform we obtain
(cf. Henrici [195]): If f(x) is continuous on (0,∞), then

f(x) =
1

2πi

∫ c+i∞

c−i∞
f∗(s)x−sds, (9.15)

where a < c < b and 〈a, b〉 is the fundamental strip of f∗(s). We should remind the reader
that we have already encountered an integral like the one in (9.15) in Section 7.6.3 and
Section 8.5 (e.g., Theorem 8.21 and Rice’s method).

The inverse formula is of prime importance to asymptotics. We first prove Entry 2 of
Table 9.1. We apply (9.15) with Γ(s) defined in the strip 〈−1, 0〉. Let c = −1

2 and consider
a large rectangle left to the line of integration in (9.15) with the left line located at, say
−M − 1

2 for M > 0. As in the proof of Theorem 8.21 we show that the top and the bottom
line contribute negligible while the left line contributes O(xM+1/2). Thus

f(x) =
1

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(s)x−sds =
M∑

k=1

Res[Γ(s); s = −k] +O(xM+1/2)

=
M∑

k=1

(−1)k

k!
xk +O(xM+1/2)

→ e−x − 1 as M →∞,

which proves Entry 2. In a similar manner we can prove Entry 3 (cf. also Exercise 2). This
completes the derivations of all entries in Table 9.1.

In the introduction we mentioned that Mellin transforms are useful to solve functional
equations. We shall illustrate this in Example 2 below, while in Example 1 we show that the
Mellin transform can also be used to establish functional equations.

Example 9.1 A Functional Equation Through the Mellin Transform
In the analysis of the variance of a certain parameter (i.e., partial match) in a multi-

dimensional search Kirschenhofer, Prodinger, and Szpankowski [252] studied the following
function

F (x) =
∑
k≥1

e−kx

1 + e−2kx
.
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As a matter of fact, it was already analyzed by Ramanujan (cf. [45]). Our goal is to prove
the following functional equation on F (x)

F (x) =
π

4x
− 1

4
+
π

x
F

(
π2

x

)
. (9.16)

Let
β(s) =

∑
j≥0

(−1)j 1
(2j + 1)s

,

which resembles the zeta function. Observe that

F (x) =
∑
k≥1

e−kx

1 + e−2kx
=
∑
j≥0

(−1)j
∑
k≥1

e−k(2j+1)x.

Then by the harmonic sum formula, the Mellin transform F ∗(s) of F (x) is

F ∗(s) = Γ(s)ζ(s)β(s).

By the Mellin inversion formula this yields

F (x) =
1

2πi

∫ 3/2+i∞

3/2−i∞
Γ(s)ζ(s)β(s)x−sds .

Now we take the two residues at s = 1 and s = 0 out from the above integral (notice
that β(0) = 1/2 and β(1) = π/4; (cf. [2]) and apply the duplication formula for Γ(s) (see
Section 2.4.1) to obtain

F (x) =
π

4x
− 1

4
+

1
2πi

− 1
2
+i∞∫

− 1
2
−i∞

1√
π

2s−1Γ
(
s

2

)
Γ
(
s+ 1

2

)
x−sζ(s)β(s)ds .

As before, the exponential smallness of the Γ-function along vertical lines justifies the shifting
of the line integral. We now use the functional equations for ζ(s) and β(s) (see Section 2.4),
namely,

Γ
(
s

2

)
ζ(s) = πs− 1

2 Γ
(

1− s
2

)
ζ(1− s), (9.17)

and
β(1− s)Γ

(
1− s

2

)
= 22s−1π−s+ 1

2 Γ
(
s+ 1

2

)
β(s) . (9.18)

Identity (9.17) is the Riemann functional equation for ζ(s), and (9.18) is an immediate
consequence of the functional equation for Hurwitz’s ζ-function ζ(s, a) (cf. [15]), and the fact
that

β(s) = 4−s
[
ζ(s,

1
4

)− ζ(s,
3
4

)
]
.
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Using (9.17) and (9.18), and substituting 1− s = u, we arrive at

F (x) =
π

4x
− 1

4
+

1
2πi

3
2
+i∞∫

3
2
−i∞

π1−2uΓ(u)xu−1ζ(u)β(u)du .

This proves (9.16).
In passing we mention that the functional equation can be used for a numerical evaluation

of F (x), as already observed by Kirschenhofer, Prodinger, and Schoissengeier [249] and further
explored in Kirschenhofer and Prodinger [243].

For example, in applications the following series is of interest

F (log 2) =
∑
k≥1

2k

22k + 1
.

Since π2/ log 2 ≈ 14.2 we expect F (π2/ log 2) to be small so that the first two terms in (9.16)
will determine the numerical value of F (log 2). As a matter of fact, pulling out one term
from F (π2/ log 2) and computing other terms we obtain F (log 2) = 0.8830930036(±10−11 ).

In Exercise 4 we ask the reader to prove similar functional equations. 2

9.2 Asymptotic Properties of the Mellin Transform

We have said it many times, and we repeat it again, the usefulness of the Mellin transform
stems from its asymptotic properties, which we shall examine in this section. We start with
an informal discussion that will lead to the direct and reverse mapping theorems, the pillars
of the Mellin transform asymptotics.

Let f(x) be r times differentiable function with r ≥ 2. The fundamental strip of f∗(s)
is assumed to be α < <(s) < β. We restrict analysis to meromorphic functions f∗(s) that
can be analytically continued to β ≤ <(s) ≤M for any M . We also postulate that f∗(s) has
finitely many poles λk such that <(λk) < M . Then we claim that for x→∞

f(x) = −
∑

λk∈K
Res[f∗(s)x−s, s = λk] +O(x−M ) x→∞, (9.19)

where K is the set of singularities and M is as large as we want. (In a similar fashion one can
continue the function f∗(s) to the left to get an asymptotic formula for x→ 0.) This is the
announced asymptotic property. Its proof is quite simple and we have already seen the main
ingredients of it in Section 7.5.3. Due to its importance, we repeat below the main steps of
the analysis.
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Figure 9.1: The fundamental strip of f∗(s) and the integration contour.

Consider the rectangle R shown in Figure 9.1 with the corners as illustrated. Choose A
so that the sides of R do not pass through any singularities of f∗(s)x−s. When evaluating

lim
A→∞

∫
R

= lim
A→∞

(∫ c+iA

c−iA
+
∫ M+iA

c+iA
+
∫ M−iA

M+iA
+
∫ c−iA

M−iA

)
,

the second and fourth integrals contribute O(A−r) due to the smallness property (M2). The
contribution of the fourth integral is computed as follows:∣∣∣∣∣

∫ M−i∞

M+i∞
f∗(s)x−sds

∣∣∣∣∣ =
∣∣∣∣∫ −∞

∞
f∗(M + it)x−M−itdt

∣∣∣∣
≤ |x−M |

∫ −∞

∞
|f∗(M + it)||x−it|dt = O(x−M ),

since f is at least twice differentiable so that the integral above exists. Using now the Cauchy
residue theorem and taking into account the negative direction of R we finally obtain

−
∑

λk∈H
Res[f∗(s)x−s, s = λk] =

1
2πi

∫ c+i∞

c−i∞
f∗(s)x−sds+O(x−M ) ,

where α < c < β. This proves (9.19).
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In particular, if f∗(s) has the following form

f∗(s) =
K∑

k=0

dk

(s− b)k+1
, (9.20)

and f∗(s) can be analytically continued to β < <(s) ≤M , then Entry 10 of Table 9.1 implies
that

f(x) = −
K∑

k=0

(−1)k dk

k!
x−b logk x+O(x−M ) x→∞. (9.21)

In a similar fashion, if for −M < <(s) < α the smallness condition of f∗(s) holds and

f∗(s) =
K∑

k=0

dk

(s− b)k+1
, (9.22)

then

f(x) =
K∑

k=0

(−1)k dk

k!
x−b logk x+O(xM ) x→ 0. (9.23)

We return to these relationships below when we establish the direct and reverse mapping
theorems.

Example 9.2 Splitting Process Arising in Probabilistic Counting
Splitting processes arise in many applications that include probabilistic counting [254],

selecting the loser [124, 347], estimating the number of questions necessary to identify distinct
objects [339], searching algorithms based on digital tries [212, 213, 269, 305, 406], approximate
counting [244], conflict resolution algorithms for multiaccess communication [214, 311, 405]
and so forth. Let us focus on the probabilistic counting. Using a digital tree representation
one can describe it in terms of this splitting process as follows: Imagine n persons flipping
a fair coin, and those who get 1 discontinue throwing (move to the right in the digital tree
representation) while the rest continue throwing (i.e., move to the left in the digital tree).
The process continues until all remaining persons flip a 0. Consider now the following more
general version of the splitting process, where the coin flipping ends as soon as at most d
persons have flipped a 1 in the same round, where d is a given parameter. We denote the
number of rounds by 1 +Rn,d. Observe that d = 0 corresponds to the original situation.

It is easy to see (cf. also [254]) that the Poisson transform (see also the next chapter)

L̃(z) = e−z
∑
n≥0

E[Rn,d]
zn

n!

satisfies the following functional equation

L̃(z) = fd(z/2)L̃(z/2) + fd(z/2),
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where fd(z) = 1− ed(z)e−z and

ed(z) = 1 +
z1

1!
+ · · ·+ zd

d!
.

After iterating this equation we arrive at (see Section 7.6.1)

L̃(z)ϕ(z) =
∞∑

n=0

ϕ(z2−n−1) , (9.24)

where

ϕ(z) =
∞∏

j=0

fd(z2j) =
∞∏

j=0

(
1− ed(z2j)e−z2j

)
. (9.25)

By d’Alembert’s criterion, the final expression converges absolutely for all complex numbers
z. We derive an asymptotic expansion of L̃(z) for z →∞ (and for now assume that z is real).

Observe that (9.24) is a harmonic sum. Let Q1(z) = L̃(z)ϕ(z) and Q∗
1(s) be its Mellin

transform that exists in the strip <(s) ∈ (−∞, 0). By the harmonic sum formula we have
Q∗

1(s) = 2s/(1−2s)ϕ∗(s), where the Mellin transform ϕ∗(s) of ϕ(x) exists in <(s) ∈ (−∞, 0).
However, there is a problem since the Mellin transform of ϕ(s) does not exist at s = 0, and
we need a more precise estimate of ϕ∗(s) at s = 0. Thus, we proceed as follows. Define

Φ(x) = ϕ(2x) − ϕ(x) = ed(x)e−xϕ(2x) .

Observe now that the Mellin transform of Φ(x) exists in (−∞,∞), and

Q∗
1(s) =

2s

1− 2s
ϕ∗(s) =

(
2s

1− 2s

)2

Φ∗(s) , (9.26)

where Φ∗(s) is an entire function, as we noticed above, defined as

Φ∗(s) =
∫ ∞

0
ed(x)e−xϕ(2x)xs−1dx .

To evaluate L̃(z) asymptotically we apply (9.19). Note that χk = 2πik/ log 2 (k =
0,±1,±2, . . .) are the solutions of 1− 2−s = 0, and the main contribution to the asymptotics
comes from χ0 = 0. Since ϕ(z) ∼ 1 +O(z−M ) for any M > 0 as z →∞, we obtain

L̃(z) = log2 z ·
Φ∗(0)
log 2

− Φ∗(0)
log 2

− Φ∗′(0)
log2 2

+ P1(log2 z) +O(z−M ),

where

Φ∗(0) =
∫ ∞

0
e−xed(x)ϕ(2x)

dx

x
,

Φ∗′(0) =
∫ ∞

0
e−xed(x)ϕ(2x)

log x
x

dx,
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and

P1(x) =
∑
k 6=0

(
Φ∗(−χk)(x− 1)

log 2
− Φ∗′(−χk)

log2 2

)
e2kπix .

To complete the proof, we need to evaluate Φ∗(0),Φ∗(χk), Φ∗′(0), and Φ∗′(χk). We show here
how to estimate Φ∗(0); the other evaluations can be found in [254]. Define the function 1(x)
as follows

1(x) =

{
1 if x ≥ 1
0 if x < 1 .

Then we can write

Φ∗(0) =
∫ ∞

0
(ϕ(2x) − ϕ(x))

dx

x

=
∫ ∞

0
(ϕ(2x) − 1(2x))

dx

x
+
∫ ∞

0
(1(2x) − 1(x))

dx

x
+
∫ ∞

0
(1(x) − ϕ(x))

dx

x

=
∫ ∞

0
(1(2x) − 1(x))

dx

x
=
∫ 1

1/2

dx

x
= log 2,

since after the substitution u = 2x in the second line of the above display, the first and second
integrals cancel. A similar derivation shows that Φ∗(χk) = 0. 2

We are now in a position to precisely state results regarding asymptotic properties of the
Mellin transform. We start with the reverse mapping, which maps the asymptotics of the
Mellin transform into asymptotics of the original function for x→ 0 and x→∞. Following
Flajolet, Gourdon, and Dumas [132] we introduce the singular expansion. It is basically a
sum of the Laurent expansions around all poles truncated to the O(1) term. For example,
since

1
s(s− 1)

=
−1
s
− 1 +O(s), s→ 0,

1
s(s− 1)

=
1

s− 1
− 1 +O(s− 1), s→ 1,

we write
1

s(s− 1)
�
[−1
s
− 1

]
s=0

+
[

1
s− 1

− 1
]
s=1

as a singular expansion. In general, for a meromorphic function f(s) with poles in K the
singular expansion is

f(s) �
∑
w∈K

∆w(s),

where ∆w(s) is the Laurent expansion of f around s = w up to at most O(1) term.
Based on our discussion above we formulate the following result.
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Theorem 9.2 (Reverse Mapping) Let f be continuous with Mellin transform f∗(s) de-
fined in a non-empty strip 〈α, β〉.
(i) [Asymptotics for x → ∞] Assume that f∗(s) admits a meromorphic continuation to
<(s) ∈ (α,M) for some M > β such that

f∗(s) = O(|s|−r), s→∞ (9.27)

for some r > 1 and
f∗(s) �

∑
k,b

ck,b

(s− b)k+1
, (9.28)

where the sum is over a finite set of k and b. Then

f(x) = −
∑
k,b

(−1)k ck,b

k!
x−b logk x+O(x−M ) (9.29)

as x→∞.

(ii) [Asymptotics for x → 0] Assume that f∗(s) admits a meromorphic continuation to
<(s) ∈ (−M,β) for some −M < α such that (9.27) and (9.28) hold in <(s) ∈ (−M,β).
Then

f(x) =
∑
k,b

(−1)k ck,b

k!
x−b logk x+O(xM ) (9.30)

as x→ 0.

Proof. Part (i) we have already discussed above. It suffices to follow these steps tailored to
(9.28). For part (ii) it is enough to observe that by (9.6) M[f(1/x); s] = −M[f(x); s]. An
alternative proof is possible by following the above steps and expanding the Mellin integral
to the left instead of to the right as we did for x→∞.

Example 9.3 A Recurrence Arising in the Analysis of the PATRICIA Height
In [259] Knessl and Szpankowski analyzed the height of PATRICIA tries. Among others,

the following equation arose

Cn =
22−n

n+ 1

n∑
k=2

(
n+ 1
k

)
Ck, n ≥ 2 (9.31)

with C2 = 1. Certainly, the exponential generating function C(z) =
∑∞

n=0
zn

n!Cn of Cn

satisfies

C(z) = 8C
(
z

2

)
ez/2 − 1

z
.

Setting C̃(z) = e−zC(z) (so that C̃(z) is the Poisson transform of Cn) we arrive at

C̃(z) =
8
z

(1− e−z/2)C̃
(
z

2

)
.
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Observe that C̃(z) ∼ z2/2 as z → 0 since C2 = 1 and we define C0 = C1 = 0. Next we set
C̃(z) = z2G(z)/2 and replace z by 2z in the above, which gives

G(2z) = G(z)

(
1− e−z

z

)

with G(0) = 1, and after another change F (z) = logG(z) we obtain

F (2z) − F (z) = log

(
1− e−z

z

)
,

with F (0) = 0. The above functional equation is manageable by Mellin transforms. The
Mellin transform F ∗(s) of F (z) is

F ∗(s) =
2s

1− 2s
M
[
log

(
1− e−z

z

)]

for <(s) ∈ (−1, 0). In Exercise 1 we asked the reader to prove Entry 13 of Table 9.1, that is,

M
[
log

(
1− e−z

z

)]
= −Γ(s+ 1)ζ(s + 1)

s
, −1 < <(s) < 0

leading to

F ∗(s) = −Γ(s+ 1)ζ(s + 1)
s(2−s − 1)

for <(s) ∈ (−1, 0). Taking into account the singularities of F ∗(s), that is, a triple pole at
s = 0 and simple poles along the imaginary axis at χk = −2πik/ log 2, and using the reverse
mapping theorem, we arrive at

exp[F (z)] ∼
√
z2−1/12 exp

(
γ(1) + γ2/2− π2/12

log 2

)
exp

[
−1

2
log2(z)
log 2

+ Ψ(log2 z)

]
, (9.32)

where

Ψ(log2 z) =
∞∑

`=−∞
` 6=0

1
2πi`

Γ
(

1− 2πi`
log 2

)
ζ

(
1− 2πi`

log 2

)
e2πi` log2 z.

The above is true for z →∞ along the real axis, but we can analytically continue it to a cone
around the real positive axis. In Section 9.3 we extend the Mellin transform to the complex
plane, thus automatically obtaining the same conclusion. However, to obtain asymptotics
of Cn one needs another approach. The singularity analysis discussed in Section 8.3.2 does
not work well in this case. In the next chapter we develop a new tool called the analytic
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depoissonization that will handle it easily. In fact, we return to this problem in Example 10.8
of Chapter 10. 2

Not surprisingly, there exists a direct mapping from asymptotics of f(x) near zero and
infinity to a singular expansion of f∗(s). We formulate it next.

Theorem 9.3 (Direct Mapping) Let f be continuous with Mellin transform f∗(s) defined
in a nonempty strip 〈α, β〉.
(i) Assume that f(x) admits near x→ 0 the following asymptotic expansion for −M < −b ≤
α

f(x) =
∑
k,b

ck,bx
b logk x+O(xM ), (9.33)

where the sum is over a finite set of k and b. Then f∗(s) is continuable to the strip 〈−M,β〉
and admits the singular expansion

f∗(s) �
∑
k,b

ck,b
(−1)kk!

(s + b)k+1
(9.34)

for −M < <(s) < β.

(ii) Let f(x) have the following asymptotic expansion for x→∞

f(x) =
∑
k,b

ck,bx
−b logk x+O(x−M ), (9.35)

where β ≤ b < M . The Mellin transform f∗(s) can be continued to the strip 〈α,M〉 and

f∗(s) � −
∑
k,b

ck,w
(−1)kk!

(s − b)k+1
(9.36)

for α < <(s) < M .

Proof. As before we need only concentrate on one case. For a change, we prove the case
x→ 0. We shall follow Flajolet, Gourdon, and Dumas [132]. By assumption the function

g(x) = f(x)−
∑
k,b

ck,bx
b logk x

is O(xM ). In the fundamental strip we also have

f∗(s) =
∫ 1

0
g(x)xs−1 +

∫ 1

0

∑
k,b

ck,bx
s+b−1 logk x+

∫ ∞

1
f(x)xs−1dx.
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The first integral above is defined in 〈−M,∞〉 since g(x) = O(xM ) for x → 0. The third
integral is analytic for <(s) < β, while the second integral is easily computable (Table 9.1).
In summary, f∗(s) exists in 〈−M,β〉 and has (9.34) as its singular expansion.

The direct and reverse mapping theorems are at the heart of the Mellin transform method.
They have myriad applications. The survey by Flajolet, Gourdon, and Dumas [132] is the
best source of information. Chapter 7 of the forthcoming book by Flajolet and Sedgewick
also has many interesting examples. Here, we just illustrate it with an example and a few
exercises. We shall return to it in the next chapter.

Example 9.4 Generalized Euler-Maclaurin Summation Formula
This example is adopted from Flajolet, Gourdon, and Dumas [132]. In Section 8.2.1

we discussed the Euler-Maclaurin summation formula that allows us to approximate discrete
sums by integrals. Let us now consider

F (x) =
∞∑

n=1

f(nx),

where

f(x) =
∞∑

k=0

ckx
k, x→ 0,

and for simplicity of presentation we postulate f(x) = O(x−3/2) as x → ∞. The Mellin
transform F ∗(s) of F (x) is

F ∗(s) = f∗(s)ζ(s)

for <(s) > 1. Taking into account the pole of ζ(s) at s = 1, we can write F ∗(s) as the
following singular expansion

F ∗(s) � f∗(1)
s − 1

+
∞∑

k=0

ckζ(−k)
s+ k

,

due to our assumptions regarding f(x) as x→ 0. By the reverse mapping theorem we find

∞∑
n=1

f(nx) ∼ 1
x

∫ ∞

0
f(t)dt +

∞∑
k=1

ckζ(−k)xk,

=
1
x

∫ ∞

0
f(t)dt− 1

2
f(0)−

∞∑
k=1

B2k

2k
c2k−1x

2k−1,

where Bk are Bernoulli numbers (see Table 8.1). The last line above is a consequence of
ζ(−2k + 1) = −B2k/2k.
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The above is basically the Euler-Maclaurin formula. Interestingly, it can be generalized
to fractional exponents of x. For example, let us consider

F (x) =
∞∑

n=1

f(nx) log n,

where

f(x) =
∞∑

k=0

ckx
βk , x→ 0

with −1 < β0 < β1 < · · ·. This translates to

F ∗(s) = −f∗(s)ζ ′(s).

The singular expansion, due to the double pole of ζ ′(s) at s = 1, is

F ∗(s) � f∗(1)
(s− 1)2

+
f∗′(1)
s− 1

−
∞∑

k=0

ckζ
′(−βk)
s+ βk

.

By the reverse mapping theorem we finally arrive at

F (x) ∼ 1
x

log
1
x

∫ ∞

0
f(t)dt+

1
x

∫ ∞

0
f(t) log tdt −

∑
k=0

ckζ
′(−βk)xβk . (9.37)

Using this, we can easily derive the Ramanujan formula, namely,

∞∑
k=1

e−kx log k =
1
x

(
log

1
x
− γ

)
+ log

√
2π +O(x).

In Exercises 7–10 we propose some more examples and generalizations. 2

9.3 Extension to the Complex Plane

In various applications of the Mellin transform one needs an extension of the transform to
complex analytic functions. To motivate this, let us consider a generic example. Let fn be a
sequence such that it has the generating function f(z) satisfying, say, the following functional
equation

f(z) = a(z) + f(pz) + f(qz) (9.38)

for some a(z) and p+ q = 1. If z is real, the Mellin transform f∗(s) becomes

f∗(s) =
a∗(s)

1− p−s − q−s
, (9.39)
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where a∗(s) is the Mellin transform of a(z). This can be used to obtain asymptotics of f(x)
for x → 0 or x →∞. Assume that we obtained f(x) = 1/

√
1− x+ O(1), and would like to

infer asymptotics of fn through singularity analysis. For this, however, we need an extension
of f(x) to complex z, which further would require an extension for the Mellin transform to
complex analytic functions.

We shall discuss such an extension in this section; that is, we define the Mellin transform
for complex functions F (z) such that f(x) = F (z) |z=x>0 for z complex. Its application will
be illustrated in Section 9.4.2 and the next chapter.

Theorem 9.4 Let (θ1, θ2) be an interval containing 0. Let F (z) be an analytic function
defined for z in a cone Sθ1,θ2 = {z : θ1 < arg(z) < θ2} such that F (z) = O(z−c) for z → 0,
and F (z) = O(z−d) for z → ∞ with z confined to the cone (or more generally: there is an
interval (c, d) such that for all b ∈ (c, d): F (z) = O(z−b) as z → 0 and z →∞ in the cone).

(i) Let L be a curve that starts at z = 0 and goes to∞ inside the cone Sθ1,θ2. For <(s) ∈ (c, d)
the integral

M(F, s) = F ∗(s) :=
∫
L
F (z)zs−1dz

exists and does not depend on the curve L. We call it the complex Mellin transform.

(ii) The complex Mellin transform F ∗(s) is identical to the real Mellin transform f∗(s), that
is, ∫ ∞

0
F (x)xs−1dx = f∗(s) = F ∗(s) =

∫
L
F (z)zs−1dz .

Furthermore, M(F (za), s) = a−sf∗(s) defined on Sθ1−arg(a),θ2−arg(a) with a ∈ Sθ1,θ2.

(iii) For b ∈ (c, d) and θ1 < θ < θ2, f∗(b + it)eθt is absolutely integrable with respect to the
variable t from −∞ to +∞. The inverse Mellin exists and becomes

F (z) =
1

2iπ

∫
<(s)=b

z−sf∗(s)ds

for b ∈ (c, d).

Proof: For part (i), observe that the function F (z)zs−1 is analytic, thus by Cauchy’s formula∮
F (z)zs−1dz = 0,

where the integration is over any arbitrary closed curve inside the cone Sθ1,θ2 . Let z1 and z2
be two points on the curve L∞0 that goes from 0 to infinity inside the cone Sθ1,θ2. Let also
r = |z1|, R = |z2| and let LR

r be the part of L∞0 between z1 and z2. Furthermore, we denote
by Ar and AR the circular arcs connecting z1 with r and z2 with R. We integrate along the
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C

R

L

AR

Ar

r

z1

z2

Figure 9.2: Contours used in the proof of Theorem 9.4

contour C formed by LR
r , the subinterval (r,R) of the real line and the two arcs Ar and AR

(see Figure 9.2). We have∫
LR

r

F (z)zs−1dz =
∫ R

r
F (z)zs−1dz +

∫
AR

F (z)zs−1dz +
∫

Ar

F (z)zs−1dz (9.40)

For R → ∞ and r → 0 we observe that
∫
AR

F (z)zs−1dz = O(R<(s)−b) for any b ∈ (<(s), d),
and

∫
Ar
F (z)zs−1dz = O(r<(s)−a) for a ∈ (c,<(s)), respectively. Thus passing to the limits

as R → ∞ and r → 0, we conclude that the contributions of the arcs vanish. This proves
part (i) and the first part of (ii).

For part (ii), we immediately infer from (9.40), that is,

F ∗(s) = lim
R→∞

∫
LR

0

F (z)zs−1dz = lim
R→∞

∫ R

0
F (z)zs−1dz = f∗(s) .

To prove the identity M(F (za), s) = a−sf∗(s) one needs only make the change of variable
za = z′ in the integration. Notice that the function F (za) is now defined in the cone
Sθ1−arg(a),θ2−arg(a).

Point (iii) is a natural consequence of point (ii) by selecting a = eiθ. In this case, the (real)
Mellin transform of the function F (xeiθ) becomes e−isθf∗(s), which is absolutely integrable.
Therefore, for all z ∈ Sθ1,θ2 the function z−sf∗(s) is absolutely integrable with respect to
=(s). Finally, we conclude that the Mellin inverse identity holds in the complex case.
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The above extension enjoys all the “nice” properties of Mellin transforms of real x that
we discussed so far. In particular, it can be used to obtain an asymptotic expansion of F (z)
for z → 0 and z →∞.

Theorem 9.5 Let f(x) be a function of a real variable. Let f∗(s) be its Mellin transform
defined in the strip <(s) ∈ (c, d). Let (θ1, θ2) be an interval containing 0. If for all b ∈ (c, d)
function f∗(b+ it)eθ1t and f∗(b+ it)eθ2t are absolutely integrable, then
(i) The analytic continuation F (z) of f(x) exists in cone Sθ1,θ2 and F (z) = O(z−b) for |z| → 0
and |z| → ∞ for all b ∈ (c, d).

