Minimax Value of Online Learning Games: Part I

Changlong Wu & Wojciech Szpankowski

Center for Science of Information Purdue University

October 21, 2024

Overview

Minimax Regret

- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

Bounding the Minimax Regret: Binary Labels

- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

The Minimax Theorem

- Proving minimax theorem via EWA algorithm

Let \mathcal{X} be an instance space, \mathcal{Y} be the label space and $\hat{\mathcal{Y}}$ be a (convex) outcome space of predictors.

Unlike previous lecture, we define the hypothesis class as $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ and the learning rule (possibly improper) as:

$$\Phi: (\mathcal{X} \times \mathcal{Y})^* \times \mathcal{X} \to \hat{\mathcal{Y}}.$$

For $t = 1, 2, \cdots, T$

- 1. Nature/Environment presents an instance $\mathbf{x}_t \in \mathcal{X}$
- 2. Learner predicts a label $\hat{y}_t \in \hat{\mathcal{Y}}$ via $\hat{y}_t := \Phi(\mathbf{x}^t, \mathbf{y}^{t-1})$
- 3. Nature reveals true label $y_t \in \mathcal{Y}$
- 4. Learner suffers loss $\ell(\hat{y}_t, y_t)$, for certain function $\ell : \hat{\mathcal{Y}} \times \mathcal{Y} \to \mathbb{R}$

Goal of Learner: Minimizes regret for the worst Nature.

For any given $\mathbf{x}^T \in \mathcal{X}$ and $y^T \in \mathcal{Y}^T$, the point-wise regret is defined as

$$R_T(\mathcal{H}, \Phi, \mathbf{x}^T, y^T) := \sum_{t=1}^T \ell(\Phi(\mathbf{x}^t, y^{t-1}), y_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(h(\mathbf{x}_t), y_t)$$

For any given $\mathbf{x}^T \in \mathcal{X}$ and $y^T \in \mathcal{Y}^T$, the point-wise regret is defined as

$$R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, y^{T}) := \sum_{t=1}^{T} \ell(\Phi(\mathbf{x}^{t}, y^{t-1}), y_{t}) - \inf_{\mathbf{h} \in \mathcal{H}} \sum_{t=1}^{T} \ell(\mathbf{h}(\mathbf{x}_{t}), y_{t})$$

The worst-case regret for give learning rule Φ is defined as

$$\operatorname{reg}_{T}(\mathcal{H}, \Phi) := \sup_{\mathbf{x}^{T}, \mathbf{y}^{T}} R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, \mathbf{y}^{T})$$

For any given $\mathbf{x}^T \in \mathcal{X}$ and $y^T \in \mathcal{Y}^T$, the point-wise regret is defined as

$$R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, y^{T}) := \sum_{t=1}^{T} \ell(\Phi(\mathbf{x}^{t}, y^{t-1}), y_{t}) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell(h(\mathbf{x}_{t}), y_{t})$$

The worst-case regret for give learning rule Φ is defined as

$$\operatorname{reg}_{T}(\mathcal{H}, \Phi) := \sup_{\mathbf{x}^{T}, \mathbf{y}^{T}} R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, \mathbf{y}^{T})$$

The minimax regret for a hypothesis class \mathcal{H} is defined as

$$\operatorname{reg}_{T}(\mathcal{H}) := \inf_{\Phi} \operatorname{reg}_{T}(\mathcal{H}, \Phi) = \inf_{\Phi} \sup_{\mathbf{x}^{\mathsf{T}}, \mathbf{y}^{\mathsf{T}}} R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{\mathsf{T}}, \mathbf{y}^{\mathsf{T}})$$

For any given $\mathbf{x}^T \in \mathcal{X}$ and $y^T \in \mathcal{Y}^T$, the point-wise regret is defined as

$$R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, y^{T}) := \sum_{t=1}^{T} \ell(\Phi(\mathbf{x}^{t}, y^{t-1}), y_{t}) - \inf_{\mathbf{h} \in \mathcal{H}} \sum_{t=1}^{T} \ell(\mathbf{h}(\mathbf{x}_{t}), y_{t})$$

The worst-case regret for give learning rule Φ is defined as

$$\operatorname{reg}_{T}(\mathcal{H}, \Phi) := \sup_{\mathbf{x}^{T}, \mathbf{y}^{T}} R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, \mathbf{y}^{T})$$

The minimax regret for a hypothesis class \mathcal{H} is defined as

$$\operatorname{reg}_{T}(\mathcal{H}) := \inf_{\Phi} \operatorname{reg}_{T}(\mathcal{H}, \Phi) = \inf_{\Phi} \sup_{\mathbf{x}^{T}, \mathbf{y}^{T}} R_{T}(\mathcal{H}, \Phi, \mathbf{x}^{T}, \mathbf{y}^{T})$$

Fact 1: The minimax regret satisfies

$$\operatorname{reg}_{T}(\mathcal{H}) = \sup_{\mathbf{x}_{1}} \inf_{\hat{y}_{1}} \sup_{y_{1}} \cdots \sup_{\mathbf{x}_{T}} \inf_{\hat{y}_{T}} \sup_{y_{T}} \left[\sum_{t=1}^{T} \ell(\hat{y}_{t}, y_{t}) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell(h(\mathbf{x}_{t}), y_{t}) \right]$$

Skolemization: Let A, B be two sets, and $F : A \times B \to \mathbb{R}$ be an arbitrary function, then

```
\sup_{\boldsymbol{b}\in B}\inf_{\boldsymbol{a}\in A}F(\boldsymbol{a},\boldsymbol{b})=\inf_{\boldsymbol{g}\in \mathcal{G}}\sup_{\boldsymbol{b}\in B}F(\boldsymbol{g}(\boldsymbol{b}),\boldsymbol{b}),
```

where $\mathcal{G} := A^B$ is the class of all functions from $B \to A$.

Skolemization: Let A, B be two sets, and $F : A \times B \to \mathbb{R}$ be an arbitrary function, then

```
\sup_{\boldsymbol{b}\in B}\inf_{\boldsymbol{a}\in A}F(\boldsymbol{a},\boldsymbol{b})=\inf_{\boldsymbol{g}\in\mathcal{G}}\sup_{\boldsymbol{b}\in B}F(\boldsymbol{g}(\boldsymbol{b}),\boldsymbol{b}),
```

where $\mathcal{G} := A^B$ is the class of all functions from $B \to A$.

• Define $\hat{g}(\mathbf{b}) := \arg \inf_{\mathbf{a} \in A} F(\mathbf{a}, \mathbf{b})$ we have

 $\sup_{\mathbf{b}} \inf_{\mathbf{a}} F(\mathbf{a}, \mathbf{b}) = \sup_{\mathbf{b}} F(\hat{g}(\mathbf{b}), \mathbf{b}) \ge \inf_{g} \sup_{\mathbf{b}} F(g(\mathbf{b}), \mathbf{b}).$

Skolemization: Let A, B be two sets, and $F : A \times B \to \mathbb{R}$ be an arbitrary function, then

```
\sup_{\boldsymbol{b}\in B}\inf_{\boldsymbol{a}\in A}F(\boldsymbol{a},\boldsymbol{b})=\inf_{\boldsymbol{g}\in \mathcal{G}}\sup_{\boldsymbol{b}\in B}F(\boldsymbol{g}(\boldsymbol{b}),\boldsymbol{b}),
```

where $\mathcal{G} := A^{B}$ is the class of all functions from $B \to A$.

• Define
$$\hat{g}(b) := \arg \inf_{a \in A} F(a, b)$$
 we have

$$\sup_{b} \inf_{a} F(a, b) = \sup_{b} F(\hat{g}(b), b) \ge \inf_{g} \sup_{b} F(g(b), b).$$

▶ Moreover, let $g^* := \arg \min_{g \in \mathcal{G}} (\sup_{b} F(g(b), b))$ we have

$$\inf_{g} \sup_{b} F(g(b), b) = \sup_{b} F(g^{*}(b), b) \ge \sup_{b} \inf_{a} F(a, b).$$

Skolemization: Let A, B be two sets, and $F : A \times B \to \mathbb{R}$ be an arbitrary function, then

```
\sup_{\boldsymbol{b}\in B}\inf_{\boldsymbol{a}\in A}F(\boldsymbol{a},\boldsymbol{b})=\inf_{\boldsymbol{g}\in\mathcal{G}}\sup_{\boldsymbol{b}\in B}F(\boldsymbol{g}(\boldsymbol{b}),\boldsymbol{b}),
```

where $\mathcal{G} := A^{\mathcal{B}}$ is the class of all functions from $\mathcal{B} \to \mathcal{A}$.

