
1/28

Minimax Value of Online Learning Games: Part I

Changlong Wu & Wojciech Szpankowski

Center for Science of Information
Purdue University

October 21, 2024

2/28

Overview

I Minimax Regret
- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

I Bounding the Minimax Regret: Binary Labels
- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

I The Minimax Theorem
- Proving minimax theorem via EWA algorithm

3/28

Minimax Regret

Let X be an instance space, Y be the label space and Ŷ be a (convex) outcome
space of predictors.

Unlike previous lecture, we define the hypothesis class as H ⊂ ŶX and the
learning rule (possibly improper) as:

Φ : (X × Y)∗ ×X → Ŷ.

For t = 1, 2, · · · ,T
1. Nature/Environment presents an instance xt ∈ X
2. Learner predicts a label ŷt ∈ Ŷ via ŷt := Φ(xt , y t−1)

3. Nature reveals true label yt ∈ Y
4. Learner suffers loss `(ŷt , yt), for certain function ` : Ŷ × Y → R

Goal of Learner: Minimizes regret for the worst Nature.

4/28

Minimax Regret

For any given xT ∈ X and yT ∈ YT , the point-wise regret is defined as

RT (H,Φ, xT , yT) :=
T∑

t=1

`(Φ(xt , y t−1), yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

The worst-case regret for give learning rule Φ is defined as

regT (H,Φ) := sup
xT ,yT

RT (H,Φ, xT , yT)

The minimax regret for a hypothesis class H is defined as

regT (H) := inf
Φ

regT (H,Φ) = inf
Φ

sup
xT ,yT

RT (H,Φ, xT , yT)

Fact 1: The minimax regret satisfies

regT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

[T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]

4/28

Minimax Regret

For any given xT ∈ X and yT ∈ YT , the point-wise regret is defined as

RT (H,Φ, xT , yT) :=
T∑

t=1

`(Φ(xt , y t−1), yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

The worst-case regret for give learning rule Φ is defined as

regT (H,Φ) := sup
xT ,yT

RT (H,Φ, xT , yT)

The minimax regret for a hypothesis class H is defined as

regT (H) := inf
Φ

regT (H,Φ) = inf
Φ

sup
xT ,yT

RT (H,Φ, xT , yT)

Fact 1: The minimax regret satisfies

regT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

[T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]

4/28

Minimax Regret

For any given xT ∈ X and yT ∈ YT , the point-wise regret is defined as

RT (H,Φ, xT , yT) :=
T∑

t=1

`(Φ(xt , y t−1), yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

The worst-case regret for give learning rule Φ is defined as

regT (H,Φ) := sup
xT ,yT

RT (H,Φ, xT , yT)

The minimax regret for a hypothesis class H is defined as

regT (H) := inf
Φ

regT (H,Φ) = inf
Φ

sup
xT ,yT

RT (H,Φ, xT , yT)

Fact 1: The minimax regret satisfies

regT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

[T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]

4/28

Minimax Regret

For any given xT ∈ X and yT ∈ YT , the point-wise regret is defined as

RT (H,Φ, xT , yT) :=
T∑

t=1

`(Φ(xt , y t−1), yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

The worst-case regret for give learning rule Φ is defined as

regT (H,Φ) := sup
xT ,yT

RT (H,Φ, xT , yT)

The minimax regret for a hypothesis class H is defined as

regT (H) := inf
Φ

regT (H,Φ) = inf
Φ

sup
xT ,yT

RT (H,Φ, xT , yT)

Fact 1: The minimax regret satisfies

regT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

[T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]

5/28

Preparing for the Proof: Skolemization

Skolemization: Let A,B be two sets, and F : A × B → R be an arbitrary
function, then

sup
b∈B

inf
a∈A

F (a, b) = inf
g∈G

sup
b∈B

F (g(b), b),

where G := AB is the class of all functions from B → A.

I Define ĝ(b) := arg infa∈A F (a, b) we have

sup
b

inf
a

F (a, b) = sup
b

F (ĝ(b), b) ≥ inf
g

sup
b

F (g(b), b).

I Moreover, let g∗ := arg ming∈G(supb F (g(b), b)) we have

inf
g

sup
b

F (g(b), b) = sup
b

F (g∗(b), b) ≥ sup
b

inf
a

F (a, b).

I Therefore, all inequalities become equality and the result follows.

5/28

Preparing for the Proof: Skolemization

Skolemization: Let A,B be two sets, and F : A × B → R be an arbitrary
function, then

sup
b∈B

inf
a∈A

F (a, b) = inf
g∈G

sup
b∈B

F (g(b), b),

where G := AB is the class of all functions from B → A.

I Define ĝ(b) := arg infa∈A F (a, b) we have

sup
b

inf
a

F (a, b) = sup
b

F (ĝ(b), b) ≥ inf
g

sup
b

F (g(b), b).

I Moreover, let g∗ := arg ming∈G(supb F (g(b), b)) we have

inf
g

sup
b

F (g(b), b) = sup
b

F (g∗(b), b) ≥ sup
b

inf
a

F (a, b).

I Therefore, all inequalities become equality and the result follows.

5/28

Preparing for the Proof: Skolemization

Skolemization: Let A,B be two sets, and F : A × B → R be an arbitrary
function, then

sup
b∈B

inf
a∈A

F (a, b) = inf
g∈G

sup
b∈B

F (g(b), b),

where G := AB is the class of all functions from B → A.

I Define ĝ(b) := arg infa∈A F (a, b) we have

sup
b

inf
a

F (a, b) = sup
b

F (ĝ(b), b) ≥ inf
g

sup
b

F (g(b), b).

