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Deletion Channel

A deletion channel with parameter d:

.IHH — 00101{}1 _}‘ PELETTON CILANNICL —> Y(If ) o II.I -"Ir'.- .= 0011

deleton :
T & M ~ Bi (n,1-d)
input: a binary sequence x := x| = x1 - - - Ty,
channel: deletes each symbol independently with probability d,
output: a subsequenceY =Y (x) = Ti ... iy, Of z;

M follows the binomial distribution Bi(n, (1 — d)) and indices 44, ..., iy
correspond to undeleted bits.
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deleton :
T & M ~ Bi (n,1-d)
input: a binary sequence x := x| = x1 - - - Ty,
channel: deletes each symbol independently with probability d,
output: a subsequenceY =Y (x) = Ti ... iy, Of z;

M follows the binomial distribution Bi(n, (1 — d)) and indices 44, ..., iy
correspond to undeleted bits.

The channel capacity is

1
C(d) = lim —sup I(X{; Y (X)),
TLPX{L

where I(X;Y(X7{)) is the mutual information between the input and
oufput of the deletion channel,



Hidden Pattern Matching & Deletion Channel

let w = wiws...w, € {0,1}™", m < n, be a given binary sequence
and Q,(w) be the number of occurrences of w as a subsequence (not
consecufive symbols) in z := z7:

Qm’(w) — Z I[xi1=w1]1[$i2=w2] e I[.’Eimzwm]7

1<y <9< <im<n
whereI4 = 1 if A is true and zero otherwise.
Example. Word date occurs four fimes in hidden pattern.

This problem is known as the hidden pattern matching problem studied in
Flgjolet, W.S., and Vallee, (2006) and Bourdon and Vallee, (2008).
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1<y <9< <im<n
whereI4 = 1 if A is true and zero otherwise.
Example. Word date occurs four fimes in hidden pattern.

This problem is known as the hidden pattern matching problem studied in
Flgjolet, W.S., and Vallee, (2006) and Bourdon and Vallee, (2008).

Our first main result shows a relation between the mutual information and
Q. (w).
Theorem 1. Ffor any random input X', the mutual information satisfies

I(XT5Y (X)) =3 d" (1 = )" (Bl (w)log Qxp(w)]

— E[Qyp(w)] log E[2xp(w)]) .



Hidden Pattern Matching - Fixed m

For fixed m (fixed pattern) and memoryless sources the problem was studied
by Flgjolet, Vallee and W.S. (2001, 2006).

Proposition 1 (Flgjolet, W.S., Vallee, 2006). The mean and the variance are:

Bionw)] = (1) Pw) ~ S (1+00).
Var, 2, (w)] (2: (_wi)!m?(w) a7 (1+06)).
where
R (w) = 1<§<m (" ji; 2) (Qmm_j; DL (P(iur) - 1) '

Furthermore, for any fixed x

Q,(w) — E[Q(w)]
v/ Var([Q, (w)]

where N (0, 1) is the standard normal distribution.

— N(0,1)

Bourdon and Vallee (2008) extended it to dynamic sources (e.g., Markov).



Hidden Pattern Matching - Large m

Let now assume thatm = 6n, 0 =1 — d,and p = P(1).
For memoryless sources (with parameter p) we know that

BQu(w)] = () P(w)

and for a typical w we have: E[Q,(w)] ~ 2nHO-0HP)
where H (x) is the binary entropy. Notice that E[2,,(w)] may exponentially
increase or decrease depending whether H(0) — 6 H(p) > 0 or noft.
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For memoryless sources (with parameter p) we know that

BQu(w)] = () P(w)

and for a typical w we have: E[Q,(w)] ~ 2nHO-0HP)
where H (x) is the binary entropy. Notice that E[2,,(w)] may exponentially
increase or decrease depending whether H(0) — 6 H(p) > 0 or noft.