(ii) If the Mellin transform f∗(s) has singularities that are regular isolated poles in the strip
<(s) ∈ (c′, d′), where c′ < c and d′ > d, then the function F (z) has the same asymptotic
expansions as f(x) up to z−c′ at 0 and up to order z−d′ at ∞.

Proof: Defining

F (z) =
1

2πi

∫
<(s)=b

z−sf∗(s)ds

one introduces an analytic function that matches f(x) on the real line. By an elementary
estimate of the integrand we have F (z) = O(z−b) due to the assumption concerning the
smallness of f∗(b+ it) as t→ ±∞. Part (ii) is a simple consequence of (i), the fact that f∗(s)
is the complex Mellin transform of F (z), and the inverse mapping theorem.

To illustrate the above let us return to the functional equation (9.38) that has solution
(9.38). One can obtain asymptotics of f(z) by the residue theorem. In particular if a∗(s) =
α(s)Γ(s) with α(s) of at most polynomial growth for ±i∞, then the asymptotic expansion
remains valid in all cones strictly included in S−π/2,π/2 because |Γ(it)|2 = π(t sinh(πt))−1 =
O(e−π|t|) when real t tends to ±∞.

9.4 Applications

We are again in the applications section. We shall derive here the variance of the depth in a
generalized digital search tree, and the asymptotic expansion of the minimax redundancy for
renewal processes. This last application is probably one of the most complicated examples
discussed in this book; to solve this problem we will need all the knowledge we have gained
so far.

9.4.1 Variance of the Depth in a Generalized Digital Search Tree

As in Section 8.7.3 we study here the depth in a digital search tree. However, this time
we consider a generalized digital search tree in which every node can store up to b strings,
known also as b-DST. The depth is denoted as Dm and we compute here the variance of Dm
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for the unbiased binary memoryless source in which m independent strings are generated,
each being a sequence of zeros and ones occurring with the same probability. As before, let
B̄m(k) be the expected number of strings on level k of a b-DST tree (i.e., the average profile).
We know that Pr{Dm = k} = B̄m(k)/m (cf. (8.161). Let Bm(u) =

∑
k≥0 B̄m(k)uk be the

generating function of B̄m(k). As in Section 8.7.3, we observe that the Poisson generating
function B̃(u, z) = e−z ∑∞

m=0Bm(u)zm

m! satisfies(
1 +

∂

∂z

)b

B̃(u, z) = b+ 2uB̃(u, z/2), (9.41)

where
(
1 + ∂

∂z

)b
:=
∑b

i=0

(b
i

) ∂i

∂zi . The coefficients of B̃(u, z) can be computed by solving a
linear recurrence discussed in Sections 7.6.1 and 8.7.3. Unfortunately, there is no easy way to
solve such a recurrence unless b = 1 (see Section 7.6.1). To circumvent this difficulty, Flajolet
and Richmond [145] reduced it to a certain functional equation on an ordinary generating
function that is easier to solve. We proceed along this path.

We define a sequence gk(u) = k![zk]B̃(u, z), that is, B̃(u, z) =
∑∞

k=0 gk(u)zk

k! . Observe
that Bm(u) =

∑m
k=0

(m
k

)
gk(u). Let G(u, z) =

∑∞
k=0 gk(u)zk. We also need the ordinary

generating function of Bk(u) denoted as

F (u, z) =
∞∑

k=0

Bk(u)zk.

As in Example 7.11 of Chapter 7 we have

F (u, z) =
1

1− zG
(
u,

z

1− z

)
,

which implies

F (k)
u (u, z) =

1
1− zG

(k)
u

(
u,

z

1− z

)
, (9.42)

where F (k)
u (z, u) denotes the kth derivative of F (z, u) with respect to u. Then from (9.41)

we obtain

G(u, z)(1 + z)b = z(1 + z)b − zb+1 + 2uzbG(u,
z

2
) , (9.43)

G′
u(u, z)(1 + z)b = 2zbG(u,

z

2
) + 2uzbG′

u(u,
z

2
) , (9.44)

G′′
u(u, z)(1 + z)b = 4zbG′

u(u,
z

2
) + 2uzbG′′

u(u,
z

2
) . (9.45)

In order to compute the variance, we need L1(z) := G′
u(u, z)|u=1 and L2(z) := G′′

u(u, z)|u=1.
From (9.44) and (9.45) we immediately obtain

L1(z)(1 + z)b = zb+1 + 2zbL1(
z

2
),

L2(z)(1 + z)b = 4zbL1(
z

2
) + 2zbL2(

z

2
).
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Iterating these equations we easily find (cf. [145] and Section 7.6.1)

L1(z) =
∞∑

k=0

(2zb)(2(z
2 )b) · · · (2( z

2k )b)(
(1 + z)(1 + z

2 ) · · · (1 + z
2k )
)b

z

2k+1
, (9.46)

L2(z) =
∞∑

k=0

(2zb)(2(z
2 )b) · · · (2( z

2k )b)(
(1 + z)(1 + z

2 ) · · · (1 + z
2k )
)b

2L1(
z

2k+1
) . (9.47)

The next step is to transform the above sums (9.46) and (9.47) into harmonic sums. For this,
we set z = 1/t and define Q(t) =

∏∞
k=0(1 + t

2k ). Then (9.46)–(9.47) become

tL1(1
t )(

Q( t
2 )
)b =

∞∑
k=0

1

(Q(2kt))b
, (9.48)

tL2(1
t )(

Q( t
2 )
)b = 2

∞∑
k=0

2k+1tL1( 1
2k+1t

)(
Q(2k+1t

2 )
)b

, (9.49)

which are harmonic sums. The Mellin transforms are

M
[
tL1(1

t )
Qb( t

2)
; s

]
=

1
1− 2−s

I(s) ,

M
[
tL2(1

t )
Qb( t

2)
; s

]
=

21−s

(1− 2−s)2
I(s),

where

I(s) =
∫ ∞

0

ts−1

Qb(t)
dt =

π

sinπs
J(s) , (9.50)

J(s) =
1

2πi

∫
H

(−t)s−1

Qb(t)
dt (9.51)

with H being the Hankel contour (see Table 8.3).
Applying the reverse mapping Theorem 9.2 we find that

L1(
1
t
) =

1
t
k(t) + bk(t) +O(t log t−1),

L2(
1
t
) =

1
t
K(t) + bK(t) +O(t log2 t−1),

where

k(t) = log2

1
t

+
1
2

+
J ′(0)
log 2

− 1
log 2

∑
k=0

I(χk)
χk

t−χk ,
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K(t) = log2
2

1
t

+
2J ′(0)
log2 2

log
1
t
−
(

1
6

+
J ′′(0)
log2 2

− π2

3 log2 2

)
+ 8bt

− 2
log2 2

∑
k=0

I(χk)
χk

t−χk log
1
t

+
2

log2 2

∑
k=0

(
I(χk)
χ2

k

− I ′(χk)
χk

)
t−χk ,

with χk = 2πik/ log 2 for k = 0,±1, . . . being the roots of 1 − 2−s = 0. The next step is
to recover asymptotic expansions of F ′

u(1, z) and F ′′
u (1, z) from which computing the mean

E[Dm] and the variance Var[Dm] is routine. Using (9.42) and changing t = 1/z, the above
translates to

F ′
u(1, z) =

z

(1− z)2 log2
z

1− z +
1

log 2

(
log 2

2
+ J ′(0)

)
z

(1− z)2

− 1
log 2

∑
k 6=0

I(χk)
χk

z1+χk

(1− z)2+χk
+

b

log 2
1

1− z

(
log

z

1− z

+
log 2

2
+ J ′(0)−

∑
k 6=0

I(χk)
χk

zχk

(1− z)χk

+O

(
log

1
(1− z)

)
,

F ′′
uu(1, z) =

z

(1− z)2 log2
2

z

1− z +
2J ′(0)
log2 2

z

(1− z)2 log
z

1− z

−
(

1
6

+
J ′′(0)
log2 2

− π2

3 log2 2

)
z

(1− z)2 −
2

log2 2

∑
k 6=0

I(χk)
χk

zχk

(1− z)χk
log

z

1− z

+
2

log2 2

∑
k 6=0

(
I(χk)
χ2

k

− I ′(χk)
χk

)
zχk

(1− z)χk
+O

(
log2(1− z)

(1− z)

)
.

Having this, we apply the singularity analysis to recover the mean and the variance (through
the second factorial moment E[Dm(Dm−1)]). However, strictly speaking we derived the above
only for z real (since the Mellin transform is defined for z real) while we need an extension
to the complex plane in order to apply Theorem 8.13 of the singularity analysis. Luckily
enough, the extension of Mellin transforms to the complex plane was already presented in
Section 9.3. With this in mind, we are allowed to apply the singularity analysis, in particular
Theorem 8.12, and after some algebra, we find that

E[Dm] = log2m+
1

log 2

(γ − 1) +
log 2

2
+ J ′(0)−

∑
k 6=0

I(χk)
χk

mχk

Γ(2 + χk)


+ O

(
logm
m

)
,

Var[Dm] =
1
12

+
1

log2 2

(
1 +

π2

6

)
+

1
log2 2

(
J ′′(0)− (J ′(0))2

)
+

1
log 2

δ2(log2m)− [δ21 ]0
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+ O

(
log2m

m

)
,

where

J ′(0) =
∫ 1

0

(
1

Q(t)b
− 1

)
dt

t
+
∫ ∞

0

1
Q(t)b

dt

t
, (9.52)

J ′′(0) = −π
2

3
+ 2

∫ 1

0

(
1

Q(t)b
− 1

)
log t
t
dt + 2

∫ ∞

0

1
Q(t)b

log t
t
dt , (9.53)

δ2(·) is a periodic function with mean zero and period 1, and [δ21 ]0 is a very small constant
(e.g., [δ21 ]0 ≤ 10−10 for b = 1). More precisely, (cf. Hubalek [209])

[δ21 ]0 =
1
L2

∑
k 6=0

I(χk)I(−χk)
Γ(2 + χk)Γ(2− χk)

,

and

I(χk) =
1
χk

+
∫ 1

0

(
Q−b(t)− 1

)
tχk−1dt+

∫ ∞

1
Q−b(t)tχkdt.

Numerical evaluation of J ′(0) and J ′′(0) can be found in Hubalek [209].

9.4.2 Redundancy of Renewal Processes

We evaluate here the minimax redundancy of a renewal process. We shall follow Flajolet
and Szpankowski [152]. The reader is referred to Section 8.7.2 for a brief review of the
redundancy problem. We start with a precise definition of the class R0 of renewal processes
and its associated sources. Let T1, T2, . . . be a sequence of i.i.d. (i.e., independently, identically
distributed) nonnegative integer-valued random variables with distribution Q(j) = Pr{T1 =
j} and E[T1] < ∞. The quantities {Ti}∞i=1 are the interarrival times, while T0 is the initial
waiting time. The process T0, T0 +T1, T0 +T1 +T2, . . . is then called a renewal process. With
such a renewal process there is associated a binary renewal sequence that is a 0, 1-sequence
in which the 1’s occur exactly at the renewal epochs T0, T0 + T1, T0 + T1 + T2, etc. We
consider renewal sequences that start with a “1”. The minimax redundancy, R∗

n, of the
renewal process was studied by Csiszár and Shields [79], who proved that R∗

n = Θ(
√
n).

By Shtarkov’s method discussed in Section 8.7.2 we conclude that the minimax redun-
dancy R∗

n(R0) is within one from

R′
n := log2

∑
xn
1

sup
Q
P (xn

1 )


(i.e., R′

n ≤ R∗
n(R0) ≤ R′

n + 1). Instead of working with R′
n we estimate another quantity,

Rn, that is within O(log n) from R′
n, that is, Rn = R′

n + O(log n). In [152] it is argued that
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Rn is the minimax redundancy of (non-stationary) renewal sequences that starts with “1”.
Let now

rn = 2Rn .

In [152] it is shown that rn can be represented by the following combinatorial sum.

Lemma 9.6 The quantity rn = 2Rn admits the combinatorial form
rn =

n∑
k=0

rn,k

rn,k =
∑

P(n,k)

(
k

k0 · · · kn−1

)(
k0

k

)k0

· · ·
(
kn−1

k

)kn−1 ,

where P(n, k) denotes the set of partitions of n into k summands, that is, the collection of
tuples of nonnegative integers (k0, k1, . . . , kn−1) satisfying

n = k0 + 2k1 + · · ·+ nkn−1, (9.54)
k = k0 + k1 + · · ·+ kn−1 (9.55)

for all n ≥ 0 and k ≤ n.

It can also be observed that the quantity rn has an intrinsic meaning. LetWn denote the
set of all nn sequences of length n over the alphabet {0, . . . , n − 1}. For a sequence w, take
kj to be the number of letters j in w. Then each sequence w carries a “maximum likelihood
probability”, πML(w): this is the probability that w gets assigned in the memoryless model
that makes it most likely. The quantity rn is then

rn =
∑

w∈Wn

πML(w).

Our goal is to asymptotically estimate rn through asymptotics of rn,k. A difficulty of
finding such asymptotics stems from the factor k!/kk present in the definition of rn,k. We
circumvent this problem by analyzing a related pair of sequences, sn and sn,k, that are defined
as 

sn =
n∑

k=0

sn,k

sn,k = e−k
∑

P(n,k)

kk0
0

k0!
· · ·

k
kn−1

n−1

kn−1!
.

(9.56)

The translation from sn to rn is most conveniently expressed in probabilistic terms. Introduce
the random variable Kn whose probability distribution is sn,k/sn, that is,

$n : Pr{Kn = k} =
sn,k

sn
, (9.57)
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where $n denotes the distribution. Then Stirling’s formula yields

rn
sn

=
n∑

k=0

rn,k

sn,k

sn,k

sn
= E[(Kn)!KKn

n e−Kn ]

= E[
√

2πKn] +O(E[K
− 1

2
n ]). (9.58)

Thus the problem of finding rn reduces to asymptotic evaluations of sn, E[
√
Kn] and E[K

− 1
2

n ].
The heart of the matter is the following lemma, which provides the necessary estimates. The
somewhat delicate proof of Lemma 9.7 constitutes the core of the section and it is deferred
until the end of it.

Lemma 9.7 Let µn = E[Kn] and σ2
n = Var[Kn], where Kn has the distribution $n defined

above in (9.57). The following holds

sn ∼ exp
(

2
√
cn− 7

8
log n+ d+ o(1)

)
, (9.59)

µn =
1
4

√
n

c
log

n

c
+ o(
√
n), (9.60)

σ2
n = O(n log n) = o(µ2

n), (9.61)

where c = π2/6− 1, d = − log 2− 3
8 log c− 3

4 log π.

Once the estimates of Lemma 9.7 are granted, the moments of order ±1
2 of Kn follow by a

standard argument based on concentration of the distribution $n as discussed in Chapter 5.

Lemma 9.8 For large n

E[
√
Kn] = µ1/2

n (1 + o(1)) (9.62)

E[K
− 1

2
n ] = o(1), (9.63)

where µn = E[Kn].

Proof. We only prove (9.62) since (9.63) is obtained in a similar manner. The upper bound
E[
√
Kn] ≤

√
E[Kn] follows by Jensen’s inequality (2.9) and the concavity of the function√

x. The lower bound follows from concentration of the distribution. Chebyshev’s inequality
(2.7) and (9.61) of Lemma 9.7 entail, for any arbitrarily small ε > 0,

Pr{|Kn − µn| > εµn} ≤
Var[Kn]
ε2µ2

n

=
δ(n)
ε2

,
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where δ(n)→ 0 as n→∞. Then

E[
√
Kn] ≥

∑
k≥(1−ε)µn

√
kPr{Kn ≥ k}

≥ (1− ε) 1
2µ1/2

n Pr{Kn ≥ (1− ε)µn}

≥ (1− ε) 1
2

(
1− δ(n)

ε2

)
µ1/2

n .

Hence for any η > 0 one has
E[
√
Kn] > µ1/2

n (1− η)

provided n is large enough. This completes the proof.

In summary, rn and sn are related by

rn = snE[
√

2πKn](1 + o(1))
= sn

√
2πµn(1 + o(1)),

by virtue of (9.58) and Lemma 9.8. This leads to

Rn = log2 rn = log2 sn +
1
2

log2 µn + log2

√
2π + o(1) (9.64)

=
2

log 2

√(
π2

6
− 1

)
n− 5

8
log2 n+

1
2

log2 log n+O(1). (9.65)

To complete the proof of our main result (9.64) we need to prove Lemma 9.7, which is
discussed next. Let

β(z) =
∞∑

k=0

kk

k!
e−kzk,

which by the Lagrange inversion formula is equal to

β(z) =
1

1− T (ze−1)
,

where T (z) is the tree function discussed in Section 7.3.2 (e.g., see (7.31)). As a matter of
fact, β(z) = B(ze−1), where B(z) is defined in (7.35).

The quantities sn and sn,k of (9.56) have generating functions

Sn(u) =
∞∑

k=0

sn,ku
k, S(z, u) =

∞∑
n=0

Sn(u)zn.
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Then since equation (9.66) involves convolutions of sequences of the form kk/k!, we have

S(z, u) =
∑

P(n,k)

z1k0+2k1+···
(
u

e

)k0+···+kn−1 kk0
0

k0!
· · ·

k
kn−1

n−1

kn−1!

=
∞∏
i=1

β(ziu). (9.66)

We also need access to the first moment µn = E[Kn] and the second factorial moment
E[Kn(Kn − 1)]. They are obtained as

sn = [zn]S(z, 1),

µn =
[zn]S′

u(z, 1)
[zn]S(z, 1)

,

E[Kn(Kn − 1)] =
[zn]S′′

uu(z, 1)
[zn]S(z, 1)

,

where S′
u(z, 1) and S′′

uu(z, 1) represent the first and the second derivative of S(z, u) at u = 1.
We deal here with sn that is accessible through its generating function

S(z, 1) =
∞∏
i=1

β(zi). (9.67)

The behavior of the generating function S(z, 1) as z → 1 is an essential ingredient of the
analysis. We know that the singularity of the tree function T (z) at z = e−1 is of the square-
root type as discussed in Example 8.10 of Chapter 8 (cf. also [73]). Hence, near z = 1, β(z)
admits the singular expansion (cf. Example 8.10 of Chapter 8 or (8.160))

β(z) =
1√

2(1− z)
+

1
3
−
√

2
24
√

1− z +O(1− z).

We now turn to the infinite product asymptotics as z → 1−, with z real. Let L(z) =
log S(z, 1) and z = e−t, so that

L(e−t) =
∞∑

k=1

log β(e−kt). (9.68)

The Mellin transform technique discussed in this chapter provides an expansion for L(e−t)
around t = 0 (or equivalently z = 1) since the sum (9.68) is a harmonic sum paradigm
discussed in this chapter. The Mellin transform L∗(s) = M[L(e−t); s] of L(e−t) computed
by the harmonic sum formula for <(s) ∈ (1,∞) is

L∗(s) = ζ(s)Λ(s),
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where
Λ(s) =

∫ ∞

0
log β(e−t)ts−1dt.

Now by the direct mapping Theorem 9.3 the expansion of β(z) at z = 1 implies

log β(e−t) = −1
2

log t− 1
2

log 2 +O(
√
t),

so that, collecting local expansions,

Λ(s) �
[
Λ(1)

1
s − 1

]
s=1

+
[

1
2

1
s2
− 1

2
log 2
s

]
s=0

.

On the other hand, classical expansion of the zeta function gives (cf. [2, 424])

ζ(s) �
[

1
s− 1

+ γ

]
s=1

+
[
−1

2
− s log

√
2π
]
s=0

.

Termwise multiplication then provides the singular expansion of L∗(s):

L∗(s) �
[

Λ(1)
s− 1

]
s=1

+
[
− 1

4s2
− log π

4s

]
s=0

.

An application of the reverse mapping Theorem 9.2 allows us to come back to the original
function

L(e−t) =
Λ(1)
t

+
1
4

log t− 1
4

log π +O(
√
t), (9.69)

which (after using z = 1− t+O(t2)) translates into

L(z) =
Λ(1)
1− z +

1
4

log(1− z)− 1
4

log π − 1
2

Λ(1) +O(
√

1− z). (9.70)

This computation is finally completed by the evaluation of c := Λ(1):

c = Λ(1) = −
∫ 1

0
log(1− T (x/e))

dx

x

= −
∫ 1

0
log(1− t)(1− t)

t
dt (x = te1−t)

=
π2

6
− 1.

In summary, we just proved that as z → 1−

S(z, 1) = eL(z) = a(1− z) 1
4 exp

(
c

1− z

)
(1 + o(1)) , (9.71)
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where a = exp(−1
4 log π − 1

2c). So far, the main estimate (9.71) has been established as z
tends to 1 from the left, by real values, but by Theorem 9.4 we know that it is true for
complex t only constrained in such a way that −π

2 + ε ≤ arg(t) ≤ π
2 − ε, for any ε > 0. Thus,

the expansion (9.71) actually holds true as z → 1 in a sector, say, | arg(1− z)| < π
4 .

It remains to collect the information gathered on S(z, 1) and recover sn = [zn]S(z, 1)
asymptotically. The inversion is provided by the Cauchy coefficient formula.

We shall use the following lemma.

Lemma 9.9 For positive A > 0, and reals B and C, define f(z) = fA,B,C(z) as

f(z) = exp
(

A

1− z +B log
1

1− z + C log
(

1
z

log
1

1− z

))
. (9.72)

Then the nth Taylor coefficient of fA,B,C(z) satisfies asymptotically, for large n,

[zn]fA,B,C(z) = exp
(

2
√
An+

1
2

(
B − 3

2

)
log n+ C log log

√
n

A

−1
2

log
(
4πe−A/

√
A
))

(1 + o(1)). (9.73)

Proof. Problems of this kind have been considered by Wright [451] and others who, in
particular, justify in detail that the saddle point method works in similar contexts. Therefore
we merely outline the proof here. The starting point (see Table 8.4 in Section 8.4) is Cauchy’s
formula

[zn]f(z) =
1

2πi

∮
eh(z)dz,

where
h(z) = log fA,B,C(z)− (n+ 1) log z.

In accordance with (SP1) of Table 8.4 one chooses a saddle point contour that is a circle of
radius r defined by h′(r) = 0. Asymptotically, one finds

r = 1−
√
A

n
+
B −A

2n
+ o(n−1),

and

h(r) = 2A
√
n

A
+B log

(√
n

A

)
+ C log log

(√
n

A

)
+

1
2
A+ o(1).

The “range” δ = δ(n) of the saddle point, where most of the contribution of the contour
integral is concentrated asymptotically, is dictated by the order of growth of derivatives (cf.
(SP2) of Table 8.4). Here, h′′(r) ≈ n3/2, while h′′′(r) ≈ n2, so that

δ(n) = n−3/4.
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In accordance with requirement (SP3) of Table 8.4, tails are negligible since the function
exp((1 − z)−1) decays very fast when going away from the real axis. In the central region,
the local approximation (SP4) applies, as seen by expansions near z = 1. Thus requirements
(SP1), (SP2), (SP3), and (SP4) of Table 8.4 are satisfied, implying, by (SP5) of Table 8.4

[zn−1]f(z) =
1√

2π|h′′(r)|
eh(r) (1 + o(1)) .

Some simple algebra, using
h′′(r) = 2n

√
n/A (1 + o(1)) ,

yields the stated estimate (9.73).

Now, the function S(z, 1) is only known to behave like f(z) of Lemma 9.9 in the vicinity
of 1. In order to adapt the proof of Lemma 9.9 and legitimate the use of the resulting formula,
we need to prove that S(z, 1) decays fast away from the real axis. This somewhat technical
Lemma 9.10 below is proved in [152] and we omit here its derivation.

Lemma 9.10 (Concentration property) Consider the ratio

q(z) =
∞∏

j=1

∣∣∣∣∣ β(zj)
β(|z|j)

∣∣∣∣∣ .
Then there exists a constant c0 > 0 such that

q(reiθ) = O
(
e−c0(1−r)−1

)
,

uniformly, for 1
2 ≤ r < 1 and | arg(reiθ − 1)| > π

4 .

We are now finally ready to return to the estimate of sn in Lemma 9.7. In the region
| arg(z − 1)| < π

4 , the Mellin asymptotic estimates (9.69) and (9.71) apply. This shows that
in this region,

S(z, 1) = eo(1)fA,B,C(z) (z → 1),

where the function f is that of Lemma 9.9 and the constants A,B,C have the values assigned
by (9.71):

A = c =
π2

6
− 1, B = −1

4
, C = 0.

In the complementary region, | arg(z − 1)| > π
4 , the function S(z, 1) is exponentially

smaller than S(|z|, 1) by Lemma 9.10. From these two facts, the saddle point estimates of
Lemma 9.9 are seen to apply, by a trivial modification of the proof of that lemma. This
concludes the proof of Equation (9.59) in Lemma 9.7.
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It remains to complete the evaluation of µn and σ2
n, following the same principles as before.

Start with µn = E[Kn], with the goal of establishing the evaluation (9.60) of Lemma 9.7. It
is necessary to estimate [zn]S′

u(z, 1), with

S′
u(z, 1) = S(z, 1)

∞∑
k=0

zk β
′(zk)
β(zk)

.

Let

D1(z) =
∞∑

k=0

α(zk), where α(z) = z
β′(z)
β(z)

.

Via the substitution z = e−t, the function D1(e−t) falls under the harmonic sum so that its
Mellin transform is

M[D1(e−t); s] = ζ(s)M[α(e−t); s].

The asymptotic expansion

α(e−t) =
1
2t
−
√

2
6

1√
t
− 1

18
+O(

√
t)

gives the singular expansion of the corresponding Mellin transform. This in turn yields the
singular expansion of M[D1(e−t); s]. Then the reverse mapping Theorem 9.2 gives back
D(e−t) at t ∼ 0; hence,

D1(z) =
1
2

1
1− z log

1
1− z +

1
2

γ

1− z −
1
6

√
2ζ(1

2)√
1− z

− 1
4

log
1

1− z +O(1),

where γ = 0.577 . . . is the Euler constant. The combination of this last estimate and the
main asymptotic form of S(z, 1) in (9.71) yields

S′
u(z, 1) ∼ 1

2
a exp

(
c

1− z +
3
4

log
1

1− z + log log
1

1− z

)
,

where a is the same constant as in (9.71). As for S(z, 1), the derivative S′
u(z, 1) is amenable

to Lemma 9.9, and this proves the asymptotic form of µn, as stated in (9.60) of Lemma 9.7.
Finally, we need to justify (9.61), which represents a bound on the variance of Kn. The

computations follow the same steps as above, so we only sketch them briefly. One needs to
estimate a second derivative,

S′′
uu(z, 1)
S(z, 1)

= D2(z) +D2
1(z),

where

D2(z) =
∞∑

k=0

z2k β
′′(zk)
β(zk)

−
(
zkβ′(zk)
β(zk)

)2

.
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The sum above is again a harmonic sum that is amenable to Mellin analysis, with the result
that

D2(z) =
ζ(2)

2
1

(1− z)2 +O((1− z)−3/2).