I Moreover, let g∗ := arg ming∈G(supb F (g(b), b)) we have

inf
g

sup
b

F (g(b), b) = sup
b

F (g∗(b), b) ≥ sup
b

inf
a

F (a, b).

I Therefore, all inequalities become equality and the result follows.

5/28

Preparing for the Proof: Skolemization

Skolemization: Let A,B be two sets, and F : A × B → R be an arbitrary
function, then

sup
b∈B

inf
a∈A

F (a, b) = inf
g∈G

sup
b∈B

F (g(b), b),

where G := AB is the class of all functions from B → A.

I Define ĝ(b) := arg infa∈A F (a, b) we have

sup
b

inf
a

F (a, b) = sup
b

F (ĝ(b), b) ≥ inf
g

sup
b

F (g(b), b).

I Moreover, let g∗ := arg ming∈G(supb F (g(b), b)) we have

inf
g

sup
b

F (g(b), b) = sup
b

F (g∗(b), b) ≥ sup
b

inf
a

F (a, b).

I Therefore, all inequalities become equality and the result follows.

6/28

Proof of Fact 1

We prove only the case for T = 1 to demonstrate the idea.

Define the function:

F (a, b) := sup
y1

[
`(a, y1)− inf

h∈H
`(h(b), y1)

]
.

Note that:
reg1(H) := inf

Φ
sup

x1
F (Φ(x1), x1).

By Skolemization, we have:

inf
Φ

sup
x1

F (Φ(x1), x1) = sup
x1

inf
ŷ1

F (ŷ1, x1).

Plugging back the expression of F (a, b), we get:

reg1(H) = sup
x1

inf
ŷ1

sup
y1

[
`(ŷ1, y1)− inf

h∈H
`(h(x1), y1)

]
.

6/28

Proof of Fact 1

We prove only the case for T = 1 to demonstrate the idea. Define the function:

F (a, b) := sup
y1

[
`(a, y1)− inf

h∈H
`(h(b), y1)

]
.

Note that:
reg1(H) := inf

Φ
sup

x1
F (Φ(x1), x1).

By Skolemization, we have:

inf
Φ

sup
x1

F (Φ(x1), x1) = sup
x1

inf
ŷ1

F (ŷ1, x1).

Plugging back the expression of F (a, b), we get:

reg1(H) = sup
x1

inf
ŷ1

sup
y1

[
`(ŷ1, y1)− inf

h∈H
`(h(x1), y1)

]
.

6/28

Proof of Fact 1

We prove only the case for T = 1 to demonstrate the idea. Define the function:

F (a, b) := sup
y1

[
`(a, y1)− inf

h∈H
`(h(b), y1)

]
.

Note that:
reg1(H) := inf

Φ
sup

x1
F (Φ(x1), x1).

By Skolemization, we have:

inf
Φ

sup
x1

F (Φ(x1), x1) = sup
x1

inf
ŷ1

F (ŷ1, x1).

Plugging back the expression of F (a, b), we get:

reg1(H) = sup
x1

inf
ŷ1

sup
y1

[
`(ŷ1, y1)− inf

h∈H
`(h(x1), y1)

]
.

6/28

Proof of Fact 1

We prove only the case for T = 1 to demonstrate the idea. Define the function:

F (a, b) := sup
y1

[
`(a, y1)− inf

h∈H
`(h(b), y1)

]
.

Note that:
reg1(H) := inf

Φ
sup

x1
F (Φ(x1), x1).

By Skolemization, we have:

inf
Φ

sup
x1

F (Φ(x1), x1) = sup
x1

inf
ŷ1

F (ŷ1, x1).

Plugging back the expression of F (a, b), we get:

reg1(H) = sup
x1

inf
ŷ1

sup
y1

[
`(ŷ1, y1)− inf

h∈H
`(h(x1), y1)

]
.

6/28

Proof of Fact 1

We prove only the case for T = 1 to demonstrate the idea. Define the function:

F (a, b) := sup
y1

[
`(a, y1)− inf

h∈H
`(h(b), y1)

]
.

Note that:
reg1(H) := inf

Φ
sup

x1
F (Φ(x1), x1).

By Skolemization, we have:

inf
Φ

sup
x1

F (Φ(x1), x1) = sup
x1

inf
ŷ1

F (ŷ1, x1).

Plugging back the expression of F (a, b), we get:

reg1(H) = sup
x1

inf
ŷ1

sup
y1

[
`(ŷ1, y1)− inf

h∈H
`(h(x1), y1)

]
.

7/28

Overview

I Minimax Regret
- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

I Bounding the Minimax Regret: Binary Labels
- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

I The Minimax Theorem
- Proving minimax theorem via EWA algorithm

8/28

Preliminaries

We now consider the case when Y = {0, 1} and Ŷ = [0, 1], and consider also the
specific loss function (i.e., the absolute loss):

`(ŷ , y) = |ŷ − y |.

Observe that |ŷ − y | = Ey′∼Bern(ŷ)[1{y ′ 6= y}], i.e., it measures the expected
miss-classification loss when sampling from a Bernoulli source of parameter ŷ .

Recall from our last lecture:

Theorem 1: For any finite class H ⊂ {0, 1}X , the minimax regret of H under
the absolute loss is upper bounded by

regT (H) ≤ O(
√

T log |H|),

which is achieved by the (generalized) EWA algorithm.

