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Overview

I What is Machine Learning?
- Inductive inference, generalizability, relation to other fields

I Basic Concepts in Learning Theory
- Hypothesis space, concept classes
- Realizable vs. agnostic learning

I The Online Learning Framework
- Learning from expert advice
- The halving algorithm
- Exponentially Weighted Average algorithm

Recommend textbooks:
1. “Understanding Machine Learning: From Theory to Algorithms”, by S.
Shalev-Shwartz and S. Ben-David
2. “Prediction, Learning, and Games”, by N. Cesa-Bianchi and G. Lugosi
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What is Machine Learning?

“Machine Learning is the process of programming computers to auto-
matically convert experience (training data) into expertise or knowledge
(a model) that can perform tasks with broader generalization.”

I Core objective: Build models that generalize from a limited dataset to
unseen data

- A successful learner should be able to predict on new examples
I Generalizability is the key feature that distinguishes a learning system from

one that simply memorizes the training data
- Learning should be able to extract common patterns from the data

I The core problem of machine learning is to understand when generalization
is possible and how to achieve it in an automatic and efficient way

- This automatic procedure is referred to as learning rules
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Types of Learning Paradigms

Depending on how the data are generated and how one leverages the learned
model, learning can be roughly classified into the following categories:

I Supervised vs. Unsupervised: Supervised learning uses training data with
human annotation (such as labels) that is missing in test data, while
unsupervised learning makes no distinction between training and test data

I Passive vs. Active: Passive learning simply observes data provided by the
environment, while active learning interacts with the environment to acquire
specific information to improve learning

I Online vs. Batch: In online learning, the learner makes decisions and
updates model continuously with new data, whereas in batch learning, it
processes all data at once before applying the acquired expertise

These paradigms are not mutually exclusive and can interact in complex ways.
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Machine Learning vs. traditional Statistics?

I Assumptions on Data Models:
- The primary goal of machine learning is to make predictions on unseen data,

with minimal assumptions on the ground truth data generation mechanism

- Statistics primarily focuses on inferences (parameters, properties, etc.) of
certain prescribed data models, such as the Gaussian distribution

I Modeling of Hypotheses:
- Machine learning typically uses complex models, such as neural networks, to

capture patterns in data

- Statistics focuses on simpler models, such as linear regression

I Algorithmic Consideration:
- Machine learning focuses heavily on computational efficiency and often

optimizes models on large datasets

- Statistics tends to prioritize analytical solutions, relying on simple data
models where computational complexity is typically less emphasized
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Basic Concepts in Learning Theory

Let X be an instance space (or feature space), and Y be a label space (or
outcome space). A prediction rule (or model) is defined as a function

h : X → Y.

We denote YX as the class of all predictors from X → Y.

I A learning rule is a function

Φ : (X × Y)∗ → YX ,

which takes a training set as input and outputs a predictor from X → Y.
I A hypothesis class H ⊂ YX is a set of predictors that the learning rule Φ

explores during training.
- E.g., a class of functions represented by a neural network architecture

correspond to different weights.

I A concept class C ⊂ YX is the set of all possible target predictors that
describe the true relationships in the data.

- Typically depends on learner’s prior knowledge on the learning target.
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Basic Concepts in Learning Theory

Let C be a concept class and H be a hypothesis class for a particular learning
problem.

I We say the problem is realizable if C ⊂ H, i.e., every target predictor must
be within the hypothesis class

I The problem is agnostic if the concept class C is completely unconstrained,
in other words, we take C := YX

- Note that, there can also be intermediate scenarios between the realizable
and agnostic learning paradigms

I We will only consider the realizable vs. agnostic dichotomy in our entire
lectures, so that we do not explicitly refer to the concept class

- Therefore, our following discussions will focus only on the hypothesis classes

I We will also sometimes relax the outputs of the learner Φ to be outside of
the hypothesis class H, a scenario called improper learning

- We refer the case when the outputs of Φ are restricted to H as proper learning
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The Online Learning Game

For t = 1, 2, · · · ,T
1. Nature/Environment presents an instance xt ∈ X
2. Learner predicts a label ŷt ∈ Y
3. Nature reveals true label yt ∈ Y
4. Learner suffers loss `(ŷt , yt), for certain function ` : Y × Y → R

Goal: Finding a learning rule Φ that minimizes the risk

riskT (Φ) :=

T∑
t=1

`(ŷt , yt)
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Cover’s Impossibility Result

Take Y := {0, 1} and let `(ŷ , y) := 1{ŷ 6= y}. Then, riskt(Φ) reduces to the
number of mistakes made by Φ in predicting the yt ’s.

