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ABSTRACT

Generative models have shown impressive capabilities in synthesizing high-
quality outputs across various domains. However, a persistent challenge is the
occurrence of “hallucinations”, where the model produces outputs that are plausi-
ble but invalid. While empirical strategies have been explored to mitigate this
issue, a rigorous theoretical understanding remains elusive. In this paper, we
develop a theoretical framework to analyze the learnability of non-hallucinating
generative models from a learning-theoretic perspective. Our results reveal that
non-hallucinating learning is statistically impossible when relying solely on the
training dataset, even for a hypothesis class of size two and when the entire train-
ing set is truthful. To overcome these limitations, we show that incorporating
inductive biases aligned with the actual facts into the learning process is essen-
tial. We provide a systematic approach to achieve this by restricting the facts set
to a concept class of finite VC-dimension and demonstrate its effectiveness under
various learning paradigms. Although our findings are primarily conceptual, they
represent a first step towards a principled approach to addressing hallucinations in
learning generative models.

1 INTRODUCTION

Generative models have emerged as powerful tools with applications in virtually all socio-economic
enterprises. At a high level, these techniques integrate large amounts of data to provide good statisti-
cal concentration and build on the resulting mixture of embeddings to produce incredible generative
models of text, images, video, mechanical drawings, computer programs, mathematical proofs, and
others. However, there is increasing recognition of “hallucinations” in generative models, that ulti-
mately limit their utility in critical application settings, such as those that have correctness, accuracy,
or safety constraints. Hallucinations correspond to plausible but invalid, incorrect, or misleading
outputs. The key challenge in mitigating hallucinations is that there are often no characterizations
of the space of “valid”, “correct”, or “logical” assertions, making it difficult to assess hallucinations.
A common retort is that generative models should generate hypotheses that are grounded in training
data. However, this assertion limits the rich potential of generative systems to that of powerful in-
formation retrieval (IR) systems, rather than those capable of new insight not grounded in training
data. This tension between the desired ability of AI models to generate new hypothesis, while not
generating “falsifiable” artifacts, without a well characterized notion of “true” artifacts represents
the key underlying challenge of mitigating hallucinations.

Although many methods have been proposed for addressing hallucinations, such as factual data
enhancement (Dziri et al., 2022), hallucination detection (Manakul et al., 2023), and fine-tuning
with human feedback (Ouyang et al., 2022), their performance has primarily been validated through
empirical studies, and their suitability for critical applications remains unresolved. This strongly
motivates the study of hallucination and its relation to model performance from a general mathe-
matical perspective. This paper advances the state of the art by developing a theoretical framework
to understand hallucinations in generative models from a learning-theoretic perspective. We estab-
lish a rigorous theoretical foundation for analyzing the learnability of non-hallucinating generative
models under various learning paradigms. Specifically, we characterize the conditions under which
non-hallucinating learning is possible, identify the appropriate learning rules, and determine the
corresponding sample complexity required to achieve learnability.
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We consider the following formal setup: let X be an instance space; for example, in the context of
language models, X represents the set of all sentences (factual or otherwise). We denote by T ⊂ X
a set of facts, which may correspond to a subset of sentences that describe true statements relevant
to the task at hand. Throughout this paper, we will treat the set T abstractly. A generative model is
represented by a distribution p ∈ ∆(X ), where ∆(X ) is the set of all probability distributions over
X 1. We define the hallucination rate of p w.r.t. T as:

hall(p, T ) = Prx∼p[x ̸∈ T ]. (1)

That is, hallucination rate measures how much probability mass a generative model assigns to non-
fact instances. A data generation mechanism is modeled as a distribution q ∈ ∆(X ), which we
also refer to as a demonstrator. We say the demonstrator q is faithful w.r.t. the facts set T if
hall(q, T ) = 0, i.e., the demonstrator does not produce non-fact samples. A learning rule is a
function Φ : X ∗ → ∆(X ). For any given ϵ, δ > 0, we say the learner Φ non-hallucinatingly learns
(q, T ) with sample complexity n at hallucination rate ϵ and confidence δ, if:

Prxn∼q [hall(Φ(x
n), T ) ≥ ϵ] ≤ δ, (2)

where the training set xn := {x1, · · · ,xn} is sampled i.i.d. from the demonstrator q.

It is crucial to note that the learner Φ, in general, does not know the tuple (q, T ), and the only avail-
able information comes from the training set xn. However, the construction of Φ can incorporate
prior information about (q, T ) (i.e., inductive bias) into the learning process. Throughout the paper,
we assume that q is faithful w.r.t. T . That is, we aim to characterize the non-hallucinating learnabil-
ity in the cleanest scenario where the entire training set is truthful. The main goal of this paper is to
address the following meta-problem:

What structural assumptions on the tuple (q, T ) are necessary to achieve non-
hallucinating learnability, even when the training set is entirely truthful?

Proper v.s. Improper Learners. We distinguish two learning paradigms – proper and improper
learning. Let P ⊂ ∆(X ) be a hypothesis class; for instance, P may represent the class of all
distributions specified by a transformer architecture with different parameters. We say a learning rule
Φ is proper w.r.t. P if img(Φ) ⊂ P , that is the learner must produce a model within the hypothesis
class. In the proper learning case, learnability also depends on the structure of P . Otherwise, we
say that the leaner Φ is improper; i.e., its outcome is completely unconstrained, or equivalently, we
take P := ∆(X ). We demonstrate in this paper that the characterization of proper and improper
learnability are fundamentally different for non-hallucinate learning of generative models.