8/28

Preliminaries

We now consider the case when Y = {0, 1} and Ŷ = [0, 1], and consider also the
specific loss function (i.e., the absolute loss):

`(ŷ , y) = |ŷ − y |.

Observe that |ŷ − y | = Ey′∼Bern(ŷ)[1{y ′ 6= y}], i.e., it measures the expected
miss-classification loss when sampling from a Bernoulli source of parameter ŷ .

Recall from our last lecture:

Theorem 1: For any finite class H ⊂ {0, 1}X , the minimax regret of H under
the absolute loss is upper bounded by

regT (H) ≤ O(
√

T log |H|),

which is achieved by the (generalized) EWA algorithm.

8/28

Preliminaries

We now consider the case when Y = {0, 1} and Ŷ = [0, 1], and consider also the
specific loss function (i.e., the absolute loss):

`(ŷ , y) = |ŷ − y |.

Observe that |ŷ − y | = Ey′∼Bern(ŷ)[1{y ′ 6= y}], i.e., it measures the expected
miss-classification loss when sampling from a Bernoulli source of parameter ŷ .

Recall from our last lecture:

Theorem 1: For any finite class H ⊂ {0, 1}X , the minimax regret of H under
the absolute loss is upper bounded by

regT (H) ≤ O(
√

T log |H|),

which is achieved by the (generalized) EWA algorithm.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?

I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

9/28

Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
I Consider the following threshold functions:

Hthres := {ha(x) = 1{x ≥ a} : a, x ∈ [0, 1]}.

I For any learner Φ, consider the following strategy for Nature:
- At every step t, select label yt ∈ {0, 1} such that |yt − ŷt | ≥ 1

2
.

- Select instances from the set of dyadic rationals, starting with x1 = 1
2

and
updating (according to learner’s prediction ŷt−1) as:

xt =

{
xt−1 + 1

2t , if ŷt−1 ≥ 0.5,

xt−1 − 1
2t , else.

I This ensures that:
- The cumulative loss incurred by the learner is at least T/2.

- For all t ≤ T , hxT+1 (xt) = yt , i.e., the hypothesis hxT+1 incurs zero loss.

- Therefore, regT (Hthres) ≥ T/2.

10/28

Demonstration of the Adversarial Process

Let learner’s prediction be {0, 1, 1}, the strategy for Nature goes as follows:

1

2

3

4

7

8

15

16

13

16

5

8

11

16

9

16

1

4

3

8

7

16

5

16

1

8

3

16

1

16

0 1

x1

11/28

Demonstration of the Adversarial Process

Let learner’s prediction be {0, 1, 1}, the strategy for Nature goes as follows:

1

2

3

4

7

8

15

16

13

16

5

8

11

16

9

16

1

4

3

8

7

16

5

16

1

8

3

16

1

16

0 1

x1

x2

12/28

Demonstration of the Adversarial Process

Let learner’s prediction be {0, 1, 1}, the strategy for Nature goes as follows:

1

2

3

4

7

8

15

16

13

16

5

8

11

16

9

16

1

4

3

8

7

16

5

16

1

8

3

16

1

16

0 1

0

x1

x2

x3

13/28

Demonstration of the Adversarial Process

Let learner’s prediction be {0, 1, 1}, the strategy for Nature goes as follows:

1

2

3

4

7

8

15

16

13

16

5

8

11

16

9

16

1

4

3

8

7

16

5

16

1

8

3

16

1

16

0 1

0

0

x1

x2

x3

x4

14/28

Demonstration of the Adversarial Process

Let learner’s prediction be {0, 1, 1}, the strategy for Nature goes as follows:

1

2

3

4

7

8

15

16

13

16

5

8

11

16

9

16

1

4

3

8

7

16

5

16

1

8

3

16

1

16

0 1

0

0

x1

x2

x3

x4

The function hx4(x) := 1{x ≥ 7
16
} consistents with all true labels, but the

learner errs at every step.

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .
I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such

that
∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?

I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .
I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such

that
∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.

I A X -valued binary tree of depth d is defined as τ :
⋃

i≤d{0, 1}
i → X .

I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such
that

∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .

I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such
that

∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .
I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such

that
∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .
I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such

that
∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .
I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such

that
∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

15/28

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.

What intrinsic structure of H leads to this failure?
I Let H ⊂ {0, 1}X be any binary-valued hypothesis class.
I A X -valued binary tree of depth d is defined as τ :

⋃
i≤d{0, 1}

i → X .
I We say τ is shattered by H if for any εd ∈ {0, 1}d , there exists h ∈ H such

that
∀i ≤ d, h(τ(εi−1)) = εi .

I Note that, the tree formed by dyadic rationals is shattered by Hthres.

Fact 2: For any binary-valued class H, if there exists a X -valued binary tree of
depth d that can be shattered by H, then: regT (H) ≥ 1

2
min{d,T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree τ , similar to the threshold function case...

16/28

The Littlestone Dimension

Littlestone Dimension: Let H ⊂ {0, 1}X be a binary-valued hypothesis class.
The Littlestone dimension of H is defined as the maximum number d such that
there exists a X -valued binary tree of depth d that can be shattered by H.

I We will denote Ldim(H) as the Littlestone dimension of H.
I It is clear from our previous slides that regT (H) ≥ 1

2
min{Ldim(H),T}.

I Therefore, the Littlestone dimension forms an intrinsic barrier for the
minimax regret.

Example 1: For the threshold functions Hthres, we have Ldim(Hthres) = ∞.

Example 2: For any finite class H, we have Ldim(H) ≤ log |H| (prove it!).

