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Deletion Channel

A deletion channel with parameter d:

input: a binary sequence x := xn
1 = x1 · · · xn,

channel: deletes each symbol independently with probability d,

output: a subsequence Y = Y (x) = xi1
...xiM

of x;

M follows the binomial distribution Bi(n, (1 − d)) and indices i1, ..., iM
correspond to undeleted bits.



Deletion Channel

A deletion channel with parameter d:

input: a binary sequence x := xn
1 = x1 · · · xn,

channel: deletes each symbol independently with probability d,

output: a subsequence Y = Y (x) = xi1
...xiM

of x;

M follows the binomial distribution Bi(n, (1 − d)) and indices i1, ..., iM
correspond to undeleted bits.

The channel capacity is

C(d) = lim
n→∞

1

n
sup
PXn

1

I(X
n
1 ;Y (X

n
1 )),

where I(Xn
1 ;Y (Xn

1 )) is the mutual information between the input and

output of the deletion channel.



Hidden Pattern Matching & Deletion Channel

Let w = w1w2 . . . wm ∈ {0, 1}m, m ≤ n, be a given binary sequence

and Ωx(w) be the number of occurrences of w as a subsequence (not

consecutive symbols) in x := xn
1 :

Ωx(w) =
∑

1≤i1<i2<···<im≤n

I[xi1
=w1]

I[xi2
=w2]

· · · I[xim=wm],

where IA = 1 if A is true and zero otherwise.

Example. Word date occurs four times in hidden pattern.

This problem is known as the hidden pattern matching problem studied in

Flajolet, W.S., and Vallee, (2006) and Bourdon and Vallee, (2008).
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Ωx(w) =
∑

1≤i1<i2<···<im≤n

I[xi1
=w1]

I[xi2
=w2]

· · · I[xim=wm],

where IA = 1 if A is true and zero otherwise.

Example. Word date occurs four times in hidden pattern.

This problem is known as the hidden pattern matching problem studied in

Flajolet, W.S., and Vallee, (2006) and Bourdon and Vallee, (2008).

Our first main result shows a relation between the mutual information and

Ωx(w).
Theorem 1. For any random input Xn

1 , the mutual information satisfies

I(Xn
1 ;Y (Xn

1 ))=
∑

w

dn−|w|(1 − d)|w|
(

E[ΩXn
1
(w)log ΩXn

1
(w)]

− E[ΩXn
1
(w)] logE[ΩXn

1
(w)]

)

.



Hidden Pattern Matching – Fixed m

For fixed m (fixed pattern) and memoryless sources the problem was studied

by Flajolet, Vallee and W.S. (2001, 2006).

Proposition 1 (Flajolet, W.S., Vallee, 2006). The mean and the variance are:

E[Ωn(w)] =
(n

m

)

P (w) ∼
P (w)

m!
n

m

(

1 + O(
1

n
)

)

,

Varn[Ωn(w)] =
P 2(w)

(2m − 1)!
κ
2
(w) · n

2m−1

(

1 + O(
1

n
)

)

,

where

κ
2
(w) :=

∑

1≤r,s≤m

(r + s − 2

r − 1

)(2m − r − s

m − r

)

I(wr = ws)

(

1

P (wr)
− 1

)

.

Furthermore, for any fixed x

Ωn(w) − E[Ωn(w)]
√

Var[Ωn(w)]
→ N(0, 1)

where N(0, 1) is the standard normal distribution.

Bourdon and Vallee (2008) extended it to dynamic sources (e.g., Markov).



Hidden Pattern Matching – Large m

Let now assume that m = θn, θ = 1 − d, and p = P (1).
For memoryless sources (with parameter p) we know that

E[Ωn(w)] =
(n

m

)

P (w)

and for a typical w we have: E[Ωn(w)] ∼ 2n(H(θ)−θH(p)),
where H(x) is the binary entropy. Notice that E[Ωn(w)] may exponentially

increase or decrease depending whether H(θ) − θH(p) > 0 or not.
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For memoryless sources (with parameter p) we know that

E[Ωn(w)] =
(n

m

)

P (w)

and for a typical w we have: E[Ωn(w)] ∼ 2n(H(θ)−θH(p)),
where H(x) is the binary entropy. Notice that E[Ωn(w)] may exponentially

increase or decrease depending whether H(θ) − θH(p) > 0 or not.