We now summarize our main contributions as follows:

• Agnostic proper learning is impossible. Clearly, a natural question one may ask is why do
we need assumptions on the tuple (q, T ) at all. This is a valid argument; for instance, in the
context of PAC learning, we do not need to make any specific assumptions on the data gener-
ation process. Instead, we quantify the goodness of the learner by comparing its performance
to the best hypothesis in a hypothesis class P . Learnability then reduces to characterizing the
complexity of P . We show in Theorem 1 that, perhaps surprisingly, such an agnostic compet-
itive guarantee is impossible for non-hallucinating learning, even for a hypothesis class with
only two elements, if the learner is proper. Our proof follows a probabilistic construction
of hard instances of (q, T ), which also applies to other natural variants of non-hallucinating
learning and is of independent interest.

• Improper learning is possible and generalizes under VC concept classes. Our second
main result is a characterization of non-hallucinating learnability with improper learners. It
is easy to observe that a naı̈ve improper learner that produces the empirical distribution over
the training set xn never hallucinates (provided the demonstrator is faithful). This is clearly
undesirable, since the produced model does not generalize. To resolve this issue, we introduce
a new measure of generalizability, by requiring that the model contain as much information
as the demonstrator, in addition to being non-hallucinating. We show in Theorem 2 that if
the facts set T lies in a concept class C of finite VC-dimension, then non-hallucinating is

1Although in practice the model may also depend on certain prompts, this can be incorporated via condi-
tional sampling. For clarity of exposition, we consider this simplified version as in Kalai & Vempala (2024).
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possible with an improper learner that also generalizes to the amount of information of the
demonstrator. We further show in Theorem 3 a matching sample complexity lower bound on
the VC-dimension for the worst-case concept classes.

• Proper learning can be hard even with VC concept class. Finally, we address the case of
non-hallucinating learning with proper learners. We show in Example 3 a hypothesis class P
and concept class C that are of size two, yet any proper learner must hallucinate. We then iden-
tify a sufficient condition on the triplet (q, C,P) in Theorem 4 that allows non-hallucinating
learning with proper learner, which is also necessary for certain cases.

Interpretation. Our results demonstrates that non-hallucinating learning is statistically impossible
by solely leveraging the training data set at hand, even if it is completely truthful. Therefore, to
reduce hallucination in the learned model, one must incorporate certain inductive biases that depend
on the facts set itself. This aligns with practical approaches, such as the post-training process that
incorporates human feedback (Achiam et al., 2023). Our work provides a systematic approach to
achieving this by restricting the facts set to a concept class of finite VC-dimension. Although our
result is primarily conceptual, it serves as the first step towards a principled approach to addressing
hallucination in generative models.

1.1 RELATED WORK

Our work is related to the recent theoretical investigation in Kalai & Vempala (2024), which demon-
strates that under certain regularity conditions, a model that is well calibrated must hallucinate,
highlighting the importance of incorporating “factual information” into the learning process. Other
impossibility results have also being reported very recently from a computability point of view,
such as Xu et al. (2024); Banerjee et al. (2024). While our impossibility results are in the same
spirit, our primary focus is to characterize the minimal assumptions under which non-hallucinating
learning is statistically possible. Moreover, our formulation and results are grounded in learning
theory (Shalev-Shwartz & Ben-David, 2014), where we treat the facts set itself as a research object,
rather than adding ad-hoc constraints. This offers more flexibility in incorporating domain-specific
factual constraints, instead of resolving hallucination in a “universal” sense. There has been ex-
tensive empirical investigation on understanding and addressing hallucinations, such as factual data
enhancement (Dziri et al., 2022), hallucination detection (Manakul et al., 2023), and fine-tuning with
human feedback (Ouyang et al., 2022). We refer to surveys by Huang et al. (2023); Ji et al. (2023);
Zhang et al. (2023) and the references in Kalai & Vempala (2024) for more extensive discussions.
Our work complements these investigations by providing a principled view aimed at understand-
ing hallucination in learning generative models. Technically, our formulation of non-hallucinating
learnability is related to distribution PAC learning, as investigated in Ashtiani et al. (2020); Bousquet
et al. (2019; 2021). Our lower bounding techniques are rooted in information-theoretical methods,
such as Le Cam’s two-point method and Fan’s inequality (Polyanskiy & Wu, 2022).

2 PRELIMINARIES

We review in this section some notations and concepts from the classical distribution learning litera-
ture, and highlight some immediate connections with our non-hallucinating learning paradigm. Let
X be an instance space, and P ⊂ ∆(X ) be a hypothesis class. There exists some (unknown) ground
truth distribution q ∈ ∆(X ) (not necessarily in P) that generates a sample xn i.i.d. from q. The
distribution PAC learning problem aims to find a learning rule Φ so that the produced distribution
p̂n := Φ(xn) satisfies (for some α, ϵ > 0):

∥q − p̂n∥TV ≤ α inf
p∈P

∥q − p∥TV + ϵ, (3)

with probability ≥ 1− δ over xn ∼ q.

A hypothesis class P is said to be α-agnostic PAC learnable if there exists a learning rule Φ such
that for any ϵ, δ > 0 there exists a number n (sample size) such that, for any distribution q, equation
(3) holds. It can be shown (see e.g. Bousquet et al. (2022)) that any finite hypothesis class P is
3-agnostic learnable for proper learners. Intuitively, agnostic (proper) PAC learning ensures that the
learned distribution’s total variation distance to the ground truth q is as close as possible to the best
hypothesis in P that minimizes this distance.
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For the non-hallucinating learning paradigm investigated in this paper, we need additionally an
(unknown) facts set T such that the produced model p̂n has a small hallucination rate hall(p̂n, T ) as
in (1). Clearly, if q is realizable w.r.t. P , i.e., infp∈P ∥q − p∥TV = 0, then α-agnostic PAC learning
implies non-hallucinating learning, as demonstrated in the following simple fact:
Fact 1 (Realizable learning of q implies non-hallucinate learning). For any facts set T and any
faithful demonstrator q w.r.t. T , if there exists a learner Φ such that w.p. ≥ 1 − δ over xn ∼ q we
have ∥Φ(xn)− q∥TV ≤ ϵ, then w.p. ≥ 1− δ over xn ∼ q the following holds: hall(Φ(xn), T ) ≤ ϵ.

