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Abstract—We study the problem of learning from expert advice
in the presence of perturbed noisy losses. Unlike existing work
that assumes stochastic perturbations, we consider the case where
the perturbation occurs arbitrarily, subject to a budget C on each
expert—an approach we term “nasty” experts. The learner’s
performance is evaluated on the underlying true losses while only
observing the perturbed noisy losses. Assuming the existence of
an expert that incurs zero true losses, we show that the minimax
risk equals Θ(C logK) for an expert class of size K. Remarkably,
this risk cannot be achieved by the standard Exponentially
Weighted Average (EWA) algorithm with constant learning rates,
for which we establish a lower bound of Ω(C2/ logK). We further
demonstrate a nearly matching upper bound of O(C2 +C logK)
for the EWA algorithm. Our main proof technique is based on
a novel potential-based analysis that is of independent interest.
Finally, we demonstrate the effectiveness of our nasty expert
model in the context of binary classification with Massart’s noise,
without knowing the noise upper bound.

I. INTRODUCTION

Learning from expert advice [7] is a fundamental problem
that arises naturally in many different domains, including
information theory [8], online learning, and game theory [7].
Formally, the problem can be described as a repeated game
between Nature and a learner. At each time step, the learner
selects one expert from K available experts and follows their
advice to make a prediction. After the prediction, Nature (or
adversary) assigns a loss to each expert based on the prediction
outcome. The learner’s objective is to minimize its cumulative
loss over a time horizon T .

While much of the literature [7], [3], [12], [13] assumes
the adversarial selection of losses—i.e., arbitrarily chosen
losses that may depend on the learner’s history—the evaluation
of learner’s performance is typically based on the observed
losses. However, many real-world applications involve more
challenging scenarios: the observed losses can actually be
perturbed versions of certain true (unobserved) losses. For
instance, in the context of cybersecurity, one typically assumes
that the adversary can perturb certain underlying true losses
and revealing only the perturbed version of those losses—yet
the learner should still perform well on the true losses.

Despite its foundational nature, the study of learning from
generally perturbed losses while being evaluated on the
(unobserved) true losses has primarily focused either on
stochastic settings [14], [3], [15], [4] or on the so-called partial
monitoring settings (e.g., bandits) [7, Section 6], where an
unbiased estimation of the true losses is possible. An exception
is the work in [1], which considers arbitrary corruption within
a certain budget. However, [1] assumes that the true losses are
sampled i.i.d..

This paper investigates a novel prediction scenario where
we assume the perturbation can occur arbitrarily (i.e., the true
losses are not estimable), while still allowing adversarially
selected true losses. We refer to this type of perturbation as
“nasty” noise, borrowing from [6].

Formally, at each time step t, Nature selects an arbitrary
true loss vector ℓt ∈ [0, 1]K (which assigns losses to the K
experts) but reveals only a perturbed noisy version ℓ̃t ∈ [0, 1]K .
The selection of ℓt and ℓ̃t is completely arbitrary, except
for the following constraints: (1) the discrepancy between
the cumulative true and noisy losses for any expert is upper
bounded by a parameter C, which may depend on the time
horizon T ; and (2) there exists one expert that incurs zero
cumulative true loss (i.e., we consider the well-specified case).

Our goal is to minimize the learner’s cumulative risk
evaluated on the true losses ℓt while only observing the noisy
losses ℓ̃t, under the worst-case selection of ℓt’s and ℓ̃t’s that
satisfies the constraints above.

a) Summary of Results: Our main contributions reveal
several unexpected and notable results. We show that the
expected minimax risk on the true losses equals Θ(C logK),
provided the parameter C is known to the learner. This
result is achieved using a novel elimination-based algorithm
(Algorithm 1). Notably, the best achievable risk on the noisy
losses grows as C + logK using the standard Exponentially
Weighted Average (EWA) algorithm [2, Theorem 2.1]. Our
result demonstrates a striking distinction between the minimax
risks on true and noisy losses.

We further show that the EWA algorithm (with constant
learning rate), despite achieving the optimal risk on noisy
losses, incurs a risk lower bound of Ω

(
C2

logK

)
for true

losses. This is substantially worse than our optimal algorithm
(Algorithm 1), which achieves a risk of O(C logK). If we take
C = K =

√
T , the EWA incurs nearly linear risk T/ log T ,

whereas our algorithm achieves a risk growth of
√
T log T .