Then we appeal again to Lemma 9.9 to achieve the transfer to coefficients. Somewhat tedious
calculations (that were assisted by the computer algebra system Maple) show that the
leading term in n log2 n of the second moment cancels with the square of the mean µn.
Hence, the variance cannot be larger than O(n log n). This establishes the second moment
estimate (9.61) of Lemma 9.7.

In summary, we proved that Rn (hence also the minimax redundancy R∗
n, which is within

O(log n) from Rn) attains the following asymptotics

Rn =
2

log 2

√(
π2

6
− 1

)
n− 5

8
log2 n+

1
2

log2 log n+O(1)

as n→∞.

9.5 Extensions and Exercises

9.1 Prove Entry 13 of Table 9.1.

9.2 Prove that

M

e−x −
k∑

j=0

(−1)k x
j

j!
; s

 = Γ(s)

for −k − 1 < <(s) < −k. What is the Mellin transform of e−x − 2, if it exists.

9.34! (Louchard, Szpankowski, and Tang, 1999) Prove the following result.

Lemma 9.11 Let {fn}∞n=0 be a sequence of real numbers. Suppose that its Poisson
generating function F̃ (z) =

∑∞
n=0 fn

zn

n! e
−z is an entire function. Furthermore, let its

Mellin transform F (s) have the following factorization: F (s) =M[F̃ (z); s] = Γ(s)γ(s),
and assume F (s) exists for <(s) ∈ (−2,−1), while γ(s) is analytic for <(s) ∈ (−∞,−1).
Then

γ(−n) =
n∑

k=0

(
n

k

)
(−1)kfk, for n ≥ 2.
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9.44! Define

f(x) =
∑
k≥1

ekx

(ekx − 1)2

g(x) =
∑
k≥1

(−1)k−1

k (ekx − 1)
,

h(x) =
∑
k≥1

1
k (e2kπx − 1)

.

Prove the following identities:

1 + 2
∑
n≥1

e−πn2x =
1√
x

+
2√
x

∑
n≥1

e−πn2/x Jacobi’s ϑ-function,

f(x) =
1
x2

π2

6
− 1

2x
+

1
24
− 4π2

x2
f

(
4π2

x

)
Ramanujan [45],

g(x) =
π2

12x
− log 2

2
+

x

24
− g

(
2π2

x

)
Ramanujan [45],

h(x) =
π

12

(
1
x
− x

)
+

log x
2

+ h

(
1
x

)
Dedekind and Ramanujan [45].

The latter three identities play a role in the analysis of the variance for some parameters
of tries (cf. [243, 250, 251, 253]).

9.5 Consider the following functional equation

f(x) = 2f(x/2) + 1− (1 + x)e−x, x > 0.

Prove that for arbitrary positive M and x→∞

f(x) = x

(
1

log 2
+G(log2 x)

)
− 1 +O(x−M ),

where
G(x) =

1
log2 2

∑
k 6=0

kΓ(−1 + 2πik/ log 2) exp(−2πikx)

is a periodic function with period 1 and amplitude smaller than 1.6 · 10−6.

9.6 Derive the following asymptotic expansion

log2 n∑
k=1

2k
(
1− (1− 2−k)n

)
= n(2− C1)− 2− 1

2
C2 +O(1/ log n)
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where

C1 =
∞∑
l=0

2−le−2l
,

C2 =
∞∑
l=0

2le−2l

are constants.

Hint. Do not use the mellin transform.

9.7 Using the generalized Euler-Maclaurin formula discussed in Example 4, analyze asymp-
totically

F1(x) =
∑
n≥1

e−
√

nx,

F2(x) =
∑
n≥1

√
nx

1 + n2x2
.

9.8 Prove that under suitable conditions (state them!)

∞∑
n=1

(−1)n−1f(nx) ∼
∞∑

k=0

ck(1− 21+βk)ζ(−βk)xβk ,

where as in Example 4 we assume that

f(x) =
∞∑

k=0

ckx
βk , x→ 0,

where −1 < β0 < β1 < · · ·.

9.9 Generalize formula (9.37), that is, find an asymptotic expansion for

Fm(x) =
∑
n≥1

logm nf(nx)

for m ≥ 1.

9.10 Develop an asymptotic formula for

∞∑
n=1

(−1)nf(nx) log n.
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Using this formula establish an asymptotic expansion of the sum from the introduction,
namely,

H(x) =
∞∑

k=1

(−1)ke−k2x log k

for x→ 0.

9.11 Consider the function ϕ(z) defined in Example 2, that is,

ϕ(z) =
∞∏

j=0

(
1− ed(z2j)e−z2j

)
,

where ed(z) = 1 + z1

1! + · · ·+ zd

d! . Prove that for all z ∈ Sθ with z 6= 0 and |θ| < π/2 we
have uniformly |ϕ(z)| < A for some constant A > 0.

9.12 Prove that

F (x) =
∞∑

k=1

(
1− (1− 2−k)x

)
attains the following asymptotics for x→∞:

F (x) ∼ log2 x+
γ

log 2
− 1

2
+

∞∑
j=1

Pj(log2 x)x−j ,

where Pj is a periodic function of period 1.

9.13 Analyze asymptotically ∑
k≥0

(−1)k
√
k

(
2n
n− k

)
.

9.144! Let Pn be the number of integer partitions. In Example 5 we proved that its ordinary
generating function is

P (z) =
∞∏

k=1

(1− zk)−1.

Show that

Pn ∼
exp(π

√
2n/3)

4
√

3n
.

Hint. The following steps are advised:
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1. Define

F (t) = log P (e−t) =
∞∑

k=1

log(1− ekt)−1,

and then prove that the Mellin transform F ∗(s) of F (t) is

F ∗(s) = ζ(s)ζ(s+ 1)Γ(s).

2. Using the reverse mapping Theorem 9.2 prove that

F (t) ∼ π2

6t
+ log

√
t

2π
− t

24
, t→ 0,

which yields

P (z) =
e−π2/12√
2π(1 − z)

exp

(
π2

6(1 − z)

)
(1 +O(1− z)).

3. Use the saddle point method (as described in Table 8.4 or in Lemma 9.9) to
establish the result.

9.154! Let Qn be the number of integer partitions in distinct parts. Prove that its generating
function is

Q(z) =
∞∏

k=1

(1 + zk),

and then establish

Qn ∼
exp(π

√
n/3)

431/4n3/4
.

9.164! (Andrews, 1984) Let

G(z) =
∞∏

n=1

(1− zn)−an = 1 +
∞∑

n=1

rnz
n,

where an ≥ 0 such that its Dirichlet series D(s) =
∑

n≥1
an
ns is convergent for <(s) > α

and
D(s) �

[
A

s− α

]
s=α

.

Furthermore, assume that D(s) is continuable to the left and of moderate growth;
that is, D(s) = O(|=(s)|c) for some constant c. Let z = e−t and we assume that for
arg(t) > π/4.

<(G(e−t))−G(e−<(t)) ≤ −C2<(t)−ε

for sufficiently small <(t) and arbitrarily small ε > 0. Generalize the approach presented
in Exercise 14 to prove the following lemma due to G. Meinardus (cf. [13]).
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Lemma 9.12 (Meinardus) With the notations as above, the following holds

rn ∼ Cnκ exp
(
nα/(1+α)(1 + 1/α) (AΓ(α+ 1)ζ(α+ 1))1/(1+α)

)
,

where

C =
eD

′(0) (AΓ(α+ 1)ζ(α + 1))(1−2D(0))/(2+2α)√
2π(1 + α)

,

κ =
D(0)− 1− α/2

1 + α

as n→∞.

9.174! Consider a trie built over n binary strings generated independently by a memoryless
source. Let p and q = 1− p denote the probability of generating “1” and “0”, respec-
tively. In this exercise we are interested in finding the limiting distribution of the fill-up
level Fn (see Section 1.1), that is, the maximal level, where the tree is still full (in other
words, the tree contains all nodes up to level Fn). Let fk

n = Pr{Fn ≥ k}. Verify that it
satisfies the following recurrence for all n ≥ 0 and k ≥ 0

fk+1
n =

n∑
i=0

(
n

i

)
piqn−ifk

i f
k
n−i

with f0
0 = 0 and f0

n = 1 for n ≥ 1. Find asymptotics of fk
n for all possible ranges of n

and k. In particular, prove the result of Pittel [338] asserting that

Pr{Fn = kn or Fn = kn + 1} = 1− o(1), n→∞,

where kn = blogQ n− logQ logQ log n+ o(1)c and Q−1 = min{p, 1 − p}.

9.185? Consider the same trie as in Exercise 17 above. Consider now the shortest path sn

(see Section 1.1). Let rk
n = Pr{sn ≥ k}. Verify that it satisfies the following recurrence

for n ≥ 0 and k ≥ 0

rk+1
n =

n∑
i=0

(
n

i

)
piqn−irk

i r
k
n−i − δn,1δk,0

with r0n = 1 for n ≥ 0. In the above δi,j is the Kronecker delta (i.e., δij = 1 for i = j
and zero otherwise). Find asymptotics of rk

n for all possible ranges of n and k.
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9.194! (Jacquet and Szpankowski, 1994) Prove that the limiting distribution of the typical
depth in a suffix tree built from n independently generated binary sequences is normal.
More precisely: For biased memoryless source (p 6= q) the limiting distribution of the
depth Dm in a suffix tree is

Dm − c1 log n√
c2 log n

→ N(0, 1),

where c1 = 1/h and c2 = (h2 − h2)/h3 (as before, h is the entropy of the source and
h2 = p log2 p+ q log2 q).

9.204! Consider the renewal sequences and define the two quantities R′
n andRn, as explained

in Section 9.4.2. To recall:

R′
n : = log2

∑
xn
1

sup
Q
P (xn

1 )

 ,
Rn : = log2

∑
xn
1

sup
Q
P (x̃n

1 )


where xn

1 is a stationary renewal sequence and x̃n
1 is a nonstationary renewal sequence

that starts with “1”. Prove that Rn = R”n +O(log n).

9.214! Show that the Mellin transform f∗(s) of f(x) in the strip of convergence can be
represented as the following Hankel integral

f∗(s) =
1

2i sin πs

∫ 0+

∞
f(z)(−z)s−1dz,

where the contour starts at infinity on the the upper half-plane, encircles the origin,
and proceeds back to infinity in the lower half-plane.



Chapter 10

Analytic Poissonization and
Depoissonization

Summary: In combinatorics and the analysis of algorithms a Poisson version of a problem
(henceforth called Poisson model or poissonization) is often easier to solve than the original
one, which is usually known under the name Bernoulli model. Poissonization is a technique
that replaces the original input by a Poisson process. Poisson transform maps a sequence
characterizing the Bernoulli model into a generating function of a complex variable charac-
terizing the Poisson model. Once the problem is solved in the Poisson domain, one must
depoissonize it in order to translate the results back to the original (i.e., Bernoulli) model. A
large part of this chapter is devoted to various depoissonization results. As a matter of fact,
analytic depoissonization can be viewed as an asymptotic technique applied to generating
functions that are entire functions. We illustrate our analysis with numerous examples from
combinatorics and the analysis of algorithms and data structures. These applications are
among the most sophisticated that we discuss in this book.

SOME ALGORITHMS (e.g., sorting and hashing) can be modeled by the “balls-and-urns”
paradigm in which n elements are placed randomly into m bins. Questions arise such

as how many urns are empty, how many balls are required to fill up all urns, and so forth.
It is easy to see that the occupancies of urns are not independent (e.g., if all balls fall into
one urn, then all the remaining urns are empty). To overcome this difficulty an interesting
probabilistic technique called poissonization was suggested (see Section 5.2). In this new
Poisson model it is assumed that balls are “generated” according to a Poisson process N
with mean n. Due to some unique properties of the Poisson process, discussed below, the
streams of balls are now placed independently in every urn, thus overcoming the above-
mentioned difficulty. Observe, however, that poissonization has its own problem since one
must “extract” the original results from the Poisson model, that is, depoissonize the Poisson

401
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model. Throughout this chapter we shall refer to the original model as the Bernoulli model.
More generally, let gn be a characteristic of the Bernoulli model of size n (e.g., gn is the

number of empty urns in the balls-and-urns model with n urns). The Poisson transform
is defined as

G̃(z) = E[gN ] =
∑
n≥0

gn
zn

n!
e−z.

Observe that the input n becomes a Poisson variable N with mean z when z ≥ 0. We later
extend z to the whole complex plane. The Poisson transform was introduced by Gonnet
and Munro [176] and extended in [343]. When z is complex, we also refer to it as analytic
poissonization.

To further motivate our discussion, let us consider the following scenario. We have already
seen in this book that many problems arising in the analysis of algorithms are mapped into
certain recurrence equations or functional/differential equations (e.g., Sections 7.6.1, 8.7.3,
and 9.4.1). Algorithms involved in splitting processes and digital trees are representative
examples of this situation. Embedding this splitting process into a Poisson process often leads
to more tractable functional/differential equations. Take the following general recurrence
describing a splitting process, already discussed in Section 7.6.1,

xn = an + β
n∑

k=0

(
n

k

)
pkqn−k(xk + xn−k) , n ≥ 2

with some initial values for x0 and x1, where an is a given sequence, and β > 0 is constant.
Let X(z) and A(z) be the exponential generating functions of xn and an, respectively. By
(7.17) of Table 7.3 we find

X(z) = βX(zp)ezq + βX(zq)ezp +A(z)− x0 − x1z.

To further simplify it, we consider the Poisson transform X̃(z) = X(z)e−z , and then

X̃(z) = βX̃(zp) + βX̃(zq) + Ã(z)− x0e
−z − x1ze

−z . (10.1)

This is a linear additive functional equation that can be solved by consecutive iterations as
shown in (7.67) of Section 7.6.1. But after solving it and eventually finding an asymptotic
expansion of X̃(z), we still need a method to extract the coefficients xn.

In general, if the Poisson transform G̃(z) can be computed exactly, then one can ex-
tract the coefficient gn = n! [zn](G̃(z)ez). This is called algebraic or exact depoissonization.
However, in most interesting situations (cf. Example 3) the Poisson transform G̃(z) satisfies
a functional/differential equation like (10.1) that usually cannot be solved exactly. Never-
theless, one can find an asymptotic expansion of G̃(z) for z → ∞ (e.g., using the Mellin
transform discussed in the last chapter) on the real axis and can bound G̃(z) in the complex
plane. Then one aims at finding an asymptotic expansion of gn from the asymptotics of G̃(z).
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This we shall call analytic depoissonization. In Chapter 8 we discussed several methods
to extract the coefficients gn asymptotically as n→∞, from an asymptotic expansion of its
generating function. In particular, the singularity analysis is designed to handle this situation
when the analytic function is of moderate growth. Analytic depoissonization can be viewed
as another asymptotic method, usually applied to functions of rapid growth.

Analytic depoissonization is well understood when the only singularities of the Poisson
transform G̃(z) are poles or algebraic singularities. In this case, one can apply either Cauchy’s
residue theorem or the singularities analysis (see Section 8.3.2). The reader is referred to
Gonnet and Munro [176], Poblete [341], and Poblete, Viola, and Munro [343] for such analyses.
A new situation arises when the Poisson transform G̃(z) is an entire function and consequently
does not have any singularity in the complex plane. In this case, one can rely only on partial
information regarding G̃(z) and apply the saddle point method (see Section 8.4) to extract
the asymptotics. This is exactly what we plan to do in this chapter.

Finally, one may ask why poissonization? Why not embed the Bernoulli model into
another process? This seems to be a consequence of certain unique properties of the Poisson
process that we briefly discuss below. In short, it is the only process that has stationary and
independent increments, and which has no group arrivals. To be a little more precise, let
us first define superposition and thinning or splitting processes of a renewal (point) process
(details on renewal processes can be found in Durrett [117] or Ross [369]). Consider two
(stationary) renewal processes, say N1 and N2. Then the superposition process N = N1 +N2

consists of all renewal points of both processes. To define the splitting or thinning process,
take a single renewal process and for each point decide independently whether to omit it
(thinning) or to direct it to one of two (or more) outputs (splitting). The following three
properties are well known (cf. [369]), but the reader is asked to prove them in Exercise 1:
(P1) A stationary renewal process is the superposition of some independent renewal processes

only if the process is Poisson.

(P2) A thinning or splitting process is Poisson with parameter zp, where p is the probability
of thinning if the original process is Poisson with parameter z.

(P3) Let N(t) denote Poisson arriving points in the interval (0, t). Then

Pr{N(x) = k | N(t) = n} =

(
n

k

)
(x/t)k(1− x/t)n−k,

where x ≤ t. In other words, the points of Poisson process are uniformly and indepen-
dently distributed in (0, t) conditioned on n arrivals in this interval.

The last property is sometimes called “random occurrence of the conditional Poisson process.”
This chapter discusses results obtained only recently that are still under vigorous inves-

tigations. Our goal is to present a readable account of poissonization and depoissonization.
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However, we also aspire to present rigorous derivations of depoissonization results so that
this chapter can be used as a reliable reference on depoissonization. All depoissonization
results presented in this chapter fall into the following general scheme: If the Poisson trans-
form has an appropriate growth in the complex plane, then an asymptotic expansion of the
sequence can be expressed in terms of the Poisson transform and its derivatives evaluated
on the real line. Not surprisingly, actual formulations of depoissonization results depend on
the nature of growth of the Poisson transform, and thus we have polynomial and exponential
depoissonization theorems. Normalization (e.g., as in the central limit theorem) introduces
another twist that led us to formulate the diagonal depoissonization theorems. We also have
a short account on the Dirichlet depoissonization recently introduced by Clement, Flajolet,
and Vallée (cf. [68]). In the application section we discuss the limiting distribution of the
time to find a leader using the leader election algorithm, and then we analyze the depth of
b-digital search trees for memoryless and Markovian sources. The latter application is one of
the most complex in this book.

To the best of our knowledge, poissonization was introduced by Marek Kac [226], who
half a century ago investigated the deviations between theoretical and empirical distributions.
Aldous [4] gave a heuristic probabilistic principle for depoissonizing small probabilities rather
than large expected values that is main focus of this chapter. Exact analytic depoissonization
results for meromorphic functions were discussed in Gonnet and Munro [175, 176] and
Poblete [341], and Poblete, Viola and Munro [343]. Asymptotic analytic depoissonization
for meromorphic function can be found in [176, 343] while depoissonization for entire functions
was initiated by Jacquet and Régnier, who analyzed the limiting distributions of the depth
and the size in tries [212, 213, 356]. Jacquet and Régnier introduced the basic idea of the
analytical depoissonization for an implicit solution of a nonlinear functional equation. Jacquet
and Szpankowski [217], and Rais et al. [350] extended these results and obtained the first
general and simple version of the depoissonization result. The presentation in this chapter
is based on two recent papers written together with my colleague P. Jacquet [218, 219]. We
report here only basic depoissonization results and some of its generalizations. We refer
the reader to Jacquet and Szpankowski [218] for more advanced depoissonization results.
Recently, poissonization was further popularized in the context of analysis of algorithms and
combinatorial structures by Aldous [4], Arratia and Tavaré [20], Clement, Flajolet, and Vallée
[68], Gonnet [175], Gonnet and Munro [176], Holst [199], Jacquet and Régnier [212, 213],
Jacquet and Szpankowski [214, 217, 218, 219], Janson and Szpankowski [223], Rais et al.
[350], Fill et al. [124], Kirschenhofer et al. [254], Poblete [341], and Poblete et al. [343].

Finally, we must observe that any depoissonization result is in fact a Tauberian theorem
for the Borel mean (cf. [188]), which is nothing else but the Poisson transform defined
above. For an accessible account on modern development of Tauberian theorems the reader
is referred to Bingham [50].
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10.1 Analytic Poissonization and the Poisson Transform

We briefly discuss the poissonization technique. First, we review probabilistic poissoniza-
tion, then discuss exact analytic poissonization, and finish this section with an overview of
asymptotic poissonization.

10.1.1 Poisson Transform

Consider a combinatorial structure in which n objects are randomly distributed into some
locations (e.g., one can think of n balls thrown into urns). The objects are not necessarily
uniformly distributed among the locations (cf. digital trees). We call such a setting the
Bernoulli model. Let Xn be a characteristic of the model (e.g., the number of throws needed
to fill up all urns). Next, we define the Poisson model. Let N be a random variable distributed
according to a Poisson distribution with parameter z ≥ 0, that is, Pr{N = k} = e−zzk/k! ,
and let XN be the above characteristic defined in the Poisson model in which the deterministic
input (i.e., n) is replaced by the Poisson variable N . Then by definition

X̃(z) := E[XN ] =
∑
n≥0

E [XN | N = n] e−z z
n

n!

=
∑
n≥0

E[Xn]e−z z
n

n!
. (10.2)

We now analytically continue X̃(z) to the whole complex plane, and throughout we make
the following assumption:

(A) The sum in (10.2) converges absolutely for every z, that is, X̃(z) is an entire function
of the complex variable z.

This defines the Poisson transform X̃(z) for all complex z.
In general, we use gn as a generic notation for a sequence characterizing the Bernoulli

model (e.g., gn = E[Xn] or, in general, gn = E[f(Xn)] for some function f). By G̃(z) or
P(gn; z) we denote the Poisson transform defined formally as

G̃(z) = P(gn; z) :=
∑
n≥0

gn
zn

n!
e−z .

Table 10.1 presents some common Poisson transforms. Items 1-4 are obvious. Item 5 (the
additive (p, q)-splitting, where q = 1 − p) and Item 6 (i.e., multiplicative (p, q)-splitting)
follow directly from (7.17) of Table 7.3, while Item 7 requires only trivial algebra (we return
to it in Section 10.3.1). A more complete list of Poisson transforms can be found in [343].

An astute reader should notice that for Items 1 and 2 of Table 10.1 gn ∼ G̃(n) as n→∞
while this is not true for Items 3 and 4. In the latter case, the Poisson transform is either
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Table 10.1: Some Poisson Transforms

Item gn G̃(z)

1 C C

2 n(n− 1) · · · (n− k + 1) zk

3 αn e(α−1)z

4 n! e−z

1−z

5
∑n

k=0

(n
k

)
pk(1− p)n−k(fk + gn−k) F (pz) +G((1 − p)z)

6
∑n

k=0

(n
k

)
pk(1− p)n−kfkgn−k F (zp)G((1 − p)z)

7
∑

k≥0 ak(1− (1− ak)n)
∑

k≥0 ak(1− e−zak)

of rapid growth (Item 3) or not an entire function (so assumption (A) is not satisfied). For
Items 1 and 2 the transforms are of a polynomial growth. This is not a coincidence, and in
this chapter we systematically explore the relationship between gn as n → ∞ and G̃(z) as
z →∞.

Example 10.1 Depth and Size of a Trie
Let us find the Poisson transform of the depth Dn for a trie built over n strings generated

by biased memoryless source. We define

Dn(u) = E[uDn ] =
∞∑

k=0

Pr{Dn = k}uk,

D(z, u) =
∞∑

n=0

E[uDn ]
zn

n!
,

D̃(z, u) = e−zD(z, u).

We now derive a functional equation for D̃(z, u) directly from the properties of tries and the
Poisson process (without going through a recurrence equation on Dn). We claim that

D̃(z, u) = u(pD̃(zp, u) + qD̃(zq, u)) + (1− u)(1 + z)e−z .

To see this, we first observe that digital trees are recursive structures, so the Poisson transform
of the depth of the left subtree isD(zp, u) while for the right subtree it is D(zq, u) (by property
(P2) of the Poisson process). Since the subtrees are one level lower than the root, we have the
factor u. But when computing the depth we either go left (with probability p) or right (with
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probability q), but never both ways. Finally, we know that n = 0 and n = 1 are special cases
since for such n there is no left/right subtree recurrence. The probability of having n = 0 or
n = 1 in the Poisson model is equal to (1 + z)e−z . We must subtract from it u(1 + z)e−z ,
which represents the subtree structures not accounted for in the recurrence. This establishes
the above functional equation.

In Exercise 2 the reader is asked to prove that the Poisson transform S̃(z, u) of the trie
size satisfies

S̃(z, u) = uS̃(zp, u)S̃(zq, u) + (1− u)(1 + z)e−z

for |u| ≤ 1. 2

10.1.2 Asymptotic Poissonization

In the previous section we computed the Poisson transform exactly. But there are sequences
(e.g., gn = log n and gn = nα for noninteger α) for which G̃(z) cannot be found in a closed
form. The natural approach then is to compute G̃(z) asymptotically. We search for the
asymptotics of G̃(z) as z →∞ in a linear cone

Sθ = {z : | arg(z)| ≤ θ, 0 < θ < π/2},

around the positive real axis. One expects to find asymptotic expansion G̃(z) in the following
form

G̃(z) =
∑

i,j≥0

aijz
ig(j)(z), z →∞,

where g(j)(z) is the jth derivative of g(z) which is the analytic continuation of gn, if it exists;
that is, gn = g(z)|z=n.

We first identify the coefficients aij formally, and later derive an error bound. We proceed
as follows:

G̃(z) =
∞∑

n=0

g(n)
zn

n!
e−z =

∞∑
n=0

zn

n!
e−z

∞∑
j=0

g(j)(z)
(n − z)j

j!

=
∞∑

n=0

∞∑
j=0

anjz
ng(j)(z). (10.3)

We would like to formally set

anj = [zn][yj ]
1
n!

(n− z)j

j!
e−z,
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where yj represents formally g(j)(z). This seemingly strange substitution becomes more
familiar if we consider the following series

∑
n,j≥0

an,jz
nyj =

∞∑
n=0

e−z z
n

n!

∞∑
j=0

(n− z)j

j!
yj =

∞∑
n=0

e−z z
n

n!
ey(n−z)

= exp (z(ey − 1)− zy) .

Thus formally we define the coefficients aij as

∞∑
i=0

∞∑
j=0

aijx
iyj = exp(x(ey − 1)− xy), (10.4)

that is, aij = [xi][yj ] exp(x(ey − 1) − xy). Actually, aij = 0 for j < 2i. To see this, let
f(x, y) = exp (x(ey − 1)− xy). Observe that f(xy−2, y) is analytic at x = y = 0, hence the
Laurent series of f(x, y) possesses only terms like xiyj−2i with nonnegative powers. These
nonzero coefficients aij have j ≥ 2i.

In view of this, we can write formally G̃(z) in short as

G̃(z) = exp (z(ey − 1)− zy) , where yj = g(j)(z).

This is a convenient way of expressing analytic poissonization.
In some applications we really want to have an expansion around w = λz, where λ is

constant, so we extend aij to aij(λ) defined as

∞∑
i=0

∞∑
j=0

aij(λ)xiyj = exp(λx(ey − 1)− λxy).

Observe that aij(λ) = λiaij . The same derivation as above leads to the following symbolic
representation for G̃(z)

G̃(w) = exp (w(ey − 1)−wy) where yj = g(j)(w) (10.5)

and w = λz with λ being a constant. In addition, we directly obtain derivatives of G̃(w) as

G̃(k)(w) = (ey − 1)k exp (w(ey − 1)− wy) where yj = g(j)(w) . (10.6)

So far we have used a formal series approach to find G̃(z). But we are really interested
in an asymptotic expansion of G̃(z) as z → ∞, thus we must derive an error bound. This
is not difficult. However, one must first bound derivatives of an analytic function, and this
is discussed next. This is of prime importance to the depoissonization results studied in the
next section.
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Lemma 10.1 Let θ0 < π/2 and D > 0 be such that for all z ∈ Sθ0 the function G(z) is
analytic in this cone and

|z| > D =⇒ |G(z)| ≤ B|z|β (10.7)

for some reals β and B > 0. Then for all θ < θ0 there exist B′ > 0 and D′ > D such that
for all positive integers k and z ∈ Sθ the following holds:

|z| > D′ =⇒ |G(k)(z)| ≤ k!(B′)k|z|β−k . (10.8)

Proof. The proof follows directly from the Cauchy integral formula applied to derivatives.
Indeed, from Cauchy’s formula we know that

G(k)(z0) =
k!