Variance. In general,

Var[Ωn(w)] =
m
∑

k=1

( n

2m − k

)

P 2(w)κ2(w)

where

κ2(w) =
∑

1 ≤ r1 < · · · rk ≤ m
1 ≤ s1 < · · · sk ≤ m

(r1 + s1 − 2

r1 − 1

)(r2 − r1 + s2 − s1 − 2

r2 − r1 − 1

)

· · ·
(2m − rk − sk

m − rk

)

·

·
k
∏

i=1

I(wri = wsi)

(

1

P (wr1 · · ·wrk
)
− 1

)



Some Additional Observations

1. For special patterns we can estimate asymptotically the variance. For

example for w = 0m we we have

P

(

Ωn(0
m
) =

(n − k

m

)

)

=
(n

k

)

p
k
(1 − p)

n−k

and then

Var[Ωn(0
m
)] ∼ E[Ω

2
n(0

m
)] ∼ 2

nβ((1−d)p)

where with θ = (1 − d) and

β(θ, p) = (2(q+θp−δ)H(θ/(q+θp−δ))+H((1−θ)p+δ)+((1−θ)p+δ) log p+(q+θp−δ)



Some Additional Observations

1. For special patterns we can estimate asymptotically the variance. For

example for w = 0m we we have

P

(

Ωn(0
m
) =

(n − k

m

)

)

=
(n

k

)

p
k
(1 − p)

n−k

and then

Var[Ωn(0
m
)] ∼ E[Ω

2
n(0

m
)] ∼ 2

nβ((1−d)p)

where with θ = (1 − d) and

β(θ, p) = (2(q+θp−δ)H(θ/(q+θp−δ))+H((1−θ)p+δ)+((1−θ)p+δ) log p+(q+θp−δ)

2. When E[Ωn(w)] → ∞ we have

E[Ωn(w) log Ωn(w)] − E[Ωn(w)] logE[Ωn(w)] ∼
Var[Ωn(w)]

2E[Ωn(w)]

which can be used to estimate the mutual information, if one knows how to

compute the variance.



Proof of Theorem 1

We use I(X; Y ) = H(Y ) − H(Y |X). Notice that

P (Y (Xn
1 ) = w|Xn

1 = xn
1) = Ωn(w)dn−|w|(1 − d)|w|

P (Y = w) =
∑

x∈An

P (X = x)Ωn(w)dn−|w|(1 − d)|w|.

Hence

H(Y ) = −
∑

w

d
n−|w|

(1−d)
|w|

(E[ΩX(w)] logE[ΩX(w)]+E[ΩX(w)] log(d
n−|w|

(1−d)
|w|

)).

Since P (x, y) = P (x)Ωx(y)d
n−m(1 − d)m also have

H(Y |X) = −
∑

w

dn−|w|(1−d)|w| (E[ΩX(w) log ΩX(w)]+E[ΩX(w)] log dn−|w|(1−d)|w|)

and the proof is complete.
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(E[ΩX(w)] logE[ΩX(w)]+E[ΩX(w)] log(d
n−|w|

(1−d)
|w|

)).

Since P (x, y) = P (x)Ωx(y)d
n−m(1 − d)m also have

H(Y |X) = −
∑

w

dn−|w|(1−d)|w| (E[ΩX(w) log ΩX(w)]+E[ΩX(w)] log dn−|w|(1−d)|w|)

and the proof is complete.

Note. It is easy to see that

I(X
n
1 ;Y (X

n
1 )) ≤ n(1 − d)

and hence C(d) ≤ 1 − d.



Memoryless Sources

From now on we assume that the source is memoryless over A = {0, 1} with

p = P (1) and q = 1 − p. Extension to Markov sources possible.

Define

S1 =
∑

w

dn−|w|(1 − d)|w|
E[ΩXn

1
(w) log ΩXn

1
(w)],

S2 =
∑

w

dn−|w|(1 − d)|w|
E[ΩXn

1
(w)] logE[ΩXn

1
(w)],

so that I((Xn
1 ;Y (Xn

1 )) = S1(X
n
1 , Y (Xn

1 )) − S2(X
n
1 , Y (Xn

1 )) := S1 − S2.