Finally, for unknown C we show that the EWA algo-
rithm (Algorithm 2) with learning rate η = 1 achieves an
O(C2+C logK) upper bound on the true risk. This, together
with the lower bound, establishes a nearly tight Θ̃(C2) risk
for EWA. Our proof leverages a non-trivial potential-based
analysis, which we believe is of independent interest. Note
that, the EWA algorithm has the advantage of not requiring
knowledge of the parameter C. This also implies a prediction
rule for binary classification under Massart’s noise without
knowledge of the noise upper bound, using the pairwise testing
approach from [15].



b) Related Work: Our framework is related to the scenario
of prediction with limited feedback, as discussed in [7, Section
6]. However, our “nasty expert” differs in that the noisy losses
are selected arbitrarily (subject to certain constraints), rather
than through a time-independent feedback function as in [7].
Prediction with stochastic noise was first investigated in [14],
which studies sequential prediction with binary outcomes
passing through a Binary Symmetric Channel (BSC). This
setting was recently generalized in [5] (see also references
therein) under the assumption that the true losses are estimable.
A similarly stochastic setting for binary classification with
Massart’s noise (assume a known noise upper bound) and well-
specified true labels was discussed in [3] and later extended
in [15] to handle more general noise models. In [1], the authors
considered a perturbation scheme similar to ours but imposed a
different (more stringent) constraint on the perturbation budget
C and assumed i.i.d. generated losses. The regret analysis of
observable losses using the Exponentially Weighted Average
(EWA) algorithm has been widely studied; see [7], [9], [11].

II. PROBLEM SETUP

Let K be the number of experts. We consider the following
online framework, which operates in T rounds. At each time
step t = 1, 2, . . . , T , the following events occur sequentially:

1. Nature selects the true loss vector ℓt ∈ [0, 1]K but keeps
it secret from the learner.

2. The learner selects distribution p̂t ∈ ∆([K]), samples
k̂t ∼ p̂t, and predicts k̂t.

3. Nature selects a noisy loss vector ℓ̃t ∈ [0, 1]K and reveals
it to the learner.

Let C ≤ T be an arbitrary parameter that controls the noise
level, which may grow w.r.t. T . The goal of the learner is to
find a prediction strategy p̂T that minimizes:

riskT,K,C := sup
ℓT ,ℓ̃T

E

[
T∑

t=1

ℓt[k̂t]

]
= sup

ℓT ,ℓ̃T

T∑
t=1

⟨p̂t, ℓt⟩, (1)

where ⟨·, ·⟩ is scalar product, and ℓT := {ℓ1, . . . , ℓT }, ℓ̃T :=
{ℓ̃1, . . . , ℓ̃T } are subject to the following constraints:

1. There exists k∗ ∈ [K] such that

T∑
t=1

ℓt[k
∗] = 0; (2)

2. For all k ∈ [K], we have

T∑
t=1

|ℓt[k]− ℓ̃t[k]| ≤ C. (3)

Here, the first constraint ensures that there exists an expert
incurring 0 true cumulative loss, while the second constraint
ensures that for any expert, the discrepancy between the true
and noisy cumulative losses is upper bounded by C.

III. MAIN RESULTS

Our first main result establishes tight upper and lower bounds
for riskT,K,C when the parameter C is known in advance.

Theorem 1. Assume that the parameter C is known to
the learner. Then, there exists a prediction strategy p̂T (see
Algorithm 1) such that:

riskT,K,C ≤ (2C + 1) · logK + 2C.

Furthermore, for any prediction rule (regardless if C is known
or not) and any T,K,C with T ≥ C · logK, we have:

riskT,K,C ≥
1

2
C · (logK − 1).

Note that the upper bound holds for all C,K, and T ; for
example, it remains valid even when C and K grow with
respect to T . To better understand Theorem 1, it is instructive
to compare it with the classical setting of learning from expert
advice. It can be shown [2, Theorem 2.1] that for the EWA
algorithm (Algorithm 2) predicting p̂T with η = 1 we have

T∑
t=1

⟨p̂t, ℓ̃t⟩ ≤ O(C + logK). (4)

Note that this risk bound is evaluated on the noisy losses ℓ̃t,
not the true losses ℓt. To convert it to the risk in (1), one must
also bound

T∑
t=1

⟨p̂t, ℓ̃t − ℓt⟩. (5)

We emphasize that even though the discrepancy between
ℓt and ℓ̃t is controlled by (3), the quantity in (5) cannot be
simply upper bounded by C.