Example 3: Consider the following indicator functions

Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

Then Ldim(Hind) = 1 (prove it!).

16/28

The Littlestone Dimension

Littlestone Dimension: Let H ⊂ {0, 1}X be a binary-valued hypothesis class.
The Littlestone dimension of H is defined as the maximum number d such that
there exists a X -valued binary tree of depth d that can be shattered by H.

I We will denote Ldim(H) as the Littlestone dimension of H.
I It is clear from our previous slides that regT (H) ≥ 1

2
min{Ldim(H),T}.

I Therefore, the Littlestone dimension forms an intrinsic barrier for the
minimax regret.

Example 1: For the threshold functions Hthres, we have Ldim(Hthres) = ∞.

Example 2: For any finite class H, we have Ldim(H) ≤ log |H| (prove it!).

Example 3: Consider the following indicator functions

Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

Then Ldim(Hind) = 1 (prove it!).

16/28

The Littlestone Dimension

Littlestone Dimension: Let H ⊂ {0, 1}X be a binary-valued hypothesis class.
The Littlestone dimension of H is defined as the maximum number d such that
there exists a X -valued binary tree of depth d that can be shattered by H.

I We will denote Ldim(H) as the Littlestone dimension of H.
I It is clear from our previous slides that regT (H) ≥ 1

2
min{Ldim(H),T}.

I Therefore, the Littlestone dimension forms an intrinsic barrier for the
minimax regret.

Example 1: For the threshold functions Hthres, we have Ldim(Hthres) = ∞.

Example 2: For any finite class H, we have Ldim(H) ≤ log |H| (prove it!).

Example 3: Consider the following indicator functions

Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

Then Ldim(Hind) = 1 (prove it!).

16/28

The Littlestone Dimension

Littlestone Dimension: Let H ⊂ {0, 1}X be a binary-valued hypothesis class.
The Littlestone dimension of H is defined as the maximum number d such that
there exists a X -valued binary tree of depth d that can be shattered by H.

I We will denote Ldim(H) as the Littlestone dimension of H.
I It is clear from our previous slides that regT (H) ≥ 1

2
min{Ldim(H),T}.

I Therefore, the Littlestone dimension forms an intrinsic barrier for the
minimax regret.

Example 1: For the threshold functions Hthres, we have Ldim(Hthres) = ∞.

Example 2: For any finite class H, we have Ldim(H) ≤ log |H| (prove it!).

Example 3: Consider the following indicator functions

Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

Then Ldim(Hind) = 1 (prove it!).

16/28

The Littlestone Dimension

Littlestone Dimension: Let H ⊂ {0, 1}X be a binary-valued hypothesis class.
The Littlestone dimension of H is defined as the maximum number d such that
there exists a X -valued binary tree of depth d that can be shattered by H.

I We will denote Ldim(H) as the Littlestone dimension of H.
I It is clear from our previous slides that regT (H) ≥ 1

2
min{Ldim(H),T}.

I Therefore, the Littlestone dimension forms an intrinsic barrier for the
minimax regret.

Example 1: For the threshold functions Hthres, we have Ldim(Hthres) = ∞.

Example 2: For any finite class H, we have Ldim(H) ≤ log |H| (prove it!).

Example 3: Consider the following indicator functions

Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

Then Ldim(Hind) = 1 (prove it!).

17/28

Upper Bounding Regret via Littlestone Dimension: Realizable case

We have shown that the Littlestone dimension forms a natural lower bound for
the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):
1. Maintain a running hypothesis class H(t), initially H(0) = H.
2. At each time step t, we define, for y ∈ {0, 1}, that

H(t)
y = {h ∈ H(t−1) : h(xt) = y}.

3. Predict ŷt := arg maxy∈{0,1}{Ldim(H(t)
y) : y ∈ {0, 1}}.

4. Let yt be true label, update H(t) = H(t)
yt .

Lemma 1: For any data xT , yT that is realizable w.r.t. a binary-valued class H,
i.e., ∃h∗ ∈ H such that ∀t ≤ T , h∗(xt) = yt , the SOA predictor enjoys the
following mistake bound

T∑
t=1

1{ŷt 6= yt} ≤ Ldim(H).

Proof: Any mistake decreases Littlestone dimension by at least 1 (verify it!)...

17/28

Upper Bounding Regret via Littlestone Dimension: Realizable case

We have shown that the Littlestone dimension forms a natural lower bound for
the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):
1. Maintain a running hypothesis class H(t), initially H(0) = H.
2. At each time step t, we define, for y ∈ {0, 1}, that

H(t)
y = {h ∈ H(t−1) : h(xt) = y}.

3. Predict ŷt := arg maxy∈{0,1}{Ldim(H(t)
y) : y ∈ {0, 1}}.

4. Let yt be true label, update H(t) = H(t)
yt .

Lemma 1: For any data xT , yT that is realizable w.r.t. a binary-valued class H,
i.e., ∃h∗ ∈ H such that ∀t ≤ T , h∗(xt) = yt , the SOA predictor enjoys the
following mistake bound

T∑
t=1

1{ŷt 6= yt} ≤ Ldim(H).

Proof: Any mistake decreases Littlestone dimension by at least 1 (verify it!)...

17/28

Upper Bounding Regret via Littlestone Dimension: Realizable case

We have shown that the Littlestone dimension forms a natural lower bound for
the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):
1. Maintain a running hypothesis class H(t), initially H(0) = H.
2. At each time step t, we define, for y ∈ {0, 1}, that

H(t)
y = {h ∈ H(t−1) : h(xt) = y}.

