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Overview

» Minimax Regret

- Pointwise, worst-case, and minimax regrets
- The iterative minimax formulation

» Bounding the Minimax Regret: Binary Labels

- The Littlestone dimension
- Standard Optimal Algorithm
- Sequential covering

» The Minimax Theorem
- Proving minimax theorem via EWA algorithm



Minimax Regret

Let X be an instance space, Y be the label space and J> be a (convex) outcome
space of predictors.

Unlike previous lecture, we define the hypothesis class as % C ¥ and the
learning rule (possibly improper) as:

P (X XY) XX =

Fort=1,2,---, T
Nature/Environment presents an instance x; € X
Learner predicts a label y: € ) via y; := ®(xt, y'™ 1)

Nature reveals true label y; € Y

=

Learner suffers loss £(y:, y:), for certain function £ : YxY R

Goal of Learner: Minimizes regret for the worst Nature.
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Minimax Regret

For any given x” € X and y" € Y7, the point-wise regret is defined as

T

T
T Ty ._ t t—1 .o
RT(H,(I),X Y ) i Ze(q)(x Y )7.yt) - hlél,}f_t;e(h(xt)vyt)

t=1

The worst-case regret for give learning rule ® is defined as

regT(Hv é) ‘= Sup RT(Hv ¢7XT7yT)
XT,yT

The minimax regret for a hypothesis class H is defined as

regr(H) := iItlf reg; (H,®) = infsup Rr(H, ®,x",y")

@ xT,yT

Fact 1: The minimax regret satisfies

T T
reg,(#) = supinfsup - - - sup infsup Zf(j/t,yt) — hléqu_[ Zﬁ(h(xt),yt)
t=1

x1 Y1 »n xT YT yr =1
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Preparing for the Proof: Skolemization

Skolemization: Let A, B be two sets, and F : A x B — R be an arbitrary
function, then

sup inf F(a, b) = inf sup F(g(b), b),

sup inf F(2,b) = inf sup F(g(b), b)

where G := AB is the class of all functions from B — A.
» Define g(b) := arginf,ea F(a, b) we have
supinf F(a, b) = sup F(g(b), b) > infsup F(g(b), b).
b o2 b & b
» Moreover, let g* := argmingeg(sup, F(g(b), b)) we have

infsup F(g(b),b) = sup F(g" (b), b) > supinf F(a, b).
g b b b 2

» Therefore, all inequalities become equality and the result follows.
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Proof of Fact 1

We prove only the case for T = 1 to demonstrate the idea. Define the function:

F(a, b) :=sup |£(a,y1) — inf £(h(b), 1)

Y1

Note that:
reg, (H) := infsup F(P(x1),x1).

o X1

By Skolemization, we have:

irllfsup F(®(x1),x1) = supinf F(§1,X1).
X1

x3 1

Plugging back the expression of F(a, b), we get:

reg; (H) = sup infsup £(y1,y1) — hier1£ £(h(x1), y1)

x1 Y1 yp
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- The Littlestone dimension
- Standard Optimal Algorithm
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Preliminaries

We now consider the case when ) = {0,1} and ) = [0, 1], and consider also the
specific loss function (i.e., the absolute loss):

0y,y) =1y —yl.

Observe that [J — y| = E,/ gem(p) [1{y’ # y}], i.e., it measures the expected
miss-classification loss when sampling from a Bernoulli source of parameter y.

Recall from our last lecture:

Theorem 1: For any finite class % C {0,1}*, the minimax regret of # under
the absolute loss is upper bounded by

regr(H) < O(v/ Tlog|H]),

which is achieved by the (generalized) EWA algorithm.
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Beyond Finite Classes

Observe that the regret bound based on the EWA algorithm applies only to a
finite class H, and it depends solely on the class size.

What happens for infinite classes?
» Consider the following threshold functions:

chres — {ha(X) — 1{X > a} ta,Xx € [071}}

» For any learner ®, consider the following strategy for Nature:
- At every step t, select label y; € {0,1} such that |y: — y¢| > %
- Select instances from the set of dyadic rationals, starting with x; = % and

updating (according to learner’s prediction y;_1) as:

1 .e o~

= JXe=1+ 58 if y1—1 > 0.5,

;=
Xt_1 — %, else.

» This ensures that:
- The cumulative loss incurred by the learner is at least T /2.

- Forall t < T, hyy o (xt) = yt, i.e., the hypothesis hyx, , incurs zero loss.

- Therefore, reg(H"es) > T /2.
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Demonstration of the Adversarial Process

Let learner’s prediction be {0, 1, 1}, the strategy for Nature goes as follows:

D=

N AN
15/8\13 11/8\9 x:y\ 3/8\1

16 16 16 16 16 16 16

=

|

ool w

S|

The function hy, (x) := 1{x > =} consistents with all true labels, but the
learner errs at every step.
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The Shattering Trees

We have shown that even for simple threshold functions, achieving sublinear
regret is not possible.
What intrinsic structure of # leads to this failure?