In fact, as shown by the lower bound in Theorem 1, the
asymptotic behavior of the risk on true losses grows as C ·
logK, rather than C + logK. This means that the quantity in
(5) can be the dominant contribution to the risk on true losses
if one naively applies the predictor in (4). This is confirmed
formally in our next main result:

Theorem 2. Let p̂T be predicted by the EWA algorithm (see
Algorithm 2) with parameter η = 1. Then, for all C

riskT,K,C ≤ O(C2 + C logK).

Furthermore, for any given η > 0, K ≥ C and T ≤ C2, we
have the risk incurred by Algorithm 2 satisfies

riskT,K,C ≥ Ω

(
max

{
ηC2

logK
,C logK

})
.

Note that Theorem 2 is remarkable, as it demonstrates that
the EWA algorithm, despite being minimax optimal on the
noisy losses, is not optimal for the true losses (c.f. Theorem 1).
Although, the EWA algorithm has the advantage without
requiring knowledge of the parameter C.

We stress that, even though the EWA algorithm may appear
classical, the proof of Theorem 2 is non-trivial, as the potential
analysis is applied to the unobservable true losses rather than
the noisy losses. We defer the detailed proof to Section V.



We now present the following corollary, whose proof can
be obtained by inspecting the proofs of Theorems 1 and 2.

Corollary 1. Both Theorem 1 and Theorem 2 remain valid if
we relax the constraints in (2) and (3) to the following:

1. There exists k∗ ∈ [K] such that
∑T

t=1 ℓ̃t[k
∗] ≤ C;

2. For all k ∈ [K],
∑T

t=1 ℓ̃t[k] ≥
∑T

t=1 ℓt[k]− C.

a) Implications: We provide an application to the online
classification with random noises as investigated in [3], [16].
For clarity of exposition, we consider only the binary classifi-
cation with the Massart’s noise (defined below), although our
results apply to more general noise models.

Let H := {h1, · · · , hK} ⊂ {0, 1}X be a hypothesis class
of size K. For any noise upper bound γ ∈ [0, 1

2 ), we consider
the following online learning game. At the start of the game,
Nature fixes k∗ ∈ [K] unknown to the learner. For each time
step t = 1, 2, . . . , T , the following events occur sequentially:

1. Nature selects feature xt ∈ X and reveals to learner;
2. Learner makes a (random) prediction ŷt ∈ {0, 1};
3. Nature then selects a (unknown) parameter γt ≤ γ and

reveal
ỹt = Bernoulli(γt)⊕ hk∗(xt),

where ⊕ denotes binary addition.
The learner targets a learning rule ŷT that minimizes:

r̃T (H, γ) := sup
xT ,hk∗ ,γT

1

E

[
T∑

t=1

1{hk∗(xt) ̸= ŷt}

]
,

where the expectation is over both ỹT and ŷT .
It was shown in [3] that

r̃T (H, γ) ≤
log |H|

1− 2
√
γ(1− γ)

. (6)

However, a major limitation of [3] (as well as [16]) is that
the upper bound γ is assumed known to the learner. This is
undesirable in practice. We show in the following theorem that
a constant risk holds even without the knowledge of γ.

Theorem 3. For any finite class H, there exists a prediction
rule ŷT such that for all (unknown) γ ∈ [0, 1

2 ) we have

r̃T (H, γ) ≤ O

(
log2 |H|
(1− 2γ)4

)
.

Sketch of Proof. We will leverage the pairwise-testing scheme
introduced by [16]. For any t ∈ [T ] and k ∈ [K], we define
the cumulative empirical loss ct[k] :=

∑t
r=1 1{hk(xr) ̸= ỹr}.

Moreover, we define the cumulative pairwise testing loss as

Lt[k] := sup
k′ ̸=k

t∑
r=1

1{cr[k] ≤ cr[k
′] and hk(xr) ̸= hk′(xr)}.

We now define true loss ℓt[k] := 1{hk(xt) ̸= hk∗(xt)}; and

noisy loss ℓ̃t[k] := Lt[k]− Lt−1[k].

By a similar argument as [16, Example 4], with probability
≥ 1− δ over ỹT , the constructed losses ℓt and ℓ̃t satisfy the

conditions in Corollary 1 with C ≤ 2 log(|H|/δ)
(1−2γ)2 . The theorem

follows by invoking Theorem 2 over the constructed ℓt and ℓ̃t
and taking expectation by integration over δ.