3. Predict ŷt := arg maxy∈{0,1}{Ldim(H(t)
y) : y ∈ {0, 1}}.

4. Let yt be true label, update H(t) = H(t)
yt .

Lemma 1: For any data xT , yT that is realizable w.r.t. a binary-valued class H,
i.e., ∃h∗ ∈ H such that ∀t ≤ T , h∗(xt) = yt , the SOA predictor enjoys the
following mistake bound

T∑
t=1

1{ŷt 6= yt} ≤ Ldim(H).

Proof: Any mistake decreases Littlestone dimension by at least 1 (verify it!)...

17/28

Upper Bounding Regret via Littlestone Dimension: Realizable case

We have shown that the Littlestone dimension forms a natural lower bound for
the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):
1. Maintain a running hypothesis class H(t), initially H(0) = H.
2. At each time step t, we define, for y ∈ {0, 1}, that

H(t)
y = {h ∈ H(t−1) : h(xt) = y}.

3. Predict ŷt := arg maxy∈{0,1}{Ldim(H(t)
y) : y ∈ {0, 1}}.

4. Let yt be true label, update H(t) = H(t)
yt .

Lemma 1: For any data xT , yT that is realizable w.r.t. a binary-valued class H,
i.e., ∃h∗ ∈ H such that ∀t ≤ T , h∗(xt) = yt , the SOA predictor enjoys the
following mistake bound

T∑
t=1

1{ŷt 6= yt} ≤ Ldim(H).

Proof: Any mistake decreases Littlestone dimension by at least 1 (verify it!)...

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.
- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.
- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.
- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.

- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.
- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.
- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

18/28

The Sequential Covering

Sequential Cover: Let H ⊂ {0, 1}X be a binary-valued class, and G ⊂ {0, 1}X
∗

be a class mapping X ∗ → {0, 1}. We say that the class G sequentially covers H
up to step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , g(xt) = h(xt).

I The functions g ∈ G map finite sequences X ∗ of X to {0, 1}.

I The cover happens locally, depending on any given xT .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on xT as well.

I Infinite classes H can be sequentially covered by a finite class G.
- Consider the class Hind := {ha(x) := 1{x = a} : x , a ∈ [0, 1]}.

- For any i ≤ T , define the sequential function:

gi (xt) =

{
1, if t = i
0, otherwise

.

- The class G := {gi : i ∈ [T]} sequentially covers Hind (prove it!).

19/28

From Mistake Bound to Sequential Cover

Lemma 2: Let H ⊂ {0, 1}X be any binary-valued class. If there exists a
predictor for H that achieves mistake bound errT in the realizable case. Then
there exists a sequential cover G of H up to step T such that

log |G| ≤ log
errT∑
i=0

(
T
i

)
≤ O(errT · log T).

I Let Φ achieves errT mistakes for H in the realizable case.
I For any I ⊂ [T], we recursively define the sequential function

gI(xt) =

{
Φ(xt , gI(x1), · · · , gI(xt−1)), if t 6∈ I
1− Φ(xt , gI(x1), · · · , gI(xt−1)), if t ∈ I

.

I The class G := {gI : I ⊂ [T], |I| ≤ errT} sequentially covers H, since for
any xT and h we can pick I being the time steps where Φ errs...(why?)

I We have |G| ≤
∑errT

i=0

(T
i
)

by counting the size of {I ⊂ [T] : |I| ≤ errT}.

19/28

From Mistake Bound to Sequential Cover

Lemma 2: Let H ⊂ {0, 1}X be any binary-valued class. If there exists a
predictor for H that achieves mistake bound errT in the realizable case. Then
there exists a sequential cover G of H up to step T such that

log |G| ≤ log
errT∑
i=0

(
T
i

)
≤ O(errT · log T).

I Let Φ achieves errT mistakes for H in the realizable case.

I For any I ⊂ [T], we recursively define the sequential function

gI(xt) =

{
Φ(xt , gI(x1), · · · , gI(xt−1)), if t 6∈ I
1− Φ(xt , gI(x1), · · · , gI(xt−1)), if t ∈ I

.

I The class G := {gI : I ⊂ [T], |I| ≤ errT} sequentially covers H, since for
any xT and h we can pick I being the time steps where Φ errs...(why?)

I We have |G| ≤
∑errT

i=0

(T
i
)

by counting the size of {I ⊂ [T] : |I| ≤ errT}.

19/28

From Mistake Bound to Sequential Cover

Lemma 2: Let H ⊂ {0, 1}X be any binary-valued class. If there exists a
predictor for H that achieves mistake bound errT in the realizable case. Then
there exists a sequential cover G of H up to step T such that

log |G| ≤ log
errT∑
i=0

(
T
i

)
≤ O(errT · log T).

I Let Φ achieves errT mistakes for H in the realizable case.
I For any I ⊂ [T], we recursively define the sequential function

gI(xt) =

{
Φ(xt , gI(x1), · · · , gI(xt−1)), if t 6∈ I
1− Φ(xt , gI(x1), · · · , gI(xt−1)), if t ∈ I

.

I The class G := {gI : I ⊂ [T], |I| ≤ errT} sequentially covers H, since for
any xT and h we can pick I being the time steps where Φ errs...(why?)

I We have |G| ≤
∑errT

i=0

(T
i
)

by counting the size of {I ⊂ [T] : |I| ≤ errT}.