• Define
$$\hat{g}(b) := \arg \inf_{a \in A} F(a, b)$$
 we have

$$\sup_{b} \inf_{a} F(a, b) = \sup_{b} F(\hat{g}(b), b) \ge \inf_{g} \sup_{b} F(g(b), b).$$

► Moreover, let $g^* := \arg\min_{g \in \mathcal{G}} (\sup_b F(g(b), b))$ we have $\inf_g \sup_b F(g(b), b) = \sup_b F(g^*(b), b) \ge \sup_b \inf_a F(a, b).$

Therefore, all inequalities become equality and the result follows.

${\sf Proof of \ Fact \ 1}$

We prove only the case for T = 1 to demonstrate the idea.

We prove only the case for T = 1 to demonstrate the idea. Define the function:

$$F(\mathbf{a}, \mathbf{b}) := \sup_{y_1} \left[\ell(\mathbf{a}, y_1) - \inf_{\mathbf{h} \in \mathcal{H}} \ell(\mathbf{h}(\mathbf{b}), y_1) \right].$$

We prove only the case for T = 1 to demonstrate the idea. Define the function:

$$F(\mathbf{a}, \mathbf{b}) := \sup_{y_1} \left[\ell(\mathbf{a}, y_1) - \inf_{\mathbf{h} \in \mathcal{H}} \ell(\mathbf{h}(\mathbf{b}), y_1) \right].$$

Note that:

$$\mathsf{reg}_1(\mathcal{H}) := \inf_{\Phi} \sup_{\mathbf{x}_1} F(\Phi(\mathbf{x}_1), \mathbf{x}_1).$$

We prove only the case for T = 1 to demonstrate the idea. Define the function:

$$F(\boldsymbol{a}, \boldsymbol{b}) := \sup_{y_1} \left[\ell(\boldsymbol{a}, y_1) - \inf_{\boldsymbol{h} \in \mathcal{H}} \ell(\boldsymbol{h}(\boldsymbol{b}), y_1) \right].$$

Note that:

$$\mathsf{reg}_1(\mathcal{H}) := \inf_{\Phi} \sup_{\mathbf{x}_1} F(\Phi(\mathbf{x}_1), \mathbf{x}_1).$$

By Skolemization, we have:

$$\inf_{\Phi} \sup_{\mathbf{x}_1} F(\Phi(\mathbf{x}_1), \mathbf{x}_1) = \sup_{\mathbf{x}_1} \inf_{\hat{y}_1} F(\hat{y}_1, \mathbf{x}_1).$$

We prove only the case for T = 1 to demonstrate the idea. Define the function:

$$F(\boldsymbol{a},\boldsymbol{b}) := \sup_{y_1} \left[\ell(\boldsymbol{a},y_1) - \inf_{\boldsymbol{h} \in \mathcal{H}} \ell(\boldsymbol{h}(\boldsymbol{b}),y_1) \right].$$

Note that:

$$\mathsf{reg}_1(\mathcal{H}) := \inf_{\Phi} \sup_{\mathbf{x}_1} F(\Phi(\mathbf{x}_1), \mathbf{x}_1).$$

By Skolemization, we have:

$$\inf_{\Phi} \sup_{\mathbf{x}_1} F(\Phi(\mathbf{x}_1), \mathbf{x}_1) = \sup_{\mathbf{x}_1} \inf_{\hat{y}_1} F(\hat{y}_1, \mathbf{x}_1).$$

Plugging back the expression of F(a, b), we get:

$$\mathsf{reg}_1(\mathcal{H}) = \sup_{\mathbf{x}_1} \inf_{\hat{y}_1} \sup_{y_1} \left[\ell(\hat{y}_1, y_1) - \inf_{h \in \mathcal{H}} \ell(h(\mathbf{x}_1), y_1) \right].$$

Overview

Minimax Regret

- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

Bounding the Minimax Regret: Binary Labels

- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

The Minimax Theorem

- Proving minimax theorem via EWA algorithm

Preliminaries

We now consider the case when $\mathcal{Y} = \{0, 1\}$ and $\hat{\mathcal{Y}} = [0, 1]$, and consider also the specific loss function (i.e., the absolute loss):

 $\ell(\hat{y}, y) = |\hat{y} - y|.$

Preliminaries

We now consider the case when $\mathcal{Y} = \{0, 1\}$ and $\hat{\mathcal{Y}} = [0, 1]$, and consider also the specific loss function (i.e., the absolute loss):

$$\ell(\hat{y}, y) = |\hat{y} - y|.$$

Observe that $|\hat{y} - y| = \mathbb{E}_{y' \sim \text{Bern}(\hat{y})}[1\{y' \neq y\}]$, i.e., it measures the *expected* miss-classification loss when sampling from a Bernoulli source of parameter \hat{y} .

Preliminaries

We now consider the case when $\mathcal{Y} = \{0, 1\}$ and $\hat{\mathcal{Y}} = [0, 1]$, and consider also the specific loss function (i.e., the absolute loss):

$$\ell(\hat{y}, y) = |\hat{y} - y|.$$

Observe that $|\hat{y} - y| = \mathbb{E}_{y' \sim \text{Bern}(\hat{y})}[1\{y' \neq y\}]$, i.e., it measures the *expected* miss-classification loss when sampling from a Bernoulli source of parameter \hat{y} .

Recall from our last lecture:

Theorem 1: For any finite class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$, the minimax regret of \mathcal{H} under the absolute loss is upper bounded by

$$\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \leq O(\sqrt{\mathcal{T}\log|\mathcal{H}|}),$$

which is achieved by the (generalized) EWA algorithm.

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Consider the following threshold functions:

$$\mathcal{H}^{\text{thres}} := \{h_a(x) = 1\{x \ge a\} : a, x \in [0, 1]\}.$$

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Consider the following threshold functions:

$$\mathcal{H}^{\mathsf{thres}} := \{ h_{\mathsf{a}}(x) = 1 \{ x \ge \mathsf{a} \} : \mathsf{a}, x \in [0, 1] \}.$$

For any learner Φ , consider the following strategy for Nature:

- At every step t, select label $y_t \in \{0,1\}$ such that $|y_t - \hat{y}_t| \ge \frac{1}{2}$.

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Consider the following threshold functions:

$$\mathcal{H}^{\text{thres}} := \{ h_a(x) = 1 \{ x \ge a \} : a, x \in [0, 1] \}.$$

For any learner Φ , consider the following strategy for Nature:

- At every step t, select label $y_t \in \{0,1\}$ such that $|y_t \hat{y}_t| \ge \frac{1}{2}$.
- Select instances from the set of dyadic rationals, starting with $x_1 = \frac{1}{2}$ and updating (according to learner's prediction \hat{y}_{t-1}) as:

$$\mathbf{x}_t = \begin{cases} \mathbf{x}_{t-1} + \frac{1}{2^t}, \text{ if } \hat{\mathbf{y}}_{t-1} \ge 0.5, \\ \mathbf{x}_{t-1} - \frac{1}{2^t}, \text{ else.} \end{cases}$$

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Consider the following threshold functions:

$$\mathcal{H}^{\mathsf{thres}} := \{ h_{\mathsf{a}}(x) = 1 \{ x \ge \mathsf{a} \} : \mathsf{a}, x \in [0, 1] \}.$$

For any learner Φ , consider the following strategy for Nature:

- At every step t, select label $y_t \in \{0,1\}$ such that $|y_t \hat{y}_t| \ge \frac{1}{2}$.
- Select instances from the set of dyadic rationals, starting with $x_1 = \frac{1}{2}$ and updating (according to learner's prediction \hat{y}_{t-1}) as:

$$\mathbf{x}_{t} = \begin{cases} \mathbf{x}_{t-1} + \frac{1}{2^{t}}, \text{ if } \hat{\mathbf{y}}_{t-1} \ge 0.5, \\ \mathbf{x}_{t-1} - \frac{1}{2^{t}}, \text{ else.} \end{cases}$$

This ensures that:

- The cumulative loss incurred by the learner is at least T/2.