Variance. In general,

Var[Q, (w)] = f: ( )PQ(w)H}Q(w)

k=1

%Q(w) _ Z (T1+81—2)<T2—T1—|—82—81—2).“(2m—’l“k—8k).

ry — 1 ro —11 — 1 m — T




Some Additional Observations

1. For special patterns we can estimate asymptotically the variance. For
example for w = 0™ we we have

(0= (") = (-

Var[Q2,,(0™)] ~ E[Qi(gm)] ~ 9nB((1=d)p)
where with 8 = (1 — d) and

and then

B(0,p) = (2(q+0p—06)H (0/(q+0p—3))+H((1—-0)p+6)+((1—0)p+3) log p+(q+60p—3)
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and then
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2. When E[Q,(w)] — oo we have

Var|[Q,, (w)]
2E[Q, (w)]

E[Q,(w) log n(w)] — E[Qn(w)] log E[Q2,(w)] ~

which can be used to estimate the mutual informmation, if one knows how 1o
compute the variance.



Proof of Theorem 1

Weuse I(X;Y)= H(Y) — H(Y|X). Notice that

P(Y/(X]) =w|X! =a}) = Qu(w)d" " (1-d)"!
P(Y=w) = > P(X=z)Qw)d" "@1-da"
re AN
Hence

H(Y) ==Y d" " @a-a)" (B[Qx(w)] log E[Qx (w)] +E[Qx (w)] log(d" " (1—a)!""))

Since P(xz,y) = P(x)Q.(y)d""™(1 — d)™ also have

H(Y|X) ==Y d" "(1-a)" (B[Qx(w) log Qx (w)] +E[Qx (w)] log d"~ " (1—a)""")

and the proof is complete.
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and the proof is complete.

Note. It is easy to see that
[(X]5Y (X)) < n(l - d)

and hence C(d) < 1 — d.



Memoryless Sources

From now on we assume that the source is memoryless over A = {0, 1} with
p = P(1) and ¢ = 1 — p. Extension to Markov sources possible.

Define

1= _d" (1 = d)"E[Qxp(w) log Qxp(w)),
So = d" "1 = )" E[Qxp (w)] log E[Qxp (w)],

sothat 7((X7; V(X)) = S1(X™, Y (X)) — So( X", V(X)) := S; — So.

Furthermore, let

1

I(d,p) = lim —I(X{;Y(X]))
n—oo N,

1 n n

n—oo M,



Second Main Result

Theorem 2. The limit I(d, p) and A(d, p) exist and

lim ng(X{L, Y (X)) =HQ1 —d)—(1—d)H(p)

n—oo N,
as well as
Furthermore,
1
I(d,p) = inf —I(X[;Y(X]))
n>1n

1 n n
sup —S1 (X, Y (X))
n>1 M

A(d, p)

where H(p) = —plogp — (1 — p) log(1 — p) is the binary enfropy function.
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Theorem 2. The limit I(d, p) and A(d, p) exist and

lim ng(X{L, Y (X)) =HQ1 —d)—(1—d)H(p)

n—oo n,
as well as
Furthermore,
1
I(d,p) = inf —I(X[;Y(X]))
n>1n

1 n n
sup —S1 (X, Y (X))
n>1 M

A(d, p)

where H(p) = —plogp — (1 — p) log(1 — p) is the binary enfropy function.
Thus, I(d,p) < LI(X7; Y (X])) foralln > 1. In particular,

I(d,p) < (1 —d)H(p),
I(d,p) < d(1 —d)(H(p)+p°+q¢°— 1)+ (1 —d)*H(p),



Special Cases: d - 1and d — 0

Theorem 3. Asd — 1

1

I(d,p) < K(1—d)"*log ——

where the constant K > 0 is absolute.

Note. The capacity C(d) = ©(1 — d) but it cannot be achieved by a
memoryless source.
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memoryless source.

Theorem 4. Asd — 0,
I(d,p) > (1 —d)H(p) +dlogd — dlog(e) +d(q°f(p) +p°f(p)) + O (dH)
where f(z) = >,., " £log L. Furthermore, as d — 0,

I(d,p) < H(p) + dlogd + O(dloglog(1/d)).
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Theorem 3. Asd — 1

1
1—d

I(d,p) < K(1—d)""log

where the constant K > 0 is absolute.

Note. The capacity C(d) = ©(1 — d) but it cannot be achieved by a
memoryless source.

Theorem 4. Asd — 0,
I(d,p) > (1 —d)H(p) +dlogd — dlog(e) +d(¢’f(p) +p f(p)) + O (d2—5>
where f(z) = 3., x' £1log L. Furthermore, asd — 0,

I(d,p) < H(p) + dlogd + O(dloglog(1/d)).