Proof. We have ∥Φ(xn)− q∥TV = supA⊂X |Φ(xn)[A]− q[A]| ≤ ϵ. Therefore, taking A := T̄ we
have hall(Φ(xn), T ) ≤ q[T̄ ] + ϵ = ϵ, since q[T̄ ] = hall(q, T ) = 0 due to faithfulness.

Fact 1 demonstrates that if the learned distribution is ϵ-close to a faithful demonstrator q under to-
tal variation distance, then Φ is guaranteed to be non-hallucinating with a hallucination rate upper
bounded by ϵ. At first glance, this may suggest that non-hallucinating learning is easier than distri-
bution PAC learning. However, it is important to note that the requirement for the learned model to
be close to the ground truth distribution q is rather strong. This necessitates that: (i) the model class
correctly approximates the ground truth distribution, and (ii) there are sufficient training samples to
enable the learned model to generalize. Neither of these requirements is guaranteed or verifiable in
practice, since the ground truth distribution q is unknown.

In fact, as we will show in the following sections, (agnostic) learning of the demonstration distribu-
tion q is neither sufficient nor necessary to achieve non-hallucinating learning.

3 IMPOSSIBILITY RESULTS

In this section, we establish several impossibility results for certain natural formulations of agnos-
tic (proper) non-hallucinating learning. Analogous to the α-agnostic (distribution) PAC learning
formulation, one may consider the following definition:
Definition 1 (α-agnostic non-hallucinating learning). A hypothesis class P ⊂ ∆(X ) is α-agnostic
non-hallucinating learnable if for some α > 0 there exists a proper learner Φ such that for any given
ϵ, δ > 0, there exists a number n, such that for any facts set T and faithful-demonstrator q w.r.t. T

Pr
xni.i.d.∼ q

[
hall(Φ(xn), T )− α inf

p∈P
hall(p, T ) ≥ ϵ

]
≤ δ.

Intuitively, α-agnostic non-hallucinating learnability requires that w.h.p., the learner produce a dis-
tribution within the class P that has hallucination rate not much higher than the minimal achievable
hallucination rate of P , regardless of how the facts set T and demonstrator q are chosen. It is crucial
to note that we do not require the learned distribution to be close to the demonstrator q under total
variation. Although this may appear to be a much weaker condition than learning the distribution q
itself, the following example demonstrates that it is impossible even for a hypothesis class with two
elements and the minimal achievable hallucination rate is 0.
Example 1. Let A, A1, and A2 be disjoint non-empty sets. We define p1 and p2 to be any distri-
butions supported over A1 and A2, respectively. Take P := {p1, p2} and q to be any distribution
supported over A. Now, for any given learner Φ and sample size n, Φ must produce p̂n ∈ P .
Therefore, w.p. ≥ 1

2 over the sample xn ∼ q, it will select p̂n := pi for some i ∈ {1, 2}. We now
(adversarially) select the facts set T := A ∪A3−i. It is easy to verify that: (1) q is faithful w.r.t. T ;
(2) hall(p̂n, T ) = 1; and (3) infp∈P hall(p, T ) = 0. This implies that the learner Φ cannot satisfy
Definition 1 for all ϵ < 1, δ < 1

2 and α > 0. Since the learner Φ is selected arbitrarily, the class P
is not α-agnostic non-hallucinating learnable for all α > 0.

We mentioned in Section 2 that any finite hypothesis class is 3-agnostic (proper) PAC learnable but
Example 1 demonstrates a striking distinction between the agnostic distribution PAC learning and
the agnostic non-hallucinating learning.

One may noticed that Example 1 is fairly pathological, since the constructed distribution q is sup-
ported outside of the support of p1 and p2. Therefore, in effect, it provides no information for
distinguishing between p1 and p2. For this reason, we introduce the following refined definition of
hallucination rate relative to q.
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Definition 2 (Relative Hallucination Rate). For any given distributions p, q, the ϵ-relative halluci-
nation rate of p w.r.t. q is defined as:

hallϵ(p, q) = sup
A⊂X ,q[A]≤ϵ

p[A].

Intuitively, the relative hallucination rate hallϵ(p, q) measures the maximum probability that p as-
signs to a set where the distribution q has a small mass. In other words, the distribution p is non-
hallucinating relative to q if every rare event under q is also rare under p. Observe that, if q is faithful
w.r.t. some facts set T , then:

∀ϵ ≥ 0, hall(p, T ) ≤ hallϵ(p, q). (4)

Therefore, a small relative hallucination rate automatically implies small (absolute) hallucination
rate as in (1). However, the converse is generally not true. To see this, consider Example 1, we know
that infp∈P hall(p, T ) = 0 while infp∈P hallϵ(p, q) = 1 for all ϵ ≥ 0, thus the impossibility result
implied therein no longer holds. It is interesting to note that the relative hallucination rate can be
naturally bounded by the notion of σ-smoothness (Haghtalab et al., 2022). We say p is σ-smooth
w.r.t. q if ∀A ⊂ X we have p[A] ≤ 1

σ q[A], therefore, hallϵ(p, q) ≤ ϵ
σ for all ϵ ≥ 0.