19/28

From Mistake Bound to Sequential Cover

Lemma 2: Let H ⊂ {0, 1}X be any binary-valued class. If there exists a
predictor for H that achieves mistake bound errT in the realizable case. Then
there exists a sequential cover G of H up to step T such that

log |G| ≤ log
errT∑
i=0

(
T
i

)
≤ O(errT · log T).

I Let Φ achieves errT mistakes for H in the realizable case.
I For any I ⊂ [T], we recursively define the sequential function

gI(xt) =

{
Φ(xt , gI(x1), · · · , gI(xt−1)), if t 6∈ I
1− Φ(xt , gI(x1), · · · , gI(xt−1)), if t ∈ I

.

I The class G := {gI : I ⊂ [T], |I| ≤ errT} sequentially covers H, since for
any xT and h we can pick I being the time steps where Φ errs...(why?)

I We have |G| ≤
∑errT

i=0

(T
i
)

by counting the size of {I ⊂ [T] : |I| ≤ errT}.

19/28

From Mistake Bound to Sequential Cover

Lemma 2: Let H ⊂ {0, 1}X be any binary-valued class. If there exists a
predictor for H that achieves mistake bound errT in the realizable case. Then
there exists a sequential cover G of H up to step T such that

log |G| ≤ log
errT∑
i=0

(
T
i

)
≤ O(errT · log T).

I Let Φ achieves errT mistakes for H in the realizable case.
I For any I ⊂ [T], we recursively define the sequential function

gI(xt) =

{
Φ(xt , gI(x1), · · · , gI(xt−1)), if t 6∈ I
1− Φ(xt , gI(x1), · · · , gI(xt−1)), if t ∈ I

.

I The class G := {gI : I ⊂ [T], |I| ≤ errT} sequentially covers H, since for
any xT and h we can pick I being the time steps where Φ errs...(why?)

I We have |G| ≤
∑errT

i=0

(T
i
)

by counting the size of {I ⊂ [T] : |I| ≤ errT}.

20/28

Bounding Regret via Littlestone Dimension: Agnostic case

Theorem 2: For any binary-valued class H ⊂ {0, 1}X with finite Littlestone
dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T).

I From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(H) in the realizable case.

I This implies, by Lemma 2, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T).

I Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(

√
T log |G|).

I We have shown a 1
2

min{Ldim(H),T} lower bound (c.f. Fact 2). The lower
bound Ω(

√
Ldim(H) · T) follows from a more technical argument...

20/28

Bounding Regret via Littlestone Dimension: Agnostic case

Theorem 2: For any binary-valued class H ⊂ {0, 1}X with finite Littlestone
dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T).

I From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(H) in the realizable case.

I This implies, by Lemma 2, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T).

I Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(

√
T log |G|).

I We have shown a 1
2

min{Ldim(H),T} lower bound (c.f. Fact 2). The lower
bound Ω(

√
Ldim(H) · T) follows from a more technical argument...

20/28

Bounding Regret via Littlestone Dimension: Agnostic case

Theorem 2: For any binary-valued class H ⊂ {0, 1}X with finite Littlestone
dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T).

I From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(H) in the realizable case.

I This implies, by Lemma 2, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T).

I Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(

√
T log |G|).

I We have shown a 1
2

min{Ldim(H),T} lower bound (c.f. Fact 2). The lower
bound Ω(

√
Ldim(H) · T) follows from a more technical argument...

20/28

Bounding Regret via Littlestone Dimension: Agnostic case

Theorem 2: For any binary-valued class H ⊂ {0, 1}X with finite Littlestone
dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T).

I From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(H) in the realizable case.

I This implies, by Lemma 2, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T).

I Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(

√
T log |G|).

I We have shown a 1
2

min{Ldim(H),T} lower bound (c.f. Fact 2). The lower
bound Ω(

√
Ldim(H) · T) follows from a more technical argument...

20/28

Bounding Regret via Littlestone Dimension: Agnostic case

Theorem 2: For any binary-valued class H ⊂ {0, 1}X with finite Littlestone
dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T).

I From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(H) in the realizable case.

I This implies, by Lemma 2, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T).

I Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(

√
T log |G|).

I We have shown a 1
2

min{Ldim(H),T} lower bound (c.f. Fact 2).

The lower
bound Ω(

√
Ldim(H) · T) follows from a more technical argument...

20/28

Bounding Regret via Littlestone Dimension: Agnostic case

Theorem 2: For any binary-valued class H ⊂ {0, 1}X with finite Littlestone
dimension Ldim(H), the minimax regret of H satisfies

Ω(
√

Ldim(H) · T) ≤ regT (H) ≤ O(
√

Ldim(H) · T log T).

I From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(H) in the realizable case.

I This implies, by Lemma 2, a sequential cover G of size

log |G| ≤ O(Ldim(H) · log T).

I Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(

√
T log |G|).

I We have shown a 1
2

min{Ldim(H),T} lower bound (c.f. Fact 2). The lower
bound Ω(

√
Ldim(H) · T) follows from a more technical argument...

21/28

Preparing for the Proof: Khinchine’s Inequality

Khinchine’s Inequality: Let a1, · · · , aT be real numbers and εT is uniformly
distributed over {−1,+1}T . Then

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ 1√
2

√√√√ T∑
t=1

a2
t

Sketch of Proof: We give a short proof for sup-optimal constant 1/
√
3. By

Hölder’s inequality, we have for any bounded random variable X

E[X2] = E[|X |4/3|X |2/3] ≤ (E[X4])1/3(E[|X |])2/3.

Taking X =
∑T

t=1 atεt , we have

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ (
∑T

t=1 a2
t)

3/2√∑T
t=1 a4

t + 3
∑

i 6=j a2
i a2

j

(?)