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Consider the following threshold functions:

$$\mathcal{H}^{\mathsf{thres}} := \{ h_{\mathsf{a}}(x) = 1 \{ x \ge \mathsf{a} \} : \mathsf{a}, x \in [0, 1] \}.$$

For any learner Φ , consider the following strategy for Nature:

- At every step t, select label $y_t \in \{0,1\}$ such that $|y_t \hat{y}_t| \ge \frac{1}{2}$.
- Select instances from the set of dyadic rationals, starting with $x_1 = \frac{1}{2}$ and updating (according to learner's prediction \hat{y}_{t-1}) as:

$$\mathbf{x}_t = \begin{cases} \mathbf{x}_{t-1} + \frac{1}{2^t}, \text{ if } \hat{\mathbf{y}}_{t-1} \ge 0.5, \\ \mathbf{x}_{t-1} - \frac{1}{2^t}, \text{ else.} \end{cases}$$

This ensures that:

- The cumulative loss incurred by the learner is at least T/2.
- For all $t \leq T$, $h_{x_{T+1}}(\mathbf{x}_t) = y_t$, i.e., the hypothesis $h_{x_{T+1}}$ incurs zero loss.

Observe that the regret bound based on the EWA algorithm applies only to a finite class \mathcal{H} , and it depends solely on the class size.

What happens for infinite classes?

Consider the following threshold functions:

$$\mathcal{H}^{\mathsf{thres}} := \{ h_{\mathsf{a}}(x) = 1 \{ x \ge \mathsf{a} \} : \mathsf{a}, x \in [0, 1] \}.$$

For any learner Φ , consider the following strategy for Nature:

- At every step t, select label $y_t \in \{0,1\}$ such that $|y_t \hat{y}_t| \ge \frac{1}{2}$.
- Select instances from the set of dyadic rationals, starting with $x_1 = \frac{1}{2}$ and updating (according to learner's prediction \hat{y}_{t-1}) as:

$$\mathbf{x}_{t} = \begin{cases} \mathbf{x}_{t-1} + \frac{1}{2^{t}}, \text{ if } \hat{\mathbf{y}}_{t-1} \ge 0.5, \\ \mathbf{x}_{t-1} - \frac{1}{2^{t}}, \text{ else.} \end{cases}$$

This ensures that:

- The cumulative loss incurred by the learner is at least T/2.
- For all $t \leq T$, $h_{x_{T+1}}(\mathbf{x}_t) = y_t$, i.e., the hypothesis $h_{x_{T+1}}$ incurs zero loss.
- Therefore, $\operatorname{reg}_{\mathcal{T}}(\mathcal{H}^{\operatorname{thres}}) \geq \mathcal{T}/2$.

The function $h_{\mathbf{x}_4}(\mathbf{x}) := 1\{\mathbf{x} \ge \frac{7}{16}\}$ consistents with all true labels, but the learner errs at every step.

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of ${\mathcal H}$ leads to this failure?

The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of \mathcal{H} leads to this failure?

• Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued hypothesis class.
We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of \mathcal{H} leads to this failure?

- Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued hypothesis class.
- ▶ A \mathcal{X} -valued binary tree of depth d is defined as $\tau : \bigcup_{i \leq d} \{0, 1\}^i \to \mathcal{X}$.

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of \mathcal{H} leads to this failure?

- Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued hypothesis class.
- ► A \mathcal{X} -valued binary tree of depth d is defined as $\tau : \bigcup_{i < d} \{0, 1\}^i \to \mathcal{X}$.
- ▶ We say τ is shattered by \mathcal{H} if for any $\epsilon^d \in \{0,1\}^d$, there exists $h \in \mathcal{H}$ such that

$$\forall i \leq \mathbf{d}, \ h(\tau(\epsilon^{i-1})) = \epsilon_i.$$

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of \mathcal{H} leads to this failure?

- Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued hypothesis class.
- ► A \mathcal{X} -valued binary tree of depth d is defined as $\tau : \bigcup_{i < d} \{0, 1\}^i \to \mathcal{X}$.
- ▶ We say τ is shattered by \mathcal{H} if for any $\epsilon^d \in \{0,1\}^d$, there exists $h \in \mathcal{H}$ such that

$$\forall i \leq \mathbf{d}, \ h(\tau(\epsilon^{i-1})) = \epsilon_i.$$

▶ Note that, the tree formed by dyadic rationals is shattered by $\mathcal{H}^{\text{thres}}$.

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of \mathcal{H} leads to this failure?

- Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued hypothesis class.
- ► A \mathcal{X} -valued binary tree of depth d is defined as $\tau : \bigcup_{i < d} \{0, 1\}^i \to \mathcal{X}$.
- ▶ We say τ is shattered by \mathcal{H} if for any $\epsilon^d \in \{0,1\}^d$, there exists $h \in \mathcal{H}$ such that

$$\forall i \leq \mathbf{d}, \ h(\tau(\epsilon^{i-1})) = \epsilon_i.$$

▶ Note that, the tree formed by dyadic rationals is shattered by $\mathcal{H}^{\text{thres}}$.

Fact 2: For any binary-valued class \mathcal{H} , if there exists a \mathcal{X} -valued binary tree of depth d that can be shattered by \mathcal{H} , then: $\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \geq \frac{1}{2}\min\{d, \mathcal{T}\}$.

We have shown that even for simple threshold functions, achieving sublinear regret is not possible.

What intrinsic structure of \mathcal{H} leads to this failure?

- Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued hypothesis class.
- A \mathcal{X} -valued binary tree of depth d is defined as $\tau : \bigcup_{i < d} \{0, 1\}^i \to \mathcal{X}$.
- ▶ We say τ is shattered by \mathcal{H} if for any $\epsilon^d \in \{0,1\}^d$, there exists $h \in \mathcal{H}$ such that

$$\forall i \leq \mathbf{d}, \ h(\tau(\epsilon^{i-1})) = \epsilon_i.$$

▶ Note that, the tree formed by dyadic rationals is shattered by $\mathcal{H}^{\text{thres}}$.

Fact 2: For any binary-valued class \mathcal{H} , if there exists a \mathcal{X} -valued binary tree of depth d that can be shattered by \mathcal{H} , then: $\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \geq \frac{1}{2}\min\{d, \mathcal{T}\}$.

Proof: Select the labels opposite to learner's prediction, and the instances by following the shattering tree τ , similar to the threshold function case...

Littlestone Dimension: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued hypothesis class. The *Littlestone dimension* of \mathcal{H} is defined as the maximum number d such that there exists a \mathcal{X} -valued binary tree of depth d that can be shattered by \mathcal{H} .

Littlestone Dimension: Let $\mathcal{H} \subset \{0, 1\}^{\mathcal{X}}$ be a binary-valued hypothesis class. The *Littlestone dimension* of \mathcal{H} is defined as the maximum number *d* such that there exists a \mathcal{X} -valued binary tree of depth *d* that can be shattered by \mathcal{H} .

- We will denote $Ldim(\mathcal{H})$ as the Littlestone dimension of \mathcal{H} .
- ▶ It is clear from our previous slides that $\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \geq \frac{1}{2}\min\{\operatorname{Ldim}(\mathcal{H}), T\}$.
- Therefore, the Littlestone dimension forms an intrinsic barrier for the minimax regret.

Littlestone Dimension: Let $\mathcal{H} \subset \{0, 1\}^{\mathcal{X}}$ be a binary-valued hypothesis class. The *Littlestone dimension* of \mathcal{H} is defined as the maximum number *d* such that there exists a \mathcal{X} -valued binary tree of depth *d* that can be shattered by \mathcal{H} .

- We will denote $Ldim(\mathcal{H})$ as the Littlestone dimension of \mathcal{H} .
- ▶ It is clear from our previous slides that $\operatorname{reg}_{T}(\mathcal{H}) \geq \frac{1}{2}\min\{\operatorname{Ldim}(\mathcal{H}), T\}$.
- Therefore, the Littlestone dimension forms an intrinsic barrier for the minimax regret.

Example 1: For the threshold functions \mathcal{H}^{thres} , we have $\mathsf{Ldim}(\mathcal{H}^{thres}) = \infty$.

Littlestone Dimension: Let $\mathcal{H} \subset \{0, 1\}^{\mathcal{X}}$ be a binary-valued hypothesis class. The *Littlestone dimension* of \mathcal{H} is defined as the maximum number *d* such that there exists a \mathcal{X} -valued binary tree of depth *d* that can be shattered by \mathcal{H} .

- We will denote $Ldim(\mathcal{H})$ as the Littlestone dimension of \mathcal{H} .
- ▶ It is clear from our previous slides that $\operatorname{reg}_{T}(\mathcal{H}) \geq \frac{1}{2}\min\{\operatorname{Ldim}(\mathcal{H}), T\}$.
- Therefore, the Littlestone dimension forms an intrinsic barrier for the minimax regret.

Example 1: For the threshold functions $\mathcal{H}^{\text{thres}}$, we have $\text{Ldim}(\mathcal{H}^{\text{thres}}) = \infty$. **Example 2**: For any finite class \mathcal{H} , we have $\text{Ldim}(\mathcal{H}) \leq \log |\mathcal{H}|$ (prove it!).