We show in the following theorem that α-agnostic-non-hallucinating learning is impossible for all
given α > 0 even for the relative hallucination rate and for a hypothesis class of size 2.
Theorem 1 (Agnostic proper non-hallucinating learning is impossible). There exists a hypothesis
class P of size 2 such that for any proper learning rule Φ, parameter δ ≤ 1

3 , and any sample size n,
there exists a tuple (q, T ) such that for all ϵ < 1

2 , with probability > δ over xn ∼ q:

1. q is faithful w.r.t. T ;

2. infp∈P hall(p, T ) ≤ infp∈P hallϵ(p, q) ≤ 2ϵ, i.e., there exists non-hallucinating p ∈ P;

3. hallϵ(Φ(x
n), q) ≥ hall(Φ(xn), T ) = 1, i.e., the learned model hallucinates.

Proof. Let p1 be the uniform distribution over A1 := [0, 0.5], p2 be uniform over A2 := [0.5, 1] and
P = {p1, p2}, where [a, b] denotes for the interval in the real line from a to b. We now describe
a way of selecting (q, T ) satisfying the conditions in the theorem statement. To do so, we use a
probabilistic argument. Let µ1 and µ2 be two distributions over the tuple (q, T ) such that:

1. For distribution µ1, we select the facts set T := A1 ∪ Ã2 where Ã2 is (a discrete set)
sampled i.i.d. uniformly from A2 with |Ã2| ≫ 2n2. After generating T , we take q =
1
2Uni(A1) +

1
2Uni(Ã2), i.e., w.p. 1

2 uniform over A1 and w.p. 1
2 uniform over Ã2;

2. For distribution µ2, we select the facts set T := A2 ∪ Ã1 where Ã1 is (a discrete set)
sampled i.i.d. uniformly from A1 with |Ã1| ≫ 2n2. After generating T , we take q =
1
2Uni(A2) +

1
2Uni(Ã1) interpreted as above.

By construction, we know that the demonstrator q is completely faithful w.r.t. T , and for any ϵ < 1
2 ,

the following key properties hold:

1. If (q, T ) ∼ µ1 then hall(p1, T ) ≤ hallϵ(p1, q) ≤ 2ϵ and hallϵ(p2, q) ≥ hall(p2, T ) = 1;

2. If (q, T ) ∼ µ2 then hall(p2, T ) ≤ hallϵ(p2, q) ≤ 2ϵ and hallϵ(p1, q) ≥ hall(p1, T ) = 1.

Therefore, the first two conditions in the theorem statement are satisfied.

We take now any δ ≤ 1
3 and assume for now that condition 3 does not hold. We have if (q, T ) ∼ µ1

then Φ(xn) = p1 happens w.p. ≥ 1 − δ ≥ 2
3 over the randomness xn ∼ q; else if (q, T ) ∼ µ2

then Φ(xn) = p1 happens w.p. ≤ δ ≤ 1
3 over the randomness xn ∼ q (recall that the learner Φ

must output either p1 or p2 since it is assumed to be proper). For i ∈ {1, 2}, we define the mixture
distribution νi over Xn as described by the outcome of the following Markov process:

µi ∼ (q, T )
i.i.d. from q∼ xn.
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Therefore, we have

∥ν1 − ν2∥TV = sup
E⊂Xn

ν1(E)− ν2(E) ≥ ν1(E
′)− ν2(E

′) ≥ 2

3
− 1

3
=

1

3
,

where E′ := {xn ∈ Xn : Φ(xn) = p1} and the second inequality follows by discussion above.

Note that, the randomness of νi has two parts: w.p. 1
2 the sample is uniform over Ai and w.p. 1

2 the
sample is uniform over Ã3−i. The set Ã3−i is selected uniformly from A3−i and is of size ≫ 2n2.
Therefore, conditioning on the event that there is no repetition in sample xn, the distribution of
xn ∼ νi restricted on A3−i is exactly the same as sampling i.i.d. uniformly from A3−i. Let E be
the event over Xn so that xn ∈ E has no repetition. We have:

∥ν1(· | E)− ν2(· | E)∥TV = 0.

Since we have selected the size |Ãi| ≫ 2n2 for i ∈ {1, 2}, by the birthday paradox (Katz & Lindell,
2007, Lemma A.9), we have ν1(E) = ν2(E) ≥ 1− 1

4 = 3
4 . This implies that:

∥ν1 − ν2∥TV = ν1(B)− ν2(B), for some B ⊂ Xn

= ν1(B ∩ E)− ν2(B ∩ E) + ν1(B ∩ Ē)− ν2(B ∩ Ē)

= ν1(E)(ν1(B | E)− ν2(B | E)) + ν1(Ē)(ν1(B | Ē)− ν2(B | Ē)), since ν1(E) = ν2(E)

≤ ν1(E)∥ν1(· | E)− ν2(· | E)∥TV + ν1(Ē)∥ν1(· | Ē)− ν2(· | Ē)∥TV

≤ ν1(Ē) < 1− 3

4
<

1

3
.

This contradicts to our previous conclusion that ∥ν1 − ν2∥TV ≥ 1
3 , thus the presumption that condi-

tion 3 does not hold is not true. Therefore, proof of theorem is complited.

Note that, although Theorem 1 is proved only for a specifically constructed pair of distributions,
the arguments can be extended to any pair of distributions that have sufficiently separated densities,
provided the distributions are smooth enough to allow for sufficiently long non-repetitive samples.

Theorem 1 implies the following corollary that strengthens Example 1, which shows that agnostic
(proper) non-hallucinating learning can be harder than agnostic PAC learning, even if the hypothesis
class is of size 2 and even there exists a hypothesis within class that is not (relatively) hallucinating.
Corollary 1. There exists a hypothesis class P of size 2, such that P is not α-agnostic non-
hallucinating learnable for any given α ≥ 0. This is true for both the (absolute) hallucinate rate as
defined in (1) and the relative hallucination rate in Definition 2.