≥ 1√
3

√√√√ T∑
t=1

a2
t ,

where (?) follows by
∑T

t=1 a4
t + 3

∑
i 6=j a2

i a2
j ≤ 3(

∑T
t=1 a2

t)
2.

21/28

Preparing for the Proof: Khinchine’s Inequality

Khinchine’s Inequality: Let a1, · · · , aT be real numbers and εT is uniformly
distributed over {−1,+1}T . Then

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ 1√
2

√√√√ T∑
t=1

a2
t

Sketch of Proof: We give a short proof for sup-optimal constant 1/
√
3.

By
Hölder’s inequality, we have for any bounded random variable X

E[X2] = E[|X |4/3|X |2/3] ≤ (E[X4])1/3(E[|X |])2/3.

Taking X =
∑T

t=1 atεt , we have

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ (
∑T

t=1 a2
t)

3/2√∑T
t=1 a4

t + 3
∑

i 6=j a2
i a2

j

(?)

≥ 1√
3

√√√√ T∑
t=1

a2
t ,

where (?) follows by
∑T

t=1 a4
t + 3

∑
i 6=j a2

i a2
j ≤ 3(

∑T
t=1 a2

t)
2.

21/28

Preparing for the Proof: Khinchine’s Inequality

Khinchine’s Inequality: Let a1, · · · , aT be real numbers and εT is uniformly
distributed over {−1,+1}T . Then

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ 1√
2

√√√√ T∑
t=1

a2
t

Sketch of Proof: We give a short proof for sup-optimal constant 1/
√
3. By

Hölder’s inequality, we have for any bounded random variable X

E[X2] = E[|X |4/3|X |2/3] ≤ (E[X4])1/3(E[|X |])2/3.

Taking X =
∑T

t=1 atεt , we have

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ (
∑T

t=1 a2
t)

3/2√∑T
t=1 a4

t + 3
∑

i 6=j a2
i a2

j

(?)

≥ 1√
3

√√√√ T∑
t=1

a2
t ,

where (?) follows by
∑T

t=1 a4
t + 3

∑
i 6=j a2

i a2
j ≤ 3(

∑T
t=1 a2

t)
2.

21/28

Preparing for the Proof: Khinchine’s Inequality

Khinchine’s Inequality: Let a1, · · · , aT be real numbers and εT is uniformly
distributed over {−1,+1}T . Then

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ 1√
2

√√√√ T∑
t=1

a2
t

Sketch of Proof: We give a short proof for sup-optimal constant 1/
√
3. By

Hölder’s inequality, we have for any bounded random variable X

E[X2] = E[|X |4/3|X |2/3] ≤ (E[X4])1/3(E[|X |])2/3.

Taking X =
∑T

t=1 atεt , we have

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ (
∑T

t=1 a2
t)

3/2√∑T
t=1 a4

t + 3
∑

i 6=j a2
i a2

j

(?)

≥ 1√
3

√√√√ T∑
t=1

a2
t ,

where (?) follows by
∑T

t=1 a4
t + 3

∑
i 6=j a2

i a2
j ≤ 3(

∑T
t=1 a2

t)
2.

21/28

Preparing for the Proof: Khinchine’s Inequality

Khinchine’s Inequality: Let a1, · · · , aT be real numbers and εT is uniformly
distributed over {−1,+1}T . Then

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ 1√
2

√√√√ T∑
t=1

a2
t

Sketch of Proof: We give a short proof for sup-optimal constant 1/
√
3. By

Hölder’s inequality, we have for any bounded random variable X

E[X2] = E[|X |4/3|X |2/3] ≤ (E[X4])1/3(E[|X |])2/3.

Taking X =
∑T

t=1 atεt , we have

EεT

∣∣∣∣∣
T∑

t=1

atεt

∣∣∣∣∣ ≥ (
∑T

t=1 a2
t)

3/2√∑T
t=1 a4

t + 3
∑

i 6=j a2
i a2

j

(?)

≥ 1√
3

√√√√ T∑
t=1

a2
t ,

where (?) follows by
∑T

t=1 a4
t + 3

∑
i 6=j a2

i a2
j ≤ 3(

∑T
t=1 a2

t)
2.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

22/28

Proof of Lower Bound

We first prove a simpler Ω(
√

T) lower bound and assume that |H| ≥ 2.

Taking any x ∈ X such that there exist h0, h1 ∈ H so that hi(x) = i .

We now select yT uniformly over {0, 1}T and select xt := x for all t ≤ T .

We have for any prediction rule Φ that EyT

[∑T
t=1 |ŷt − yt |

]
= T

2
.

Let k be the number of 1’s in yT . We have

inf
h∈{h0,h1}

T∑
t=1

|h(x)− yt | = min{k,T − k}.

Let εT be uniform over {±1}T , we have
∑T

t=1 εt distributed equally as 2k − T .

Note that |k − T
2
| = T

2
−min{k,T − k}, we have by Khinchine’s Inequality that

E[min{k,T − k}] ≤ T
2

− 1√
8

√
T .

Therefore, the regret is lower bounded by
√

T/8.

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

23/28

Proof of Lower Bound

The Ω(
√

Ldim(H)T) lower bound follows by a more careful selection of the xT .

Assume that T is divisible by Ldim(H) (otherwise we truncate T).

We partition xT , yT into Ldim(H) blocks each of size T
Ldim(H)

, and denote ki be
the number of 1’s in the i ’th block of yT .