Littlestone Dimension: Let $\mathcal{H} \subset \{0, 1\}^{\mathcal{X}}$ be a binary-valued hypothesis class. The *Littlestone dimension* of \mathcal{H} is defined as the maximum number *d* such that there exists a \mathcal{X} -valued binary tree of depth *d* that can be shattered by \mathcal{H} .

- We will denote $Ldim(\mathcal{H})$ as the Littlestone dimension of \mathcal{H} .
- ▶ It is clear from our previous slides that $\operatorname{reg}_{T}(\mathcal{H}) \geq \frac{1}{2}\min\{\operatorname{Ldim}(\mathcal{H}), T\}$.
- Therefore, the Littlestone dimension forms an intrinsic barrier for the minimax regret.

 $\label{eq:constraint} \mbox{Example 1: For the threshold functions \mathcal{H}^{thres}, we have $Ldim(\mathcal{H}^{thres})=\infty$.}$

Example 2: For any finite class \mathcal{H} , we have $\mathsf{Ldim}(\mathcal{H}) \leq \log |\mathcal{H}|$ (prove it!).

Example 3: Consider the following indicator functions

$$\mathcal{H}^{\text{ind}} := \{h_a(x) := 1\{x = a\} : x, a \in [0, 1]\}.$$

Then $Ldim(\mathcal{H}^{ind}) = 1$ (prove it!).

We have shown that the Littlestone dimension forms a natural lower bound for the minimax regret. Can we achieve an upper bound as well?

We have shown that the Littlestone dimension forms a natural lower bound for the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):

- 1. Maintain a running hypothesis class $\mathcal{H}^{(t)}$, initially $\mathcal{H}^{(0)} = \mathcal{H}$.
- 2. At each time step t, we define, for $y \in \{0,1\}$, that

$$\mathcal{H}_{\mathbf{y}}^{(t)} = \{ \mathbf{h} \in \mathcal{H}^{(t-1)} : \mathbf{h}(\mathbf{x}_t) = \mathbf{y} \}.$$

- 3. Predict $\hat{y}_t := \arg \max_{y \in \{0,1\}} \{ \mathsf{Ldim}(\mathcal{H}_y^{(t)}) : y \in \{0,1\} \}.$
- 4. Let y_t be true label, update $\mathcal{H}^{(t)} = \mathcal{H}^{(t)}_{y_t}$.

We have shown that the Littlestone dimension forms a natural lower bound for the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):

- 1. Maintain a running hypothesis class $\mathcal{H}^{(t)}$, initially $\mathcal{H}^{(0)} = \mathcal{H}$.
- 2. At each time step t, we define, for $y \in \{0,1\}$, that

$$\mathcal{H}_{\mathbf{y}}^{(t)} = \{ \mathbf{h} \in \mathcal{H}^{(t-1)} : \mathbf{h}(\mathbf{x}_t) = \mathbf{y} \}.$$

- 3. Predict $\hat{y}_t := \arg \max_{y \in \{0,1\}} \{ \mathsf{Ldim}(\mathcal{H}_y^{(t)}) : y \in \{0,1\} \}.$
- 4. Let y_t be true label, update $\mathcal{H}^{(t)} = \mathcal{H}^{(t)}_{y_t}$.

Lemma 1: For any data \mathbf{x}^T , y^T that is realizable w.r.t. a binary-valued class \mathcal{H} , i.e., $\exists h^* \in \mathcal{H}$ such that $\forall t \leq T$, $h^*(\mathbf{x}_t) = y_t$, the SOA predictor enjoys the following mistake bound

$$\sum_{t=1}^{T} 1\{\hat{y}_t \neq y_t\} \leq \mathsf{Ldim}(\mathcal{H}).$$

We have shown that the Littlestone dimension forms a natural lower bound for the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):

- 1. Maintain a running hypothesis class $\mathcal{H}^{(t)}$, initially $\mathcal{H}^{(0)} = \mathcal{H}$.
- 2. At each time step t, we define, for $y \in \{0,1\}$, that

$$\mathcal{H}_{\mathbf{y}}^{(t)} = \{ \mathbf{h} \in \mathcal{H}^{(t-1)} : \mathbf{h}(\mathbf{x}_t) = \mathbf{y} \}.$$

- 3. Predict $\hat{y}_t := \arg \max_{y \in \{0,1\}} \{ \mathsf{Ldim}(\mathcal{H}_y^{(t)}) : y \in \{0,1\} \}.$
- 4. Let y_t be true label, update $\mathcal{H}^{(t)} = \mathcal{H}^{(t)}_{y_t}$.

Lemma 1: For any data \mathbf{x}^T , y^T that is realizable w.r.t. a binary-valued class \mathcal{H} , i.e., $\exists h^* \in \mathcal{H}$ such that $\forall t \leq T$, $h^*(\mathbf{x}_t) = y_t$, the SOA predictor enjoys the following mistake bound

$$\sum_{t=1}^{T} 1\{\hat{y}_t \neq y_t\} \leq \mathsf{Ldim}(\mathcal{H}).$$

Proof: Any mistake decreases Littlestone dimension by at least 1 (verify it!)...

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

▶ The functions $g \in \mathcal{G}$ map finite sequences \mathcal{X}^* of \mathcal{X} to $\{0, 1\}$.

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

▶ The functions $g \in \mathcal{G}$ map finite sequences \mathcal{X}^* of \mathcal{X} to $\{0, 1\}$.

- The cover happens locally, depending on any given \mathbf{x}^{T} .
 - Unlike the classical uniform cover, where each h is covered by a fixed g.
 - Sequential cover allows the covering function g to depend on \mathbf{x}^T as well.

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

▶ The functions $g \in \mathcal{G}$ map finite sequences \mathcal{X}^* of \mathcal{X} to $\{0, 1\}$.

- The cover happens locally, depending on any given \mathbf{x}^{T} .
 - Unlike the classical uniform cover, where each h is covered by a fixed g.
 - Sequential cover allows the covering function g to depend on \mathbf{x}^T as well.
- Infinite classes \mathcal{H} can be sequentially covered by a finite class \mathcal{G} .

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

▶ The functions $g \in \mathcal{G}$ map finite sequences \mathcal{X}^* of \mathcal{X} to $\{0, 1\}$.

• The cover happens locally, depending on any given \mathbf{x}^{T} .

- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on \mathbf{x}^T as well.

• Infinite classes \mathcal{H} can be sequentially covered by a finite class \mathcal{G} .

- Consider the class $\mathcal{H}^{\text{ind}} := \{h_a(x) := 1\{x = a\} : x, a \in [0, 1]\}.$

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

▶ The functions $g \in \mathcal{G}$ map finite sequences \mathcal{X}^* of \mathcal{X} to $\{0, 1\}$.

• The cover happens locally, depending on any given \mathbf{x}^{T} .

- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on \mathbf{x}^T as well.

• Infinite classes \mathcal{H} can be sequentially covered by a finite class \mathcal{G} .

- Consider the class $\mathcal{H}^{\text{ind}} := \{h_a(x) := 1\{x = a\} : x, a \in [0, 1]\}.$
- For any $i \leq T$, define the sequential function:

$$g_i(\mathbf{x}^t) = \begin{cases} 1, & \text{if } t = i \\ 0, & \text{otherwise} \end{cases}$$

Sequential Cover: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be a binary-valued class, and $\mathcal{G} \subset \{0,1\}^{\mathcal{X}^*}$ be a class mapping $\mathcal{X}^* \to \{0,1\}$. We say that the class \mathcal{G} sequentially covers \mathcal{H} up to step \mathcal{T} if, for any $\mathbf{x}^{\mathcal{T}} \in \mathcal{X}^{\mathcal{T}}$ and $h \in \mathcal{H}$, there exists $g \in \mathcal{G}$ such that

 $\forall t \leq T, \ g(\mathbf{x}^t) = h(\mathbf{x}_t).$

▶ The functions $g \in \mathcal{G}$ map finite sequences \mathcal{X}^* of \mathcal{X} to $\{0, 1\}$.

• The cover happens locally, depending on any given \mathbf{x}^{T} .

- Unlike the classical uniform cover, where each h is covered by a fixed g.

- Sequential cover allows the covering function g to depend on \mathbf{x}^T as well.

• Infinite classes \mathcal{H} can be sequentially covered by a finite class \mathcal{G} .