Proof. We only prove the case for the relative hallucination rate, as the case for (absolute) halluci-
nation rate follows similarly. For any given α > 0, we take ϵ small enough so that ϵ ≤ 1

2α+1 . By
Theorem 1 condition 2, we have infp hallϵ(p, q) ≤ 2ϵ. Moreover, by condition 3 of Theorem 1, we
have w.p. > δ that hallϵ(Φ(xn), q) = 1. Therefore, we conclude w.p. > δ that:

hallϵ(Φ(x
n), q)− α inf

p∈P
hallϵ(p, q) ≥ 1− α · 2ϵ ≥ ϵ

whenever ϵ ≤ 1
2α+1 . This violates the α-agnostic-non-hallucinating learnability in Definition 1.

4 NON-HALLUCINATING LEARNING VIA KNOWLEDGE OF T

As we demonstrated by Theorem 1, agnostic (proper) non-hallucinating learning is impossible by
restricting the hypothesis class alone, even measured competitively. This is partially due to the
fact that the learner must handle any tuple (q, T ), or in other words, it does not incorporate any
prior knowledge of the facts set into the learning process. This phenomenon mirrors the “no-free
lunch” theorems in the PAC learning literature (Shalev-Shwartz & Ben-David, 2014), which assert
that learning is impossible without assumptions about the learning target. This is typically resolved
by introducing additional inductive biases in the learning process that restrict the hypothesis class,
such as limiting it to a finite VC-dimension. This section is devoted to introducing certain natural
assumptions on (q, T ) that lead to non-trivial resolutions of non-hallucinating learning.
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4.1 THE IMPROPER LEARNING CASE

Clearly, if the leaner is improper, then a naı̈ve non-hallucinating learner that simply generates the
empirical distribution over the training sample xn never hallucinates. This is clearly not satisfactory,
as the learned model is completely non-generalizable. To mitigate this restriction, we introduce
certain constrains on the facts set T that allow our learned model to “generalize”. We assume that
T ∈ C, where C ⊂ 2X is a concept class of all possible sets that T can be chosen from. Here, the
concept class would be determined by prior knowledge of the learner on T .

To quantify the “generalizability” of the learned model, we introduce an additional notion of infor-
mation measure I that quantifies the amount of “information” of distributions in ∆(X ):

I : ∆(X )×X ∗ → R≥0.

Note that, here we allow the information measure I(p,xn) to be dependent on the training set xn as
well. For any given information measure function I , we consider the following definition:
Definition 3 (Improper non-hallucinating learnable). For any γ < 1, a concept class C is said to be
γ-approximately improper non-hallucinating learnable w.r.t. information measure I , if there exists
an (improper) learner Φ such that for any ϵ, δ > 0, there exists a number n, so that for any T ∈ C
and any faithful-demonstrator q over T , w.p. ≥ 1− δ over xn ∼ q the following holds:

1. The hallucination rate hall(Φ(xn), T ) ≤ ϵ;

2. I(Φ(xn),xn) ≥ (1− γ)I(q,xn).

Observe that the first part of Definition 3 ensures that the learned model does not hallucinate, while
the second part ensures that the model is as informative as the demonstrator so that generalizability
is possible. Moreover, it is crucial to note that, although the facts set T is restricted to the concept
class C, the demonstrator q is unconstrained, as long as it is faithful w.r.t. T .

There are many natural information measures. We mention a few here:

1. For discrete X , Shannon entropy is defined as H(p) :=
∑

x∈X p[x] log 1
p[x] , which mea-

sures the (absolute) information contained in p independent of the training set xn;
2. The α-Rényi entropy is defined as Hα(p) = 1

1−α log
(∑

x∈X p[x]α
)
, where α > 0 and

α ̸= 1, which subsumes the Shannon entropy for α → 1;
3. The out-of-sample mass is defined as (for n ≥ 1): I(p,xn) := p[X\{x1, · · · ,xn}], which

measures the amount of probability mass of p assigned outside of the training set.

The specific choice of information measure typically depends on the task at hand. We show in the
following theorem, perhaps surprisingly, that improper non-hallucinating learning is possible if the
concept class C has finite VC-dimension, regardless of what information measure is selected.
Theorem 2. If a concept class C has finite VC-dimension, then C is 0-approximately (improper) non-
hallucinating learnable w.r.t. any information measure function I . Moreover, the sample complexity
is upper bounded by n ≤ O

(
VC(C) log(1/ϵ)+log(1/δ)

ϵ

)
.

Proof. Let T ∗ ∈ C be a ground truth facts set and q∗ be a faithful-demonstrator w.r.t. T ∗. Let
xn ∼ q∗ be a set of samples. We define the version space:

Cn = {T ∈ C : ∀i ≤ n, xi ∈ T }, (5)

as the subset of elements in C that are consistent with the sample xn. Note that T ∗ ∈ Cn holds
always, since q∗ is faithful. For any T ∈ C, we say q∗ ϵ-violates T if hall(q∗, T ) ≥ ϵ. We claim
that:

Prxn∼q∗ [∃T ∈ Cn, s.t. q∗ ϵ-violates T ] ≤ δ, (6)

provided n ≥ C d log(1/ϵ)+log(1/δ)
ϵ for some constant C, where d = VC(C). To see this, we can view

the sample xn as feature-label pairs that has all labels being 1. In this case, the hallucination rate
hall(q∗, T ) can be viewed as the population risk of T under the data distribution. Moreover, since
q∗ is faithful, the ground truth set T ∗ achieves 0 risk, therefore, the data distribution is effectively
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realizable w.r.t. C. The claim then follows by standard uniform convergence result of VC class, see
e.g. Shalev-Shwartz & Ben-David (2014, Theorem 6.8 (3)).

