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Some Definitions

A block code
Cn : An → {0, 1}∗

is an injective mapping from the set An of all sequences xn
1 = x1 . . . xn of

length n over the alphabet A to the set {0, 1}∗ of binary sequences.

For a given source P, the pointwise redundancy and the average
redundancy are defined as respectively

Rn(Cn, P ; x
n
1 ) = L(Cn) + lg P (x

n
1 )

R̄n(Cn, P ) = EXn
1
[Rn(Cn, P ; X

n
1 )]

= E[L(Cn, X
n
1 )] − Hn(P )

where L(Cn, xn
1) is the code length,

Hn(P ) = −Pxn
1

P (xn
1 ) the source entropy,

and E denotes the expectation,



Prefix Codes

Usually, we deal with prefix codes which are defined as those in which
there is no codeword being a prefix of another codeword.
Prefix codes do satisfy Kraft’s inequality:P

xn
1
2−L(xn

1 ) ≤ 1.

Shannon Lower Bound:
For any prefix code

E[L(Cn, X
n
1 )] ≥ Hn(P ).

Indeed, let K =
P

xn
1
2−L(xn

1 )
Kraft

≤ 1.

E[L(Cn, X
n
1 )] − Hn(P ) =

=
X

xn
1∈An

P (x
n
1 )L(x

n
1 ) +

X
xn
1∈An

P (x
n
1 ) log P (x

n
1 )

=
X

xn
1∈An

P (x
n
1 ) log

P (xn
1 )

2−L(xn
1 )/K

− log K

≥ 0

since the first term is a divergence and cannot be negative (or log x ≤
x − 1 for 0 < x ≤ 1).



Redundancy for Prefix Codes

Throughout this talk we assume that the source P is given and is binary
memoryless with probability p for transmitting a 0. That is, P (xn

1 ) = pk(1 −
p)n−k where k is the number of 0’s.

Let

α = log2

„
1 − p

p

«
, β = log2

„
1

1 − p

«
.

and 〈x〉 = x − bxc be the fractional part of x.

Redundancy of the Shannon-Fano Code:

R̄SF
n =

8<
:

1
2 + o(1) α irrational

1
2 − 1

M

`〈Mnβ〉 − 1
2

´
+ O(ρn) α = N

M , gcd(N, M) = 1

Redundancy of the Huffman Code:

R̄H
n =

8><
>:

3
2 − 1

log 2 + o(1) ≈ 0.057304 α irrational

3
2 − 1

M

`〈βMn〉 − 1
2

´− 1

M(1−2−1/M )
2−〈nβM〉/M + O(ρn) α = N

M

where N, M are integers such that gcd(N, M) = 1 and ρ < 1.



Oscillations
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Figure 1: Shannon–Fano code redundancy
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Figure 2: Huffman’s code redundancy versus block size n for: (a) irrational
α = log2(1 − p)/p with p = 1/π; (b) rational α = log2(1 − p)/p with
p = 1/9.



One-to-One Codes

One-to-One codes are not prefix codes.

In one-to-one codes a distinct codeword is assigned to each source
symbol and unique decodability is not required. Such codes are usually
one shot codes and there is one designated an “end of message”
channel symbol.

Wyner in 1972 proved that
L ≤ H(X),

which was further improved by Alon and Orlitsky who showed

L ≥ H(X) − log(H(X) + 1) − log e.

Can we establish more precise bounds?
Where are the oscillations observed in prefix codes?



Block One-to-One Codes

We consider a block one-to-one code for
xn

1 = x1 . . . xn ∈ An generated by a memoryless source with p being the
probability of generating a 0 and q = 1 − p.

We write P (xn
1 ) = pkqn−k, where

k is the number of 0s. Throughout we assume p ≤ q.

We now list all 2n probabilities in a nonincreasing order and assign code
lengths as follows

qn
“

p
q

”0

≥ qn
“

p
q

”1

≥ . . . ≥ qn
“

p
q

”n

blog2(1)c blog2(2)c . . . blog2(2
n)c



Average Code Length

There are
`n

k

´
equal probabilities pkqn−k.

Define
Ak =

“n

0

”
+
“n

1

”
+ · · · +

“n

k

”
, A−1 = 0.

Starting from the position Ak−1 the next
`n

k

´
probabilities P (xn

1 ) are the
same.
The average code length is

Ln =
nX

k=0

p
k
q

n−k

AkX
j=Ak−1+1

blog2(j)c

=

nX
k=0

p
k
q

n−k

(n
k)X

i=1

blog2(Ak−1 + i)c.

Our goal is to estimate Ln asymptotically for large n.



An Ugly Sum

To evaluate the inner part of the sum for Ln we apply the following identity
(cf. Knuth Ex. 1.2.4-42)

NX
j=1

aj = Nan −
N−1X
j=1

(aj+1 − aj)

for any sequence aj. Then

Ln =

nX
k=0

“n

k

”
p

k
q

n−kblog2 Akc

−
nX

k=0

“n

k

”
p

k
q

n−k
2
−〈log2 Ak〉

+
nX

k=0

“n

k

”
pkqn−k1 + Ak−1`n

k

´ „
log2

„
1 +

“n

k

”
A−1

k−1

«

+〈log2 Ak−1〉 − 〈log2 Ak〉)

− 2
nX

k=0

“n

k

”
pkqn−kAk−1`n

k

´ “2−〈log2 Ak〉 − 4 · 2−〈log2 Ak−1〉
”

where 〈x〉 = x − bx〉 is the fractional part of x.