- Consider the class $\mathcal{H}^{\text{ind}} := \{h_a(x) := 1\{x = a\} : x, a \in [0, 1]\}.$
- For any $i \leq T$, define the sequential function:

$$g_i(\mathbf{x}^t) = \begin{cases} 1, & \text{if } t = i \\ 0, & \text{otherwise} \end{cases}$$

- The class $\mathcal{G} := \{g_i : i \in [T]\}$ sequentially covers \mathcal{H}^{ind} (prove it!).

Lemma 2: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued class. If there exists a predictor for \mathcal{H} that achieves mistake bound $\operatorname{err}_{\mathcal{T}}$ in the realizable case. Then there exists a sequential cover \mathcal{G} of \mathcal{H} up to step \mathcal{T} such that

$$\log |\mathcal{G}| \leq \log \sum_{i=0}^{\mathsf{err}_{\mathcal{T}}} {\binom{\mathcal{T}}{i}} \leq \mathcal{O}(\mathsf{err}_{\mathcal{T}} \cdot \log \mathcal{T}).$$

Lemma 2: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued class. If there exists a predictor for \mathcal{H} that achieves mistake bound $\operatorname{err}_{\mathcal{T}}$ in the realizable case. Then there exists a sequential cover \mathcal{G} of \mathcal{H} up to step \mathcal{T} such that

$$\log |\mathcal{G}| \leq \log \sum_{i=0}^{\mathsf{err}_{\mathcal{T}}} {\binom{T}{i}} \leq O(\mathsf{err}_{\mathcal{T}} \cdot \log T).$$

Let Φ achieves err_T mistakes for \mathcal{H} in the realizable case.

Lemma 2: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued class. If there exists a predictor for \mathcal{H} that achieves mistake bound $\operatorname{err}_{\mathcal{T}}$ in the realizable case. Then there exists a sequential cover \mathcal{G} of \mathcal{H} up to step \mathcal{T} such that

$$\log |\mathcal{G}| \leq \log \sum_{i=0}^{\mathsf{err}_{\mathcal{T}}} {T \choose i} \leq \mathcal{O}(\mathsf{err}_{\mathcal{T}} \cdot \log \mathcal{T}).$$

Let Φ achieves err_T mistakes for \mathcal{H} in the realizable case.

For any $I \subset [T]$, we recursively define the sequential function

$$g_{l}(\mathbf{x}^{t}) = \begin{cases} \Phi(\mathbf{x}^{t}, g_{l}(\mathbf{x}^{1}), \cdots, g_{l}(\mathbf{x}^{t-1})), \text{ if } t \notin l \\ 1 - \Phi(\mathbf{x}^{t}, g_{l}(\mathbf{x}^{1}), \cdots, g_{l}(\mathbf{x}^{t-1})), \text{ if } t \in l \end{cases}$$

Lemma 2: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued class. If there exists a predictor for \mathcal{H} that achieves mistake bound $\operatorname{err}_{\mathcal{T}}$ in the realizable case. Then there exists a sequential cover \mathcal{G} of \mathcal{H} up to step \mathcal{T} such that

$$\log |\mathcal{G}| \leq \log \sum_{i=0}^{\mathsf{err}_{\mathcal{T}}} {\binom{T}{i}} \leq O(\mathsf{err}_{\mathcal{T}} \cdot \log T).$$

• Let Φ achieves err_T mistakes for \mathcal{H} in the realizable case.

For any $I \subset [T]$, we recursively define the sequential function

$$g_{l}(\mathbf{x}^{t}) = \begin{cases} \Phi(\mathbf{x}^{t}, g_{l}(\mathbf{x}^{1}), \cdots, g_{l}(\mathbf{x}^{t-1})), \text{ if } t \notin I \\ 1 - \Phi(\mathbf{x}^{t}, g_{l}(\mathbf{x}^{1}), \cdots, g_{l}(\mathbf{x}^{t-1})), \text{ if } t \in I \end{cases}$$

The class G := {g_i : i ⊂ [T], |i| ≤ err_T} sequentially covers H, since for any x^T and h we can pick i being the time steps where Φ errs...(why?)

Lemma 2: Let $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ be any binary-valued class. If there exists a predictor for \mathcal{H} that achieves mistake bound $\operatorname{err}_{\mathcal{T}}$ in the realizable case. Then there exists a sequential cover \mathcal{G} of \mathcal{H} up to step \mathcal{T} such that

$$\log |\mathcal{G}| \leq \log \sum_{i=0}^{\mathsf{err}_{\mathcal{T}}} {\binom{T}{i}} \leq O(\mathsf{err}_{\mathcal{T}} \cdot \log T).$$

Let Φ achieves err_T mistakes for \mathcal{H} in the realizable case.

For any $I \subset [T]$, we recursively define the sequential function

$$g_{l}(\mathbf{x}^{t}) = \begin{cases} \Phi(\mathbf{x}^{t}, g_{l}(\mathbf{x}^{1}), \cdots, g_{l}(\mathbf{x}^{t-1})), \text{ if } t \notin I \\ 1 - \Phi(\mathbf{x}^{t}, g_{l}(\mathbf{x}^{1}), \cdots, g_{l}(\mathbf{x}^{t-1})), \text{ if } t \in I \end{cases}$$

The class G := {g_i : i ∈ [T], |I| ≤ err_T} sequentially covers H, since for any x^T and h we can pick I being the time steps where Φ errs...(why?)
We have |G| ≤ ∑^{err_T}_{i=0} (^T_i) by counting the size of {I ⊂ [T] : |I| ≤ err_T}.

Theorem 2: For any binary-valued class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ with finite Littlestone dimension $\mathsf{Ldim}(\mathcal{H})$, the minimax regret of \mathcal{H} satisfies

 $\Omega(\sqrt{\mathsf{Ldim}(\mathcal{H})\cdot T}) \leq \mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \leq \mathcal{O}(\sqrt{\mathsf{Ldim}(\mathcal{H})\cdot T\log T}).$

Theorem 2: For any binary-valued class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ with finite Littlestone dimension $\mathsf{Ldim}(\mathcal{H})$, the minimax regret of \mathcal{H} satisfies

 $\Omega(\sqrt{\mathsf{Ldim}(\mathcal{H})\cdot T}) \leq \mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \leq \mathcal{O}(\sqrt{\mathsf{Ldim}(\mathcal{H})\cdot T\log T}).$

▶ From our previous discussion (Lemma 1), we know that the class admits a mistake bound of Ldim(*H*) in the realizable case.

Theorem 2: For any binary-valued class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ with finite Littlestone dimension $\mathsf{Ldim}(\mathcal{H})$, the minimax regret of \mathcal{H} satisfies

 $\Omega(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T}) \leq \mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \leq O(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T \log T}).$

- ▶ From our previous discussion (Lemma 1), we know that the class admits a mistake bound of Ldim(*H*) in the realizable case.
- This implies, by Lemma 2, a sequential cover \mathcal{G} of size

 $\log |\mathcal{G}| \leq O(\mathsf{Ldim}(\mathcal{H}) \cdot \log T).$

Theorem 2: For any binary-valued class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ with finite Littlestone dimension $\mathsf{Ldim}(\mathcal{H})$, the minimax regret of \mathcal{H} satisfies

 $\Omega(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T}) \leq \mathsf{reg}_{T}(\mathcal{H}) \leq O(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T \log T}).$

- ▶ From our previous discussion (Lemma 1), we know that the class admits a mistake bound of Ldim(*H*) in the realizable case.
- ▶ This implies, by Lemma 2, a sequential cover G of size

 $\log |\mathcal{G}| \leq O(\mathsf{Ldim}(\mathcal{H}) \cdot \log T).$

Applying the EWA algorithm over \mathcal{G} and using the property of sequential covering, we deduce, from Theorem 1, the upper bound $O(\sqrt{T\log |\mathcal{G}|})$.

Theorem 2: For any binary-valued class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ with finite Littlestone dimension $\mathsf{Ldim}(\mathcal{H})$, the minimax regret of \mathcal{H} satisfies

 $\Omega(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T}) \leq \mathsf{reg}_{T}(\mathcal{H}) \leq O(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T \log T}).$

- ▶ From our previous discussion (Lemma 1), we know that the class admits a mistake bound of Ldim(*H*) in the realizable case.
- This implies, by Lemma 2, a sequential cover G of size

 $\log |\mathcal{G}| \leq O(\mathsf{Ldim}(\mathcal{H}) \cdot \log T).$

- Applying the EWA algorithm over G and using the property of sequential covering, we deduce, from Theorem 1, the upper bound O(√Tlog|G]).
- We have shown a $\frac{1}{2} \min\{\text{Ldim}(\mathcal{H}), T\}$ lower bound (c.f. Fact 2).