Let Φ be any learning rule. Consider the following simple strategy for Nature:

? At each time step t, after the learner makes the prediction ŷt , Nature
adversarially chooses yt ∈ Y such that yt 6= ŷt .

The number of mistakes made by the learner equals T , i.e., the learner errs at
every step. (This fact is attributed to T. M. Cover in a 1965 paper.)

Corollary: Any learning rule Φ cannot achieve a mistake bound better than T .

What’s the catch? No prior knowledge about the learning target was used!
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Incorporating Prior Knowledge: Realizable Case

Let H := {h1, · · · , hK} ⊂ YX be a hypothesis class, and assume that Nature’s
strategy is realizable, i.e., there exists an h ∈ H such that

For all t ≤ T , h(xt) = yt .

The Consistent Predictor:
1. At each time step t, find any consistent hypothesis ĥt ∈ H (which must

exist due to realizability) such that:

t−1∑
i=1

1{ĥt(xi) 6= yi} = 0.

2. Make the prediction: ŷt = ĥt(xt).

How many mistakes will we make? Each mistake will eliminate at least one
function from H, so the total number of mistakes is upper bounded by |H|...

In fact, the consistent predictor cannot do better than |H| mistakes.
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Proving the |H| Lower Bound

Consider the following hypothesis class:

x1 x2 x3 x4 · · ·
h0 0 0 0 0 · · ·
h1 1 0 0 0 · · ·
h2 0 1 0 0 · · ·
h3 0 0 1 0 · · ·
h4 0 0 0 1 · · ·
...

...
...

...
...

. . .

I Assume that h0 is the ground truth predictor.
I At each time step t, both ht and h0 are consistent with the prior data.
I Consider a consistent predictor that always selects ht to make predictions at

step t, which will incur at least |H| mistakes.

Corollary: In the worst-case scenario, a consistent predictor cannot achieve a
mistake bound better than |H|.
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Incorporating Prior Knowledge: Realizable Case

How can we go beyond the |H| mistake bound barrier?

? Find a smarter way to eliminate the hypothesis in H...

The halving predictor:
1. Maintain a running hypothesis class H(t) with H(0) := H
2. At each time step t, we define for y ∈ {0, 1}

H(t)
y = {h ∈ H(t−1) : h(xt) = y}.

3. Predict ŷt = arg maxy∈{0,1}{|H(t)
0 |, |H(t)

1 |}

4. Let yt be true label, update H(t) = H(t)
yt

How many mistakes do we make?
X Every time a mistake happen (i.e., ŷt 6= yt), we have |H(t)| ≤ |H(t−1)|/2
X Total number of mistakes upper bounded by log |H| (an exponential

improvement over the |H| bound!)
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Incorporating Prior Knowledge: Agnostic Case

Both the consistent and halving predictors rely heavily on the assumption that
the data is realizable, i.e., there exists h ∈ H that is consistent with all the
data...

A single mismatch between the true data and the best hypothesis in H will cause
both predictors to catastrophically fail (prove it!).

Can we develop an algorithm that is robust to potential noise?
I Clearly, an absolute mistake bound is not very informative.

I Instead, we consider guarantees relative to the minimal mistakes achievable
by a hypothesis in H.

I Let M̂T :=
∑T

t=1 1{ŷt 6= yt} be the number of mistakes made by a
predictor Φ, and M∗

T := infh∈H
∑T

t=1 1{h(xt) 6= yt} be the minimal
number of mistakes achievable by any hypothesis in H.

I We define the α-agnostic regret as (for α > 0):

regα
T (Φ,H) := M̂T − αM∗

T .
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The Exponential Weighted Average Algorithm

Let H := {h1, · · · , hK} be any finite hypothesis class of size K .

The (deterministic) Exponential Weighted Average (EWA) Algorithm:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, compute the weighted average:

p̂t =
K∑

k=1

w(t−1)
k∑K

k=1 w(t−1)
k

hk(xt).