2πi

∮
G(z)dz

(z − z0)k+1
(10.9)

for z ∈ B(z0, r) = {z : |z − z0| ≤ r} ⊂ Sθ, assuming G(z) is analytic in B(z0, r) for some
r > 0. If |G(z)| ≤M for some M > 0, then clearly the above implies

|G(k)(z)| ≤Mk!r−k (10.10)

for z ∈ B(z0, r), which is a generalization of the Cauchy bound. To prove our lemma, we
place a circle of radius r = Ω|z| for some Ω > 0 at the closest corner of the cone Sθ0 to
the right of <(z) = D as shown in Figure 10.1. Setting M = B|z|β in (10.10) we prove
Lemma 10.1 with B′ = BΩ−k.

Now we can formulate our main asymptotic poissonization result.

Theorem 10.2 (Jacquet and Szpankowski, 1999) Let g(z) be an analytic continuation
of g(n) = gn such that g(z) = O(zβ) in a linear cone for some constant β. Then for every
nonnegative integer m and complex w = λz for some constant λ the Poisson transform G̃(z)
as z →∞ has the following representation

G̃(z) =
m∑

i=0

i+m∑
j=0

aij(λ)zig(j)(w) +O(zβ−m−1) (10.11)

= g(w) +
m∑

k=1

k∑
i=1

ai,k+i(λ)zig(k+i)(w) +O(zβ−m−1),

where
aij(λ) = [xi][yj ] exp(λx(ey − 1)− λxy).

In particular, for λ = 1
∞∑
i=0

∞∑
j=0

aijx
iyj = exp(x(ey − 1)− xy) (10.12)

and aij = 0 for j < 2i.
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Figure 10.1: Illustration to Lemma 10.1.

Proof. In view of our previous discussion, it suffices to derive the error term. Using
Lemma 10.1 we observe that g(j)(z) = O(zβ−j) and using aij = 0 for j < 2i we arrive
at the following error term

2m+1∑
j=0

am+1,j(λ)zmg(j)(w) = O(zβ−m−1)

as z →∞, since w = λz. This completes the proof.

Here are the first few terms of the expansion of G̃(z):

G̃(z) = g(z) +
1
2
z g(2)(z) +

1
6
z g(3)(z) +

(
1
24
z +

1
8
z2
)
g(4)(z)

+
(

1
120

z +
1
12
z2
)
g(5)(z) +

(
1

720
z +

5
144

z2 +
1
48
z3
)
g(6)(z)

+
(

1
5040

z +
1
90
z2 +

1
48
z3
)
g(7)(z) + · · · .
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If one wants the error term of order, say O(zβ−4) (we assume g(z) = O(zβ)), then we need
only one line of the above expansion plus selected terms from the second line, that is,

G̃(z) = g(z) +
1
2
z g(2)(z) +

1
6
z g(3)(z) +

(
1
24
z +

1
8
z2
)
g(4)(z)

+
1
12
z2g(5)(z) +

1
48
z3g(6)(z) +O(zβ−4).

Example 10.2 Poisson Transform of fn = log(n!)
Let us consider fn = log(n!). This sequence arises in the analysis of the entropy of the

binomial distribution (cf. Example 7 below). Noting that f(z) = log Γ(z + 1) = O(z log z) =
O(z1+ε), from Theorem 10.2 we obtain for any ε > 0

F̃ (z) =
m∑

i=0

i+m∑
j=0

aij(λ)zif (j)(w) +O(zβ−m−1)

= f(z) +
1
2
zf (2)(z) +

1
6
zf (3)(z) +

1
8
f (4)(z) +O(zε−2), m = 2.

To find the derivatives of f(z) = log Γ(z) = log z + log Γ(z) we use the following expansions
as z →∞:

f(z) ∼
(
z +

1
2

)
ln z − z 1

2
+

∞∑
m=1

B2m

2m(2m− 1)z2m−1

f (k)(z) ∼ Ψ(k−1)(z + 1) =
(−1)k(k − 2)!

zk−1
+

(−1)k−1(k − 1)!(2k − 1)
2zk

for k ≥ 2

+ (−1)k
∞∑
l=1

B2l(2l + k − 2)!
(2l)! z2l+k−1

,

where Ψ(z) = d
dz log Γ(z) is the psi function and Bn are Bernoulli numbers (see Table 8.1).

2

10.2 Basic Depoissonization

We now consider a sequence gn and its Poisson transform G̃(z) = P(gn, z). Throughout, we
assume that G̃(z) is an entire function. We first discuss exact or algebraic depoissonization in
which the coefficients gn are extracted exactly from its Poisson transform. Next, we focus on
asymptotic depoissonization, which is the main goal of this chapter. We again use Cauchy’s
formula to find

gn =
n!

2πi

∮
G̃(z)ez

zn+1
dz =

n!
nn2π

∫ π

−π
G̃(neit) exp

(
neit

)
e−nitdt . (10.13)
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All the asymptotic depoissonization results will follow from the above by a careful estimation
of the integral using the saddle point method (see Section 8.4). Here we present, and give a
simple proof of a basic asymptotic depoissonization result. Later in Section 10.3 we generalize
it.

10.2.1 Algebraic Depoissonization

The exact or algebraic depoissonization is based on the exact extraction of gn from its Poisson
transform, that is,

gn = n![zn]
(
ezG̃(z)

)
.

In some cases this is quite simple. For example, applying directly Cauchy’s formula to
G̃(z) = e−z/(1 − z) (see Item 4 in Table 10.1) we find n![zn]

(
ezG̃(z)

)
= n!, as required.

Example 3 below illustrates a more sophisticated case. The reader is referred to Gonnet and
Munro [176], Poblete, Viola, and Munro [343], and Hofri [197] for more interesting examples.

Example 10.3 Ball-and-Urn Model
Consider n balls (items) thrown randomly and uniformly into m urns (table of size m).

What is the probability that precisely k specified urns are empty? Under the Poisson model
the answer is immediate. Indeed, consider the Poisson process of balls with mean z. It is
split into m independent Poisson processes of mean z/m entering each of m urns. All these
processes are independent so that the probability Pk(z) that exactly k specified urns are
empty in the Poisson model is obviously equal to

Pk(z) = e−kz/m(1− e−z/m)m−k = e−z(ez/m − 1)m−k.

To find the answer to the original problem, we depoissonize Pk(z) exactly, yielding

Pr{number of empty urns = k} = n![zn] (ezPk(z)) = [zn]
(
n!(ez/m − 1)m−k

)
=

(m− k)!
mn

{
n

m− k

}
,

where
{n

k

}
denote the Stirling numbers of the second kind. The last line follows from Entry 9

of Table 7.2. The above formula can be directly obtained from the Bernoulli model. However,
the derivation is much more troublesome. 2

The situation encountered in Example 3 above is rare. We usually cannot invert exactly
the Poisson transform and we must resort to asymptotics. The rest of this chapter is devoted
to asymptotic depoissonization. We start with a basic depoissonization (Section 10.2.2),
then discuss in Section 10.3 some generalizations, and in Section 10.4 we deal with limiting
distributions through depoissonization.
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10.2.2 Asymptotic Depoissonization

Before we enter the realm of rigorous analysis, the reader should develop an intuition of how
depoissonization works. We first propose a heuristic derivation. We refer to the definition of
the Poisson transform, which we write as G̃(z) = E[gN ], where N is a Poisson distributed
random variable with mean E[N ] = n. Treating gN as a function of N (and denoting it as
g(N)), by Taylor’s expansion we have

g(N) = g(n) + (N − n)g′(n) +
1
2
g′′(n)(N − n)2 + · · · .

Taking the expectation we obtain

G̃(n) = G̃(z)|z=n = E[g(N)] = g(n) +
1
2
g′′(n)n+ · · ·

since E[N − n] = 0 and E[N − n]2 = n. Solving the above for g(n) = gn we find that

gn ≈ G̃(n)− 1
2
ng′′(n) + · · · = G̃(n) +O(ng′′(n)). (10.14)

Provided that
ng′′(n) = o(g(n)), (10.15)

we expect to have gn ∼ G̃(n). To emphasize this, consider the following examples:

• Let g(n) = nβ. Then G̃(n) = nβ +O(nβ−1), g′′(n) = O(nβ−2), thus

gn = G̃(n) +O(ng′′(n)) = G̃(n) +O(nβ−1),

which is true, as already seen in Table 10.1. This is proved in Theorem 10.3.

• Consider now g(n) = αn. This time G̃(z) = ez(α−1), g′′(n) = αn log2 α, and it is not
true that gn ∼ G̃(n), as observed in Section 10.1.

• Now we assume gn = en
β
. In this case, it is harder to find the Poisson transform,

but an extension of Theorem 10.2 suggests that G̃(z) ∼ ez
β
. We also have g′′(n) =

O(n2β−2en
β
). Observe that

gn = G̃(n) +O(ng′′(n)) = G̃(n) +O(n2β−1en
β
)

and the error is small as long as 0 < β < 1
2 . This is proved rigorously in Theorem 10.8.

The above derivation is hard to make rigorous since it is difficult to control the growth of
the derivatives of a function while knowing only its behavior on the real axis. To circumvent
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this problem, we extend G̃(z) to the complex plane, where the growth of g(z) and G̃(z) are
easier to bound (Lemma 10.1).

Enriched by the above intuition, we now rigorously prove some depoissonization results.
We start with a basic depoissonization that holds for sequences having a Poisson transform of
polynomial growth. As a matter of fact, we have to put certain restrictions on the growth of
G̃(z) inside a cone Sθ (called conditions (I)) and another bound on the growth of G̃(z) outside
the cone (called conditions (O)). The proof presented below will be modified throughout this
chapter to obtain further generalizations but its main ingredients remain the same. The
reader is advised to invest some time in studying the proof of Theorem 10.3 below.

Theorem 10.3 (Jacquet and Régnier, 1987; Jacquet and Szpankowski, 1998) Let G̃(z)
be the Poisson transform of a sequence gn that is assumed to be an entire function of z. We
postulate that in a linear cone Sθ (θ < π/2) the following two conditions simultaneously hold:
(I) For z ∈ Sθ and some reals B,R > 0, β

|z| > R ⇒ |G̃(z)| ≤ B|z|β , (10.16)

(O) For z /∈ Sθ and A,α < 1

|z| > R ⇒ |G̃(z)ez | ≤ A exp(α|z|) . (10.17)

Then
gn = G̃(n) +O(nβ−1) (10.18)

for large n.

Proof. The proof relies on the evaluation of Cauchy’s formula (10.13) by the saddle point
method. By Stirling’s approximation n! = nne−n

√
2πn(1 +O(1/n)); thus (10.13) becomes

gn =
(
1 +O(n−1)

)√ n

2π

∫ π

−π
G̃(neit) exp

(
n
(
eit − 1− it

))
dt

=
(
1 +O(n−1)

)
(In + En),

where

In =
√
n

2π

∫ θ

−θ
G̃(neit) exp

(
n
(
eit − 1− it

))
dt,

En =
√
n

2π

∫
|t|∈[θ,π]

G̃(neit) exp
(
n
(
eit − 1− it

))
dt

=
nne−n

√
2πn

2πi

∫
|t|∈[θ,π]

G̃(z)ez

zn+1
dz .
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We estimate the above two integrals. We begin with the latter. Observe that by condition
(O) (cf. (10.17)), we obtain

|En| ≤ A′√2πne−(1−α)n,

where A′ depends only on A and R. Thus En decays exponentially to zero as n→∞, since
α < 1.

Now we turn our attention to the integral In, which is more intricate to handle. First, we
replace t by t/

√
n to find that

In =
1√
2π

∫ θ
√

n

−θ
√

n
G̃(neit/

√
n) exp

(
n
(
eit/

√
n − 1− it/

√
n
))
dt . (10.19)

Let
hn(t) = exp

(
n
(
eit/

√
n − 1− it/

√
n
))
.

We need to estimate hn(t) in the interval t ∈ [−θ√n, θ√n], and find the Taylor expansion
of it in a smaller interval, say for t ∈ [− log n, log n] (in order to apply Taylor’s expansion of
hn(t) around t = 0). The latter restriction is necessary since t√

n
= O(1) for t ∈ [−θ√n, θ√n].

Thus we split the integral In into two parts, I ′n and I ′′n, such that

I ′n =
1√
2π

∫ log n

− log n
G̃(neit/

√
n) exp

(
n
(
eit/

√
n − 1− it/

√
n
))
dt ,

I ′′n =
1√
2π

∫
t∈[−θ

√
n,− log n]

G̃(neit/
√

n) exp
(
n
(
eit/

√
n − 1− it/

√
n
))
dt+

+
1√
2π

∫
t∈[log n,θ

√
n]
G̃(neit/

√
n) exp

(
n
(
eit/

√
n − 1− it/

√
n
))
dt .

To estimate the second integral I ′′n we observe that |hn(t)| ≤ e−µt2 for t ∈ [−θ√n, θ√n],
where µ is a constant. By Lemma 8.16 (cf. (8.79)) and condition (I) we immediately see that
I ′′n = O(nβe−µ log2 n), which decays faster than any polynomial.

Now we estimate I ′n. Observe first that for t ∈ [− log n, log n] we can apply the Taylor
expansion to obtain

hn(t) = exp
(
n
(
eit/

√
n − 1− it/

√
n
))

= e−t2/2

(
1− it3

6
√
n

+
t4

24n
− t6

72n
+O

(
log9 n

n
√
n

))

Furthermore, using (I) and Lemma 10.1 (with D′ = (1 + Ω)R and z ∈ Sθ′ for θ′ < θ) we
have |G̃′(z)| ≤ B1|z|β−1 and |G̃′′(z)| ≤ B2|z|β−2, for some constants B1 and B2. Thus we can
expand G̃(neit/

√
n) around t = 0 as follows

G̃(neit/
√

n) = G̃(n) + it
√
nG̃′(n) + t2∆n(t),
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where
|∆n(t)| ≤ (B1 +B2)nβ−1

since for t in the vicinity of zero

∆n(t) = −G̃′(neit/
√

n)eit/
√

n − G̃′′(eit/
√

n)ne2it/
√

n.

In summary, the integral I ′n can be written as

I ′n =
1√
2π

∫ log n

− log n
e−t2/2

(
G̃(n) + G̃′(n)it

√
n
)(

1− it3

6
√
n

+
t4

24n
− t6

72n

)
dt (10.20)

+
1√
2π

∫ log n

− log n
e−t2/2∆n(t)t2hn(t)dt (10.21)

+
1√
2π

∫ log n

− log n
e−t2/2

(
G̃(n) + G̃′(n)it

√
n
)
O

(
log9 n

n
√
n

)
dt. (10.22)

To complete the proof we must estimate the above three integrals. From Lemma 8.16 and
10.1 we see that the first integral is equal to G̃(n)+O(nβ−1). Using our estimate on ∆n(t) we
observe that the absolute value of the second integral is smaller than (B1 +B2)nβ−1. Finally,
the last integral is O(nβ− 3

2 log9 n). All together the error is O(nβ−1) and Theorem 10.3 is
proved.

Example 10.4 Conditions (O) and (I) violated.
Let gn = (−1)n; thus G̃(z) = e−2z and condition (I) is true for any β and for any θ < π/2.

But in this case the condition (O) outside the cone Sθ does not hold because G̃(z)ez = e|z|

for arg(z) = π. Clearly, gn is not asymptotically equivalent to G̃(n).
If gn = (1 + t)n for t > 0, then G̃(z) = etz. Condition (O) holds for some θ such that

(1 + t) cos θ < 1. But condition (I) inside the cone Sθ does not hold because G̃(z) does not
have a polynomial growth. As a matter of fact, gn is not asymptotically equivalent to G̃(n).
2

In some situations verifying condition (O) is quite troublesome. Fortunately, for some se-
quences having an analytic continuation of polynomial growth, condition (O) is automatically
satisfied, as shown below.

Theorem 10.4 (Jacquet and Szpankowski, 1999) Let g(z) be an analytic continuation
of g(n) = gn such that g(z) = O(zβ) in a linear cone Sθ0 . Then for some θ0 and for all linear
cones Sθ (θ < θ0), there exist α < 1 and A > 0 such that

z /∈ Sθ ⇒ |G̃(z)ez | ≤ Aeα|z|,

where G̃(z) is the Poisson transform of gn.
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Proof: Let Sθ0 be the linear cone for which the polynomial bound over g(z) holds. Let also
g?(s) be the Laplace transform of the function g(x) of a real variable x, that is,

g?(s) =
∫ ∞

0
g(x)e−sxdx

defined for <(s) > 0. It is well known (cf. [103]) that the inverse Laplace transform of g?(s)
exists in <(s) > 0 and one can write

g(x) =
1

2πi

∫ δ+i∞

δ−i∞
g?(s)esxds

with δ > 0. In addition, g?(s) is absolutely integrable on the line of integration. Observe
now that the exponential generating function G(z) = G̃(z)ez of g(n) can be represented in
terms of g?(s) as follows

G(z) =
∞∑

n=0

g(n)
zn

n!
=

∞∑
n=0

1
2πi

∫ δ+i∞

δ−i∞
g?(s) exp(ns)

zn

n!
ds

=
1

2πi

∫ δ+i∞

δ−i∞
g?(s)

∞∑
n=0

exp(ns)
zn

n!
ds =

1
2πi

∫ δ+i∞

δ−i∞
g?(s) exp (zes) ds,

where the interchange of the integral and the summation is justified since both converge
absolutely in their domains of definition. Thus the Poisson transform G̃(z) becomes

G̃(z)ez =
1

2πi

∫ δ+i∞

δ−i∞
g?(s)ee

szds (10.23)

for δ > 0.
To take advantage of the above formula, we need an extension of the Laplace transform

of a real variable to a complex variable, as we did in Section 9.3 for the Mellin transform.
This fact is rather well known (e.g., [103, 219]), however, the reader is asked in Exercise 6 to
derive such an extension. In particular, this exercise asks to show that if g(z) is an analytic
continuation of g(x) in a cone Sθ, where θ < θ0, then the inverse Laplace g?(s) of the function
g(z) (of complex z) exists in a bigger cone Sθ+π/2 for all θ < θ0 provided g(z) = O(zβ) in the
cone Sθ0 (i.e., g(z) is of polynomial growth).

In view of this we can write (10.23) as

G̃(z)ez =
1

2πi

∫
Lε

g?(s)ee
szds, (10.24)

where Lε is a piece-linear curve that parallels the boundary of the cone Sθ+π/2 at distance ε.
That is, in s = x+ iy coordinates, the curve Lε can be described as

y = sign(y) tan(π/2 + θ)(x− ε),
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Figure 10.2: Image of Lε with ε = 0.1 by es.

where sign(y) is the sign function (i.e., equal to 1 when y ≥ 0 and −1 otherwise). We
also define L0 as a curve obtained from Lε as ε → 0, that is, having the description y =
sign(y)x tan(π/2 + θ).

Using (10.24), we can now upper bound G̃(z)ez as follows

|G̃(z)ez | ≤ 1
2π

∫
Lε

|g?(s)| exp(<(esz))ds ≤ 1
2π

∫
Lε

|g?(s)| exp
(
<(eseiθ)|z|

)
ds, (10.25)

since for z /∈ Sθ we have cos(arg z) ≤ cos θ for |θ| ≤ π/2. To complete the proof, we must
show that <(eseiθ) < α for some α < 1 and all s ∈ Lε. If this is true, we immediately obtain
|G̃(z)ez | ≤ Aeα|z| for α < 1, where A = 1

2π

∫
Lε
|g?(s)|ds <∞.

We concentrate now on showing that <(eseiθ) < α < 1. We study the image Iε of
Lε under the function es, which is plotted in Figure 10.2. (In fact, in Figure 10.2 we as-
sume θ = π/6, and Iε with ε = 0.1 has the following parametric description: (exp(−t/2 +
0.1) cos(±t), exp(−t/2+0.1) sin(±t)).) When ε→ 0, this image tends to the image I0 of L0.
Observe that I0 is contained in the unit disk, and I0 touches the unit circle only at s = 0.
We rewrite (10.24) as

G̃(z)ez =
1

2πi

∫
Lε

g?(s) exp[esei arg(z)|z|]ds

to see that the image Iε of Lε is rotated by the angle arg(z). Let us now fix an arbitrary
0 < θ < θ0, and consider for a moment only the image I0 of L0. Observe that if one rotates
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Figure 10.3: The linear cone Sθ and the increasing domains Dm.

the image I0 by a non zero argument, then the new image has the real part strictly less
than 1. In fact, the real part will be smaller than 1− O(θ2). Finally, considering the image
Iε of Lε, we can easily choose ε so that the real part of the rotated images of Lε remains
smaller than some α such that 1 − O(θ2) < α < 1 for all arguments greater than θ. Thus,
<(eseiθ) < α < 1, which completes the proof.

Before we illustrate the above theorem (see Example 7 below), we provide another ap-
proach to establish condition (O) that is useful when dealing with Poisson transforms ex-
pressed as linear functional equations. In this case conditions (I) and (O) can be verified
relatively easily by applying mathematical induction over the increasing domains, which
we define next.

Lee us consider the following general functional equation

G̃(z) = γ1(z)G̃(zp) + γ2(z)G̃(zq) + t(z), (10.26)

where γ1(z), γ2(z), and t(z) are functions of z such that the above equation has a solution.
The reader is referred to Fayolle et al. [119] (cf. also [379]) for conditions on these functions
under which a solution of (10.26) exists. We further assume that p + q = 1, but in fact zp
and zq could be replaced by more general functions that form a semigroup of substitutions
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under the operation of composition of functions. We recall that we analyzed a simple version
of (10.26) in Section 7.6.1.

Let us define, for integers m = 0, 1, . . ., and a constant λ such that 0 < max{p, q} ≤
λ−1 < 1, a sequence of increasing domains (cf. Figure 10.3) Dm as

Dm = {z : ξδ ≤ |z| ≤ ξλm+1}

for some constant ξ > 0 and δ ≤ min{p, q}. Observe that

z ∈ Dm+1 −Dm ⇒ pz, qz ∈ Dm . (10.27)

The last property is crucial for applying mathematical induction over m in order to establish
appropriate bounds on G̃(z) over the whole complex plane.

Theorem 10.5 Consider the following functional equation (with p+ q = 1)

G̃(z) = γ1(z)G̃(zp) + γ2(z)G̃(zq) + t(z)

that is postulated to have an entire solution. Let for some positive β, 0 < θ < π/2 and
0 < η < 1 the following conditions hold for |z| > ξ:

(I) For z ∈ Sθ

|γ1(z)|pβ + |γ2(z)|qβ ≤ 1− η, (10.28)
|t(z)| ≤ Bη|z|β ; (10.29)

(O) For z /∈ Sθ and for some α < 1 the following three inequalities are true

|γ1(z)|eq<(z) ≤ 1
3
eα|z|q, (10.30)

|γ2(z)|ep<(z) ≤ 1
3
eα|z|p, (10.31)

|t(z)|e<(z) ≤ 1
3
eα|z| . (10.32)

Then
gn = G̃(n) +O(nβ−1), (10.33)

where gn = [zn]
(
n!ezG̃(z)

)
.

Proof. We apply Theorem 10.3. For this, we need to establish the following bounds

|G̃(z)| ≤ B|z|β (10.34)
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for z ∈ Sθ, and
|G̃(z)ez | ≤ B′eα|z| (10.35)

for z /∈ Sθ with α < 1, where B,B′ > 0 are constants. It suffices to prove that under
(10.28), (10.29), and (10.30)–(10.32) the above two conditions hold. We start with the proof
of (10.34). We apply induction over the increasing domains Dm (Figure 10.3). Let us first
consider z ∈ Sθ. Define D̂m = Dm ∩ Sθ. We take B large enough such that for m = 0 the
above inequalities hold for |z| ≤ ξ. Let us now assume that inequality (10.34) is satisfied in
D̂m, and we prove that it also holds in a larger region, namely D̂m+1, thus proving (10.34)
in Sθ. For this it suffices to consider z ∈ D̂m+1 − D̂m. By (10.27) we have zp, zq ∈ D̂m, and
we can invoke our induction hypothesis. Hence, taking into account (10.28) and (10.29) we
conclude from equation (10.26) that

|G̃(z)| ≤ |γ1(z)||G̃(zp)|+ |γ2(z)||G̃(zq)| + |t(z)| ,
≤ B|γ1(z)||z|βpβ +B|γ2(z)||z|βqβ + |t(z)| ,
≤ B(1− η)|z|β +Bη|z|β = B|z|β ,

which is the desired bound.
Now assume that z /∈ Sθ and we aim at proving (10.35). We first observe that |ez | =

e<(z) ≤ eα|z|, where α ≥ cos θ ≥ cos(arg(z)) The induction over the increasing domains
can be applied as before, however, this time we consider Dm = Dm ∩ Sθ, where Sθ is the
complementary set to Sθ. Observe that

|G̃(z)ez | ≤ |γ1(z)||G̃(zp)ezp||ezq|+ |γ2(z)||G̃(zq)ezq||ezp|+ |t(z)ez | ,
≤ B′|γ1(z)|eα|z|peq<(z) +B′|γ2(z)|eα|z|qep<(z) + |t(z)|e<(z) ,

≤ B′eα|z|,

where the last inequality follows from (10.30)–(10.32) and <(z) = |z| cos(arg(z)) ≤ |z| cos θ ≤
α|z|. This completes the proof.

Example 10.5 Conflict Resolution Algorithm
We consider here a conflict resolution algorithm. While its description can be found

in Capetenakis [65] and Tsybakov and Mikhailiov [426], we provide here a brief review of
the interval searching algorithm. The access to a slotted broadcast channel is controlled by a
window based mechanism that works as follows: This window will be referred to as the enabled
interval (EI). Let Si denote the starting point for the ith EI, and ti is the corresponding
starting point for the conflict resolution interval (CRI), where CRI represents the number
of slots needed to resolve a collision. Roughly speaking, at each step of the algorithm, we
compute the endpoints of the EI based on the outcome of the channel. The parameters of
interest are: the length of the conflict resolution interval Tn, the fraction of resolved interval
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Wn, and the number of resolved packets Cn. For example, the Poisson transform C̃(z) of Cn

satisfies
C̃(z) =

(
1 + (1 + z/2)e−z/2

)
C̃(z/2) .