Theorem 2: For any binary-valued class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ with finite Littlestone dimension $\mathsf{Ldim}(\mathcal{H})$, the minimax regret of \mathcal{H} satisfies

 $\Omega(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T}) \leq \mathsf{reg}_{T}(\mathcal{H}) \leq O(\sqrt{\mathsf{Ldim}(\mathcal{H}) \cdot T \log T}).$

- ▶ From our previous discussion (Lemma 1), we know that the class admits a mistake bound of Ldim(*H*) in the realizable case.
- This implies, by Lemma 2, a sequential cover G of size

 $\log |\mathcal{G}| \leq O(\mathsf{Ldim}(\mathcal{H}) \cdot \log T).$

- Applying the EWA algorithm over G and using the property of sequential covering, we deduce, from Theorem 1, the upper bound O(√Tlog|G]).
- We have shown a ¹/₂min{Ldim(H), T} lower bound (c.f. Fact 2). The lower bound Ω(√Ldim(H) · T) follows from a more technical argument...

Khinchine's Inequality: Let a_1, \dots, a_T be real numbers and ϵ^T is uniformly distributed over $\{-1, +1\}^T$. Then

$$\mathbb{E}_{\epsilon^{\mathcal{T}}} \left| \sum_{t=1}^{\mathcal{T}} \mathbf{a}_t \epsilon_t \right| \geq \frac{1}{\sqrt{2}} \sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_t^2}$$

Khinchine's Inequality: Let a_1, \dots, a_T be real numbers and ϵ^T is uniformly distributed over $\{-1, +1\}^T$. Then

$$\mathbb{E}_{\epsilon^{\mathcal{T}}} \left| \sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t} \epsilon_{t} \right| \geq \frac{1}{\sqrt{2}} \sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t}^{2}}$$

Sketch of Proof: We give a short proof for sup-optimal constant $1/\sqrt{3}$.

Khinchine's Inequality: Let a_1, \dots, a_T be real numbers and ϵ^T is uniformly distributed over $\{-1, +1\}^T$. Then

$$\mathbb{E}_{\epsilon^{\mathcal{T}}} \left| \sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t} \epsilon_{t} \right| \geq \frac{1}{\sqrt{2}} \sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t}^{2}}$$

Sketch of Proof: We give a short proof for sup-optimal constant $1/\sqrt{3}$. By Hölder's inequality, we have for any bounded random variable X

$$\mathbb{E}[X^2] = \mathbb{E}[|X|^{4/3}|X|^{2/3}] \le (\mathbb{E}[X^4])^{1/3} (\mathbb{E}[|X|])^{2/3}$$

Khinchine's Inequality: Let a_1, \dots, a_T be real numbers and ϵ^T is uniformly distributed over $\{-1, +1\}^T$. Then

$$\mathbb{E}_{\epsilon^{\mathcal{T}}} \left| \sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t} \epsilon_{t} \right| \geq \frac{1}{\sqrt{2}} \sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t}^{2}}$$

Sketch of Proof: We give a short proof for sup-optimal constant $1/\sqrt{3}$. By Hölder's inequality, we have for any bounded random variable X

$$\mathbb{E}[X^2] = \mathbb{E}[|X|^{4/3}|X|^{2/3}] \le (\mathbb{E}[X^4])^{1/3} (\mathbb{E}[|X|])^{2/3}$$

Taking $X = \sum_{t=1}^{T} a_t \epsilon_t$, we have

$$\mathbb{E}_{\epsilon^{\mathcal{T}}} \left| \sum_{t=1}^{\mathcal{T}} \mathbf{a}_t \epsilon_t \right| \geq \frac{(\sum_{t=1}^{\mathcal{T}} \mathbf{a}_t^2)^{3/2}}{\sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_t^4 + 3\sum_{i \neq j} \mathbf{a}_i^2 \mathbf{a}_j^2}} \stackrel{(\star)}{\geq} \frac{1}{\sqrt{3}} \sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_t^2},$$
Preparing for the Proof: Khinchine's Inequality

Khinchine's Inequality: Let a_1, \dots, a_T be real numbers and ϵ^T is uniformly distributed over $\{-1, +1\}^T$. Then

$$\mathbb{E}_{\epsilon^{\mathcal{T}}} \left| \sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t} \epsilon_{t} \right| \geq \frac{1}{\sqrt{2}} \sqrt{\sum_{t=1}^{\mathcal{T}} \mathbf{a}_{t}^{2}}$$

Sketch of Proof: We give a short proof for sup-optimal constant $1/\sqrt{3}$. By Hölder's inequality, we have for any bounded random variable X

$$\mathbb{E}[X^{2}] = \mathbb{E}[|X|^{4/3}|X|^{2/3}] \le (\mathbb{E}[X^{4}])^{1/3} (\mathbb{E}[|X|])^{2/3}$$

Taking $X = \sum_{t=1}^{T} a_t \epsilon_t$, we have

$$\mathbb{E}_{\boldsymbol{\epsilon}^{T}} \left| \sum_{t=1}^{T} \mathbf{a}_{t} \boldsymbol{\epsilon}_{t} \right| \geq \frac{(\sum_{t=1}^{T} \mathbf{a}_{t}^{2})^{3/2}}{\sqrt{\sum_{t=1}^{T} \mathbf{a}_{t}^{4} + 3\sum_{i \neq j} \mathbf{a}_{i}^{2} \mathbf{a}_{j}^{2}}} \stackrel{(\star)}{\geq} \frac{1}{\sqrt{3}} \sqrt{\sum_{t=1}^{T} \mathbf{a}_{t}^{2}},$$

where (*) follows by $\sum_{t=1}^{T} a_t^4 + 3 \sum_{i \neq j} a_i^2 a_j^2 \leq 3(\sum_{t=1}^{T} a_t^2)^2$.

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \geq 2$.

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}|\geq 2.$

Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$.

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \ge 2$. Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$.

We now select y^T uniformly over $\{0,1\}^T$ and select $\mathbf{x}_t := \mathbf{x}$ for all $t \leq T$.

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \ge 2$. Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$. We now select \mathbf{y}^T uniformly over $\{0, 1\}^T$ and select $\mathbf{x}_t := \mathbf{x}$ for all $t \le T$. We have for any prediction rule Φ that $\mathbb{E}_{\mathbf{y}T} \left[\sum_{t=1}^T |\hat{y}_t - \mathbf{y}_t| \right] = \frac{T}{2}$.

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \ge 2$. Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$. We now select \mathbf{y}^T uniformly over $\{0,1\}^T$ and select $\mathbf{x}_t := \mathbf{x}$ for all $t \le T$. We have for any prediction rule Φ that $\mathbb{E}_{\mathbf{y}^T} \left[\sum_{t=1}^T |\hat{y}_t - \mathbf{y}_t| \right] = \frac{T}{2}$. Let k be the number of 1's in \mathbf{y}^T . We have

$$\inf_{h \in \{h_0, h_1\}} \sum_{t=1}^{T} |h(\mathbf{x}) - \mathbf{y}_t| = \min\{k, T-k\}.$$

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \ge 2$. Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$. We now select \mathbf{y}^T uniformly over $\{0,1\}^T$ and select $\mathbf{x}_t := \mathbf{x}$ for all $t \le T$. We have for any prediction rule Φ that $\mathbb{E}_{\mathbf{y}T} \left[\sum_{t=1}^T |\hat{\mathbf{y}}_t - \mathbf{y}_t| \right] = \frac{T}{2}$. Let k be the number of 1's in \mathbf{y}^T . We have

$$\inf_{h \in \{h_0, h_1\}} \sum_{t=1}^{T} |h(\mathbf{x}) - \mathbf{y}_t| = \min\{k, T-k\}.$$

Let ϵ^{T} be uniform over $\{\pm 1\}^{T}$, we have $\sum_{t=1}^{T} \epsilon_{t}$ distributed equally as 2k - T.