3. Make prediction ŷt = 1{p̂t ≥ 1
2
}, i.e., we predict the weighted-majority.

4. Update w(t)
k = w(t−1)

k if hk(xt) = yt ; and w(t)
k = (1− η)w(t−1)

k if
hk(xt) 6= yt , where η ≤ 1 is a tunable parameter.

Theorem 1: Regardless of how Nature generates the data, the (deterministic)
EWA algorithm Φ enjoys the mistake bound:

M̂T ≤ 2(1 + η)M∗
T +

2 ln(|H|)
η

⇒reg2
T (Φ,H) ≤ O(

√
M∗

T log |H|).
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4. Update w(t)
k = w(t−1)

k if hk(xt) = yt ; and w(t)
k = (1− η)w(t−1)

k if
hk(xt) 6= yt , where η ≤ 1 is a tunable parameter.

Theorem 1: Regardless of how Nature generates the data, the (deterministic)
EWA algorithm Φ enjoys the mistake bound:

M̂T ≤ 2(1 + η)M∗
T +

2 ln(|H|)
η

⇒reg2
T (Φ,H) ≤ O(

√
M∗

T log |H|).
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Proof of the Regret Bound

For any t, we define the potential W (t) =
∑K

k=1 w(t)
k with W (0) = K .

For any time step t, we denote It := {k ∈ [K ] : hk(xt) = yt} and Jt := [K ]\It .

If ŷt 6= yt , then
∑

k∈Jt
w(t−1)

k ≥
∑

k∈It w(t−1)
k due to the weighted-majority.

Therefore, for any step t where a mistake occurs, we have:

W (t) =

K∑
k=1

w (t)
k = (1− η)

∑
k∈Jt

w(t−1)
k︸ ︷︷ ︸

A

+
∑
k∈It

w(t−1)
k︸ ︷︷ ︸

B

(F)

≤
(
1− η

2
+

1

2

)
W (t−1),

where step (F) follows from A + B = W (t−1), A ≥ B, and (1− η) ≤ 1.

Applying these inequalities for all T steps, we get

(1− η)M∗
T ≤ W (T) ≤ W (0)

(
1− η

2

)M̂T
≤ K ·

(
1− η

2

)M̂T
.

Taking the natural logarithm ln on both sides and noting that for all η < 1
2
,

ln(1− η) ≥ −η − η2 and ln(1− η/2) ≤ − η
2

, we complete the proof.
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Minimizing α in Regret
We have shown that the (deterministic) EWA algorithm achieves sub-linear
α-agnostic regret for α = 2.

Can we do better for smaller α?
I Not really! In fact, α = 2 is the minimal value required to achieve sub-linear

α-agnostic regret for any deterministic predictor.
I To see this, consider the hypothesis class H := {h0, h1}, where h0 labels

every instance as 0 and h1 labels every instance as 1.
- An adversary, as in Cover’s impossibility result, can force M̂T = T .
- Moreover, the minimal achievable mistake M∗

T is upper-bounded by T/2.
- Therefore, any α-agnostic sub-linear regret must have α ≥ 2.

Homework: Consider the empirical risk minimization (ERM) predictor:

Predicts ŷt = ĥt(xt) such that ĥt = arg min
h∈H

t−1∑
i=1

1{h(xi) 6= yi}.

Show that the ERM predictor achieves M̂T ≤ (M∗
T + 1) · |H|, and this is optimal

for certain classes H. (Hint: each hypothesis contributes ≤ M∗
T + 1 mistakes.)
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Achieving α = 1 via Randomized predictors

We now show that for randomized predictors, one can indeed achieves the
α-agnostic regret with α = 1.

Let H = {h1, · · · , hK}.

The (randomized) EWA predictor:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, sample k̂t ∼ p̃t and predict ŷt := hk̂t

(xt) where

∀k ∈ [K ], p̃t [k] =
w(t−1)

k∑K
k=1 w(t−1)

k

.

3. Update w(t)
k = w(t−1)

k e−η1{hk(xt)6=yt}, where η < 1 is tunable.