Let τ be a X -valued binary tree of depth Ldim(H) that can be shattered by H.

We now select yT uniformly over {0, 1}T and select xT by traversing τ :
1. We assign the same value within each block of xT , with the first block

being the value of the root v0 of τ.

2. Let vi be the node in τ for the i ’s block. If ki ≥ T
2Ldim(H)

we set vi+1 being
left child of vi , and set to the right child otherwise.

By definition of shattering, ∃h ∈ H that achieves min{ki ,
T

Ldim(H)
− ki} losses for

all i simultaneously. (verify it!)

The regret is then lower bounded by

Ω(Ldim(H) ·
√

T/Ldim(H)) = Ω(
√

Ldim(H)T).

24/28

Overview

I Minimax Regret
- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

I Bounding the Minimax Regret: Binary Labels
- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

I The Minimax Theorem
- Proving minimax theorem via EWA algorithm

25/28

The Minimax Theorem

Minimax Theorem: Let f : A × B → R be a bounded real-valued function,
where both A and B are convex sets and A is compact. If f (·, b) is convex and
continuous on A for any b ∈ B, and f (a, ·) is concave on B for any a ∈ A, then

inf
a∈A

sup
b∈B

f (a, b) = sup
b∈B

inf
a∈A

f (a, b).

I This theorem is stronger than von Neumann’s minimax theorem, which
specifically considers the case when f is a bi-linear function.

I It differs slightly from Sion’s minimax theorem, which requires only
semi-continuity and quasi-convexity (-concavity).

Interpretation: In a two-player game with actions from A and B, the minimax
theorem shows that, under the stated conditions, player 1’s best strategy yields
the same value whether or not they know player 2’s move.

25/28

The Minimax Theorem

Minimax Theorem: Let f : A × B → R be a bounded real-valued function,
where both A and B are convex sets and A is compact. If f (·, b) is convex and
continuous on A for any b ∈ B, and f (a, ·) is concave on B for any a ∈ A, then

inf
a∈A

sup
b∈B

f (a, b) = sup
b∈B

inf
a∈A

f (a, b).

I This theorem is stronger than von Neumann’s minimax theorem, which
specifically considers the case when f is a bi-linear function.

I It differs slightly from Sion’s minimax theorem, which requires only
semi-continuity and quasi-convexity (-concavity).

Interpretation: In a two-player game with actions from A and B, the minimax
theorem shows that, under the stated conditions, player 1’s best strategy yields
the same value whether or not they know player 2’s move.

25/28

The Minimax Theorem

Minimax Theorem: Let f : A × B → R be a bounded real-valued function,
where both A and B are convex sets and A is compact. If f (·, b) is convex and
continuous on A for any b ∈ B, and f (a, ·) is concave on B for any a ∈ A, then

inf
a∈A

sup
b∈B

f (a, b) = sup
b∈B

inf
a∈A

f (a, b).

I This theorem is stronger than von Neumann’s minimax theorem, which
specifically considers the case when f is a bi-linear function.

I It differs slightly from Sion’s minimax theorem, which requires only
semi-continuity and quasi-convexity (-concavity).

Interpretation: In a two-player game with actions from A and B, the minimax
theorem shows that, under the stated conditions, player 1’s best strategy yields
the same value whether or not they know player 2’s move.

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features)

, and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

26/28

Proof of Minimax Theorem via the EWA algorithm

It is obvious that infa supb f (a, b)≥ supb infa f (a, b) for any f (why?).

For converse, by compactness of A, there exists a finite ε-net A′
ε ⊂ A of size N.

We now view Ŷ := A as the prediction space and Y := B as the label space.

The set A′
ε is therefore a hypothesis class with constant-valued functions (i.e.,

with no features), and f (a, b) is a loss function.

Let Φ : Y∗ → Ŷ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: ∀t ≤ T , choose yt ∈ Y such that

f (ŷt−1, yt) ≥ sup
y∈Y

f (ŷt−1, y)−
1

T ,

where ŷt−1 = Φ(y t−1) is learner’s prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

1

T

T∑
t=1

f (ŷt , yt) ≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T).

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y).

The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

27/28

Proof of Minimax Theorem via the EWA algorithm

Observe that

inf
ŷ

sup
y

f (ŷ , y) ≤ sup
y

f
(

1

T

T∑
t=1

ŷt , y
)

≤ sup
y

1

T

T∑
t=1

f (ŷt , y), by convexity of f (·, y)

≤ 1

T

T∑
t=1

f (ŷt , yt) +
1

T , by definition of yt

≤ inf
ŷ∈A′

ε

1

T

T∑
t=1

f (ŷ , yt) + O(

√
log N

T), by regret bound of EWA

≤ inf
ŷ∈A′

ε

f (ŷ , 1T

T∑
t=1

yt) + O(

√
log N

T) by concavity of f (ŷ , ·)

≤ sup
y

inf
ŷ∈A′

ε

f (ŷ , y) + O(
√

log N/T).

Sending T → ∞, we have infŷ supy f (ŷ , y) ≤ supy infŷ∈A′
ε

f (ŷ , y). The theorem
follows by sending ε → 0 and continuity of f (·, y), since A′

ε ⊂ A is an ε-net.

28/28

Concluding Remarks

I In this lecture, we discussed the minimax regret of online learning games by
focusing on the structure of the hypothesis class.

I We demonstrate that the Littlestone dimension tightly characterizes the
minimax regret for binary-valued classes.

I Most of the techniques can be extended to real-valued classes, but need
more care to get it right. This will be discussed in the upcoming lecture.