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \ge 2$. Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$. We now select \mathbf{y}^T uniformly over $\{0,1\}^T$ and select $\mathbf{x}_t := \mathbf{x}$ for all $t \le T$. We have for any prediction rule Φ that $\mathbb{E}_{\mathbf{y}^T} \left[\sum_{t=1}^T |\hat{y}_t - \mathbf{y}_t| \right] = \frac{T}{2}$. Let k be the number of 1's in \mathbf{y}^T . We have

$$\inf_{h \in \{h_0, h_1\}} \sum_{t=1}^{T} |h(\mathbf{x}) - \mathbf{y}_t| = \min\{k, T-k\}.$$

Let ϵ^{T} be uniform over $\{\pm 1\}^{T}$, we have $\sum_{t=1}^{T} \epsilon_{t}$ distributed equally as 2k - T. Note that $|k - \frac{T}{2}| = \frac{T}{2} - \min\{k, T - k\}$, we have by Khinchine's Inequality that $\mathbb{E}[\min\{k, T - k\}] \leq \frac{T}{2} - \frac{1}{\sqrt{8}}\sqrt{T}.$

We first prove a simpler $\Omega(\sqrt{T})$ lower bound and assume that $|\mathcal{H}| \ge 2$. Taking any $\mathbf{x} \in \mathcal{X}$ such that there exist $h_0, h_1 \in \mathcal{H}$ so that $h_i(\mathbf{x}) = i$. We now select \mathbf{y}^T uniformly over $\{0, 1\}^T$ and select $\mathbf{x}_t := \mathbf{x}$ for all $t \le T$. We have for any prediction rule Φ that $\mathbb{E}_{\mathbf{y}T} \left[\sum_{t=1}^T |\hat{\mathbf{y}}_t - \mathbf{y}_t| \right] = \frac{T}{2}$. Let k be the number of 1's in \mathbf{y}^T . We have

$$\inf_{h \in \{h_0, h_1\}} \sum_{t=1}^{T} |h(\mathbf{x}) - \mathbf{y}_t| = \min\{k, T-k\}.$$

Let ϵ^{T} be uniform over $\{\pm 1\}^{T}$, we have $\sum_{t=1}^{T} \epsilon_{t}$ distributed equally as 2k - T. Note that $|k - \frac{T}{2}| = \frac{T}{2} - \min\{k, T - k\}$, we have by Khinchine's Inequality that $\mathbb{E}[\min\{k, T - k\}] \leq \frac{T}{2} - \frac{1}{\sqrt{8}}\sqrt{T}.$

Therefore, the regret is lower bounded by $\sqrt{T/8}$.

The $\Omega(\sqrt{\operatorname{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} .

The $\Omega(\sqrt{\text{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} . Assume that T is divisible by $\text{Ldim}(\mathcal{H})$ (otherwise we truncate T).

The $\Omega(\sqrt{\operatorname{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} . Assume that T is divisible by $\operatorname{Ldim}(\mathcal{H})$ (otherwise we truncate T). We partition $\mathbf{x}^{T}, \mathbf{y}^{T}$ into $\operatorname{Ldim}(\mathcal{H})$ blocks each of size $\frac{T}{\operatorname{Ldim}(\mathcal{H})}$, and denote k_{i} be the number of 1's in the *i*'th block of \mathbf{y}^{T} .

The $\Omega(\sqrt{\operatorname{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} . Assume that T is divisible by $\operatorname{Ldim}(\mathcal{H})$ (otherwise we truncate T). We partition $\mathbf{x}^{T}, \mathbf{y}^{T}$ into $\operatorname{Ldim}(\mathcal{H})$ blocks each of size $\frac{T}{\operatorname{Ldim}(\mathcal{H})}$, and denote \mathbf{k}_{i} be the number of 1's in the *i*'th block of \mathbf{y}^{T} .

Let τ be a \mathcal{X} -valued binary tree of depth $Ldim(\mathcal{H})$ that can be shattered by \mathcal{H} .

The $\Omega(\sqrt{\operatorname{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} . Assume that T is divisible by $\operatorname{Ldim}(\mathcal{H})$ (otherwise we truncate T). We partition $\mathbf{x}^{T}, \mathbf{y}^{T}$ into $\operatorname{Ldim}(\mathcal{H})$ blocks each of size $\frac{T}{\operatorname{Ldim}(\mathcal{H})}$, and denote k_{i} be the number of 1's in the *i*'th block of \mathbf{y}^{T} .

Let τ be a \mathcal{X} -valued binary tree of depth $Ldim(\mathcal{H})$ that can be shattered by \mathcal{H} .

We now select y^T uniformly over $\{0,1\}^T$ and select \mathbf{x}^T by traversing τ :

- 1. We assign the same value within each block of \mathbf{x}^{T} , with the first block being the value of the root v_0 of τ .
- 2. Let v_i be the node in τ for the *i*'s block. If $k_i \ge \frac{\tau}{2\text{Ldim}(\mathcal{H})}$ we set v_{i+1} being left child of v_i , and set to the right child otherwise.

The $\Omega(\sqrt{\operatorname{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} . Assume that T is divisible by $\operatorname{Ldim}(\mathcal{H})$ (otherwise we truncate T). We partition $\mathbf{x}^{T}, \mathbf{y}^{T}$ into $\operatorname{Ldim}(\mathcal{H})$ blocks each of size $\frac{T}{\operatorname{Ldim}(\mathcal{H})}$, and denote k_{i} be the number of 1's in the *i*'th block of \mathbf{y}^{T} .

Let τ be a \mathcal{X} -valued binary tree of depth $Ldim(\mathcal{H})$ that can be shattered by \mathcal{H} .

We now select y^T uniformly over $\{0,1\}^T$ and select \mathbf{x}^T by traversing τ :

- 1. We assign the same value within each block of \mathbf{x}^{T} , with the first block being the value of the root v_0 of τ .
- 2. Let v_i be the node in τ for the *i*'s block. If $k_i \ge \frac{\tau}{2\text{Ldim}(\mathcal{H})}$ we set v_{i+1} being left child of v_i , and set to the right child otherwise.

By definition of shattering, $\exists h \in \mathcal{H}$ that achieves $\min\{k_i, \frac{T}{\mathsf{Ldim}(\mathcal{H})} - k_i\}$ losses for all *i* simultaneously. (verify it!)

The $\Omega(\sqrt{\operatorname{Ldim}(\mathcal{H})T})$ lower bound follows by a more careful selection of the \mathbf{x}^{T} . Assume that T is divisible by $\operatorname{Ldim}(\mathcal{H})$ (otherwise we truncate T). We partition $\mathbf{x}^{T}, \mathbf{y}^{T}$ into $\operatorname{Ldim}(\mathcal{H})$ blocks each of size $\frac{T}{\operatorname{Ldim}(\mathcal{H})}$, and denote k_{i} be the number of 1's in the *i*'th block of \mathbf{y}^{T} .

Let τ be a \mathcal{X} -valued binary tree of depth $Ldim(\mathcal{H})$ that can be shattered by \mathcal{H} .

We now select y^T uniformly over $\{0,1\}^T$ and select \mathbf{x}^T by traversing τ :

- 1. We assign the same value within each block of \mathbf{x}^{T} , with the first block being the value of the root v_0 of τ .
- 2. Let v_i be the node in τ for the *i*'s block. If $k_i \ge \frac{\tau}{2 \text{Ldim}(\mathcal{H})}$ we set v_{i+1} being left child of v_i , and set to the right child otherwise.

By definition of shattering, $\exists h \in \mathcal{H}$ that achieves $\min\{k_i, \frac{T}{\mathsf{Ldim}(\mathcal{H})} - k_i\}$ losses for all *i* simultaneously. (verify it!)

The regret is then lower bounded by

 $\Omega(\mathsf{Ldim}(\mathcal{H}) \cdot \sqrt{T/\mathsf{Ldim}(\mathcal{H})}) = \Omega(\sqrt{\mathsf{Ldim}(\mathcal{H})T}).$

Overview

Minimax Regret

- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

Bounding the Minimax Regret: Binary Labels

- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

The Minimax Theorem

- Proving minimax theorem via EWA algorithm

The Minimax Theorem

Minimax Theorem: Let $f : A \times B \to \mathbb{R}$ be a bounded real-valued function, where both A and B are convex sets and A is compact. If $f(\cdot, b)$ is convex and continuous on A for any $b \in B$, and $f(a, \cdot)$ is concave on B for any $a \in A$, then

 $\inf_{a \in A} \sup_{b \in B} f(a, b) = \sup_{b \in B} \inf_{a \in A} f(a, b).$

The Minimax Theorem

Minimax Theorem: Let $f : A \times B \to \mathbb{R}$ be a bounded real-valued function, where both A and B are convex sets and A is compact. If $f(\cdot, b)$ is convex and continuous on A for any $b \in B$, and $f(a, \cdot)$ is concave on B for any $a \in A$, then

 $\inf_{a \in A} \sup_{b \in B} f(a, b) = \sup_{b \in B} \inf_{a \in A} f(a, b).$

- This theorem is stronger than von Neumann's minimax theorem, which specifically considers the case when f is a bi-linear function.
- It differs slightly from Sion's minimax theorem, which requires only semi-continuity and quasi-convexity (-concavity).