Furthermore, let

I(d, p) = lim
n→∞

1

n
I(X

n
1 ;Y (X

n
1 ))

λ(d, p) = lim
n→∞

1

n
S1(X

n
1 , Y (Xn

1 )).



Second Main Result

Theorem 2. The limit I(d, p) and λ(d, p) exist and

lim
n→∞

1

n
S2(X

n
1 , Y (X

n
1 )) = H(1 − d) − (1 − d)H(p)

as well as

I(d, p) = λ(d, p) + (1 − d)H(p) − H(1 − d).

Furthermore,

I(d, p) = inf
n≥1

1

n
I(X

n
1 ;Y (X

n
1 ))

λ(d, p) = sup
n≥1

1

n
S1(X

n
1 , Y (Xn

1 ))

where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.
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Theorem 2. The limit I(d, p) and λ(d, p) exist and

lim
n→∞

1

n
S2(X

n
1 , Y (X

n
1 )) = H(1 − d) − (1 − d)H(p)

as well as

I(d, p) = λ(d, p) + (1 − d)H(p) − H(1 − d).

Furthermore,

I(d, p) = inf
n≥1

1

n
I(X

n
1 ;Y (X

n
1 ))

λ(d, p) = sup
n≥1

1

n
S1(X

n
1 , Y (Xn

1 ))

where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.

Thus, I(d, p) ≤ 1
nI(X

n
1 ;Y (Xn

1 )) for all n ≥ 1. In particular,

I(d, p) ≤ (1 − d)H(p),

I(d, p) ≤ d(1 − d)(H(p) + p2 + q2 − 1) + (1 − d)2H(p),



Special Cases: d → 1 and d → 0

Theorem 3. As d → 1

I(d, p) ≤ K(1 − d)
4/3

log
1

1 − d

where the constant K > 0 is absolute.

Note. The capacity C(d) = Θ(1 − d) but it cannot be achieved by a

memoryless source.
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Theorem 4. As d → 0,

I(d, p) ≥ (1− d)H(p) + d log d− d log(e) + d(q2f(p) + p2f(p)) +O
(

d2−ε
)

where f(x) =
∑

ℓ≥2 x
ℓ ℓ log ℓ. Furthermore, as d → 0,

I(d, p) ≤ H(p) + d log d + O(d log log(1/d)).
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Theorem 3. As d → 1

I(d, p) ≤ K(1 − d)
4/3

log
1

1 − d

where the constant K > 0 is absolute.

Note. The capacity C(d) = Θ(1 − d) but it cannot be achieved by a

memoryless source.

Theorem 4. As d → 0,

I(d, p) ≥ (1− d)H(p) + d log d− d log(e) + d(q
2
f(p) + p

2
f(p)) +O

(

d
2−ε
)

where f(x) =
∑

ℓ≥2 x
ℓ ℓ log ℓ. Furthermore, as d → 0,

I(d, p) ≤ H(p) + d log d + O(d log log(1/d)).

We can recover (a weaker) Kanoria & Montanari result

C(d) = I(d, 0.5) + O(d
3/2−ε

) = 1 + d log d − Ad + O(d
2−ε

)

where A = log(2e) −
∑

ℓ≥1 2
−ℓ−1ℓ log ℓ.

Note that symmetric memoryless distribution is asymptotically optimal.



Proof of Theorem 2

1. We first observe that

Ω
xn+k
1

(w) =
∑

w1w2=w

Ωxn1
(w1)Ωxn+k

n+1
(w2),

for any xn+k ∈ An+k.

2. Then we establish subadditivity property of the mutual information

I(X
n+k
1 ;Y (X

n+k
1 )) ≤ I(X

n
1 ;Y (X

n
1 )) + I(X

k
1 ;Y (X

k
1 )).

This follows from 1 above and

M
∑

m=1

zm log

∑M
m=1 zm

∑M
m=1 am

≤
M
∑

m=1

zm log
zm

am

.

By Fekete’s lemma we then have

I(d, p) = inf
n≥1

1

n
I(X

n
1 ;Y (X

n
1 )).