Indeed, if there is at most one packet in the first half of EI — which happens with probability
(1 + z/2)e−z/2 in the Poisson model — then we explore the second half of the interval
represented by C̃(z/2). Otherwise, we explore the first half of the interval, and thus the
first term in the above equation. This equation is of the form of (10.26), and thus falls
under Theorem 10.5. Jacquet and Szpankowski [214] proved that for large z ∈ Sθ the above
equation admits asymptotically the following solution (cf. [214])

C̃(z) = D + P (log z) +O(1/z), (10.36)

where

D = exp

(
1

log 2

∫ ∞

0

xe−x log x
1 + (1 + x)e−x

dx+
1
2

log 2

)
≈ 2.505,

and P (log z) is our familiar fluctuating function with a small amplitude. This can be estab-
lished by the method discussed in Chapter 9 and the reader is asked to prove it in Exercise 5.
To depoissonize the solution, one must check conditions (I) and (O) of Theorem 10.3. But
C̃(z) = O(1) in a cone Sθ, thus we need only verify (O) outside the cone Sθ. By Theorem
10.5 (e.g., see (10.30)) we need to show the existence of ξ such that for |z| > ξ the following
holds

(1 + (1 + |z|/2))e<(z)/2 ≤ eα|z|/2

which is clearly true for large enough ξ since α ≥ cos θ. By Theorem 10.5 we conclude that
Cn = D + P (log n) +O(n−1). 2

10.3 Generalizations of Depoissonization

In this section we generalize our basic depoissonization Theorem 10.3 twofold: (i) we derive a
full asymptotic expansion for gn, and (ii) we enlarge the class of Poisson transforms G̃(z) for
which the depoissonization holds (i.e., we allow for exponential rather than algebraic bounds
on G̃(z)). We prove all of these results in a uniform manner in Section 10.3.3 using a general
depoissonization tool presented in Theorem 10.13.

10.3.1 A Full Asymptotic Depoissonization

Before we present a precise statement, let us formally derive a full asymptotic expansion of
gn. We shall seek such an expansion in the following form

gn =
∑

i,j≥0

bijn
iG̃(j)(n).
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To identify formally the coefficients bij we proceed as follows. By Taylor series

G̃(z) =
∑
j≥0

(z − n)j

j!
G̃(j)(n) ,

which yields

gn = n![zn](ezG̃(z)) =
∑
j

n![zn]
(z − n)jez

j!
G̃(j)(n).

Hence, we formally set

bij = [ni][zn]
n!(z − n)j

j!
ez.

After interchanging indexes i and j, factorizing the operator [zn], noticing that
∑

i n
i[ni]f(n, z) =

f(n, z) for any analytic function f(n, z), and formally setting yj = G̃(j)(z), we obtain

∑
ij

bijn
iyj = [zn]

∑
j

yj
∑

i

ni[ni]
n!(z − n)jez

j!

= [zn]
∑

j

n!(z − n)jyjez

j!
= [zn]n! exp((z − n)y + z)

= (1 + y)ne−ny = exp(n ln(1 + y)− ny).

Thus
bij = [xi][yj ] exp(n ln(1 + y)− ny).

We observe that bij = 0 for j < 2i. Indeed, as in the case of the coefficients aij discussed in
Section 10.1, we let f(x, y) = exp(x log(1+y)−xy) and observe that f(xy−2, y) is analytic at
x = y = 0. Hence, its Laurent expansion possesses only terms like xiyj−2i with nonnegative
exponents. This means that for j < 2i the coefficients bij = 0.

We are now ready to formulate a general depoissonization result with polynomial bounds.
We shall defer the proof until Section 10.3.3, where we present a general depoissonization
tool that allows us to establish all results of this section in a uniform manner.

Theorem 10.6 (Jacquet and Szpankowski, 1998) Let the following two conditions hold
for some numbers A, B, R > 0 and α > 0, β, and γ:
(I) For z ∈ Sθ, 0 < |θ| < π/2,

|z| > R ⇒ |G̃(z)| ≤ B|z|βΨ(|z|), (10.37)

where Ψ(x) is a slowly varying function, that is, such that for fixed t limx→∞
Ψ(tx)
Ψ(x) = 1 (e.g.,

Ψ(x) = logd x for some d > 0);
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(O) For all z = ρeiϑ such that z /∈ Sθ we have

ρ = |z| > R ⇒ |G̃(z)ez | ≤ Aργ exp[(1 − αϑ2)ρ]. (10.38)

Then for every nonnegative integer m

gn =
m∑

i=0

i+m∑
j=0

bijn
iG̃(j)(n) +O(nβ−m−1Ψ(n)) (10.39)

= G̃(n) +
m∑

k=1

k∑
i=1

bi,k+in
iG̃(k+i)(n) +O(nβ−m−1Ψ(n)),

where bij are as the coefficients of exp(x log(1 + y)− xy) at xiyj, that is,

∞∑
i=0

∞∑
j=0

bijx
iyj = exp(x log(1 + y)− xy), (10.40)

with bij = 0 for j < 2i.

The first few terms of the above expansion are

gn = G̃(n)− 1
2
nG̃(2)(n) +

1
3
nG̃(3)(n) +

1
8
n2G̃(4)(n)− 1

4
nG̃(4)(n)− 1

6
n2G̃(5)(n)−

− 1
48
n3G̃(6)(n) +

1
5
nG̃(5)(n) +

13
72
n2G̃(6)(n) +

1
24
n3G̃(7)(n) +

1
384

n4G̃(8)(n)−

−1
6
nG̃(6)(n)− 11

60
n2G̃(7)(n)− 17

288
n3G̃(8)(n)− 1

144
n4G̃(9)(n)− 1

3840
n5G̃(10)(n)

+O(nβ−6) .

Example 10.6 Dirichlet Depoissonization
Let

gn =
∞∑

k=0

(
1− (1− 2−k)n

)
(10.41)

whose Poisson transform is (Item 7 of Table 10.1)

G̃(z) =
∞∑

k=0

(
1− e−z2−k

)
,

and the jth derivative is

G̃(j)(z) = (−1)j+1
∞∑

k=0

2−jke−z2−k
.
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We are interested in a full asymptotic expansion of gn using the depoissonization Theo-
rem 10.6. For this we need to find the asymptotics of G̃(j)(z) for z in a cone Sθ. But G̃(j)(z)
is a harmonic sum; hence by Theorem 9.1 the Mellin transforms are

M[G̃(z); s] = − Γ(s)
1− 2s

, −1 < <(s) < 0,

M[G̃(j)(z); s] =
(−1)j+1Γ(s)

1− 2s−j
, 0 < <(s) < j, j ≥ 1.

Using the reverse mapping Theorem 9.2 we find for x → ∞ (which by Theorem 9.5 can be
extended to complex z →∞ in a cone Sθ with |θ| < π/2)

G̃(x) = log2 x+
γ

log 2
+

1
2

+ P0(log2 x) +O(x−M ),

G̃(j)(x) =
(−1)j+1

xj
Pj(log2 x) +O(x−M ), j ≥ 1

for any M > 0, where

P0(log2 x) =
1

log 2

∑
` 6=0

Γ(2πi`/ log 2)e−2πi` log2 x

Pj(log2 x) =
1

log 2

∞∑
`=−∞

Γ(j + 2πi`/ log 2)e−2πi` log2 x, j ≥ 1.

Since g(z) = O(log z) inside a cone Sθ, by Theorem 10.4 and Theorem 10.6 we finally obtain

gn = log2 n+
γ

log 2
+

1
2

+P0(log2 n)+
m∑

k=1

k∑
i=1

(−1)k+i+1bi,k+in
−kPk+i(log2 n)+O(n−m−1 log n)

(10.42)
for any m ≥ 1, where bij are given by (10.40).

Clement, Fljaolet and Vellée [68] suggested to consider a more general sum, namely

gn =
∑
k≥0

ak(1− (1− ak)n)

for a sequence ak → 0. From Item 7 of Table 10.1 we know that its Poisson transform is

G̃(z) =
∑
k≥0

ak(1− e−zak);

thus one can use depoissonization, as we did above, to find the full asymptotic expansion of
gn. Another approach, called the Dirichlet depoissonization, was proposed in [68]. It is
based on the following observation. Define the following two Dirichlet series

Λ(s) =
∑
k≥0

as
k, Ω(s) =

∑
k≥0

(
log

1
1− ak

)s

.
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Formally, we have

Ω(s) =
∑
k≥0

exp
(
s log log(1− ak)−1

)
=
∑
k≥0

exp
(
s log

(
ak +

1
2
a2

k +
1
3
a3

k + · · ·
))

=
∑
k≥0

as
k exp

(
s log

(
1 +

1
2
ak +

1
3
a2

k + · · ·
))

=
∑
k≥0

as
k exp

(
s

(
1
2
ak +

5
24
a2

k + · · ·
))

=
∑
k≥0

as
k

(
1 +

1
2
sak + (

5
24
s+

1
8
s2)a2

k + (
1
8
s+

5
48
s2 +

1
48
s3)a3

k + · · ·
)

= Λ(s) + c1(s)Λ(s + 1) + c2(s)Λ(s + 2) + · · · .

Thus the singularities of Ω(s) are those of Λ(s) plus {0,−1, . . .}. This was rigorously proved
in [68] from where we quote the following result.

Lemma 10.7 (Dirichlet Depoissonization) Let ak → 0 with ak positive. Define the
above two Dirichlet series Λ(s) and Ω(s). Then, if the Dirichlet series Λ(s) of ak is mero-
morphic in the whole complex plane and it is of “weak polynomial growth” (i.e., the growth
is only controlled on certain lines parallel to the real axis tending to ±i∞), then the same
properties hold for Ω(s). In addition, the singularities of Λ,Ω are related by

Sing(Ω) = Sing(Λ) + {0,−1,−2, · · ·},

and the singular expansions of Ω(s) and Λ(s) are related by

Ω(s) � Λ(s) + c1(s)Λ(s + 1) + c2(s)Λ(s + 2) + · · · , (10.43)

where
cj(s) = [xj] exp

(
s

x
log

1
1− x

)
. (10.44)

For gn defined in (10.41) we have

Ω(−s) � Λ(−s) +
s

2
Λ(−s+ 1) + (

5s
24

+
s2

8
)Λ(−s + 2) + · · · ,

thus (10.42) is recovered.

Example 10.7 Entropy of Binomial Distribution
We compute here a full asymptotic expansion of Shannon entropy hn of the binomial

distribution
(n
k

)
pkqn−k (q = 1− p), that is,

hn = −
n∑

k=0

(
n

k

)
pkqn−k log

((
n

k

)
pkqn−k

)
.
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We shall follow the approach suggested in Jacquet and Szpankowski [219], while the reader
is asked in Exercise 10 to use the singularity approach to obtain the same result (cf. Flajolet
[129]). Observe that

hn = − ln(n!)− n(p ln p+ q ln q)

+
n∑

k=0

ln(k!)

(
n

k

)
pkqn−k +

n∑
k=0

ln((n − k)!)

(
n

k

)
pkqn−k .

We use analytic poissonization and depoissonization to estimate

gn :=
n∑

k=0

ln(k!)

(
n

k

)
pkqn−k +

n∑
k=0

ln((n− k)!)

(
n

k

)
pkqn−k.

Observe that the Poisson transform G̃(z) of gn is

G̃(z) = F̃ (zp) + F̃ (zq),

where

F̃ (z) =
∞∑

n=0

ln(n!)
zn

n!
e−z.

Thus
hn = − ln(n!)− n(p ln p+ q ln q) + n![zn]

(
ezF̃ (zp) + ezF̃ (zq)

)
.

We cannot apply directly the depoissonization Theorem 10.6 since the Poisson transform
F̃ (z) is not given in a closed form. But, we can apply our previous analytic poissonization
Theorem 10.2 to find F̃ (z) for z →∞ and then use Theorem 10.6. In fact, in Example 2 we
already computed F̃ (z) asymptotically. Setting log(n!) = fn = f(n) = log Γ(n+ 1) and using
the symbolic notation proposed in Section 10.2 we can formally write for the kth derivative
of F̃ (z)

F̃ (k)(λn) = (ey − 1)k exp (nλ(ey − 1)− nλy) , yj = f (j)(λn),

where λ is equal to either p or q. Since fn has an analytic continuation of a polynomial
growth, we can apply Theorem 10.6 to obtain

n![zn]
(
ezF̃ (λz)

)
=

∑
i,j≥0

bijn
iλj(ey − 1)j exp (nλ(ey − 1)− nλy) , yj = f (j)(λn)

= exp (n log (1 + λ(ey − 1)) − λny) , yj = f (j)(λn),

where we used (10.40) in the last line. Introducing ci,k(λ) as follows

exp (x log (1 + λ(ey − 1))− λxy) =
∞∑
i=0

∞∑
k=2i

ci,k(λ)xiyk,
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we finally arrive at

hn = −f(n) + f(np) + f(nq)− n(p ln p+ q ln q)

+
∞∑
i=1

∞∑
k=2i

ni
(
ci,k(p)pif (k)(np) + ci,k(q)qif (k)(nq)

)
,

where f (k)(x) (k ≥ 1) are computed in Example 2. This leads to

hn ∼
1
2

lnn+
1
2

+
1
2

ln(2πpq) +
∞∑

m=1

em
nm

and em can be explicitly computed, as shown in [219]. 2

10.3.2 Exponential Depoissonization

In some applications the assumption about the polynomial growth of G̃(z) is too restrictive
(see Example 9.3 of Chapter 9). Here we extend Theorem 10.6 to Poisson transforms with ex-
ponential growth exp(zβ) for 0 < β < 1

2 . The proof is again delayed until the last subsection.
However, below we provide a sketch of the proof for the basic exponential depoissonization.

Theorem 10.8 Let the conditions of Theorem 10.6 be satisfied with condition (I) replaced
by

|G̃(z)| ≤ A exp(B|z|β) (10.45)

for some 0 < β < 1
2 and constants A > 0 and B. Then for every integer m ≥ 0

gn =
m∑

i=0

i+m∑
j=0

bijn
iG̃(j)(n) +O(n−(m+1)(1−2β) exp(Bnβ)) (10.46)

for large n.

Sketch of Proof. It seems appropriate to give here a sketch of the proof for the leading
term (Section 10.3.3), namely,

gn = G̃(n) +O
(
n2β−1 exp(Bnβ)

)
. (10.47)

This can be derived along the same lines as the proof of the basic depoissonization Theo-
rem 10.3. As in the proof of Theorem 10.3, we can easily estimate the integrals En and I ′′n,
and therefore we are left with the integral I ′n (cf. (10.20)–(10.22)). To estimate I ′n we need
an extension of Lemma 10.1 for functions G̃(z) with an exponential bound. We shall show
that if (10.45) holds, then the kth derivative G̃(k)(z) can be bounded as below

|G̃(k)(z)| ≤ Bk|z|k(β−1) exp(B|z|β). (10.48)



429 Analytic Poissonization and Depoissonization

Indeed, using Cauchy’s bound (10.10) with r = Ω|z|1−β we obtain

|G̃(k)(z)| ≤
max|ω|=Ω|z|1−β |G̃(z + ω)|

Ω|z|k(1−β)
,

where z + ω ∈ Sθ, so that the exponential bound |G̃(z + ω)| < A exp(B|z + ω|β is still valid.
Since the derivative of zβ is O(zβ−1) we have

max
|ω|=Ω|z|1−β

|G̃(z + ω)| ≤ A exp(|B||z|β +O(zβ−1)|z|1−βΩ)

≤ A′ exp(|B||z|β)

for some constant A′. This proves (10.48).
Now we can consider the integral I ′n, which we repeat here

I ′n =
1√
2π

∫ log n

− log n
e−t2/2

(
G̃(n) + G̃′(n)it

√
n
)(

1− it3

6
√
n

+
t4

24n
− t6

72n

)
dt

+
1√
2π

∫ log n

− log n
e−t2/2∆n(t)t2hn(t)dt

+
1√
2π

∫ log n

− log n
e−t2/2

(
G̃(n) + G̃′(n)it

√
n
)
O

(
log9 n

n
√
n

)
dt,

where we recall that

hn(t) = exp(n(eit/
√

n − 1− it/
√
n)),

∆n(t) = −G̃′(neit/
√

n)eit/
√

n − G̃′′(eit/
√

n)ne2it/
√

n.

Then (10.48) and the above yield |∆n(t)| = O(n2β−1 exp(Bnβ)). But the first part of the
above integral is G̃(n) +O(nβ−1 exp(Bnβ)) for β > 0, the second part is O(n2β−1 exp(Bnβ)),
and the last part is O(n−3/2 exp(Bnβ)). This proves (10.47).

Example 10.8 Example 9.3 of Chapter 9 Revisited
In Example 9.3 of Chapter 9 we studied the sequence Cn satisfying the recurrence (9.31),

that is,

Cn = 4
n∑

k=2

(
n

k

)
2−n

n− k + 1
Ck, n ≥ 2

with C2 = 1. We proved that its Poisson transform C̃(z) satisfies the following functional
equation

C̃(z) =
8
z

(1− e−z/2)C̃
(
z

2

)
,
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while F (z) = log z2C̃(z)/2 fulfills

F (2z) − F (z) = log

(
1− e−z

z

)
. (10.49)

In (9.32) of Example 9.3 we proved that

exp[F (z)] ∼
√
z2−1/12 exp

(
γ(1) + γ2/2− π2/12

log 2

)
exp

[
−1

2
log2(z)
log 2

+ Ψ(log2 z)

]
,

where

Ψ(log2 z) =
∞∑

`=−∞
` 6=0

1
2πi`

Γ
(

1− 2πi`
log 2

)
ζ

(
1− 2πi`

log 2

)
e2πi` log2 z.

Thus C̃(z) = O(z5/2 exp(log2 z)) in the cone Sθ (by analytic continuation). By Theorem 10.8
we find

Cn ∼
1
2
n5/22−1/12 exp

(
γ(1) + γ2/2− π2/12

log 2

)
exp

[
−1

2
log2(j)
log 2

+ Ψ(log2 n)

]
as n→∞. 2

10.3.3 General Depoissonization Tool

Here we prove all the depoissonization results discussed so far. We start with a few lemmas
followed by our main depoissonization tool Theorem 10.13.

It turns out that in the course of the proof we often have to deal with functions satisfying
a certain property. We formalize it in the following definition.

Definition 10.9 We say that a sequence of functions fn : In → C defined on subintervals In
belongs to the class Dk(ω) for ω real if there exist D > 0 such that for all integers j ≤ k and
x ∈ In we have |f (j)

n (x)| ≤ Dn−jω.

Example 10.9 Functions belonging to Dk(ω).
Consider the following two functions:

1. Let f be infinitely differentiable on [−1, 1], and define fn(x) = f(xn−ω) on In = [−nω, nω].
Clearly, fn ∈ Dk(ω) for every k ≥ 0.

2. Let Fn be an analytic function defined in {z : |z| ≤ nω}, n ≥ 1, such that the sequence Fn

is uniformly bounded. Then the restriction fn of Fn to In = [−1
2n

ω, 1
2n

ω] belongs to Dk(ω)
for every k ≥ 0. 2

The next lemma presents some simple properties of the class Dk(ω). Its proof is quite
simple and is left for the reader in Exercise 7.
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Lemma 10.10 (i) If fn belongs to Dk(ω), then fn belongs to Dk(ω′) for all ω′ ≤ ω.

(ii) If fn and gn belong to class Dk(ω), and if H(x, y) is a function which is k times contin-
uously differentiable, then H(fn, gn) belongs to Dk(ω). Consequently if fn and gn ∈ Dk(ω),
then fn + gn and fn × gn ∈ Dk(ω).

Observe that to prove our general asymptotic expansion, like the one in Theorem 10.6,
we must study bounds and Taylor’s expansions of the following function

hn(t) = exp(n(eit/
√

n − 1− it/
√
n)) . (10.50)

One can interpret hn(t) as the kernel of the Cauchy integral (10.13) (cf. also (10.19)), thus
it is not surprising that this function often appears in our depoissonization theorems. Its
properties are discussed in the next lemma.

Lemma 10.11 The following statements hold:
(i) For t ∈ [−π√n, π√n] there exists µ > 0 such that |hn(t)| ≤ e−µt2 , where µ is a constant.
(ii) For complex t such that |t| ≤ Bn

1
6 for some B > 0, the sequence of functions Fn(t) =

hn(t)e−t2/2 is bounded and belongs to Dk(1
6) for any integer k ≥ 0.

Proof: Part (i) was already proved in Section 10.2.2. Part (ii) is a little more intricate.
According to Lemma 10.10, it suffices to prove that the sequence of functions log Fn(t) ∈
Dk(1

6), and then refer to the fact that the sequence of exponentials of log Fn(t) still belongs
to Dk(1

6). Denoting eix − 1 − ix − x2/2 by r(x), we observe that the sequence of functions
r(t/
√
n) belongs to Dk(1

2) for t = O(
√
n) and any integer k ≥ 1. Therefore, the ith derivative

for 3 ≤ i ≤ k of nr(t/
√
n) is O(n1−i/2), which is O(n−i/6) for all i ≥ 3. In particular, the

third derivative is O(n−1/2). But we also observe that by successive integrations the first
derivative of nr(t/

√
n) is O(n−1/6), the second derivative is O(n−1/3), and nr(t/

√
n) is O(1),

because the first two derivatives of r(t) are zero at t = 0 by the construction. Hence, part
(ii) follows.

Furthermore, when proving Theorems 10.6, we need an extension of Lemma 8.16, which
is presented next.

Lemma 10.12 For nonnegative H and β, let the sequence of complex functions Fn(x), de-
fined on x ∈ [−H log n,H log n], belong to the class Dk(β) for any k ≥ 1. Then

1√
2π

∫ H log n

−H log n
Fn(x)e−x2/2dx =

k−1∑
i=0

1
2ii!

F (2i)
n (0) +O(n−2kβ) .
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Proof: By Taylor’s expansion Fn(x) =
∑l−1

i=0
xi

i! F
(i)(0) + ∆n(x)xl, where ∆n(x) = O(n−lβ)

due to Fn ∈ Dl(β) for any l. Thus

1√
2π

∫ H log n

−H log n
Fn(x)e−x2/2dx =

l−1∑
i=0

F
(i)
n (0)
i!

1√
2π

∫ H log n

−H log n
xie−x2/2dx+O(n−lβ).

Observe that F (i)
n (0) = O(n−iβ) since Fn ∈ Dl(β) and i ≤ l. Furthermore, by Lemma 8.16

changing the limits of integration in the above to±∞ introduces an error of orderO(e−(H log n)2/2)
that decreases faster than any polynomial. Also, by (8.78) of Lemma 8.16 we know that for
i even

1√
2π

∫ ∞

−∞
xie−x2/2dx =

(2m)!
m!2m

, i = 2m,

and the integral is zero for i odd. After setting k = 2l and rearranging the above sum, we
prove the lemma.

Finally, we are in a position to formulate the depoissonization tool theorem. To have
our results apply also to the distributional problems discussed in the next section, we consider
here a double-index sequence gn,k and a sequence of Poisson transforms

G̃k(z) = e−z
∞∑

n=0

gn,k
zn

n!
.

Theorem 10.13 (Jacquet and Szpankowski, 1998) Let G̃k(z) be the Poisson transform
of a sequence gn,k that is assumed to be a sequence of analytical functions for |z| ≤ n. We
postulate that the following three conditions simultaneously hold for some H > 0, γ, and
integer m ≥ 0:
(I) For z ∈ Sθ, such that |z| = n: |G̃n(z)| ≤ F (n) for a sequence F (n),
(L) The sequence of function fn(t) = G̃n(neit/

√
n)/F (n) defined for t ∈ [−H log n,H log n]

belongs to the class Dm(γ),
(O) For z /∈ Sθ and |z| = n: |G̃n(z)ez | ≤ p(n)enF (n), where p(n) decays faster than
n−

1
2
−(m+1) min{γ, 1

6
}, that is,

p(n) = o(n−
1
2
−(m+1) min{γ, 1

6
}).

Then
gn,n = G̃n(n) +O(n−min{γ, 1

6
})F (n) , (10.51)

and more generally for any integer m ≥ 0

gn,n =
m∑

i=0

i+m∑
j=0

bijn
iG̃(j)

n (n) +O(n−(m+1) min{γ,1/6})F (n), (10.52)

where bij are defined in (10.40).
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Proof. The proof again relies on the Cauchy integral that we split into In and En as before,
where In is the integral over t such that neit is inside the cone Sθ, and En is the integral that
has neit outside the cone. That is:

In = ωn

√
n

2π

∫ θ

−θ
G̃n(neit) exp

(
n
(
eit − 1− it

))
dt,

En =
n!

2πi

∫
|t|∈[θ,π]

G̃n(z)ez

zn+1
dz

= ωn

√
n

2π

∫
|t|∈[θ,π]

G̃n(neit) exp
(
n
(
eit − 1− it

))
dt,

where ωn = n!n−nen(2πn)−1 = 1 + O(n−1) by the Stirling formula. We estimate the above
two integrals. We begin with the latter. Observe that by condition (O) we have |En|/F (n) ≤√

2πnp(n) = o(n−k min{γ, 1
6
}) for any k ≤ m + 1, which is negligible when compared to the

error term in (10.51).
The evaluation of In is more intricate. First, we replace t by t/

√
n to get

In =
ωn√
2π

∫ θ
√

n

−θ
√

n
G̃n(neit/

√
n) exp

(
n
(
eit/

√
n − 1− it/

√
n
))
dt

=
ωn√
2π

∫ θ
√

n

−θ
√

n
G̃n(neit/

√
n)hn(t)dt,

where hn(t) is defined in (10.50) and analyzed in Lemma 10.11. We further split the integral
In into I ′n and I ′′n as follows

I ′n =
ωn√
2π

∫ H log n

−H log n
G̃n(neit/

√
n) exp

(
n
(
eit/

√
n − 1− it/

√
n
))
dt ,

I ′′n =
ωn√
2π

∫
t∈[−θ

√
n,−H log n]

G̃n(neit/
√

n) exp
(
n
(
eit/

√
n − 1− it/

√
n
))
dt

+
ωn√
2π

∫
t∈[H log n,θ

√
n]
G̃n(neit/

√
n) exp

(
n
(
eit/

√
n − 1− it/

√
n
))
dt .

To estimate the second integral I ′′n we use the fact that |hn(t)| ≤ e−µt2 with µ > 0 for
t ∈ [−√n,√n], as discussed in Lemma 10.11. Thus by Lemma 8.16 and condition (I) we
immediately obtain that I ′′n/F (n) = O(e−µH2 log2 n), which decays faster than any polynomial.

Now we estimate I ′n. Observe first that since hn(t)et
2/2 ∈ Dm(1

6 ) for any m, and we have
G̃n(neit/

√
n)/F (n) ∈ Dm(γ), therefore the product

Rn(t) = hn(t)et
2/2G̃n(neit/

√
n)/F (n) ∈ Dm(γ2),
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where γ2 = min{γ, 1
6}. In view of this and by Lemma 10.12 we obtain

I ′n/F (n) =
ωn√
2π

∫ H log n

H log n
Rn(t)e−t2/2dt = ωn(Fn(0) +O(n−γ2)) ,

and consequently gn = G̃n(n) +O(n−γ2)F (n). This proves (10.51).
To prove our general result (10.52), we apply Lemma 10.12 for any k to obtain

gn,n/F (n) = ωn

k−1∑
i=0

1
2ii!

R(2i)
n (0) +O(n−2kγ2).

Computing explicitly the derivatives of Rn(t) by their actual values (that involve the deriva-
tives of G̃(z) at z = n), and noting that all odd powers of n−

1
2 disappear (since we are

considering only derivatives of Rn(t) of even order), multiplying by ωnF (n), replacing ωn by
the Stirling expansion, we finally obtain

gn,n =
m∑

i=0

i+m∑
j=0

bijn
iG̃(j)

n (n) +O(n−(m+1) min{γ, 1
6
})F (n),

where we set m+ 1 = 2k. Notice that the terms in the expansion do not involve m since the
Stirling expansion and the expansion of Lemma 10.12 do not contain m.