Theorem 2: Regardless of how Nature generates the data, as long as the
selection is independent to the internal randomness of the predictor, we have

EŷT

[ T∑
t=1

1{ŷt 6= yt}

]
≤ M∗

T +
ln(|H|)

η
+

ηT
8

⇒reg1
T ≤ O(

√
T log |H|).
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Preparing for the Proof: Hoeffding’s Lemma

Hoeffding’s Lemma: Let X be a random variable with a ≤ X ≤ b. Then for
any s ∈ R, we have

lnE[esX ] ≤ sE[X ] +
s2(b − a)2

8
.

Sketch of Proof: Note that lnE[esX ] = sE[X ] + lnE[es(X−E[X ])], so we only
need to consider the case where E[X ] = 0. Observe that for all a ≤ x ≤ b, we
have

esx ≤ x − a
b − a esb +

b − x
b − a esa,

by Jensen’s inequality and the convexity of esx over x (verify it!). Taking
expectation over x ∼ X on both sides and using E[X ] = 0, the right-hand side
can be expressed as a function of s. The lemma follows by Taylor expansion of
this function up to the second order (verify it!).
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by Jensen’s inequality and the convexity of esx over x (verify it!).

Taking
expectation over x ∼ X on both sides and using E[X ] = 0, the right-hand side
can be expressed as a function of s. The lemma follows by Taylor expansion of
this function up to the second order (verify it!).
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Proving the Regret Bound of Randomized EWA

We again define the potential W (t) =
∑K

k=1 w(t)
k .

Observe that:

ln W (t)

W (t−1)
= ln

K∑
k=1

w(t−1)
k

W (t−1)
e−η1{hk(xt)6=yt}

(F)

≤ −η

K∑
k=1

w(t−1)
k

W (t−1)
1{hk(xt) 6= yt}+

η2

8

(??)
= −ηEŷt [1{ŷt 6= yt}] +

η2

8
,

where (F) follows by Hoeffding’s lemma (verify it!) and (??) follows from the
definition of ŷt . Summing from t = 1 to T , we get:

−ηM∗
T ≤ ln W (T) ≤ −ηEŷT

[ T∑
t=1

1{ŷt 6= yt}

]
+

η2T
8

+ ln |H|.

The regret bound follows by rearranging the inequality.
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1{ŷt 6= yt}

]
+

η2T
8

+ ln |H|.

The regret bound follows by rearranging the inequality.



21/23

Proving the Regret Bound of Randomized EWA

We again define the potential W (t) =
∑K

k=1 w(t)
k . Observe that:

ln W (t)

W (t−1)
= ln

K∑
k=1

w(t−1)
k

W (t−1)
e−η1{hk(xt)6=yt}

(F)

≤ −η

K∑
k=1

w(t−1)
k

W (t−1)
1{hk(xt) 6= yt}+

η2

8

(??)
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= −ηEŷt [1{ŷt 6= yt}] +

η2

8
,

where (F) follows by Hoeffding’s lemma (verify it!) and (??) follows from the
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EWA Algorithm for General Losses

Let Y = [0, 1] and H ⊂ [0, 1]X be a finite hypothesis class of size K . Let
` : Y × Y → [0, 1] be a loss function that is convex in its first argument.

The (generalized) EWA predictor:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, predict ŷt :=

∑K
k=1 p̃t [k] · hk(xt), where

∀k ∈ [K ], p̃t [k] =
w(t−1)

k∑K
k=1 w(t−1)

k

.

3. Update w(t)
k = w(t−1)

k e−η`(hk(xt),yt), where η < 1 is a tunable parameter.

Homework: Show that, regardless of how Nature generates the data xT , yT , the
(generalized) EWA algorithm enjoys the following risk bound:

T∑
t=1

`(ŷt , yt) ≤ inf
h∈H

T∑
t=1

`(h(xt), yt) +
ln(|H|)

η
+

ηT
8

.

(Hint: apply Jensen’s inequality at step (??) using the convexity of `.)
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Concluding Remarks

I In this lecture, we only introduced the online learning framework very
informally. For example, we did not explicitly define how Nature’s strategies
are selected, which will be covered in the upcoming lectures.

I Throughout the entire lectures, we will focus solely on online learning with
non-structured experts (i.e., with general hypothesis classes).

I There is also a rich body of literature dealing with structured experts, such
as the Online Convex Optimization (OCO) framework, which we
unfortunately have to omit due to time constraints.

- We refer interested readers to the book: “Introduction to Online Convex
Optimization” by Elad Hazan.