Proof of Theorem 2

3. It is easy to see that (E[Ωn(w)] =
(n
m

)

P (w))

S2 =
∑

w

dn−|w|(1−d)|w|
E[ΩXn

1
(w)] logE[ΩXn

1
(w)] ∼ n·(H(1 − d) − (1 − d)H(p)) .

4. Let an = S1(X
n
1 , Y (Xn

1 )). Then we can prove superadditivity property of

an, that is

an+k ≥ an + ak

which immediately implies that

0 ≤ λ(d, p) := sup
n≥1

an

n
≤ H(1 − d).

This completes the proof of Theorem 2.



Proof of Theorem 3

1. Recall that

I(X; Y )=
∑

w∈{0,1}n

dn−|w|(1−d)|w|
(

E[ΩXn
1
(w)log ΩXn

1
(w)]−E[ΩXn

1
(w)] logE[ΩXn

1
(w)]

)

.

We compute now the sum for all words w of length |w| = 1 and |w| ≥ 2. For

example, if w = 0 and if X = Xn
1 = 0m1n−m, then ΩX(w) = m

2. Let T1 be the above sum for |w| = 1 (i.e, w = 0 or w = 1). We have

T1 :=dn−1(1 − d)

(

n
∑

m=1

mlogm
(n

m

)(

pmqn−m+pn−mqm
)

)

− d
n−1

(1 − d) (np log(np) + nq log(nq))

But logm = log(np) + log
(

1 + m−np
np

)

≤ log(np) + m−np
np , thus

n
∑

m=1

m logm
(n

m

)

p
m
q
n−m

≤ log(np)np +
npq

np
= np log(np) + q.

Summing up T1 ≤ dn−1(1 − d) ≤ (1 − d).



Proof of Theorem 3

3. Now consider |w| ≥ 2 and use ΩX(w) ≤
( n
|w|

)

. Then it contributes to T2

T2 ≤ 2
n
∑

ℓ=2

dn−ℓ(1 − d)ℓ
(n

ℓ

)

log
(n

ℓ

)

≤ 2dn logn
n(1 − d)

d

(

en(1−d)/d − 1
)

thus T2 ≤ C1n
2(1 − d)2 log n.

4. Summing up

I(d, p) ≤
1

n
I(Xn

1 ;Y (Xn
1 )) ≤

1 − d

n
+ C1n(1 − d)2 logn.

Set now n = ⌊(1 − d)−1/3⌋ we arrive at

I(d, p) ≤ K (1 − d)
4/3

log
1

1 − d

which completes the proof.



Sketch of Proof for Theorem 4

1. Recall that an = S1(X, Y ) and we lower bound it by considering only

words |w| = n − 1 so that

S1 ≥ d(1 − d)n−1
∑

|w|=n−1

E[ΩX(w) log ΩX(w)].
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1. Recall that an = S1(X, Y ) and we lower bound it by considering only

words |w| = n − 1 so that

S1 ≥ d(1 − d)n−1
∑

|w|=n−1

E[ΩX(w) log ΩX(w)].

2. We consider w = 0i11j10i21j2 · · · 0iK1jK of length n − 1. Then Ωn(w) = ℓ

iff exists r such that

ir = ℓ − 1 and X = 0i11j1 · · · 1jr−10ir+11jr · · · 0iK1jK (missing 0ir1jr)

or

jr = ℓ − 1 and X = 0i11j1 · · · 0ir1jr+10ir+1 · · · 0iK1jK (missing 1jr0ir+1)

This leads to

∑

|w|=n−1

E[ΩX(w) log ΩX(w)] =
∑

ℓ≥2

ℓ log ℓ
∑

|w|=n−1

P (w)
∑

r≥1

(pI[ir(w)=ℓ−1]+qI[jr(w)=ℓ−1]).

3. Since
∑

r≥1(pI[ir(w)=ℓ−1] + qI[jr(w)=ℓ−1]) ∼ npq
(

ppℓ−2q + qqℓ−2p
)

we

conclude that

∑

|w|=n−1

E[ΩX(w) log ΩX(w)] ∼ n
∑

ℓ≥2

ℓ log ℓ
(

pℓq2 + qℓp2
)

= n
(

q2f(p) + p2f(q)
)

.



That’s IT