Using the depoissonization tool Theorem 10.13, we can now finally prove our remaining
theorems by identifying the function F (n) (see condition (I)) and finding the correct value
for γ in condition (L) of Theorem 10.13.

We start with the proof of the generalized depoissonization Theorem 10.6. First of all,
observe that conditions (I) and (O) of Theorem 10.6 imply conditions (I) and (O) of Theorem
10.13 when we set F (n) = BnβΨ(n). Thus to complete the proof we must verify condition
(L) of Theorem 10.13 and find γ such that

fn(t) = G̃n(neit/
√

n)n−β/Ψ(n) ∈ Dm(γ)

for any integer m ≥ 1. But by Lemma 10.1(ii), for all integer m and for all z belonging
to a smaller cone Sθ′ with θ′ < θ there exists Bm such that |G̃(m)

n (z)| ≤ Bm|z|β−mΨ(|z|).
After setting z = neit/

√
n we see that the sequence of functions fn(t) belongs to Dm(1

2 ) for all
integer m. Now set γ = 1

6 . Then by Theorem 10.13 there is some m′ > m such that

gn,n =
m′∑
i=0

i+m′∑
j=0

bijn
iG̃(j)

n (n) +O(nβ−m′γ)Ψ(n).

The last delicate point is to obtain the correct error term in Theorem 10.6. But this can
be achieved by setting m′ = d(m + 1)/γe for a given value m. This will lead to an error
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term equal to O(nβ−(m+1)). Indeed, the additional terms obtained are those with i > m and
j > i+m. The corresponding coefficients are bijniG̃

(j)
n (n) with bij 6= 0 for j ≥ 2i (we remind

the reader that bij = 0 for j < 2i, as shown in Section 10.3.1). Then

nβ+i−j ≤ nβ+i−2i = nβ−i ≤ nβ−(m+1) ,

and this proves Theorem 10.6.
Now, we prove the exponential depoissonization Theorem 10.8. As before, the proof

relies on Theorem 10.13 with F (n) = exp(Bnβ). Conditions (I) and (O) are again easy to
verify, so we only need to check condition (L) of Theorem 10.13. That is, we must estimate
the growth of fn(t) = G̃(neit/

√
n) exp(−Bnβ). But fn(t) ∈ D(1

2 − β) due to (10.48). To
complete the proof, we must establish the error term. Let γ = min{1

2 −β,
1
6}. An application

of Theorem 10.13 leads to the error term O
(
n−m′γ exp(Bnβ)

)
for some integer m′ ≥ 0. To

establish the right error term O(n−(m+1)(1−2β) exp(Bnβ)) we follow the same approach as
before. We set m′ = b(m+ 1)(1− 2β)/γc, which introduces the additional terms bijniG̃〈j〉(n)
that contribute O(ni−j(1−β) exp(Bnβ)). But, since bij 6= 0 for j ≥ 2i,

ni−j(1−β) exp(Bnβ) ≤ ni−2i(1−β) exp(Bnβ) ≤ n−i(1−2β) exp(Bnβ) ≤ n−m(1−2β) exp(Bnβ) ,

and this completes the proof of Theorem 10.8.

10.4 Moments and Limiting Distributions

Depoissonization techniques can also be used to derive limiting distributions. Extension to
distributions requires us to investigate the double-index sequence gn,k (e.g, gn,k = Pr{Xn = k}
or gn,k = E[etXn/

√
Vk ] for a sequence Vk). Its Poisson transform is denoted as

G̃(z, u) = P(gn,k; z, u) =
∞∑

n=0

zn

n!
e−z

∞∑
k=0

gn,ku
k.

It is often more convenient to investigate the Poisson transform G̃k(z) = P(gn,k; z) defined
as

G̃k(z) =
∞∑

n=1

gn,k
zn

n!
e−z,

and already discussed in Theorem 10.13. In this section we present the diagonal depoissoniza-
tion result that allows us to extract asymptotically gn,n (e.g., gn,n = E[etXn/Var[Xn]]). We
start, however, with the relationship between the Poisson and the Bernoulli moments of a
random variable.
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10.4.1 Moments

Let Xn be a sequence of integer random variables and XN its corresponding Poisson driven
sequence, where N is a Poisson random variable with mean z. Let G̃(z, u) = EuXN =∑∞

n=0 EuXn zn

n! e
−z be its Poisson transform. We introduce also the Poisson mean X̃(z) and

the Poisson variance Ṽ (z) as

X̃(z) = G̃′
u(z, 1) ,

Ṽ (z) = G̃′′
u(z, 1) + X̃(z)−

(
X̃(z)

)2
,

where G̃′
u(z, 1) and G̃′′

u(z, 1) respectively denote the first and the second derivative of G̃(z, u)
with respect to u at u = 1.

The next result presents a relationship between the Poisson mean X̃(z) and variance
Ṽ (z), and the Bernoulli mean E[Xn] and variance Var[Xn].

Theorem 10.14 Let X̃(z) and Ṽ (z) + X̃2(z) satisfy condition (O), and X̃(z) and Ṽ (z)
satisfy condition (I) of Theorem 10.6 with β ≤ 1, e.g., X̃(z) = O(zβΨ(z)), and Ṽ (z) =
O(zβΨ(z)) in a linear cone Sθ and appropriate conditions (O) outside the cone, where Ψ(z)
is a slowly varying function. Then the following holds:

E[Xn] = X̃(n)− 1
2
nX̃〈2〉(n) +O(nβ−2Ψ(n)), (10.53)

Var[Xn] = Ṽ (n)− n[X̃ ′(n)]2 +O(nβ−1Ψ(n)) (10.54)

for large n.

Proof. The asymptotic expansion (10.53) directly follows from Theorem 10.6 for m = 1. To
derive (10.54) observe that the Poisson transform of E[X2

n] is Ṽ (z) + (X̃(z))2, thus again by
Theorem 10.6

E[X2
n] = Ṽ (n) + (X̃(n))2 − 1

2
nṼ 〈2〉(n)− n[X̃ ′(n)]2 − nX̃〈2〉(n)X̃(n) +O(nβ−2Ψ(n))

= Ṽ (n) +
(
(X̃(n))2 − nX̃〈2〉(n)X̃(n) +O(n2β−2Ψ(n))

)
− n[X̃ ′(n)]2 +O(nβ−1Ψ(n)),

where the last error term is a consequence of nṼ 〈2〉(n) = O(nβ−1Ψ(n)). Since Var[Xn] =
E[X2

n]−E[Xn]2, the result follows.

Example 10.10 I.I.D. Random Variables

Let Z1, . . . , Zn be a sequence of independently and identically distributed random vari-
ables with generating function P (u) = EuZ1 and mean µ and variance v. The generating func-
tion of Xn = Z1 + . . .+Zn is Gn(u) = (P (u))n. Observe that E[Xn] = nµ and Var[Xn] = nv.
If we consider the Poisson transform of Xn we obtain G̃(z, u) = exp (z(P (u) − 1)), and
X̃(z) = zµ, Ṽ (z) = (µ2 + v)z. Thus Var[Xn] = Ṽ (n)− n[X̃ ′(n)]2, as predicted by Theorem
10.14. 2
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10.4.2 Limiting Distributions

When dealing with distributions, one must estimate Gn(u) from the Poisson transform
G̃(z, u). If u belongs to a compact set, then our previous depoissonization results can be
directly applied. However, to unify our analysis we present below a general result called the
diagonal depoissonization.

Theorem 10.15 (Jacquet and Szpankowski, 1998) Let G̃k(z) be a sequence of Poisson
transforms of gn,k, which are assumed to be a sequence of entire functions of z. Let the
following two conditions hold for some A > 0, B, R > 0 and α > 0, β, and γ:
(I) For z ∈ Sθ and

|z| > R ⇒ |G̃n(z)| ≤ Bnβ|Ψ(n)|, (10.55)

where Ψ(x) is a slowly varying function.

(O) For z outside the linear cone Sθ

|z| = n ⇒ |G̃n(z)ez | ≤ nγ exp(n−Anα) , (10.56)

Then for large n
gn,n = G̃n(n) +O(nβ−1Ψ(n)) . (10.57)

More generally, for every nonnegative integer m

gn,n =
m∑

i=0

i+m∑
j=0

bijn
iG̃〈j〉

n (n) +O(nβ−m−1Ψ(n)), (10.58)

where G̃(j)
n (n) denotes the jth derivative of G̃n(z) at z = n.

Proof. The proof follows directly from the depoissonization tool Theorem 10.13 and is left
for the reader (cf. Exercise 8).

Using this we can prove the following two very useful corollaries.

Corollary 10.16 Suppose G̃k(z) =
∑∞

n=0 gn,k
zn

n! e
−z, for k belonging to some set K, are

entire functions of z. For some constants A, B, R > 0, β and α < 1, let the following two
conditions hold uniformly in k ∈ K:

(I) For z ∈ Sθ

|z| > R ⇒ |G̃k(z)| ≤ B|z|β , (10.59)

(O) For z /∈ Sθ

|z| > R ⇒ |G̃k(z)ez | ≤ A exp(α|z|) . (10.60)

Then uniformly in k ∈ K
gn,k = G̃k(n) +O(nβ−1) (10.61)

and the error estimate does not depend on K.
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Proof. The above corollary is a direct consequence of our previous proofs. Nevertheless, we
show below how it can be derived from Theorem 10.13. Indeed, let us assume the contrary
(i.e., that the thesis of the corollary (10.61) does not hold). In other words, there is a
subsequence (ni, ki) such that

lim
i→∞

∣∣∣∣∣gni,ki
− G̃ki

(ni)

nβ−1
i

∣∣∣∣∣ =∞ . (10.62)

Observe that ni cannot be bounded. Indeed, if the subsequence ni would be bounded,
then the uniform boundedness of Gk(z) (by our assumption (I)) on any compact set implies
that the gn,k are uniformly bounded if ni are uniformly bounded (it suffices to bound the
integrand in gn,k = n!

2iπ

∮
Gk(z)ezz−n−1dz), which contradicts (10.62). So assume now that

ni is unbounded and strictly increasing, and define for a nonnegative integer m

H̃m(z) =

 0 m 6= ni

G̃ki
(z) m = ni .

Then hni,ni = gni,ki
for all i. Clearly, H̃m(z) satisfies the assumptions of Theorem 10.13

(since it satisfies conditions (I) and (O) of the corollary, which imply conditions (I), (O), and
(L) of Theorem 10.13). Thus,

hni,ni = gni,ki
= G̃ki

(ni) +O(nβ−1
i )

which is the desired contradiction.

The next corollary is a direct consequence of Corollary 10.16 but since it finds many useful
applications, we formulate it separately.

Corollary 10.17 Let G̃(z, u) satisfy the hypothesis of Theorem 10.3, i.e., for some numbers
θ < π/2, A, B, ξ > 0, β, and α < 1 (I) and (O) hold for all u in a set U . Then

Gn(u) = G̃(n, u) +O(nβ−1) (10.63)

uniformly for u ∈ U .

Proof. This directly follows from Corollary 10.16. Since the set K in Corollary 10.16 is
arbitrary we can set K = U , and then gn,u =

∑
l≥0 gn,lu

l = Gn(u) and G̃u(z) = G̃(z, u). Thus
(10.61) implies (10.63).

Example 10.11 Depth in PATRICIA
Let us consider the depth in a PATRICIA trie (Section 1.1). The Poisson transform

D̃(z, u) of the depth satisfies the following functional equation

D̃(z, u) = u(pD̃(zp, u) + qD̃(zq, u)) + (1− u)(pD̃(zp, u)e−qz + qD̃(zq, u)e−pz) .
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Due to the factors e−qz and e−pz in front of D̃(z, u), the equation is more complicated than
the ones we have seen so far. In fact, it does not have a simple explicit solution. Nevertheless,
it falls under Theorem 10.5 with γ1(z) = up + (1 − u)pe−qz, γ2(z) = uq + (1 − u)qe−pz and
t(z) = 0. Furthermore, for p 6= q the asymptotic behavior of D̃(z, u) inside a cone Sθ (z →∞)
is determined by the first two terms in the right side of the above equation. Using Mellin
transforms Rais et al. [350] proved that for large z the Poisson depth is normal (the reader
is asked to provide details in Exercise 9); that is, for z large in a cone Sθ, and u = et, where
t is complex we have:

e−tX̃(z)/σ(z)D̃(z, et/σ(z)) = et
2/2(1 +O(1/σ(z))), (10.64)

where X̃(z) = O(log z) is the Poisson mean, and σ2(z) = Ṽ (z) = O(log z) is the Poisson
variance.

One must now depoissonize (10.64) in order to establish the central limit law for the
Bernoulli model. First, an easy application of Theorem 10.14 leads us to E[Dn] ∼ X̃(n) and
Var[Dn] ∼ Ṽ (n). In fact, from Szpankowski [408] we know that E[Dn] = 1

h log n + O(1)
and Var[Dn] = h2−h2

h3 log n + O(1), where h = −p log p − q log q is the entropy, and h2 =
p log2 p + q log2 q. Thus we need only depoissonize (10.64) in order to obtain the limiting
distribution. We first observe, as in [350], that D̃(z, u) = O(zε) for any ε > 0 inside a cone
Sθ (θ < π/2). This can be proved by simple induction. With the help of Theorem 10.5 we
verify conditions (I) and (O) of Corollary 10.17, which finally yields the following.

Theorem 10.18 (Rais, Jacquet and Szpankowski, 1993) For complex t

e−tE[Dn]/
√

Var[Dn]E
[
etDn/

√
Var[Dn]

]
= et

2/2(1 +O(1/
√

log n)) ,

that is, (Dn − E[Dn])/
√

Var[Dn] converges in distribution and in moments to the standard
normal distribution.

Other examples will be discussed in the applications section below. 2

10.5 Applications

We discuss three applications. First, we deal with the asymptotic distribution of the height
in an incomplete trie associated with the leader election algorithm. Then we tackle the av-
erage and the variance of the depth in generalized b-digital search trees for two probabilistic
models, namely, for biased memoryless and Markovian sources. The depth of b-DST was al-
ready discussed in Section 9.4.1 for the unbiased memoryless model. Extension to the biased
memoryless model will require a new methodology, that of poissonization and depoissoniza-
tion. Finally, further extension to the Markovian model will force us to consider systems of
functional equations. This last application turns out to be the most sophisticated research
problem of this book.
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Figure 10.4: An incomplete trie for the elimination process starting with 7 players.

10.5.1 Leader Election Algorithm

This analysis is adopted from Fill at al. [124]. The following elimination process has several
applications, such as the election of a leader in a computer network. A group of n people
play a game to identify a winner by tossing fair coins. All players who throw heads are losers;
those who throw tails remain candidates and flip their coins again. The process is repeated
until a single winner is identified. If at any stage all remaining candidates throw heads, the
tosses are deemed inconclusive and all remaining players participate in the next round of coin
tossing.

We investigate the distribution of the height of a random incomplete trie, the discrete
structure that underlies the elimination process described above. This binary incomplete
tree can be described as follows. At the root of the tree we have one node labeled with all
participants. After all the participants flip their coins for the first time, losers (if any) are
placed in a leaf node that is attached to the root as a right child, and all candidate winners
are placed in a node that is attached as a left child. Leaf nodes are terminal nodes that are
not developed any further. The process repeats recursively on every left child until a single
winner is identified. Figure 10.4 illustrates the discrete structure underlying the elimination
process.

Our goal is to find the distribution of the height Hn of the associated incomplete trie. We
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first use poissonization and then depoissonize the result to obtain the exact and the limiting
distribution of Hn. For each n ≥ 0, let

Gn(u) :=
∞∑

k=0

Pr{Hn = k}uk

denote the probability generating function for the fixed-population height Hn (i.e., in the
Bernoulli model). The starting point of our analysis is the following recurrence for Gn(u)

Gn(u) = u2−n
n∑

k=1

(
n

k

)
Gk(u) + uGn(u)2−n, (10.65)

which is valid for n ≥ 2, with the boundary values G0(u) = G1(u) = 1. This is a standard
equation for the depth in digital trees that we have seen before, except that the associated trie
is incomplete so the term Gn−k(u) does not appear. The additive term Gn(u)2−n accounts
for the fact that when all players throw heads, then all of them still participate in the game
(we must find a leader!).

We now consider the Poisson transform G̃(z, u) =
∑∞

n=0 e
−zGn(u)zn

n! of Gn(u), which
satisfies the following functional equation

G̃(z, u) = u(1 + e−z/2)G̃
(
z

2
, u

)
+ e−z

[
(1 + z)(1 − u)− uez/2

]
. (10.66)

To handle this recurrence, we introduce

H̃(z, u) =
G̃(z, u)
1− e−z

,

and obtain
H̃(z, u) = uH̃

(
z

2
, u

)
+R(z, u), (10.67)

where

R(z, u) :=
(1 + z)(1− u)− uez/2

ez − 1
.

The recurrence (10.67) can be solved by direct iteration, as we saw in Section 7.6.1, to obtain

H̃(z, u) =
∞∑

k=0

R

(
z

2k
, u

)
uk. (10.68)

We now start the process of depoissonizing the last equation so that Corollary 10.16 can
be applied. For this we need information about G̃(z, u) as z → ∞ in a linear cone and u in
a compact set. Certainly, the Mellin transform is the right tool since the sum in (10.68) is a
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harmonic sum and Theorem 9.1 applies. Simple algebra (with the help of Table 10.1) shows
that the Mellin transform H̃∗(s, u) of H̃(z, u) is

H̃∗(s, u) = Γ(s) ζ(s) +
(1− u) Γ(s + 1) ζ(s+ 1)

1− 2su

for 1 < <(s) < − log |u|. We further assume that |u| < 1
2 . Since we are concerned here

with the distribution function of HN , where N is a Poisson random variable, rather than its
probability mass function, our interest centers on the transform

H̃∗(s, u)
1− u =

Γ(s) ζ(s)
1− u +

Γ(s+ 1) ζ(s+ 1)
1− 2su

.

This expression can be immediately expanded in a power series in u yielding

[uk]

(
H̃∗(s, u)

1− u

)
= Γ(s) ζ(s) + 2ksΓ(s+ 1) ζ(s + 1).

Inverting the transform gives

H̃(z, u)
1− u =

∞∑
k=0

uk

[
1

ez − 1
+

z/2k

exp(z/2k)− 1

]

for z > 0. But ∞∑
k=0

Pr{HN(z) ≤ k}uk =
G̃(z, u)
1− u =

(1− e−z) H̃(z, u)
1− u ,

where N(z) is a Poisson distributed random variable with mean z. For each k = 0, 1, 2, . . .
and z > 0 we have

Pr{HN(z) ≤ k} = e−z +
(
1− e−z) z/2k

exp(z/2k)− 1
. (10.69)

The relation (10.69) can be manipulated to get exact distribution. For any z > 0,

Pr{HN(z) ≤ k} = e−z
[
1 +

z

2k

ez − 1
exp(z/2k)− 1

]

= e−z

1 +
z

2k

2k−1∑
j=0

exp(jz/2k)


= e−z

1 +
1
2k

2k−1∑
j=0

∞∑
n=1

(j/2k)n−1zn

(n− 1)!


= e−z

1 +
∞∑

n=1

zn

n!

 n

2kn

2k−1∑
j=0

jn−1

 .
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We give the exact distribution in Theorem 10.19 below.
But we are really after the limiting distribution, if it exists, of the Bernoulli version of

the height, that is, Hn. We use the depoissonization Corollary 10.16. Let

pk,n := Pr{Hn ≤ k} (10.70)

and then by (10.69) the Poisson transform P̃k(z) of pk,n is

P̃k(z) := e−z +
(
1− e−z) z/2k

exp(z/2k)− 1
. (10.71)

Although up until now the right side of (10.71) has arisen only as Pr{HN(z) ≤ k} for real z ≥ 0,
note that it defines an entire function of the complex variable z (by analytic continuation or
the extension of the Mellin transform to the complex plane as discussed in Section 9.3).

We must verify conditions (I) and (O) of Corollary 10.16. We may appeal to Theorem 10.5;
however, for a change we check the conditions directly. To verify condition (I), we first observe
that if 0 6= z ∈ Sθ, then |z| ≤ < z/ cos θ and

|ez − 1| ≥ |ez| − 1 = exp(< z)− 1,

so that ∣∣∣∣ z

ez − 1

∣∣∣∣ ≤ (sec θ)
< z

exp(< z)− 1
≤ sec θ.

Thus for 0 6= z ∈ Sθ we have

|P̃k(z)| ≤
∣∣e−z

∣∣+ ∣∣1− e−z
∣∣ ∣∣∣∣∣ z/2k

exp(z/2k)− 1

∣∣∣∣∣
≤

∣∣e−z
∣∣+ (sec θ)

∣∣1− e−z
∣∣

≤ sec θ + (1 + sec θ)
∣∣e−z

∣∣
≤ sec θ + (1 + sec θ) exp(−< z)
≤ 1 + 2 sec θ.

To verify condition (O), we first observe that if z /∈ Sθ, then < z ≤ |z| cos θ. Thus for
0 6= z 6∈ Sθ, we have from (10.71)

|P̃k(z)ez | ≤
∣∣∣∣1 +

z

2k
× ez − 1

exp(z/2k)− 1

∣∣∣∣
≤ 1 + |z| × 2−k

2k−1∑
r=0

∣∣∣exp(rz/2k)
∣∣∣
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Figure 10.5: The distribution function of H20−blog2 20c and the two continuous extremes.

≤ 1 + |z| × 2−k
2k−1∑
r=0

exp
(
r2−k|z| cos θ

)
≤ 1 + |z|

∫ 1

0
exp(x|z| cos θ) dx

= 1 + (sec θ) [exp(|z| cos θ)− 1]
≤ (sec θ) exp(|z| cos θ).

This verifies both of the conditions in Corollary 10.16 with β = 0; hence

Pr{Hn ≤ j} = pj,n = P̃j(n) +O
(
n−1

)
(10.72)

holds uniformly for integers j ≥ 0. But from (10.71)

P̃j(n) = e−n +
(
1− e−n) n/2j

exp(n/2j)− 1
.

Setting j = blog2 nc+ k, we find that

P̃j(n) = e−n +
(
1− e−n) 2〈log2 n〉−k

exp
(
2〈log2 n〉−k

)
− 1

=
2〈log2 n〉−k

exp
(
2〈log2 n〉−k

)
− 1

+O
(
e−n) (10.73)

holds, uniformly in all integers k (≥ −blog2 nc). We recall that 〈log2 n〉 = log2 n− blog2 nc.
We have thus proved the following result.
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Theorem 10.19 (Fill, Mahmoud and Szpankowski, 1996) Consider an incomplete bi-
nary trie with n ≥ 1, and let Bj denote the jth Bernoulli number.

(i) For any integer k ≥ 0,

Pr{Hn ≤ k} =
n

2kn

2k−1∑
j=0

jn−1 =
n−1∑
j=0

(
n

j

)
Bj

2kj
. (10.74)

(ii) Uniformly over all integers k,

Pr{Hn ≤ blog2 nc+ k} =
2〈log2 n〉−k

exp(2〈log2 n〉−k)− 1
+O

(
1
n

)
as n→∞.

From part (ii) of the above theorem we conclude that the limiting distribution of Hn −
blog2 nc does not exist (due to the term 〈log2 n〉). This is illustrated in Figure 10.5.

10.5.2 Depth in a b-Digital Search Tree for the Biased Memoryless Model

We discuss here the same data structures as in Section 9.4.1, that is, b-digital search trees.
However, this time we analyze them under the biased memoryless model, that is, for p 6= q =
1 − p. We concentrate on the depth Dm in a b-DST built over a fixed number, say m, of
independent binary strings generated in which “0” and “1” respectively occur with probability
p and q = 1 − p. Let B̄k

m be the expected number of strings at level k of a randomly built
b-digital search tree. Since Pr{Dm = k} = B̄k

m/m (cf. Section 8.7.3), one can alternatively
study the average B̄k

m which is also called the average profile. Let Bm(u) =
∑

k≥0 B̄
k
mu

k be
the generating function of the average profile. As in Section 9.4.1, we argue that the average
profile satisfies the following recurrence for all m ≥ 0

Bm+b(u) = b+ u
m∑

i=0

(
m

i

)
piqm−i (Bi(u) +Bm−i(u)) , (10.75)

with the initial conditions

Bi(u) = i for i = 0, 1, . . . , b− 1 .

For b > 1 this recurrence does not have a closed form solution. Therefore, we find an approach
other than the one used in Section 9.4.1 for the unbiased model. We poissonize the model
and study the Poisson transform

B̃(u, z) =
∞∑
i=0

Bi(u)
zi

i!
e−z (10.76)
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of Bm(u). We do so since the recurrence transforms to a slightly more manageable differential-
functional equation, namely(

1 +
∂

∂z

)b

B̃(u, z) = b+ u
(
B̃(u, pz) + B̃(u, qz)

)
,

where (1 + ∂
∂z )bf(z) :=

∑b
i=0

(b
i

)∂if(z)
∂zi . We shall study B̃(u, z) for z → ∞ in a cone around

the real axis and u in a compact set around u = 1.
Our goal is to prove the following result.

Theorem 10.20 (Louchard, Szpankowski, and Tang, 1999) Let Dm be the typical depth
in a b-digital search tree built over m statistically independent strings generated by a biased
memoryless source. Then

E[Dm] =
1
h

logm+
1
h

(
h2

2h
+ γ − 1−Hb−1 −∆(b, p) + δ1(m, b)

)
+ O

(
logm
m

)
Var[Dm] =

h2 − h2

h3
logm+O(1),

where h = −p log p − q log q is the entropy of the Bernoulli(p) distribution, h2 = p log2 p +
q log2 q, γ = 0.577... is the Euler constant, while Hb−1 =

∑b−1
i=1

1
i , H0 = 0 are harmonic

numbers. The constant ∆(b, p) can be computed as follows

∆(b, p) =
∞∑

n=2b+1

f̄n

b∑
i=1

(i+ 1)b!
(b− i)!n(n − 1) · · · (n− i− 1)

<∞,

where f̄n is given recursively by
fm+b = m+

∑m
i=0

(m
i

)
piqm−i(fi + fm−i), m > 0,

f0 = f1 = ... = fb = 0,

f̄m+b = fm+b −m > 0, m ≥ 1.

(10.77)

Finally, δ1(x, b) is a fluctuating function with a small amplitude (cf. (10.89)) when (log p)/(log q)
is rational, and limx→∞ δ1(x, b) = 0 otherwise.

The rest of this subsection is devoted to proving Theorem 10.20. We apply the Mellin
transform and depoissonization methods. Observe that Bm(1) = m, E[Dm] = B′

m(1)/m, and
B′′

m(1)/m = E[Dm(Dm − 1)] = Var[Dm]−E[Dm] + E[Dm]2. Thus

Var[Dm] =
B′′

m(1)
m

+
B′

m(1)
m

−
(
B′

m(1)
m

)2

.