> Let # C {0,1}¥ be any binary-valued hypothesis class.

> A X-valued binary tree of depth d is defined as 7 : |J,,{0, 1} — A&,

> We say 7 is shattered by H if for any €’ € {0,1}, there exists h € H such

that '
Vi<d, h(r(€7") = e

> Note that, the tree formed by dyadic rationals is shattered by .

Fact 2: For any binary-valued class #, if there exists a X-valued binary tree of
depth d that can be shattered by 7, then: reg(#) > % min{d, T}.

Proof: Select the labels opposite to learner’s prediction, and the instances by
following the shattering tree 7, similar to the threshold function case...
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The Littlestone Dimension

Littlestone Dimension: Let 7 C {0,1} be a binary-valued hypothesis class.
The Littlestone dimension of H is defined as the maximum number d such that
there exists a X-valued binary tree of depth d that can be shattered by H.

» We will denote Ldim(7{) as the Littlestone dimension of H.
> It is clear from our previous slides that reg () > 3 min{Ldim(#), T}.

» Therefore, the Littlestone dimension forms an intrinsic barrier for the
minimax regret.

Example 1: For the threshold functions 7™, we have Ldim(#™) = occ.
Example 2: For any finite class #, we have Ldim(#) < log |H| (prove it!).
Example 3: Consider the following indicator functions

H™ = {h(x) = 1{x = a} : x,a € [0,1]}.
Then Ldim(H™) = 1 (prove it!).
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Upper Bounding Regret via Littlestone Dimension: Realizable case

We have shown that the Littlestone dimension forms a natural lower bound for
the minimax regret. Can we achieve an upper bound as well?

The Standard Optimal Algorithm (SOA):
1. Maintain a running hypothesis class | initially % = A.
2. At each time step t, we define, for y € {0,1}, that

HO = {heH'"™ : h(x) =y}

3. Predict y; := argmaxye{(]‘,l}{Ldim(?—[ﬁt)) :y € {0,1}}.
4. Let y; be true label, update H® = %
Lemma 1: For any data x”,y" that is realizable w.r.t. a binary-valued class H,

i.e.,, 3h* € H such that Vt < T, h*(x:) = y:, the SOA predictor enjoys the
following mistake bound

T

> 1{§r # ye} < Ldim(H).

t=1

Proof: Any mistake decreases Littlestone dimension by at least 1 (verify it!)...
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The Sequential Covering

Sequential Cover: Let 7 C {0,1}* be a binary-valued class, and G c {0,1}*"
be a class mapping X" — {0,1}. We say that the class G sequentially covers H
up to step T if, for any x” € X7 and h € H, there exists g € G such that

Vit < T, g(x*) = h(x:).

» The functions g € G map finite sequences X™* of X to {0, 1}.

» The cover happens locally, depending on any given x .
- Unlike the classical uniform cover, where each h is covered by a fixed g.

T as well.

- Sequential cover allows the covering function g to depend on x
P Infinite classes H can be sequentially covered by a finite class G.

- Consider the class H"™ := {h,(x) := 1{x = a} : x,a € [0, 1]}.

- For any i < T, define the sequential function:

1,ift=1i
&i(x) = {

0, otherwise

- The class G := {g; : i € [T]} sequentially covers H™" (prove it!).



From Mistake Bound to Sequential Cover
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From Mistake Bound to Sequential Cover

Lemma 2: Let % C {0,1}” be any binary-valued class. If there exists a
predictor for H that achieves mistake bound errr in the realizable case. Then
there exists a sequential cover G of H up to step T such that

errr

log |G| < logz (T) < Of(errr -log T).

i=0

> Let ® achieves errr mistakes for H in the realizable case.

» For any | C [T], we recursively define the sequential function

(x) = O(x', g(x"), -, g(x), ift &1
ET - o(xt, gi(x'), - ,g(x™h), iftel

» The class G := {g/: | C [T], |I] < errr} sequentially covers H, since for
any x” and h we can pick / being the time steps where ® errs...(why?)

> We have |G| < 3757 (7) by counting the size of {/ C [T]: |I| <errr}.
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Theorem 2: For any binary-valued class % C {0,1}* with finite Littlestone
dimension Ldim(7#), the minimax regret of H satisfies

Q(+/Ldim(H) - T) < regr(H) < O(y/Ldim(H) - Tlog T).

» From our previous discussion (Lemma 1), we know that the class admits a
mistake bound of Ldim(7#) in the realizable case.

» This implies, by Lemma 2, a sequential cover G of size
log|G| < O(Ldim(H) -log T).
» Applying the EWA algorithm over G and using the property of sequential
covering, we deduce, from Theorem 1, the upper bound O(y/Tlog |G|).