The Minimax Theorem

Minimax Theorem: Let $f : A \times B \to \mathbb{R}$ be a bounded real-valued function, where both A and B are convex sets and A is compact. If $f(\cdot, b)$ is convex and continuous on A for any $b \in B$, and $f(a, \cdot)$ is concave on B for any $a \in A$, then

 $\inf_{a \in A} \sup_{b \in B} f(a, b) = \sup_{b \in B} \inf_{a \in A} f(a, b).$

- This theorem is stronger than von Neumann's minimax theorem, which specifically considers the case when f is a bi-linear function.
- It differs slightly from Sion's minimax theorem, which requires only semi-continuity and quasi-convexity (-concavity).

Interpretation: In a two-player game with actions from *A* and *B*, the minimax theorem shows that, under the stated conditions, player 1's best strategy yields the same value whether or not they know player 2's move.

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f (why?).

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

We now view $\hat{\mathcal{Y}} := A$ as the prediction space and $\mathcal{Y} := B$ as the label space.

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

We now view $\hat{\mathcal{Y}} := A$ as the prediction space and $\mathcal{Y} := B$ as the label space.

The set A'_{ϵ} is therefore a hypothesis class with constant-valued functions (i.e., with no features)

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

We now view $\hat{\mathcal{Y}} := A$ as the prediction space and $\mathcal{Y} := B$ as the label space.

The set A'_{ϵ} is therefore a hypothesis class with constant-valued functions (i.e., with no features), and f(a, b) is a loss function.

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

We now view $\hat{\mathcal{Y}} := A$ as the prediction space and $\mathcal{Y} := B$ as the label space.

The set A'_{ϵ} is therefore a hypothesis class with constant-valued functions (i.e., with no features), and f(a, b) is a loss function.

Let $\Phi: \mathcal{Y}^* \to \hat{\mathcal{Y}}$ be the (generalized) EWA algorithm with no feature inputs.

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

We now view $\hat{\mathcal{Y}} := A$ as the prediction space and $\mathcal{Y} := B$ as the label space.

The set A'_{ϵ} is therefore a hypothesis class with constant-valued functions (i.e., with no features), and f(a, b) is a loss function.

Let $\Phi: \mathcal{Y}^* \to \hat{\mathcal{Y}}$ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: $\forall t \leq T$, choose $y_t \in \mathcal{Y}$ such that

$$f(\hat{y}_{t-1}, y_t) \geq \sup_{y \in \mathcal{Y}} f(\hat{y}_{t-1}, y) - \frac{1}{T},$$

where $\hat{y}_{t-1} = \Phi(y^{t-1})$ is learner's prediction using EWA.

It is obvious that $\inf_{a} \sup_{b} f(a, b) \ge \sup_{b} \inf_{a} f(a, b)$ for any f(why?).

For converse, by compactness of A, there exists a finite ϵ -net $A'_{\epsilon} \subset A$ of size N.

We now view $\hat{\mathcal{Y}} := A$ as the prediction space and $\mathcal{Y} := B$ as the label space.

The set A'_{ϵ} is therefore a hypothesis class with constant-valued functions (i.e., with no features), and f(a, b) is a loss function.

Let $\Phi: \mathcal{Y}^* \to \hat{\mathcal{Y}}$ be the (generalized) EWA algorithm with no feature inputs.

Consider the following strategy for Nature: $\forall t \leq T$, choose $y_t \in \mathcal{Y}$ such that

$$f(\hat{y}_{t-1}, \mathbf{y}_t) \geq \sup_{\mathbf{y} \in \mathcal{Y}} f(\hat{y}_{t-1}, \mathbf{y}) - \frac{1}{T},$$

where $\hat{y}_{t-1} = \Phi(y^{t-1})$ is learner's prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

$$\frac{1}{T}\sum_{t=1}^{T}f(\hat{y}_t, y_t) \leq \inf_{\hat{y} \in A'_{\epsilon}} \frac{1}{T}\sum_{t=1}^{T}f(\hat{y}, y_t) + O(\sqrt{\frac{\log N}{T}})$$

$$\inf_{\hat{y}} \sup_{y} f(\hat{y}, y) \le \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right)$$

$$\begin{split} \inf_{\hat{y}} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \end{split}$$

$$\begin{split} \inf_{\hat{y}} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \\ &\leq \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y_{t}) + \frac{1}{T}, \text{ by definition of } y_{t} \end{split}$$

$$\begin{split} \inf_{\hat{y}} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \\ &\leq \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y_{t}) + \frac{1}{T}, \text{ by definition of } y_{t} \\ &\leq \inf_{\hat{y} \in A_{\epsilon}'} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}, y_{t}) + O(\sqrt{\frac{\log N}{T}}), \text{ by regret bound of EWA} \end{split}$$

$$\begin{split} \inf_{\hat{y}} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \\ &\leq \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y_{t}) + \frac{1}{T}, \text{ by definition of } y_{t} \\ &\leq \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}, y_{t}) + O(\sqrt{\frac{\log N}{T}}), \text{ by regret bound of EWA} \\ &\leq \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} f(\hat{y}, \frac{1}{T} \sum_{t=1}^{T} y_{t}) + O(\sqrt{\frac{\log N}{T}}) \text{ by concavity of } f(\hat{y}, \cdot) \end{split}$$

$$\begin{split} \inf_{\hat{y} \ y} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \\ &\leq \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y_{t}) + \frac{1}{T}, \text{ by definition of } y_{t} \\ &\leq \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}, y_{t}) + O(\sqrt{\frac{\log N}{T}}), \text{ by regret bound of EWA} \\ &\leq \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} f(\hat{y}, \frac{1}{T} \sum_{t=1}^{T} y_{t}) + O(\sqrt{\frac{\log N}{T}}) \text{ by concavity of } f(\hat{y}, \cdot) \\ &\leq \sup_{y} \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} f(\hat{y}, y) + O(\sqrt{\log N/T}). \end{split}$$

Observe that

$$\begin{split} \inf_{\hat{y}} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \\ &\leq \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y_{t}) + \frac{1}{T}, \text{ by definition of } y_{t} \\ &\leq \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}, y_{t}) + O(\sqrt{\frac{\log N}{T}}), \text{ by regret bound of EWA} \\ &\leq \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} f(\hat{y}, \frac{1}{T} \sum_{t=1}^{T} y_{t}) + O(\sqrt{\frac{\log N}{T}}) \text{ by concavity of } f(\hat{y}, \cdot) \\ &\leq \sup_{y} \inf_{\hat{y} \in \mathcal{A}_{\epsilon}'} f(\hat{y}, y) + O(\sqrt{\log N/T}). \end{split}$$

Sending $T \to \infty$, we have $\inf_{\hat{y}} \sup_{y} f(\hat{y}, y) \leq \sup_{y} \inf_{\hat{y} \in A'_{\epsilon}} f(\hat{y}, y)$.

Observe that

$$\begin{split} \inf_{\hat{y}} \sup_{y} f(\hat{y}, y) &\leq \sup_{y} f\left(\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t}, y\right) \\ &\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y), \text{ by convexity of } f(\cdot, y) \\ &\leq \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}_{t}, y_{t}) + \frac{1}{T}, \text{ by definition of } y_{t} \\ &\leq \inf_{\hat{y} \in A'_{\epsilon}} \frac{1}{T} \sum_{t=1}^{T} f(\hat{y}, y_{t}) + O(\sqrt{\frac{\log N}{T}}), \text{ by regret bound of EWA} \\ &\leq \inf_{\hat{y} \in A'_{\epsilon}} f(\hat{y}, \frac{1}{T} \sum_{t=1}^{T} y_{t}) + O(\sqrt{\frac{\log N}{T}}) \text{ by concavity of } f(\hat{y}, \cdot) \\ &\leq \sup_{y} \inf_{\hat{y} \in A'_{\epsilon}} f(\hat{y}, y) + O(\sqrt{\log N/T}). \end{split}$$

Sending $T \to \infty$, we have $\inf_{\hat{y}} \sup_{y} f(\hat{y}, y) \leq \sup_{y} \inf_{\hat{y} \in A'_{\epsilon}} f(\hat{y}, y)$. The theorem follows by sending $\epsilon \to 0$ and continuity of $f(\cdot, y)$, since $A'_{\epsilon} \subset A$ is an ϵ -net.
Concluding Remarks

- In this lecture, we discussed the minimax regret of online learning games by focusing on the structure of the hypothesis class.
- We demonstrate that the Littlestone dimension tightly characterizes the minimax regret for binary-valued classes.
- Most of the techniques can be extended to real-valued classes, but need more care to get it right. This will be discussed in the upcoming lecture.