447 Analytic Poissonization and Depoissonization

Let X̃(z) := B̃u(1, z) and W̃ (z) := B̃uu(1, z) be, respectively, the mean and the second
factorial moment of the depth in the Poisson model. Using (10.76), we obtain(

1 +
∂

∂z

)b

X̃(z) = z + X̃(pz) + X̃(qz) , (10.78)(
1 +

∂

∂z

)b

W̃ (z) = 2
(
X̃(pz) + X̃(qz)

)
+
(
W̃ (pz) + W̃ (qz)

)
. (10.79)

We plan to apply the Mellin transform to find the asymptotics of X̃(z) and W̃ (z) as z →∞
(first as x = <(z)→∞ and then we analytically continue to the complex plane). Due to the
appearance of the derivative in (10.78) and (10.79), we rather do not directly find the Mellin
transforms X(s) and Y (s) of X̃(z) and W̃ (z), but shall seek X(s) and Y (s) in the following
forms

X(s) =M[X̃(z); s] = Γ(s)γ(s) , (10.80)
Y (s) =M[W̃ (z); s] = Γ(s)β(s), (10.81)

where γ(s) and β(s) are to be computed. They exist in the proper strips, as proved below.

Lemma 10.21 . The following is true: (i) X(s) exists for <(s) ∈ (−b− 1,−1), and Y (s) is
defined for <(s) ∈ (−2b− 1,−1).

(ii) Furthermore, γ(−1− i) = 0 for i = 1, . . . , b−1, γ(−1− b) = (−1)b+1, and β(−1− i) = 0
for i = 1, . . . , b, and γ(s) has simple poles at s = −1, 0, 1, . . . .

Proof: By recurrence (10.75), we have Bi(u) = i for i = 0, 1, . . . , b, and thus Bi(u) =
b+ (i − b)u for i = 1 + b, . . . , 2b. Taking derivatives, we obtain ∂Bi(u)

∂u = 0 for i = 0, 1, . . . , b
and ∂Bi(u)

∂u = i − b for i = b, 1 + b, . . . , 2b. Furthermore, the second derivative becomes
∂2Bi(u)

∂u2 = 0 for i = 0, 1, . . . , 2b. Hence, for z → 0

X̃(z) =
(
zb+1/(b+ 1)! + 2zb+2/(b+ 2)! + 3zb+3/(b+ 3)! +O(zb+4)

)
e−z ,

= zb+1/(b+ 1)! +O(zb+2) as z → 0
W̃ (z) = O(z2b+1) as z → 0 .

On the other hand, for z →∞ we conclude from (10.78) and (10.79) that X̃(z) = O(z log z)
and W̃ (z) = O(z log2 z). Thus the first part of the lemma is proven. Part (ii) directly follows
from Lemma 10.22 below and (10.86).

Lemma 10.22 Let {fn}∞n=0 be a sequence of real numbers having the Poisson transform
F̃ (z) =

∑∞
n=0 fn

zn

n! e
−z, which is an entire function. Furthermore, let its Mellin transform

F (s) have the following factorization

F (s) =M[F̃ (z); s] = Γ(s)γ(s).
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Assume that F (s) exists for <(s) ∈ (−2,−1), and that γ(s) is analytic for <(s) ∈ (−∞,−1).
Then

γ(−n) =
n∑

k=0

(
n

k

)
(−1)kfk, for n ≥ 2. (10.82)

Proof: Let sequence {gn}∞n=0 be such that F̃ (z) =
∑∞

n=0 gn
zn

n! , that is,

gn =
n∑

k=0

(
n

k

)
(−1)n−kfk , n ≥ 0 .

Define for some fixed M ≥ 2, the function F̃M (z) =
∑M−1

n=0 gn
zn

n! . Due to our assumptions,
we can continue F (s) analytically to the whole complex plane except s = −2,−3, . . . . In
particular, for <(s) ∈ (−M,−M + 1) we have

F (s) =M[F̃ (z)− F̃M (z); s].

(The above is true since a polynomial in z, such as F̃M (z), can only shift the fundamental
strip of the Mellin transform but cannot change its value, as we saw in Section 9.2.) As
s→ −M , due to the factorization F (s) = Γ(s)γ(s), we have

F (s) =
1

s+M

(−1)M

M !
γ(−M) +O(1) ;

thus by the inverse Mellin transform, we have

F̃ (z)− F̃M (z) =
(−1)M

M !
γ(−M)zM +O(zM+1) as z → 0 . (10.83)

But

F̃ (z)− F̃M (z) =
∞∑

i=M

gn
zn

n!
= gM

zM

M !
+O(zM+1) . (10.84)

Comparing (10.83) and (10.84) shows that γ(−M) = (−1)MgM =
∑M

k=0

(M
k

)
(−1)kfk for

M ≥ 2.

Now we are in a position to compute the Mellin transforms of X̃(z) and W̃ (z). From
(10.78)–(10.81) we obtain

b∑
i=0

(
b

i

)
(−1)iγ(s− i) = (p−s + q−s)γ(s) ,

b∑
i=0

(
b

i

)
(−1)iβ(s− i) = 2(p−s + q−s)γ(s) + (p−s + q−s)β(s) ,
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and, by Lemma 10.21, γ(s) exists at least for <(s) ∈ (−b− 1,−1), while β(s) is well defined
in the strip <(s) ∈ (−2b− 1,−1). To simplify the above, we define, for any function g(s),

ĝ(s) =
b∑

i=1

(
b

i

)
(−1)i+1g(s − i), (10.85)

provided g(s − 1), . . . , g(s − b) exist. Then

γ(s) =
1

1− p−s − q−s

b∑
i=1

(
b

i

)
(−1)i+1γ(s− i) =

1
1− p−s − q−s

γ̂(s) (10.86)

β(s) =
1

1− p−s − q−s
β̂(s) +

2(p−s + q−s)
(1− p−s − q−s)2

γ̂(s) . (10.87)

Let sk, k = 0,±1,±2, . . ., be roots of 1− p−s − q−s = 0. Observe that s0 = −1. We need
to know precisely the locations of the roots sk. Fortunately, we already studied this problem
in Lemma 8.22. At s = sk we have

1
1− p−s − q−s

= − 1
h(sk)

1
s− sk

+
h2(sk)
2h2(sk)

+O(s− sk), (10.88)

where

h(t) = −p−t log p− q−t log q,
h2(t) = p−t log2 p+ q−t log2 q.

Expanding Γ(s)γ̂(s) around s = sk, we find that

Γ(s)γ̂(s) = Γ(sk)γ̂(sk) +
(
Γ(sk)γ̂′(sk) + Γ′(sk)γ̂(sk)

)
(s− sk) +O((s− sk)2) .

Therefore, since X(s) = Γ(s)γ(s) = 1
1−p−s−q−s Γ(s)γ̂(s), we obtain

X(s) = − 1
s− sk

Γ(sk)
h(sk)

γ̂(sk) +
h2(sk)
2h2(sk)

Γ(sk)γ̂(sk)

− 1
h(sk)

(
Γ(sk)γ̂′(sk) + Γ′(sk)γ̂(sk)

)
+O(s− sk) .

In a similar manner, from (10.87) we have

Y (s) =
2Γ(sk)γ̂(sk)
h2(sk)

1
(s− sk)2

+
(

2Γ′(sk)γ̂(sk)
h2(sk)

− Γ(sk)
h(sk)

β̂(sk)

− 2Γ(sk)
h2(sk)− h2(sk)

h3(sk)
γ̂(sk)− 2Γ(sk)γ̂′(sk)

h2(sk)

)
1

s− sk
+O(1).
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On the other hand, from (10.88) and (10.86) at s = s0 = −1, we find that

γ(s) = −1
h

1
s+ 1

+
h2

2h2
− γ̂′(−1)

h
+O(s+ 1),

β(s) =
2
h2

1
(s+ 1)2

+

(
−2

h2 − h2

h3
+ 2γ̂′(−1)

1
h2

)
1

s+ 1
+O(1) .

In the above, we used the fact that γ̂(−1) = 1 and β̂(−1) = 0, which directly follows from
Lemma 10.21. But Γ(s) = − 1

s+1 + (γ − 1) + O(s+ 1); hence the Laurent expansion of X(s)
at s = −1 is

X(s) = Γ(s)γ(s) =
1
h

1
(s+ 1)2

−
(
h2

2h2
− 1
h
γ̂′(−1) +

γ − 1
h

)
1

s+ 1
+O(1) .

We now use the reverse mapping Theorem 9.2 to find asymptotically X̃(z) and W̃ (z)
for z → ∞ in a cone Sθ (we again use either analytic continuation or the extension to the
complex plane of the Mellin transform as discussed in Section 9.3). However, to estimate the
error term we note that γ(s) has additional simple poles at s = 0, 1, . . . . The pole at s = 0
is a double pole of X(s) = Γ(s)γ(s), and thus its contribution to X̃(z) is O(log z). Putting
everything together, we finally arrive at

X̃(z) =
1
h
z log z +

(
h2

2h2
− 1
h
γ̂′(−1) +

γ − 1
h

)
z (10.89)

+
∑
k 6=0

Γ(sk)γ̂(sk)
h(sk)

z−sk +O(log z).

Similarly, at s = −1,

Y (s) = − 2
h2

1
(s+ 1)3

+
2
h

(
h2 − h2

h2
− 1
h
γ̂′(−1) +

γ − 1
h

)
1

(s+ 1)2
+O

(
1

s+ 1

)
.

In addition, there is a double pole at s = 0, and hence by the reverse mapping Theorem 9.2
and Lemma 8.22 we obtain

W̃ (z) =
1
h2
z log2 z +

2
h

(
h2 − h2

h2
− 1
h
γ̂′(−1) +

γ − 1
h

)
z log z

+2
∑
k 6=0

Γ(sk)γ̂(sk)
h2(sk)

z−sk log z +O(z)

for z →∞, where O(z) error term comes from the term O((s+1)−1). This formula will allow
us to infer the asymptotics of the variance of Dm.
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The final step is depoissonization. We shall use Theorem 10.3. To verify conditions (I)
and (O) we need a slight extension of Theorem 10.5. Condition (I) follows from (10.89), thus
we need only verify (O). We consider only X̃(z). Let X(z) = X̃(z)ez . Then the functional
equation (10.78) transforms into

X(b)(z) = X(zp)ezq +X(zq)ezp + zez ,

where X(b)(z) denotes the bth derivative of X(z). Observe that the above equation can be
integrated to yield

X(z) =
∫ z

0

∫ w1

0
· · ·
∫ wb−1

0︸ ︷︷ ︸
b times

(X(w1p)ew1q +X(w1q)ew1p +w1e
w1) dwb · · · dw2dw1, (10.90)

where the integration is along lines in the complex plane.
We now prove that |X(z)| ≤ eα|z| for z /∈ Sθ for α < 1. We use induction over increasing

domains as discussed in Theorem 10.5. That is, for all positive integers m ≥ 1 and constants
ξ, δ > 0, let

Dm = {z = ρeiϑ : ρ ∈ [ξδ, ξν−m], 0 ≤ ϑ < 2π},
where max{p, q} ≤ ν < 1 and δ ≤ min{p, q}. As we have already seen, such a representation
enjoys the property that if z ∈ Dm+1 − Dm then zp, zq ∈ Dm provided that |z| ≥ ξ, which
is assumed to hold. To carry out the induction, we first define D̄m = Dm ∩ S̄θ, where S̄θ

denotes points in the complex plane outside Sθ. Since X(z) is bounded for z ∈ D̄1, the initial
step of induction holds. Let us now assume that for some m > 1 and for z ∈ D̄m we have
|X(z)| ≤ eα|z| with α < 1. We intend to prove that |X(z)| ≤ eα|z| for z ∈ D̄m+1. Indeed, let
z ∈ D̄m+1. If also z ∈ D̄m, then the proof is complete. Let us assume that z ∈ D̄m+1 − D̄m.
Since then zp, zq ∈ D̄m, we can use our induction hypothesis together with the integral
equation (10.90) to obtain the following estimate for |z| > ξ, where ξ is sufficiently large:

|X(z)| ≤ |z|b+1
(
e|z|(pα+q cos θ) + e|z|(qα+p cos θ) + e|z| cos θ

)
.

Let us now define 1 > α > cos θ such that the following three inequalities simultaneously
hold:

|z|be|z|(pα+q cos θ) ≤ 1
3
eα|z| ,

|z|be|z|(qα+p cos θ) ≤ 1
3
eα|z| ,

|z|b+1e|z| cos θ ≤ 1
3
eα|z| .

Then for z ∈ D̄m+1 we have |X(z)| ≤ eα|z|, as needed to verify condition (O) of the depois-
sonization lemma.
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In view of the above, we can apply the depoissonization Theorem 10.3 to X̃(z) and W̃ (z)
and obtain

E[Dm] =
X̃(m)
m

+O

(
logm
m

)
=

1
h

logm+
h2

2h2
− 1
h
γ̂′(−1) +

γ − 1
h

+
∑
k 6=0

Γ(sk)γ̂(sk)
h(sk)

m−1−sk +O

(
logm
m

)
,

and

E[Dm(Dm − 1)] =
W̃ (m)
m

+O(1) =
1
h2

log2m+ 2
1
h

(
h2 − h2

h2
− 1
h
γ̂′(−1) +

γ − 1
h

)
logm

+ 2
∑
k 6=0

Γ(sk)γ̂(sk)
h2(sk)

m−1−sk logm+O(1) .

After computing E[Dm]2 we arrive at

Var[Dm] = EDm(Dm − 1) + EDm − (EDm)2

=
h2 − h2

h3
logm+ 2

∑
k 6=0

Γ(sk)γ̂(sk)
h(sk)

(
1

h(sk)
− 1
h

)
m−1−sk logm+O(1) .

If <(sk) = −1 for all k, then by Lemma 8.22 one can prove that h(sk) = h (see Exercise 19).
If <(sk) > −1, then m−1−sk logm = o(1). Therefore, Var[Dm] = h2−h2

h3 logm +O(1). From
Lemma 8.22 we know that <(sk) = −1 whenever (log p)/(log q) is rational, and otherwise
<(sk) > −1.

To complete the proof of Theorem 10.20 we evaluate the constant γ̂′(−1). In passing we
point out that the second-order term of E[Dm] plays an important role in some applications
(e.g., the computation of the average code redundancy for the standard Lempel-Ziv scheme
[299], and for k-resilient Lempel-Ziv codes, introduced recently by Storer and Reif [399]).
Therefore, knowing its value, or providing a numerical algorithm to compute it, is of prime
interest. But the second-order term depends on γ̂′(−1), which also can be expressed as

γ̂′(−1) =
b∑

i=1

(
b

i

)
(−1)i+1γ′(−1− i),

where γ(s)Γ(s) = M[X̃(z); s]. Define the sequence {fm}∞m=0 from X̃(z) =
∑∞

m=0 fm
zm

m! e
−z.

Since clearly fm = E[Dm], it satisfies recurrence (10.77) of Theorem 10.20.
Assume first that b > 1. To compute γ̂′(−1) we must find γ(s) in terms of computable

quantities, such as fn. We proceed as follows:

γ(s) =
1

Γ(s)
M[

∞∑
n=b+1

fn
zn

n!
e−z; s] =

∞∑
n=b+1

fn

n!
Γ(s+ n)

Γ(s)
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=
∞∑

n=b+1

fn

n!
s(s+ 1) · · · (s+ n− 1) .

We assume that <(s) ∈ (−b− 1,−1) to ensure the existence of the Mellin transform and the
convergence of the above series. Then one easily derives

γ′(s) =
∞∑

n=b+1

fn

n!
s(s+ 1) · · · (s+ n− 1)

n−1∑
i=0

1
s+ i

, s /∈ {−2,−3, . . . ,−b} .

After some algebra, we arrive at the following:

γ′(−k) = (−1)k
∞∑

n=b+1

fn

n!
k!(n− k − 1)!, for k = 2, . . . , b,

γ′(−b− 1) = (−1)bHb+1 + (−1)b+1
∞∑

n=b+2

fn

n!
(b+ 1)!(n − b− 2)! .

To estimate γ̂′(−1) we find, after some tedious algebra, that

γ̂′(−1) =
b∑

i=1

(
b

i

)
(−1)i+1γ′(−i− 1)− 1

b
− b

b+ 1
+A+ ∆(b, p),

where

∆(b, p) =
∞∑

n=b+2

f̄n

b∑
i=1

(i+ 1)b!
(b− i)!n(n − 1) · · · (n− i− 1)

,

A =
∞∑

n=b+2

(n− b)
b∑

i=1

(i+ 1)b!
(b− i)!n(n− 1) · · · (n− i− 1)

. (10.91)

We recall that f̄m+b = fm+b −m and fm satisfies (10.77). The above series converge since
the summands are O(log n/n2). Finally, observe that f̄m+b = 0 for m = 1, 2, . . . , b and f̄i > 0
for i > 2b; hence

∆(b, p) =
∞∑

n=b+2

f̄n

b∑
i=1

(i+ 1)b!
(b− i)!n(n − 1)...(n − i− 1)

=
∞∑

n=2b+1

f̄n

b∑
i=1

(i+ 1)b!
(b− i)!n(n− 1) · · · (n − i− 1)

.

It can be proved that A = Hb + b(1 + b)−1 (the reader is asked to verify this in Exercise 20);
hence γ̂′(−1) = Hb−1 + ∆(b, p) as presented in Theorem 10.20.
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The case b = 1 was already discussed in Section 8.7.3, where we found

∆(1, p) = θ = −
∞∑

k=1

pk+1 log p+ qk+1 log q
1− pk+1 − qk+1

.

This finally completes the proof of Theorem 10.20 for all b.

10.5.3 Depth in a Digital Search Tree with a Markovian Source

We again analyze the depth in a digital search tree with b = 1. However, this time the
strings are emitted by a Markovian source. More precisely, we assume that m sequences are
independently generated by a Markov source over a finite alphabet A = {1, 2, . . . , V } with a
positive transition matrix P = {pij}Vi,j=1 (i.e., pij > 0 for all i, j ∈ A) and a stationary vector
π = (π1, . . . , πV ).

We build a digital search tree from m strings. Let Ii be the depth of insertion for the
ith string, that is, the path length from the root to the node containing the ith string. As
before, the typical depth Dm is defined as

Pr{Dm = k} =
1
m

m∑
i=1

Pr{Ii = k},

and the average profile B̄k
m represents the average number of nodes at level k of the tree.

Observe that B̄k
0 = 0 for all k ≥ 0, and for m ≥ 1

Pr{Dm = k} =
B̄k

m

m
.

This and the definition of the typical depth immediately imply that

Pr{Im+1 = k} = B̄k
m+1 − B̄k

m, (10.92)

with Pr{I0 = 0} = 1 and Pr{I0 = k} = 0 for all k ≥ 1. Throughout, we shall work with
generating functions of the above quantities, that is,

Dm(u) = E[uDm ] =
∑
k≥0

Pr{Dm = k}uk, D0(u) = 1,

Im(i) = E[uIm ] =
∑
k≥0

Pr{Im = k}uk, I0(u) = 1,

Bm(u) =
∑
k≥0

B̄k
mu

k B0(u) = 0
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for a complex u such that |u| < 1, and the Poisson transforms

D̃(z, u) =
∑
m≥0

Dm(u)
zm

m!
e−z,

B̃(z, u) =
∑
m≥0

Bm(u)
zm

m!
e−z,

Ĩ(z, u) =
∑
m≥0

Im(u)
zm

m!
e−z.

Observe that from (10.92), we have

∂Ĩ(z, u)
∂z

+ Ĩ(z, u) =
∂B̃(z, u)
∂z

.

Since Dm(u) = Bm(u)/m, we can recover all results on the depth of insertion Im and on
the typical depth, from the average profile B̄k

m. Therefore, hereafter we concentrate on the
analysis of the average profile.

To start the analysis, we derive a system of recurrence equations for the generating func-
tion of the average profile. Let Bi

m(u) for i ∈ A be the ordinary generating function of the
average profile when all sequences start with symbol i. Let also p = (p1, . . . , pV ) be the
initial probability vector of the underlying Markov chain, that is, Pr{X0 = i} = pi. (For the
stationary Markov chain we have p = π.) The probability that the first subtree of the root
contains j1 strings, the second subtree has j2 strings, and so on until the V th subtree stores
jV strings is equal to (

m

j1, . . . , jV

)
pj1
1 · · · p

jV
V .

But the ith subtree is a digital search tree itself of size ji containing only those strings that
start with symbol i. Hence, its average profile generating function must be Bi

ji
(u). This leads

to the following recurrence equation, assuming B0(u) = 0

Bm+1(u) = 1 + u
∑
|j|=m

(
m

j

)
pj1
1 · · · p

jV
V

(
B1

j1(u) + · · ·+BV
jV

(u)
)
, (10.93)

where j = (j1, . . . , jV ), |j| = j1 + · · ·+ jV and for simplicity we write
(m

j

)
=
( m
j1,...,jV

)
. Clearly,

we can set up similar recurrences for the subtrees. That is,

Bi
m+1(u) = 1 + u

∑
|j|=m

(
m

j

)
pj1

i1 ...p
jV
iV

(
B1

j1(u) + · · · +BV
jV

(u)
)
, for all i ∈ A, (10.94)

where Bi
0(u) = 0 for i ∈ A.
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Before we present the main result, let us establish some notation. For a complex s we
define

Q(s) = I− P(s), where P(s) = {p−s
ij }Vi,j=1,

where I is the identity matrix. In addition, we use the standard notation for the entropy of
a Markov source, that is,

h = −
V∑

i=1

πi

V∑
j=1

pij ln pij,

and for a probability vector p = (p1, . . . , pV ) we define

hp = −
V∑

i=1

pi ln pi.

We also write p(s) = [π−s
1 , π−s

2 , · · · , π−s
V ], which becomes π when s = −1.

Finally, for the matrix P(s) we define the principal left eigenvector π(s), and the principal
right eigenvector ψ(s) associated with the largest eigenvalue λ(s) as

π(s)P(s) = λ(s)π(s),
P(s)ψ(s) = λ(s)ψ(s),

where π(s)ψ(s) = 1. Observe that π(−1) = π = (π1, . . . , πV ), ψ(−1) = ψ = (1, . . . , 1),
and λ(−1) = 1. For a function, vector, or matrix A(s) we write Ȧ(s) = d

dsA(s) and Ä(s) =
d2

ds2A(s). In Exercise 22 the reader is asked to check that

λ̇(−1) = πṖ(−1)ψ = h, (10.95)
λ̈(−1) = πP̈(−1)ψ + 2π̇(−1)Ṗ(−1)ψ − 2λ̇(−1)π̇(−1)ψ. (10.96)

We now formulate the main result, which we derive throughout the rest of this section.

Theorem 10.23 (Jacquet, Szpankowski, and Tang, 2000) Let a digital search tree be
built from m strings generated independently by a Markov stationary source with positive
transition probabilities P = {pij}Vi,j=1.

(i) [Typical Depth] For large m the following holds

E[Dm] =
1

λ̇(−1)

(
lnm+ γ − 1 + λ̇(−1) +

λ̈(−1)
2λ̇2(−1)

− ϑ− πψ̇(−1) + δ1(lnm)

)

+ O

(
lnm
m

)
, (10.97)

Var[Dm] =
λ̈(−1)− λ̇2(−1)

λ̇3(−1)
lnm+O(1). (10.98)
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Here ϑ = πẋ(−2) and

ẋ(−2) :=
∞∑
i=1

(
Q−1(−2) · · ·Q−1(−i)(Q−1(s))′|s=−i−1Q

−1(−i− 2) · · ·
)

K, (10.99)

K =

( ∞∏
i=0

Q−1(−2− i)
)−1

ψ, (10.100)

where ψ = (1, . . . , 1). The function δ1(x) is a fluctuating function with a small amplitude
when

ln pij + ln p1i − ln p1j

ln p11
∈ Q, i, j = 1, 2, . . . , V, (10.101)

where Q is the set of rational numbers. If (10.101) does not hold, then limx→∞ δ1(x) = 0.

(ii) [Depth of Insertion] The depth of insertion Im behaves asymptotically as Dm, that is,

E[Im] =
1

λ̇(−1)

(
lnm+ γ + λ̇(−1) +

λ̈(−1)
2λ̇2(−1)

− ϑ− πψ̇(−1) + δ2(lnm)

)

+ O

(
lnm
m

)
Var[Im] = Var[Dm] +O(1),

where δ2(x) is a fluctuating function with the same property as δ1(x).

The rest of this section is devoted to proving Theorem 10.23. The generating function
Bm(u) of the average profile satisfies (10.93) with the initial vector p = π. Observe that the
conditional generating functions Bi

m(u) fulfill the system of recurrence equations (10.94). We
shall first deal with (10.94). There is no easy way to solve these recurrences. Therefore, we
transform them to the Poisson model. Let

B̃i(z, u) =
∞∑

n=1

Bi
n(u)

zn

n!
e−z, i ∈ A

be the Poisson transform of Bi
m(u). In addition, we shall write B̃i

z(z, u) := ∂
∂z B̃

i(z, u) for the
derivative of B̃i(z, u) with respect to z. After some simple algebra, we have the following
poissonized differential-functional equations of recurrences (10.93) and (10.94)

B̃z(z, u) + B̃(z, u) = u[B̃1(u, π1z) + · · · + B̃V (u, πV z)] + 1,

and

B̃i
z(z, u) + B̃i(z, u) = u[B̃1(u, pi1z) + · · ·+ B̃V (u, piV z)] + 1 for all i ∈ A.
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We now concentrate on the evaluation of the first two moments of the depth. Thus we
need the first two derivatives of B̃(z, u) with respect to u at u = 1. Noting that B̃i(z, 1) = z,
we have

B̃zu(z, 1) + B̃u(z, 1) = z + [B̃1
u(1, π1z) + · · ·+ B̃V

u (1, πV z)],
B̃i

zu(z, 1) + B̃i
u(z, 1) = z + [B̃1

u(1, p11z) + · · ·+ B̃V
u (1, p1V z)], i ∈ A,

and

B̃zuu(z, 1) + B̃uu(z, 1) = 2[B̃1
u(1, π1z) + · · · + B̃V

u (1, πV z)]
+ [B̃1

uu(1, π1z) + · · ·+ B̃V
uu(1, πV z)],

B̃i
zuu(z, 1) + B̃i

uu(z, 1) = 2[B̃1
u(1, p11z) + · · ·+ B̃V

u (1, p1V z)] i ∈ A
+ [B̃1

uu(1, p11z) + · · ·+ B̃V
uu(1, p1V z)]

Our goal is to solve asymptotically (as z →∞ in a cone around <(z) > 0) the above two
sets of functional equations using Mellin transforms. A direct solution through the Mellin
transform does not work well, as we saw in the previous section. Therefore, we factorize the
Mellin transforms as follows

B∗
i (s) := M[Bi

u(z, 1); s] = Γ(s)xi(s), i ∈ A
B∗(s) := M[Bu(z, 1); s] = Γ(s)x(s),
C∗

i (s) := M[Bi
uu(z, 1); s] = Γ(s)vi(s), i ∈ A

C∗(s) := M[Buu(z, 1); s] = Γ(s)v(s),

where xi(s), x(s), vi(s) and v(s) are unknown. The lemma below establishes the existence of
the above Mellin transforms. The reader is asked to prove it in Exercise 23.

Lemma 10.24 The Mellin transforms B∗
i (s), B∗(s) and C∗

i (s), C∗(s) exist for <(s) ∈
(−2,−1). In addition,

xi(−2) = 1, vi(−2) = 0, i ∈ A,

and x(−2) = 1, v(−2) = 0.