Main Result

Theorem 1. Consider a binary memoryless source and the one-to-one
block code described above. Then for p < 1

2

Ln = nH(p) − 1

2
log2 n − 1 − 1

2 ln 2
+ log2

1 − p

(1 − 2p)
√

pqπ

+
1 − p

1 − 2p
log2

2 − 3p

1 − p
+

5 − 4p

1 − 2p

„
1

2 ln 2
+ G(n)

«
+ F (n) + o(1)

where H(p) = −p log2 p − (1 − p) log2(1 − p), and G(n) = F (n) = 0
if log2

1−p
p is irrational. If log2

1−p
p = N/M for some integers M, N such

that gcd(N, M) = 1, then G(n) and F (n) are oscillating functions of
complicated nature. For example, F (n) is equal to

1

M
√

2π

Z ∞

−∞
e−x2/2

 *
M

 
nβ − log

„
1 − 2p

1 − p

p
2πpqn

«
− x2

2 ln 2

!+
− 1

2

!
dx

where β = − log2(1 − p).

For p = 1
2, then

Ln = nH(1/2) − 1 + 2−n(n − 2)

for every n ≥ 1.



Oscillations
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Figure 3: The “constant” part of the average anti-redundancy versus n for:
(a) irrational α = log2(1−p)/p with p = 1/π; (b) rational α = log2(1−p)/p

with p = 1/9.

Anti-redundancy Rn = Ln − nH(p) for our one-to-one code is

R̄n = −1

2
log n + O(1)

where the O(1) terms contains oscillations.



Sketch of Proof

1. We only deal with the sum

Sn =
nX

k=0

“n

k

”
pkqn−kblog2 Akc

=

nX
k=0

“n

k

”
p

k
q

n−k
log2 Ak

−
nX

k=0

“n

k

”
p

k
q

n−k〈log2 Ak〉

= an + bn

where

an =

nX
k=0

“n

k

”
p

k
q

n−k
log2 Ak,

bn =
nX

k=0

“n

k

”
pkqn−k〈log2 Ak〉.



Asymptotics of An

2. We need the saddle point approximation of An.
Lemma 1. For large n and p < 1/2

Anp =
1 − p

1 − 2p

1p
2πnp(1 − p)

2nH(p)
“
1 + O(n−1/2)

”
.

More precisely, for an ε > 0 and k = np + Θ(n1/2+ε) we have

Ak =
1 − p

1 − 2p

1p
2πnp(1 − p)

„
1 − p

p

«k 1

(1 − p)n

× exp

 
− (k − np)2

2p(1 − p)n

!“
1 + O(n−δ)

”

for some δ > 0.

Proof. Notice that

An(z) =
nX

k=0

Akz
k

=
(1 + z)n − 2nzn+1

1 − z
.

and apply the saddle point method to the Cauchy formula.



Binomial Distribution Approximation

3. Using Stirling’s approximation we find a good approximation for the
binomial distribution.

Lemma 2. Let pn(k) =
`n

k

´
pkqn−k where q = 1 − p be the binomial

distribution. Then for |k − pn| ≤ n1/2+ε we have

pn(k) =
1p

2πp(1 − p)n
exp

 
− (k − pn)2

2p(1 − p)n

!
+ O(n−δ)

uniformly as n → ∞. Furthermore

X
|k−np|>√

npn1/2+ε

pn(k) < 2n−εe−n2ε/2

for large n.



Asymptotics of an

4. From above lemmas we find

log Ak = log Anp + α(k − np) − (k − np)2

2pqn ln 2
+ O(n

−δ
).

and then
an = log Anp − 1

2 ln 2
+ O(n−δ)

which is the desired result.



Returning to bn

5. Recall we need asymptotics of

bn =

nX
k=0

“n

k

”
p

k
q

n−k〈log2 Ak〉.

From previous lemmas we conclude that

log Ak = αk + nβ − log2 ω
√

n − (k − np)2

2pqn ln 2
+ O(n−δ)

for some ω > 0.
Thus we need asymptotics of the following sum

nX
k=0

“n

k

”
p

k
q

n−k

*
αk + nβ − log2 ω

√
n − (k − np)2

2pqn ln 2

+
.



Final Lemma

6. To complete we need the following lemma.
Lemma 3. Let 0 < p < 1 be a fixed real number and f : [0, 1] → R be a
Riemann integrable function.

(i) If α is irrational, then

lim
n→∞

nX
k=0

“n

k

”
p

k
(1 − p)

n−k
f
“D

kα + y − (k − np)
2
/(2pqn ln 2)

E”

=

Z 1

0

f(t) dt,

where the convergence is uniform for all shifts y ∈ R.



Continue ...

(ii) Suppose that α = N
M is a rational number with integers N, M such that

gcd(N, M) = 1. Then uniformly for all y ∈ R

nX
k=0

“n

k

”
p

k
(1 − p)

n−k
f
“D

kα + y − (k − np)
2
/(2pqn ln 2)

E”

=

Z 1

0

f(t) dt + HM(y)

where

HM(y) :=
1

M

1√
2π

∞Z
−∞

e−x2/2

 *
M

 
y − x2

2 ln 2

!+

−
Z 1

0

f(t) dt

«
dx

is a periodic function with period 1
M .