We now consider the following learning rule:

Φ(xn) := arg max
p∈∆(X )

{I(p,xn) : p does not ϵ-violate T , ∀T ∈ Cn}. (7)

Clearly, Φ(xn) always satisfies condition 1 of Definition 3, since T ∗ ∈ Cn and therefore any feasible
solution from (7) does not ϵ-violate T ∗. Moreover, by (6), w.p. ≥ 1 − δ over xn ∼ q∗ that q∗ is
within the feasible set of (7). Therefore, we have:

I(Φ(xn),xn) ≥ I(q∗,xn),

by definition of argmax. Thus, condition 2 of Definition 3 is also satisfied with γ = 0.

Theorem 2 demonstrates that if the facts set T can be correctly specified by a concept class of
finite VC-dimension (this includes, for example, when the indicator function of the facts set is
specified by a neural network), then we can always learn a non-hallucinating generative model which
is as informative as the demonstrator, regardless of how the demonstration distribution is chosen, as
long as it is faithful. Moreover, the learning rule can be extracted from the meta-algorithm in (7)
depending on any information measure I at hand, albeit not computationally efficiently.

It is crucial to distinguish our non-hallucinating learning paradigm in Theorem 2 from the standard
PAC learning, even though the proof may look similar. This is because, in our non-hallucinating
learning framework, the ultimate goal is to produce a distribution (i.e., a generative model) not a
classification function (i.e., a discriminative model). The concept class only serves as a regulariza-
tion to control the hallucination rate of the learned model. More importantly, our learning paradigm
is unsupervised without any need of human labeling.

We now establish a matching sample complexity lower bound for (improper) non-hallucinating
learning w.r.t. the out-of-sample mass information measure for the worst concept classes C. This,
together with Theorem 2, implies that the VC-dimension remains a meaningful complexity measure
that characterizes improper non-hallucinating learning.
Theorem 3. For any d ∈ N, there exists a concept class C of VC-dimension d such that for any
ϵ > 0 sufficiently small and any δ ≤ ϵ, the sample complexity of 0-approximately (improper) non-
hallucinating learning C w.r.t. out-of-sample mass measure is lower bounded by Ω(dϵ ).

Proof. For any d ∈ N, we take X to be a set of size 2d + 1. Let x0 ∈ X be any element. We
define C := {T ⊂ X : x0 ∈ T and |T | = 1 + d}. It is easy to verify that VC(C) = d. We now
describe a random process for generating (q, T ). We first uniformly sample T from C and then
define q = (1 − ϵ′)δx0 + ϵ′Uni(T \{x0}) for some ϵ′ to be determined. Clearly, q is faithful w.r.t.
T . Let µ be the derived distribution over (q, T ). For any given learner Φ and sample size n ≤ d

4ϵ′ ,
we denote p̂n := Φ(xn). Our goal is to lower bound the expected hallucination rate:

E(q,T )∼µExn∼q[hall(p̂n, T )] = ExnE(q,T )∼µ|xn [hall(p̂n, T )],

where Exn is over the mixture µ ∼ q ∼ xn and µ | xn is the distribution of µ conditioning on xn.

Denote A := {x1, · · · ,xn} as the set formed by xn, and let E be the event on xn such that x0 ∈ A
and |A| ≤ d

2 + 1. We now condition on the event E occurring. This implies that the out-of-sample
mass I(q,xn) ≥ ϵ′

2 , since |T \A| ≥ d
2 and q is uniform when restricted to T \{x0}. By condition 2

of Definition 3 with γ = 0 2, we have I(p̂n,x
n) =

∑
x∈X\A p̂n[x] ≥ I(q,xn) ≥ ϵ′/2. Note that

the conditional distribution µ | xn restricted on T is exactly uniform over C′ = {T ′ ∈ C : A ⊂ T ′}.
We have, for any x ̸∈ A that

E(q,T )∼µ|xn [1{x ̸∈ T }] = ET ′∼C′ [1{x ̸∈ T ′}] = 2d− |A|
2d

≥ 2d− d/2

2d
=

3

4
.

This implies, for all xn ∈ E that:

E(q,T )∼µ|xn [hall(p̂n, T )] = E(q,T )∼µ|xn

[∑
x∈X

p̂n[x]1{x ̸∈ T }

]
2We take γ = 0 for simplicity, however, our argument holds for general γ > 0 as well.
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≥ E(q,T )∼µ|xn

 ∑
x∈X\A

p̂n[x]1{x ̸∈ T }


≥ 3

4

∑
x∈X\A

p̂n[x] ≥
3ϵ′

8
.

We now observe that the distribution q assigns only ϵ′ probability mass on X\{x0}. The expected
number of elements in xn not equal to x0 is upper bounded by ϵ′n ≤ d

4 . This implies, by Markov
inequality, that w.p. ≥ 1

2 we have |A| ≤ d
2 and x0 ∈ A, therefore Pr[E] ≥ 1

2 . Putting everything
together, we have

E(q,T )∼µExn∼q[hall(p̂n, T )] = ExnE(q,T )∼µ|xn [hall(p̂n, T )]

≥ 1

2
Exn [E(q,T )∼µ|xn [hall(p̂n, T )] | E] ≥ 3ϵ′

16
.

Taking ϵ′ > 32
3 ϵ, we have the expected hallucination rate > 2ϵ. Since hallucination rate is ≤ 1, we

have w.p. ≥ ϵ, the hallucination rate is > ϵ. Meaning that, for any sample size n ≤ d
4ϵ′ =

3
128

d
ϵ , no

learner can achieve both conditions of Definition 3 for δ ≤ ϵ. This completes the proof.