Using properties of Mellin transforms (cf. (M3) in Chapter 9) we obtain

−(s− 1)B∗(s− 1) +B∗(s) = B∗
1(s)π−s

1 + · · ·+B∗
V (s)π−s

V , (10.102)
−(s− 1)B∗

i (s− 1) +B∗
i (s) = B∗

1(s)p−s
11 + · · ·+B∗

V (s)p−s
1V , i ∈ A, (10.103)

and

−(s− 1)C∗(s− 1) + C∗(s) = 2[B∗
1(s)π−s

1 + · · ·+B∗
V (s)π−s

V ] (10.104)
+ [C∗

1 (s)π−s
1 + · · ·+ C∗

V (s)π−s
V ], (10.105)

−(s− 1)C∗
i (s− 1) + C∗

i (s) = 2[B∗
1(s)p−s

11 + · · ·+B∗
V (s)p−s

1V ] (10.106)
+ [C∗

1 (s)p−s
11 + · · ·+ C∗

V (s)p−s
1V ], i ∈ A. (10.107)
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Now set

x(s) = (x1(s), . . . , xV (s))T ,

v(s) = (v1(s), . . . , vV (s))T ,

b(s) = (B∗
1(s), . . . , B∗

V (s))T ,

c(s) = (C∗
1 (s), . . . , C∗

V (s))T ,

where T denotes transpose. Using Γ(s) = (s−1)Γ(s−1), we can rewrite the above equations
as

x(s)− x(s− 1) = P(s)x(s),
v(s)− v(s − 1) = 2P(s)x(s) + P(s)v(s).

Thus

x(s) = Q−1(s)x(s − 1) =

( ∞∏
i=0

Q−1(s− i)
)

K, (10.108)

v(s) = 2Q−1(s)P(s)x(s) + Q−1(s)v(s − 1). (10.109)

We recall that Q = I− P, I is the identity matrix, and K is defined in (10.100). The formula
for K follows from Lemma 10.24 (i.e., x(−2) = (1, . . . , 1)T ) and (10.108).

Thus far we have obtained the Mellin transforms of the conditional generating functions
B̃i(z, 1). In order to obtain the composite Mellin transform B∗(s) and C∗(s) of B̃u(z, 1) and
B̃uu(z, 1), we use (10.102) and (10.104) and, after some algebra, we finally obtain

B∗(s) = p(s)b(s) + Γ(s)x(s − 1), (10.110)
C∗(s) = 2p(s)b(s) + p(s)c(s) + Γ(s)v(s − 1), (10.111)

where p(s) = (π−s
1 , . . . , π−s

V ). We shall see that the dominant asymptotics of B∗(s) and C∗(s)
follow from the asymptotics of b(s) and c(s), and these depend on the singularities of Q(s),
which we discuss next.

We now prove the following lemma that characterizes the location of singularities of Q(s).
It extends the Jacquet-Schachinger Lemma 8.22 to Markovian sources.

Lemma 10.25 (Tang 1996) Let Q(s) = I− P(s) and P(s) = {p−s
ij }i,j∈A. Let sl denote the

singularities of Q(s), where l ∈ Z is an integer. Then:

(i) Matrix Q(s) is nonsingular for <(s) < −1, and s0 = −1 is a simple pole.

(ii) Matrix Q(s) has simple poles on the line <(s) = −1 if and only if

ln pij + ln p1i − ln p1j

ln p11
∈ Q, i, j ∈ A, (10.112)
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where Q is the set of rational numbers. These poles have the following representation

sl = −1 + lθi,

where
θ =

n1

n2

∣∣∣∣ 2π
ln p11

∣∣∣∣ ,
for integers n1, n2 such that

{
| n1
n2 ln p11

(ln pij + ln p1i − ln p1j)|
}V

ij=1
is a set of relative primes.

(iii) Finally,
Q(−1 + lθi) = E−lQ(−1)El,

where E = diag(1, eθ12i, . . . , eθ1V i) is the diagonal matrix with θik = −θ ln pik.

Proof. Observe that for <(s) < −1,

|1− p−s
ii | ≥ 1− |p−s

ii | > 1− pii =
∑
j 6=i

pij ≥
∑
j 6=i

|p−s
ij |; (10.113)

hence Q(s) is a strictly diagonally dominant matrix, and therefore nonsingular (cf. [200, 327]).
We proceed with the proof of part (ii) of the lemma. For b 6= 0 such that Q(−1+bi) is singular,
let x = [x1, x2, ..., xV ]T 6= 0 be a solution of Q(−1 + bi)x = 0, where

Q(−1 + bi) =



1− p11e
ξ11i −p12e

ξ12i ... −p1V e
ξ1V i

−p21e
ξ21i 1− p22e

ξ22i ... −p2V e
ξ2V i

...
...

. . .
...

−pj1e
ξj1i −pj2e

ξj2i ... −pjV e
ξjV i

...
...

. . .
...

−pV 1e
ξV 1i −pV 2e

ξV 2i ... 1− pV V e
ξV V i


with ξik = −b ln pik. Without loss of generality, suppose |x1| = max{|x1|, |x2|, ..., |xV |} 6= 0
(since Q(−1 + bi) is singular). Then

(1− p11e
ξ11i)x1 − p12e

ξ12ix2 − · · · − p1V e
ξ1V ixV = 0,

implies that
1− p11e

ξ11i = p12e
ξ12ix2/x1 + · · ·+ p1V e

ξ1V ixV /x1.

But as in (10.113)
|1− p11e

ξ11i| ≥ 1− p11,
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and
|p12e

ξ12ix2/x1 + ...+ p1V e
ξ1V ixV /x1| ≤ p12 + · · · + p1V = 1− p11.

Thus
1− p11e

ξ11i = 1− p11,

p12e
ξ12ix2/x1 + · · · + p1V e

ξ1V ixV /x1 = p12 + · · ·+ p1V .

This implies that
eξ11i = eξ1iixi/x1 = 1,

and |xi| = |xj | for any i, j = 1, 2, . . . , V , so that eξjj i = 1 for all j. Define now ξi such that
xi/x1 = e−ξ1ii = eξii. Then

−pj1e
ξj1i − pj2e

ξj2ieξ2i − · · · − pj(j−1)e
ξj(j−1)ieξj−1i + (1− pjj)eξj i − · · · − pjV e

ξjV ieξV i = 0

for any 1 ≤ j ≤ V . Note that since

−pj1 − pj2 − · · · − pj(j−1) + 1− pjj − · · · − pjV = 0

we must have eξjiieξiie−ξj i = 1, and thus

eξjii = e(ξj−ξi)i.

Hence, −b(ln pji + ln p1j − ln p1i) = 2πnji for some integer nji, and as a consequence (ln pij +
ln p1i − ln p1j)/ ln p11 is rational for any i, j = 1, 2, . . . , V.

To prove the second part of (ii), suppose b is such that | b
2π (ln pji + ln p1j − ln p1i)| are

integers for any i, j = 1, 2, . . . , V. Then

Q(−1 + bi) =



1− p11 −p12e
(ξ1−ξ2)i · · · −p1V e

(ξ1−ξV )i

−p21e
(ξ2−ξ1)i 1− p22 · · · −p2V e

(ξ2−ξV )i

...
...

. . .
...

−pi1e
(ξi−ξ1)i −pi2e

(ξi−ξ2)i · · · −piV e
(ξi−ξV )i

...
...

. . .
...

−pV 1e
(ξV −ξ1)i −pV 2e

(ξV −ξ2)i · · · 1− pV V


= [diag(1, e−ξ2 , e−ξ3 , . . . , e−ξV )]−1Q(−1)diag(1, e−ξ2 , e−ξ3 , . . . , e−ξV ).

Since Q(−1) is singular, so is Q(−1 + bi). Hence s = −1 + bi is a pole of Q(s) if and only if
| b
2π (ln pji + ln p1j − ln p1i)| are integers for any i, j = 1, 2, . . . , V. Since {| θ

2π (ln pij + ln p1i −
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ln p1j)|}Vij=1 is a set of relative primes, we have b = lθ for some integer l. Thus part (ii) is
proved. Part (iii) follows from our previous analysis.

Observe that for the memoryless case we have pji = πi, and condition (10.112) becomes
ln πi
ln πj
∈ Q for all i, j. This agrees with Lemma 8.22.

Now, we are prepared to prove (10.97) and (10.98) of Theorem 10.23. We first consider
the mean. The starting point is (10.108), which we rewrite as

x(s) = Q−1x(s − 1) =
∞∑

k=0

Pk(s)x(s − 1).

We denote by λ(s), µ2(s), . . . , µV (s) the eigenvalues of P(s). By the Perron-Frobenius Theo-
rem 4.5 we know that |λ(s)| > |µ1(s)| ≥ · · · ≥ |µV (s)| (recall that we assumed that pij > 0
for all i, j ∈ A). The corresponding left eigenvectors are π(s),π2(s), . . . ,πV (s) while the
right eigenvectors are ψ(s),ψ2(s), . . . ,ψV (s). We write here 〈x,y〉 for the scalar product of
the vectors x and y.

Using the spectral representation of P(s) (see Table 4.1) we obtain

Pk(s)x(s − 1) = λk(s)〈π(s),x(s − 1)〉ψ(s) +
V∑

i=2

µk
i (s)〈πi(s),x(s − 1)〉ψi(s).

Thus b(s) = Γ(s)x(s) becomes

b(s) =
Γ(s)〈π(s),x(s − 1)〉ψ(s)

1− λ(s)
+

V∑
i=2

Γ(s)〈πi(s),x(s − 1)〉ψi(s)
1− µi(s)

. (10.114)

To obtain the leading order asymptotics of B∗(s) = p(s)b(s) + Γ(s)x(s − 1) (cf. (10.110)),
we need Laurent’s expansion of the above around the roots of λ(s) = −1. Observe that the
second term of (10.114) contributes o(m) since λ(s) is the largest eigenvalue; hence we ignore
this term. To simplify the presentation, we deal here only with the root s0 = −1. The other
singularities are handled in the same way as in the previous section. We use our previous
expansions for x(s − 1) and Γ(s) together with

1
1− λ(s)

=
−1

λ̇(−1)
1

s+ 1
+

λ̈(−1)
2λ̇2(−1)

+O(s+ 1),

ψ(s) = ψ + ψ̇(−1)(s + 1) +O((s + 1)2).

This finally leads to

B∗(s) =
−1

λ̇(−1)
1

(s+ 1)2

+
1

s+ 1

(
〈π, ẋ(−2)〉
λ̇(−1)

− γ − 1
λ̇(−1)

+
〈p(−1), ψ̇(−1)〉

λ̇(−1)
+

λ̈(−1)
2λ̇2(−1)

− 1

)
+O(1).
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After finding the inverse Mellin transform and depoissonizing, we obtain (10.97) for the mean
E[Dm].

Finally, we turn our attention to the second factorial moment and the variance. We need
to study c(s) = Γ(s)v(s), where v(s) = 2Q−1(s)P(s)x(s) + Q−1(s)v(s − 1). As before, we
obtain

c(s) =
2Γ(s)〈π(s),x(s − 1)〉〈π(s),P(s)ψ(s)〉ψ(s)

(1− λ(s))2
+O

(
(1− λ(s))−1

)
.

A calculation similar to that for b(s) leads to

c(s) =
−2

λ̇2(−1)
1

(s+ 1)3

+
1

(s+ 1)2

(
λ̈(−1)

2λ̇3(−1)
+ 2

γ − 1− 〈π, ẋ(−2)〉 − 〈p(−1), ψ̇(−1)〉 − λ̇(−1)
λ̇2(−1)

)

+ O

(
1

s+ 1

)
.

This is sufficient to prove (10.98) after some tedious algebra that was done using Maple.
Details of the proof can be found in Jacquet, Szpankowski, and Tang [220].

10.6 Extensions and Exercises

10.1 Prove properties (P1)–(P3) of the Poisson process.

10.2 Let Sn be the size of a trie built over n independent strings generated by a memoryless
source. Define Sn(u) = E[uSn ] and let S̃(z, u) be the Poisson transform of Sn(u). Prove
that

S̃(z, u) = uS̃(zp, u)S̃(zq, u) + (1− u)(1 + z)e−z .

10.3 Let gn = n(n − 1) · · · (n − k + 1). First show that G̃(z) = zk. Next directly prove the
general depoissonization result (as in Theorem 10.6) in this case, and show that the
coefficients bij defined in (10.40) are equal to

bij =
1
j!
s2(j, i),

where s2(n, k) are related to Stirling’s number of first kind, and defined via∑
n,k

s2(n, k)tnuk/n! = e−tu(1 + t)u

(cf. Comtet [71]).
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10.4 Consider
gn,k = 1 +

n!
(k + log k)n

.

Find its Poisson transform and decide whether the analytic depoissonization will work
in this case. Explain your answer. If you cannot justify it, carefully read Theorem 10.13
and see if you can apply it to this case.

10.54! (Jacquet and Szpankowski, 1989) Consider the functional equation discussed in
Example 5, that is,

C̃(z) =
(
1 + (1 + z/2)e−z/2

)
C̃(z/2).

Establish asymptotics (10.36) of C̃(z) as z →∞ in a cone Sθ around the real axis. In
particular, compute the constant D that appears in the asymptotic expansion of C̃(z).

10.6 Consider the Laplace transform g?(s) of a function g(x). Extend the definition of the
Laplace transform to the complex plane (assuming g(x) can be analytically continued
to g(z)). The reader should use arguments similar to those we adopted in Section 9.3,
where we extended Mellin transforms to the complex plane. In particular, prove that
if g(z) is an analytic continuation of g(x) in a cone Sθ, where θ < θ0, then the inverse
Laplace transform g?(s) of the function g(z) exists in a bigger cone Sθ+π/2 for all θ < θ0,
provided that g(z) = O(zβ) in the cone Sθ0 .

10.7 Prove Lemma 10.10.

10.8 Provide details of the proof of the diagonal depoissonization Theorem 10.15.

10.94! (Rais, Jacquet, and Szpankowski, 1993) Prove that the depth in a PATRICIA trie
in the Poisson model is normally distributed, that is, establish (10.64).

10.10 4! (Flajolet 1999) Use singularity analysis to derive the asymptotic expansion for
Shannon entropy hn of the binomial distribution, that is,

hn = −
n∑

k=0

(
n

k

)
pkqn−k log

((
n

k

)
pkqn−k

)
.

10.11 Let
hn(t) = exp(n(eit/

√
n − 1− it/

√
n))
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(cf. Lemma 10.11). Prove that for all nonnegative integers k there exist νk such that
for all t ∈ [− log n, log n],

hn(t) = e−t2/2

1 +
2k∑
i=3

k∑
j=1

ξijt
inj−i/2 +O(νk log3(k+1) n−(k+1)/2)

 ,
where the coefficients ξij are defined as

∑
ij≥0

ξijx
iyj = exp(y(eix − 1− ix+

1
2
x2)).

10.12 4! (Jacquet and Szpankowski, 1998) The purpose of this exercise is to extend the gen-
eral depoissonization Theorem 10.6 to the polynomial cones C(D, δ) defined as follows:

C(D, δ) = {z = x+ iy : |y| ≤ Dxδ , 0 < δ ≤ 1 , D > 0} .

Observe that when δ = 1 the polynomial cone becomes a linear cone. Prove the
following extension of Theorem 10.6.

Theorem 10.26 Consider a polynomial cone C(D, δ) with 1/2 < δ ≤ 1. Let the fol-
lowing two conditions hold for some numbers A, B, R > 0 and α > 0, β, and γ:
(I) For z ∈ C(D, δ)

|z| > R ⇒ |G̃(z)| ≤ B|z|βΨ(|z|),

where Ψ(x) is a slowly varying function, that is, for each fixed t limx→∞
Ψ(tx)
Ψ(x) = 1 (e.g.,

Ψ(x) = logd x for some d > 0).

(O) For all z = ρeiθ with θ ≤ π such that z /∈ C(D, δ)

ρ = |z| > R ⇒ |G̃(z)ez | ≤ Aργ exp[(1 − αθ2)ρ].

Then for every nonnegative integer m

gn =
m∑

i=0

i+m∑
j=0

bijn
iG̃〈j〉(n) +O(nβ−(m+1)(2δ−1)Ψ(n))

= G̃(n) +
m∑

k=1

k∑
i=1

bi,k+in
iG̃〈k+i〉(n) +O(nβ−(m+1)(2δ−1)Ψ(n)),

where bij are the coefficients defined in (10.40).
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10.13 4! Prove the central limit theorem for the Poisson model. More specifically, establish
the following result.

Theorem 10.27 Let XN be a characteristic of the Poisson model with G̃(z, u) =
EuXN , mean X̃(z), and variance Ṽ (z). Let the following hold for z →∞ in a cone Sθ

and for u belonging to a neighborhood U of u = 1 in the complex plane:

log G̃(z, u) = O(A(z)),

where A(z) is such that

lim
z→∞

A(z)
Ṽ 3/2(z)

= 0

and furthermore limz→∞ Ṽ (z) =∞. Then for complex τ

G̃

(
z, eτ/

√
Ṽ (z)

)
e−τX̃(z)/

√
Ṽ (z) = e

τ2

2

(
1 +O

(
A(z)
Ṽ 3/2(z)

))
.

Thus X̄N = (XN − X̃(z))/
√
Ṽ (z) converges in distribution and in moments to the

standard normal distribution.

10.14 4! (Jacquet and Szpankowski, 1998) Prove the following extension of the depoissoniza-
tion tool Theorem 10.13.

Theorem 10.28 Let G̃k(z) be a sequence of Poisson transforms of gn,k, and each G̃k(z)
is assumed to be an entire function of z. Let log G̃k(z) exist in a cone Sθ. We suppose
that there exists 1

2 ≤ β <
2
3 such that the following two conditions hold:

(I) For all z ∈ Sθ such that for |z| = n

| log G̃n(z)| ≤ Bnβ

for some constant B > 0.

(O) For all z /∈ Sθ such that |z| = n:

|G̃n(z)ez | ≤ exp(n −Anα)

for some α > β. Then for all ε > 0:

gn,n = G̃n(n) exp[−n
2

(L′
n(n))2]

(
1 +O(n3β−2+ε)

)
,

where Ln(z) = log G̃n(z) and L′
n(z) = G̃′

n(z)/G̃n(z) is the first derivative of Ln(z).
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10.15 4! Consider again the leader election algorithm discussed in Section 10.5.1. In this
exercise the reader is asked to consider the mean E[Hn] and the variance Var[Hn] of
the height Hn. Prove the following result.

Theorem 10.29 Define L := ln 2 and χk := 2πik/L.

(i) [Prodinger, 1993] The average height E[Hn] satisfies

E[Hn] = log2 n+
1
2
− δ1(log2 n) +O

(
1
n

)
,

where δ1(·) is a periodic function of magnitude ≤ 2× 10−5, given by

δ1(x) :=
1
L

∑
Z\{0}

ζ(1− χk) Γ(1 − χk) e2πikx,

and ζ(·) and Γ(·) denote Riemann’s zeta function and Euler’s gamma function, respec-
tively.

(ii) [Fill, Mahmoud and Szpankowski, 1996] The variance Var[Hn] of the height
satisfies

Var[Hn] =
π2

6 log2 2
+

1
12
− 2γ1

log2 2
− γ2

log2 2
+ δ2(log n) +O

(
log n
n

)
= 3.116695 . . . + δ2(log n) +O

(
log n
n

)
.

Here the constants (−1)kγk/k!, k ≥ 0, are the Stieltjes constants defined as

γk := lim
m→∞

(
m∑

i=1

logk i

i
− logk+1m

k + 1

)
.

In particular, γ0 = γ = 0.577215 . . . is Euler’s constant and γ1 = −0.072815 . . . . The
periodic function δ2(·) has magnitude ≤ 2× 10−4.

10.16 4! (Janson and Szpankowski, 1997) Extend the analysis of the leader election algorithm
to biased coins, that is, assume that the probability of throwing a head is p 6= 1

2 .

10.17 5? Consider again the leader election algorithm discussed in Section 10.5.1 but this
time the process stops when b leaders are selected. In other words, consider a b-
incomplete trie version of the regular incomplete trie. Find the mean of the height (cf.
Grabner [167]), the variance, and the limiting distribution, if it exists.
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10.18 4! (Kirschenhofer, Prodinger, and Szpankowski, 1996) Consider the generalized proba-
bilistic counting, as discussed in Example 2 of Chapter 9. The quantity Rn,d determines
the number of rounds before the algorithm terminates. LetGn(u) = EuRn,d , and G̃(z, u)
be the probability generating function and its Poisson transform, respectively. Observe
(cf. [254]) that

G̃(z, u) = ufd(z/2)G̃(z/2, u) + (u− 1)(fd(z/2) − 1) ,

where fd(z) = 1− ed(z)e−z and ed(z) = 1 + z1

1! + · · ·+ zd

d! is the truncated exponential
function. Then prove the following result.

Theorem 10.30 (Kirschenhofer, Prodinger and Szpankowski, 1996) For any in-
teger m

Pr{Rn,d ≤ log2 n+m− 1} = 1− ϕ
(

2−m−〈log2 n〉)+O(n−1),

where

ϕ(z) =
∞∏

j=0

fd(z2j) =
∞∏

j=0

(
1− ed(z2j)e−z2j

)
and 〈log n〉 = log n− blog nc.

10.19 Let
h(t) = −p−t log p− q−t log q

and sk be a root of 1−ps−q−s = 0 for k ∈ Z. Prove that if <(sk) = −1, then h(sk) = h,
where h is the entropy of Bernoulli(p).

10.20 Prove that the constant A defined in (10.91) simplifies to A = Hb + b(1 + b)−1.

10.21 4! (Louchard, Szpankowski, and Tang, 1999) Consider again the b-digital search tree
model in Section 10.5.2 and prove the following limiting distribution for the depth Dm.

Theorem 10.31 Let Gm(u) be the probability generating function of Dm (i.e., Gm(u) =
E[uDm ]), µm = EDm, and σm =

√
Var Dm. Then for complex τ

e−τµm/σmGm(eτ/σm) = e
τ2

2

(
1 +O

(
1√

logm

))
.

Thus the limiting distribution of Dm−µm

σm
is normal, and it converges in moments to

the appropriate moments of the standard normal distribution. Also, there exist positive
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constants A and α < 1 (that may depend on p and b) such that uniformly in k, and for
large m

Pr

{∣∣∣∣Dm − c1 logm√
c2 logm

∣∣∣∣ > k

}
≤ Aαk,

where c1 = 1/h and c2 = (h2 − h2)/h3.

10.22 Prove (10.95) and (10.96).

10.23 Prove Lemma 10.24.

10.24 4! (Jacquet, Szpankowski, and Tang, 2000) Consider a digital search tree under the
Markovian model (M) as in Section 10.5.3 and prove the following limiting distribution
for the depth Dm

Dm −E[Dm]√
VarDm

→ N(0, 1),

where N(0, 1) represents the standard normal distribution and E[Dm] and Var[Dm]
are computed in Theorem 10.23.

10.25 4! (Jacquet, Szpankowski, and Tang, 2000) Extend Theorem 10.23 to a nonstationary
Markov model.

10.26 Extend Theorem 10.23 to b-DST under the Markovian model.

10.27 4! (Jacquet, Szpankowski, and Tang, 2000) Using the analysis from Section 10.5.3,
establish the mean, the variance, and the limiting distribution for the phrase length
in the Lempel-Ziv’78 scheme, when a string of length n is generated by a Markovian
source.

10.28 5? Consider the digital search tree model in Section 10.5.3 with b = 1 and where
strings are generated by m independent Markov sources. Let Lm be the total path
length, that is, the sum of all depths. Prove that E[Lm] = mE[Dm] and Var[Lm] ∼
mVar[Dm], where E[Dm] and Var[Dm] were computed in Theorem 10.23. Then show
that (Lm−E[Dm])/Var[Dm] tends to the standard normal distribution. Finally, prove
similar results for the path lengths for regular tries and PATRICIA tries.

10.29 5? Consider the Lempel-Ziv’78 scheme, where a string of length n is generated by a
Markovian source. Use the same notation as in Section 10.5.3. In particular, let

c2 =
λ̈(−1)− λ̇2(−1)

λ̇3(−1)
,
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where λ(s) is the principal eigenvalue of I − P(s). Prove that the number of phrases
(Mn −E[Mn])/Var[Mn] tends to the standard normal distribution with

E[Mn] ∼ nh

log n
,

Var[Mn] ∼ c2h
3n

log2 n
,

where h is the entropy rate of the Markov source. This is an open and a very difficult
problem.

10.30 5? Prove that the limiting distribution of the typical depth in a compact suffix tree,
known also as PAT (i.e., all unary nodes are eliminated; see Section 1.1), built from
n independently generated binary sequences is normal. More precisely: For biased
memoryless source (p 6= q) the limiting distribution of the depth Dm in a compact suffix
tree is

Dm − c1 log n√
c2 log n

→ N(0, 1),

where c1 = 1/h and c2 = (h2 − h2)/h3 (as before, h is the entropy of the source and
h2 = p log2 p+ q log2 q). Extend it to Markovian sources.
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[201] H-K. Hwang, Théorèmes Limites Pour les Structures Combinatoires et les Fonctions
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Asymptotic notations, 258

O, 258
Ω, 258
Θ, 258
o, 258

Atallah, M., 97
Autocorrelation polynomial, 241,

287
Average profile, 7, 345, 380, 443,

452
Azuma inequality, 99, 124, 129

Ball-and-urn model, 410
Banderier, C., 318
Barbour, A., 329
Barron, A., 187
Bell inequality, 65
Bell numbers, 210, 315
Bender, C., 271
Bender, E., 318, 335
Berger, B., 74
Bernoulli model, 400
Bernoulli numbersBn, 204, 236,

267, 375, 409, 443
Bernoulli polynomials Bn(x), 236,

267
generalized B

(w)
n (x), 45

Bernstein inequality, 134
Berry-Essén inequality, 116, 334
Beta function, 38, 322, 361
Big-oh, O, 258
Biggins, J. D., 106, 135
Billingsley, P., 29
Bin packing, 111
Binary renewal sequence, 383
Binary trees, 201
Bingham, N. H., 402
Binomial distribution, 282, 320

tail, 119

502



503 INDEX

Binomial inverse relations, 235
Binomial sum, 211, 299, 327
Bit rate, 9, 159, 182
Bleistein, N., 318
Bollobás, B., 51
Bonferroni inequality, 53, 63
Boole inequality, 53, 107
Borel mean, 402
Borel transform, 222
Borel-Cantelli lemma, 32, 82,

87, 175
Bottleneck assignment problem,

67
Boyer-Moore algorithm, 14
Branch point, 290

Capacity
(d, k) sequences, 289
channel, 162

Capacity assignment problem,
67

Capetenakis, J., 419
Catalan numbers, 204, 206
Cauchy bound, 216, 285, 407,

427
Cauchy integral theorem, 36,

216, 409
Cauchy residue theorem, 35, 260,

261, 322, 368
Cauchy-Riemann equations, 307
Cayley trees, 213
Central limit theorem, 116, 334,

464
local, 318

Channel capacity, 162
Channel code, 161
Channel coding theorem, 162
Channel noise, 161
Chebyshev inequality, 30, 385
Chernoff bound, 118, 130
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Poincaré asymptotic expansion,

258
Poisson distribution, 330, 403

maximum, 67
tail, 122

Poisson mean, 434
Poisson model, 400, 464
Poisson transform, 234, 369, 403

table of, 404
Poisson variance, 434
Poissonization, 107, 403

asymptotics, 405
Pole, 286
Polynomial coefficients

(n,q
k

)
, 339

Polynomial cone, 463
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