To our knowledge, Theorem 3 is the first known constant
risk for online binary classification under Massart’s noise,
without known the upper bound γ.

IV. PROOF OF THEOREM 1
We first prove the upper bound:

Lemma 1. The prediction rule in Algorithm 1 achieves

riskT,K,C ≤ (2C + 1) · logK + 2C.

Proof. The proof follows a similar argument to that in [16],
with the key difference being that the losses are real instead of
binary. For any time step t, we define the following potential:

Et =
∑
k∈St

max

{
0, 2C −

t−1∑
i=1

ℓi[k]

}
,

where St is defined in Algorithm 1. Let Nt = |St| and Dt =∑
k∈St ℓt[k]. The true expected loss is given by

E[ℓt[k̂t]] =
Dt

Nt
,

where k̂t is sampled as described in Step 5 of Algorithm 1.
We now observe the following key property:

Dt ≤ Nt −Nt+1 + Et − Et+1.

To see this, note that for any k ∈ St, either k is removed from
St, contributing at most Nt −Nt+1 to Dt; or its contribution
to Dt is upper bounded by the difference Et−Et+1. Here, the
second assertion uses the fact that if an expert is not removed
from St, its true cumulative loss must be upper bounded by
2C due to the constraint (3).

We now observe that
T∑

t=1

E[ℓt[k̂t]] ≤
T∑

t=1

Nt −Nt+1

Nt
+

T∑
t=1

Et − Et+1

Nt

≤ (2C + 1)

T∑
t=1

Nt −Nt+1

Nt
+ 2C

≤ (2C + 1) logK + 2C,

where the second inequality follows from the facts that Et ≤
2C ·Nt and Nt ≥ Nt+1, and the final inequality follows from
a standard argument as in [10, Thm 2] or [16, Thm 3].

While the prediction rule of Algorithm 1 may appear simple,
the following lemma shows that its risk is, up to a constant
factor, the best we can hope for from any algorithm.

Lemma 2. For any prediction rule p̂T and any parameters
T,K,C satisfying T ≥ C · logK, we have

riskT,K,C ≥ 1
2C · (logK − 1).

Proof. Our goal is to construct hard instances ℓT , ℓ̃T using
a probabilistic argument. We partition the time horizon into



Algorithm 1 Elimination-based Algorithm
1: Input: Threshold C > 0, number of experts K, time

horizon T
2: Initialize S0 ← [K] {Start with all experts}
3: for t = 1, 2, . . . , T do
4: Sample k̂t ∼ p̂t where p̂t[k] :=

1
|St| for k ∈ St

5: Predict using expert k̂t
6: Observe the noisy loss vector ℓ̃t ∈ [0, 1]K

7: Update cumulative noisy loss for all experts:

L̃t
k ←

t∑
s=1

ℓ̃s[k] for k ∈ St

8: Update the set of surviving experts:

St+1 ← {k ∈ St : L̃t
k ≤ C}

9: end for

logK epochs, each of size C (with the other T − C logK
positions padded with 0 losses). Here, we assume logK is an
integer; otherwise, we use the largest power of 2, K ′, such that
logK ′ ≥ logK − 1. For each epoch j ∈ [logK], we maintain
a random expert class Sj ⊂ [K] with |Sj | = K

2j . To construct
this, we first select S0 := [K] and sample Sj+1 as a random
subset of Sj such that |Sj+1| = |Sj |/2 for all j ≥ 0.

Having constructed the sets Sj , we define the true and noisy
losses as follows. For any time step t in epoch j:

• ℓt[k] = 0 if k ∈ Sj and ℓt[k] = 1 otherwise;
• ℓ̃t[k] = 0 if k ∈ Sj−1 and ℓ̃t[k] = 1 otherwise.

It is straightforward to verify that both constraints (2) and (3)
are satisfied by this construction. This is because any expert
accumulates discrepancies between the true and noisy losses
only within a single epoch, and each epoch has size C.