Note that, although Theorem 3 is proved only for the out-of-sample mass, a similar lower bound can
also be established for other information measures. We refer to Appendix A for a lower bound on the
Shannon entropy. Moreover, Theorem 3 only characterizes the sample complexity in the minimax
sense, i.e., for the worst case VC classes. Indeed, the sample complexity can be lower for certain
specific VC-classes, as demonstrated in the example below.
Example 2. Let X = A ∪ {1, · · · , d} where |A| ≫ d; we define class C as the class of all subsets
of X that contain A. We have VC(C) ≥ d. However, an algorithm that always produces uniform
distribution over A has 0 hallucination rate and the out-of-sample mass is lower bounded by |A|−n

|A|
for any sample of size n. Taking n = 1, one can make the out-of-sample mass arbitrarily close to 1
by choosing sufficiently large |A|.

We would like to point out that any complexity measure on C that characterizes the (improper) non-
hallucinating learnability at the instance level would necessarily depend on the information measure
(for the lower bounds). We leave it as an open problem to find more fine-grained characterizations
tailored to specific information measures, such as for the out-of-sample mass and Shannon entropy.

4.2 THE PROPER LEARNING CASE

We demonstrated in Theorem 2 that non-hallucinating learning is possible for improper learners if
the facts set lies in a concept class of finite VC-dimension. A natural questions is whether such an
approach can be extended to the proper learning case, i.e., instead of allowing the learner to output
an arbitrary distribution in ∆(X ), we restrict the output to some hypothesis class P ⊂ ∆(X ).

We again assume that the facts set T is selected from some concept class C. Let q be any faithful
demonstrator w.r.t. T and xn ∼ q. A natural learning rule that is inspired from (7) is as follows:

Φ(xn) = argmax
p∈P

{I(p,xn) : hall(p, T ) ≤ ϵ, ∀T ∈ Cn} , (8)

where Cn is the version space defined in (5) and I is some appropriately selected information mea-
sure. Unfortunately, this (in fact any proper) learning rule fails to achieve non-hallucinating learning
even if the minimal achievable hallucination rate of distributions in P is 0. This is discussed in the
next example.
Example 3. There exist hypothesis class P and concept class C that are of size 2, such that for
any proper learner Φ, we can select some T ∈ C and faithful demonstrator q w.r.t. T such that
Prxn∼q [hall(Φ(x

n), T ) ≥ 0.99] ≥ 1
2 . The construction is similar to that of Example 1. To see

this, we take two sets A1 and A2 of size |A1| = |A2| = 100 and |A1 ∩ A2| = 1. The concept
class C = {A1, A2} and the hypothesis class P = {Uni(A1),Uni(A2)}.Furthermore, we select
demonstrator q = δx0

for the (single) element x0 ∈ A1 ∩ A2, which is faithful for both A1 and
A2. Now, for any learner Φ, it must produce Uni(Ai) w.p. ≥ 1

2 for some i ∈ {1, 2}. To satisfy the
claimed lower bound, the adversary then simply takes the actual facts set T to be A3−i.

9
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Although the impossibility result of Example 3 is not technically surprising, since the demonstrator
q effectively produces no “information.” It demonstrates a striking distinction between proper and
improper learnability of non-hallucinating learning. Recall that, for improper learning, the learner
can adapt to the amount of information provided by the demonstrator, yet still avoid hallucination.

Therefore, in order to obtain meaningful results for the proper learning case, one needs to control
the behaviour of the demonstrator q as well. To achieve this, we introduce a sufficient condition
under which the learning rule from (8) achieves non-hallucinating learnability.
Definition 4. A demonstrator q is said to be sufficiently informative for a pair (C,P) if there exists
a function ξ : [0, 1] → [0, 1] such that for any ϵ > 0

inf
p∈P

sup
T ∈Cξ(ϵ)

hall(p, T ) ≤ ϵ,

where Cξ(ϵ) = {T ∈ C : Prx∼q[x ̸∈ T ] ≤ ξ(ϵ)}.

Intuitively, Definition 4 ensures that the pathological instance of Example 3 do not occur for a suf-
ficiently small “local neighborhood” Cξ(ϵ) of C induced by p. Indeed, equipped with this condition,
we can establish the following positive result.
Theorem 4. Let C be any concept class of finite VC-dimension and P be any hypothesis class.
Then for any T ∈ C and any sufficiently informative faithful-demonstrator q w.r.t. (C,P) as in
Definition 4, we have w.p. ≥ 1− δ over xn ∼ q that for the predictor Φ in (8) satisfies

Prxn∼q[hall(Φ(x
n), T ) ≥ ϵ] ≤ δ,

provided n ≥ Ω
(

VC(C) log(1/ξ(ϵ))+log(1/δ)
ξ(ϵ)

)
, where ξ(·) is the function in Definition 4.

Sketch of Proof. The proof essentially follows a similar path as Theorem 2. Note that the standard
uniform convergence result (c.f. (6)) implies that for the particular choice of n in the theorem,
w.p. ≥ 1 − δ, we have Cn ⊆ Cξ(ϵ). By Definition 4, there exists some p ∈ P such that for all
T ∈ Cn, hall(p, T ) ≤ ϵ. Since the ground truth facts set T ∗ ∈ Cn holds always, the produced model
p̂n := Φ(xn) using the predictor Φ in (8) must satisfy hall(p̂n, T ∗) ≤ ϵ, as required.

Note that, the condition in Definition 4 is, in a sense, the minimal requirement to achieve proper
non-hallucinating learnability. Otherwise, consider any demonstrator q that does not satisfy the
condition. There must exist some ϵ > 0 so that for any ξ > 0 we have:

inf
p∈P

sup
T ∈Cξ

hall(p, T ) > ϵ.

A similar argument as in Example 3 yields that for any proper learner, there must exist some T ∈ Cξ
so that the hallucination rate > ϵ w.p. ≥ 1

|P| , provided |Cξ| < ∞ and ξ is small enough.