> We have shown a § min{Ldim(#), T} lower bound (c.f. Fact 2). The lower

bound Q(1/Ldim(H) - T) follows from a more technical argument...
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Khinchine’s Inequality: Let a;,

-+, ar be real numbers and € is uniformly
distributed over {—1,41}". Then
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=
Z ai€r| > —=
=1 V2

Sketch of Proof: We give a short proof for sup-optimal constant 1//3. By
Holder's inequality, we have for any bounded random variable X

E[X?] = E[|X|"/?|X|*]

< (BIX")YV2®]X])™2.
Taking X = Z;l at€:, we have

(Xr, a)*?
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A
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where (x) follows by 3>/, af + 33 i afa} <3(3, at)?
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Taking any x € X such that there exist hg, hy € H so that hi(x) = i.
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Proof of Lower Bound

We first prove a simpler Q(v/T) lower bound and assume that |H| > 2.
Taking any x € X such that there exist hg, hy € H so that hi(x) = i.
We now select y” uniformly over {0,1}7 and select x; := x for all t < T.

We have for any prediction rule ® that E r [ZtT:1 |y — yt|] = %

Let k be the number of 1's in y'. We have
T
inf h(x) — y¢| = min{k, T — k}.
e, 2100 =i = min }

Let ¢’ be uniform over {£1}7, we have Z;l e: distributed equally as 2k — T.

Note that |k — Z| = £ —min{k, T — k}, we have by Khinchine's Inequality that

: T 1
Elmin{k, T~ k}] < 5 — %ﬁ.

Therefore, the regret is lower bounded by /T/8.
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Proof of Lower Bound

The Q(+y/Ldim(#H) T) lower bound follows by a more careful selection of the x”.
Assume that T is divisible by Ldim(7{) (otherwise we truncate T).

We partition x”, y " into Ldim(#) blocks each of size WT(’H) and denote k; be
the number of 1's in the i'th block of y .

Let 7 be a X-valued binary tree of depth Ldim(7) that can be shattered by .

We now select y” uniformly over {0,1}7 and select x” by traversing 7:

1. We assign the same value within each block of x”, with the first block
being the value of the root vy of 7.

2. Let v; be the node in 7 for the i's block. If k; > WT(H) we set vi+1 being

left child of v;, and set to the right child otherwise.

By definition of shattering, 3h € H that achieves min{k;, m ki} losses for
all i simultaneously. (verify it!)

The regret is then lower bounded by

Q(Ldim(H) - v/T/Ldim(H)) = Q(+/Ldim(H) T).



Overview

» The Minimax Theorem
- Proving minimax theorem via EWA algorithm
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The Minimax Theorem

Minimax Theorem: Let f : A x B — R be a bounded real-valued function,
where both A and B are convex sets and A is compact. If f(-, b) is convex and
continuous on A for any b € B, and f(a,-) is concave on B for any a € A, then

inf sup f(a, b) = sup inf f(a, b).
EEAbGI; ( ) begaeA ( )

» This theorem is stronger than von Neumann's minimax theorem, which
specifically considers the case when f is a bi-linear function.

» It differs slightly from Sion’s minimax theorem, which requires only
semi-continuity and quasi-convexity (-concavity).

Interpretation: In a two-player game with actions from A and B, the minimax
theorem shows that, under the stated conditions, player 1’s best strategy yields
the same value whether or not they know player 2's move.
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Proof of Minimax Theorem via the EWA algorithm

It is obvious that inf, sup, f(a, b)> sup, inf, f(a, b) for any f (why?).
For converse, by compactness of A, there exists a finite e-net A. C A of size .
We now view ) := A as the prediction space and ) := B as the label space.

The set A. is therefore a hypothesis class with constant-valued functions (i.e.,
with no features), and f(a, b) is a loss function.

Let ® : V* — ) be the (generalized) EWA algorithm with no feature inputs.
Consider the following strategy for Nature: Vt < T, choose y; € ) such that
- N 1
F(Ve-1,y2) 2 sup f(Je1,y) — =,
yey
where y;_1 = ®(y" 1) is learner's prediction using EWA.

By the regret guarantee for EWA (Theorem 1), we have:

- - [log N
Z Ve, ye) < mfF—Zf ye) + O( gT)
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Observe that

~| \

infsup f(y,y) < sup f <
Yoy

2)

~l=
Mﬂ

< sup f(yt,y), by convexity of f(-,y)
Y t=1
i
< 7 g (e, ye) + T’ by definition of y;
1 log NV
< yignAf(/ 7 ; f(y,y:) + O( 5_ ), by regret bound of EWA
T log N
< inf f(y b ity of f
< o1 705350+ 00y by concaty of 165
<sup inf f(y,y)+ O(\/log N/ T).
y VEAL

Sending T — oo, we have inf; sup, f(y,y) < sup, infyca (y,y). The theorem
follows by sending € — 0 and continuity of f(-,y), since AL C A is an e-net.



Concluding Remarks

» In this lecture, we discussed the minimax regret of online learning games by
focusing on the structure of the hypothesis class.

» We demonstrate that the Littlestone dimension tightly characterizes the
minimax regret for binary-valued classes.

» Most of the techniques can be extended to real-valued classes, but need
more care to get it right. This will be discussed in the upcoming lecture.