Now, consider any prediction rule. At each epoch j ≤ logK,
the predictor must choose k̂t ∈ Sj−1, otherwise the true loss
is 1. Moreover, since the noisy losses are 0 for all k ∈ Sj−1,
the predictor gains no information about Sj during epoch
j. Therefore, the expected error at every step, taken over the
randomness of both Sj and the predictor’s internal randomness,
is at least 1

2 (since |Sj | = |Sj−1|/2).
This implies that the expected cumulative risk is at least

1
2C · logK, since the predictor incurs an expected error of 1/2
at every step, and by the linearity of expectation. The lemma
then follows from the fact that there must exist realizations
ℓT , ℓ̃T that achieve this expected cumulative risk bound.

The proof of Theorem 1 then follows directly from Lemma 1
and Lemma 2.

V. PROOF OF THEOREM 2

The upper bound follows from the standard Exponential
Weighted Average (EWA) algorithm (Algorithm 2), but with a
substantially more complicated analysis.

Lemma 3. Taking η = 1 in Algorithm 2, the EWA predictor
achieves

riskT,K,C ≤ O(C2 + C logK),

where O hides absolute constant independent of T,K,C.

Proof. The proof follows from a careful definition of a
potential that controls the risk on the true losses. For any
k ∈ [K], we define

Ct
k = max

{
0, C −

t∑
i=1

|ℓ̃i[k]− ℓi[k]|

}
,

as the remaining "budget" of expert k at time step t. We define
the following potential:

Et =

K∑
k=1

(Ct
k + 2)wt

k,

where wt
k is the weight for expert k at time step t as in

Algorithm 2. Our goal is to relate the change of the potential
with the expected error incurred by the predictor.

For any k ∈ [K] and t ∈ [T ], we claim that

(Ct+1
k + 2)wt+1

k ≤ (Ct
k + 2)wt

k − ℓt[k] · wt
k.

To see this, if ℓ̃t[k] ≥ ℓt[k], then wt+1
k ≤ e−ℓt[k]wt

k. Therefore,

(Ct+1
k + 2)wt+1

k ≤ (Ct
k + 2)e−ℓt[k]wt

k

= (Ct
k + 2)wt

k − (Ct
k + 2)(1− e−ℓt[k])wt

k

≤ (Ct
k + 2)wt

k − ℓt[k] · wt
k,

where the second inequality follows by that Ct
k + 2 ≥ 2 and

1 − e−x ≥ x
2 for x ∈ [0, 1]. If ℓ̃t[k] ≤ ℓt[k], we denote

etk = ℓt[k]− ℓ̃t[k] as the "budget" used by expert k at step t.
We have

(Ct+1
k + 2)wt+1

k = (Ct
k + 2− etk)e

−ℓt[k]+etkwt
k

(a)

≤ max
x∈[0,ℓt[k]]

{
(Ct

k + 2− x)e−ℓt[k]+xwt
k

}
(b)

≤ (Ct
k + 2)wt

k − ℓt[k]w
t
k

where (a) follows since the function f(x) = (Ct
k + 1 −

x)e−ℓt[k]+x has critical point x = C + 1 ≥ ℓt[k], i.e.,
the maximum must be attained at boundary x ∈ {0, ℓt[k]}.
For x = 0, inequality (b) reduces to our previous case for
ℓ̃t[k] ≥ ℓt[k]; for x = ℓt[k] the inequality (b) follows trivially.

Putting everything together, we have shown that

Et+1 ≤ Et −
∑

k∈[K]

ℓt[k]w
t
k.

Note that errt :=
∑

k∈[K] ℓt[k]w
t
k∑

k∈[K] w
t
k

is precisely the expected error
at step t incurred by Algorithm 2. We have

Et+1 ≤ Et − errt ·
∑

k∈[K]

wt
k

≤ Et −
errt

C + 2
Et

=

(
1− errt

C + 2

)
Et,



where the second inequality follows by definition of Et and
the fact that Ct

k ≤ C. This implies that

ET+1 ≤ E1

T∏
t=1

(
1− errt

C + 2

)
≤ E1e

− 1
C+2

∑T
t=1 errt .

Finally, we note that E1 = (C + 2)K and ET+1 ≥ e−C (via
constrains (2) and (3)). This implies
T∑

t=1

errt ≤ (C+2) (log((C + 2)K) + C) ≤ O(C2+C logK).

This completes the proof.