We can recover (a weaker) Kanoria & Montanari result
C(d) = 1(d,0.5) + O(d** ) =1+ dlogd — Ad + O(d*™)

where A = log(2e) — > ,, 2 " 2log 2.
Note that sysnmetric memoryless distribution is asymptotically optimal.



Proof of Theorem 2

1. We first observe that

Qm?-l-k(w): Z Qm?(wl)an+llﬂ(w2)7
n+

wywo=w

forany z" % € A",

2. Then we establish subadditivity property of the mutual information
I(XTTH Y (X)) < I(X5 V(X)) 4+ HIXT Y (XT)).

This follows from 1 above and

= St - Zm
sz log —; < sz log —.

m=1 Zmzl Am, m=1

By Fekete’s lemmma we then have

1
I(d,p) = inf —I(X|; Y(X/)).
n>1mn



Proof of Theorem 2

3. Itis easy o see that (E[Q,(w)] = () P(w))

Sy = > d" M (1—d) " E[Quxp (w)] log E[Qxp (w)] ~ n-(H(1 — d) — (1 — d)H(p))

4. Let a, = S1(X{, Y (X7)). Then we can prove superadditivity property of
an,., thatis

nik = An + ag
which immediately implies that

An
0 < A(d,p) :=sup — < H(1 —d).
n>1 M

This completes the proof of Theorem 2.



Proof of Theorem 3

1. Recall that

1(X;)= 3 d" M(a-a)" (ElQxp(w)log Qyp(w)] — E[Qxp(w)] log E[Qxp(w)])
we{0,1}7

We compute now the sum for all words w of length |w| = 1 and |w| > 2. For
example,ifw =0andif X = X" = 0"1""", then Qx(w) = m

2. Let T be the above sum for |w| =1 (i.e, w = 0 orw = 1). We have

Ty :=d" (1 - d)( n mlogm(;) (pmq”_erp”_mqm))
1

m=

— d"_l(l — d) (nplog(np) + nglog(nq))

But log m = log(np) + log (1 n mn;;p) < log(np) + ™=, thus
- n m_n—m npq
Zmlogm( )p q""" < log(np)np + — = nplog(np) + q.
m=1 m np

Summingup T, < d" 11 —d) < (1 —d).



Proof of Theorem 3

3. Now consider |w| > 2 and use Qx(w) < (|,,). Then it contributes fo T

T, <2 g; d" (1 = d)* (Z) log (Z) < 2d" log nn(ld_ 4) (en(l_d)/d - 1)

thus T, < Cin*(1 — d)?log n.

4. Summing up
1 " " 1—d 9
I(d,p) < =I(X5Y(X])) < ——+ Cin(1l — d)” logn.
n n

Setnow n = | (1 — d)"'/?| we arrive at

1

I(d,p) < K (1 —d)*log ——

which completes the proof.



Sketch of Proof for Theorem 4

1. Recall that a,, = S1(X,Y) and we lower bound it by considering only
words |w| = n — 1 so that

Sy >d(1—d)"" D E[Qx(w)logQx(w)].

|w|=n—1



Sketch of Proof for Theorem 4

1. Recall that a,, = S1(X,Y) and we lower bound it by considering only
words |w| = n — 1 so that

Sp>d(1—d)"" D E[Qx(w)logQx(w)].

|w|=n—1

2. We consider w = 0117102172 . . . 0'K 17K of length n — 1. Then Q,,(w) = ¢
iff exists r such that

ir=¢—1 and X =01191...19r-10"rF1Jr . Q'K 1IK  (missing 07" 177)
or
je=/—1 and X = 0°1191...0"1/r+gir+1. .. 0K 17K (missing 17701
This leads to

Z E[Qx(w) log Qx(w)] = Zélogé Z P(w) Z(pI[ir(w)zﬂ—l]"'qI[jr(w)zé—1])-

|w|=n—1 0>2 |w|=n—1 r>1

2

3. Since 37, (P uy=t-1) + @lyjp(uy=e—1)) ~ npq (pp' g +aqq" ’p) we

conclude that

> E[Qx(w)log Qx(w)] ~n > llog/ (p£q2 + q£p2) =n (q2f(p) + p2f(q)) -

|w|=n—1 1>2



That’s IT