5 CONCLUSION AND DISCUSSION

In this paper, we investigated the learnability of non-hallucinating generative models from a
learning-theoretic perspective. We showed that agnostic non-hallucinating learning is statistically
impossible if one does not incorporate knowledge of the ground truth facts set into the learning
process, even when hallucination is measured relatively. This contrasts substantially with classical
distribution PAC learning, where agnostic learning is possible without restrictions on the ground
truth distribution. We then established several positive results, showing that non-hallucinating learn-
ing is achievable by restricting the ground truth facts set to certain concept classes with finite VC-
dimension, and determined the tight sample complexity required to achieve learnability.

Although our contribution is primarily conceptual, we believe it will help practitioners understand
the fundamental limitations of hallucinations in generative models in a more principled way. Our
work also provides several algorithmic approaches for incorporating knowledge of the ground truth
facts set into the learning process via regularization, such as the learning rules provided in (7)
and (8), albeit computationally inefficiently. Our framework lays the foundation for significant
future research on mitigating hallucinations in generative models. This includes exploring differ-
ent approaches to incorporating factual knowledge, such as through logical rules, synthetic data
generation, or leveraging human feedback, as well as developing more computationally efficient
algorithms.
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A ADDITIONAL LOWER BOUNDS

In this appendix, we provide a lower bound for improper non-hallucinating learning when the Shan-
non entropy is chosen as the information measure
Theorem 5. For any number d ∈ N, there exists a concept class C of VC-dimension d such that
the sample complexity of 0-approximately (improper) non-hallucinate learning C w.r.t. the Shannon
entropy function H is lower bounded by Ω(d) for all sufficiently small ϵ, δ > 0.

Proof. We now take X = [d] and define C to be a collection of subsets of X such that ∀T ∈ C,
|T | = d/2 and

∀T1 ̸= T2 ∈ C, |T1 ∩ T2| ≤
d

4
.

It can be shown that such a collection exists and |C| ≥
√

1
4de

d/16, see e.g., (Wu et al., 2023,
Thm. D.1) for a proof. Moreover, the VC-dimension of C is at most d. For any T ∈ C, we
denote qT as the uniform distribution over T . Now, in order for the Definition 3 to hold, for any
(T , qT ) the learner must produce a distribution p̂ such that: (1) p̂[T ] ≥ 1 − ϵ; and (2) the Shannon
entropy H(p̂) ≥ log(d/2). We claim that for any other T ′ ∈ C that differs from T , one must have
p̂[T ′] < 1 − ϵ, for any ϵ ≤ 0.07. To see this, we split the support of p̂ into 3 parts A1 = T \T ′,
A2 = T ∩ T ′ and A3 = [d]\T . It is clear that p̂[A3] ≤ ϵ. Assume now that p̂[T ′] ≥ 1− ϵ, then one
must have p̂[A2] ≥ 1 − 2ϵ. By expressing the entropy of p̂ conditioning on the A1, A2 and A3 we
have

H(p̂) =
∑

i∈{1,2,3}

p̂[Ai] log
1

p̂[Ai]
+ p̂[Ai] ·H(p̂ | Ai), (9)

where H(p̂ | Ai) is the entropy of the conditional distribution of p̂ on Ai. Observe that H(p̂ |
A1) ≤ log d/2, H(p̂ | A2) ≤ log d/4 and H(p̂ | A3) ≤ log d, since uniform distribution maximizes
entropy. Moreover, our previous discussion yields that p̂[A1], p̂[A3] ≤ ϵ and p̂[A2] ≥ 1 − 2ϵ.
Therefore, the RHS of (9) is upper bounded by (via Lagrangian multiplier method that the maximum
attains on the boundary p̂[A1] = p̂[A3] = ϵ and p̂[A2] = 1− 2ϵ whenever ϵ ≤ 0.18):

RHS ≤ ϵ log d/2 + ϵ log
1

ϵ︸ ︷︷ ︸
Contributed by A1

+(1− 2ϵ) log d/4 + (1− 2ϵ) log
1

(1− 2ϵ)︸ ︷︷ ︸
Contributed by A2

+ ϵ log d+ ϵ log
1

ϵ︸ ︷︷ ︸
Contributed by A3

= log d+ 2ϵ log
1

ϵ
+ (1− 2ϵ) log

1

1− 2ϵ
+ 3ϵ− 2.

Sine H(p̂) ≥ log d− 1, we have −2ϵ log ϵ− (1− 2ϵ) log(1− 2ϵ)+ 3ϵ ≥ 1. Rewrite the expression,
this implies h(2ϵ) + 5ϵ ≥ 1, where h(·) is binary entropy function. Numerical computation yields
that this can happen only when ϵ ≥ 0.07.

Now, the above discussion implies that any successful learner that satisfies Definition 3 with ϵ ≤
0.07 must be able to identify the distribution qT for all T ∈ C by observing only on their i.i.d.
samples. We now derive a lower bound for such a identification problem using the Fano’s inequality.
Denote q̄ as the uniform distribution over [d], the Fano’s inequality Polyanskiy & Wu (2022) implies
that the error probability of the identification problem of sample size n is lower bounded by

1− 1

log |C|

(
sup
T ∈C

n · KL(qT ||q̄) + log 2

)
= δ.
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Direct computation yields that KL(qT ||q̄) ≤ log 2 for all T ∈ C. Therefore, an O(1) error probabil-
ity lower bound holds as long as n ≪ log |C|, i.e., for sufficiently small δ > 0 we have the sample

complexity n ≥ Ω(log |C|) ≥ Ω(d) since |C| ≥
√

1
4de

d/16 as discussed above.
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