Algorithm 2 EWA algorithm with Noisy Losses
1: Input: Learning rate η > 0, number of experts K, time

horizon T
2: Initialize weights w1

k ← 1 for all k ∈ [K]
3: for t = 1, 2, . . . , T do
4: Compute probability distribution over experts:

p̂t[k]←
wt

k∑K
j=1 w

t
j

for k ∈ [K]

5: Sample k̂t from the distribution p̂t
6: Predict using expert k̂t
7: Observe the noisy loss vector ℓ̃t ∈ [0, 1]K

8: Update weights for all experts:

wt+1
k ← wt

k · exp(−ηℓ̃t[k]) for k ∈ [K]

9: end for

Quite surprisingly, we can show that the C2 dependency is
necessary for the EWA algorithm. This contrast substantially
with the O(C logK) risk achieved by Algorithm 2.

Lemma 4. For any given η > 0, K ≥ C and T ≤ C2, the
risk incurred by Algorithm 2 satisfies

riskT,K,C ≥ Ω

(
max

{
C logK,

ηC2

logK

})
.

Proof. The Ω(C logK) lower bound follows from Lemma 2,
as it holds for any algorithm. To prove the second lower bound,
we construct specific hard true and noisy losses, ℓT and ℓ̃T ,
that attain the claimed lower bound. We partition the time
horizon into C epochs, each of size C, and define the losses
during each epoch j as follows:

• First Epoch (j = 1):
– True Loss: All experts incur a loss of 0, i.e., ℓt[k] = 0

for all k ∈ [K].
– Noisy Loss: All experts except k = 1 incur a loss of
0, i.e., ℓ̃t[k] = 0 for k ̸= 1, and ℓ̃t[1] = 1.

• Subsequent Epochs (j ≥ 2):
– Initial Time Steps (t ≤ logK

η ):
∗ True Loss: Expert k = 1 incurs no loss (ℓt[1] = 0),

while all other experts incur a loss of 1 (ℓt[k] = 1
for k ̸= 1).

∗ Noisy Loss: Experts k = 1 and k = j incur no loss
(ℓ̃t[k] = 0 for k ∈ {1, j}), while all other experts
incur a loss of 1 (ℓ̃t[k] = 1 for k /∈ {1, j}).

– Remaining Time Steps (t > logK
η ):

∗ True Loss: Expert k = j incurs a loss of 1 (ℓt[j] =
1), while all other experts incur a loss of 0 (ℓt[k] = 0
for k ̸= j).
∗ Noisy Loss: All experts incur a loss of 0, i.e., ℓ̃t[k] =
0 for all k ∈ [K].

It is easy to verify that expert k = 1 satisfies the constraint
(2), and for any k ̸= 1, the constraint (3) is satisfied since the
discrepancy only occurs at epoch j = k by construction, and
the epoch length is C.

We now observe the following key properties of the
construction:

1. The weight for expert k = 1 satisfies wt
1 = e−ηC for all

time steps t ≥ C.
2. At the beginning of any epoch j ≥ 2, we have wt

k =
e−(j−1) logK . After the initial logK

η steps, the weight be-
comes wt

k = e−j logK for all k /∈ {1, j}, and for k = j, we
have wt

j = e−(j−1) logK .
For any epoch j ≤ ηC

logK , during the initial logK
η time steps,

we have ∑
k≥2

wt
k ≥ e−(j−2) logK ≥ e−ηC = wt

1.

This implies, by our construction of true losses and the
definition of the EWA prediction rule, that the expected loss
is ≥ 1

2 . Moreover, at any time step t > logK
η during epoch j,

we have ∑
k ̸=j

wt
k ≤ Ke−j logK = e−(j−1) logK = wt

j .

Therefore, the expected loss incurred by EWA remains ≥ 1
2 .

Since each epoch has C time steps, the cumulative expected
risk is lower bounded by

1

2

ηC2

logK

for the first ηC
logK epochs. This completes the proof.

Taking η = 1, we obtain the lower bound

Ω

(
max

{
C logK,

C2

logK

})
.

This matches the O(C2 +C logK) upper bound upto only an
logK factor. For instance, if we take K,C = Tα for some
α ≤ 1

2 , the risk of EWA algorithm with η = 1 satisfies

riskT,K,C = Θ̃(T 2α),

where Θ̃ hides only an log T factor. This differs substantially
the Θ̃(Tα) risk achieved in Theorem 1.

Problem 1 (Open Problem). Is Ω(C2) a lower bound for any
algorithm without knowing C? Can we get better risk via EWA
algorithm with smarter (adaptive) choice of η?
Acknowledgment. This work is partially supported by NSF Grant CCF-
0939370, CCF-2006440 and and CCF-2211423.
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