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Overview

I Bayesian Representation of Minimax Regret
- The minimax switching trick

I Bounding the Minimax Regret: Real-valued Case
- The sequential Rademacher complexity, symmetrization
- The Sequential fat-shattering dimension
- Regret bounds via Sequential fat-shattering dimension

I From Value to Algorithm
- The relaxation framework
- The hypbrid setting, random play-out
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Bayesian Representation of Minimax Regret

Let Y = Ŷ := [0, 1] and H ⊂ ŶX . The minimax regret for H can be expressed
as (c.f. Fact 1 in lecture 2):

regT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

[ T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]
.

How can we make the iterated minimax operator manageable?

Theorem 1: Assume the loss ` is bounded and `(·, y) is convex and continuous,
Ŷ is convex and ∆(X × Y) is compact. We have:

regT (H) = sup
µ∈∆(X×Y )T

E(xT ,yT )∼µ

[ T∑
t=1

inf
ŷ∈Ŷ

Et [`(ŷt , yt)]− inf
h∈H

T∑
t=1

`(h(xt), yt)

]
,

where Et denotes the conditional distribution of µ on xt , y t−1.

I The minimax regret is reduced to finding the Bayesian optimal strategy for
a single hard data distribution µ.

I One can analyze the minimax regret without needing to design an algorithm!
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Preparing for Proof: The Minimax Switching Trick

Minimax Switching Trick: Let A be a convex set, B be a set such that ∆(B) is
compact, and let f : A × B → R be a bounded function such that f (·, b) is
convex for all b ∈ B. Then:

inf
a∈A

sup
b∈B

f (a, b) = sup
µ∈∆(B)

inf
a∈A

Eb∼µ[f (a, b)].

Proof: Note that:

inf
a∈A

sup
b∈B

f (a, b) = inf
a∈A

sup
µ∈∆(B)

Eb∼µ[f (a, b)].

Denote F (a, µ) = Eb∼µ[f (a, b)]. We have F (·, µ) is convex over A, and F (a, ·)
is linear (therefore concave) over ∆(B). (Verify this!)

By the Minimax Theorem (c.f. Lecture 2), we conclude:

inf
a∈A

sup
µ∈∆(B)

F (a, µ) = sup
µ∈∆(B)

inf
a∈A

F (a, µ).
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Proof of Theorem 1

Observe that the iterated minimax formulation can be written as:

sup
z0

inf
ŷ1

sup
z1

· · · inf
ŷT

sup
zT

[ T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]
,

where z0 = x1, zt = (yt , xt+1) for t < T and zT = yT .

Consider the last layer:

inf
ŷT

sup
zT


T∑

t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)︸ ︷︷ ︸
F(zT )


=

T−1∑
t=1

`(ŷt , yt) + inf
ŷT

sup
zT

[
`(ŷT , zT )− F (zT )

]
.

We now bound the second term. By the Minimax Switching Trick, we have:

inf
ŷT

sup
zT

[
`(ŷT , zT )− F (zT )

]
= sup

µT ∈∆(X×Y)

inf
ŷT

EzT ∼µT

[
`(ŷT , zT )− F (zT )

]
.
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Proof of Theorem 1

Moreover, observe that

sup
µT ∈∆(X×Y)

inf
ŷT

EzT ∼µT

[
`(ŷT , zT )− F (zT )

]
= sup

µT ∈∆(X×Y)

inf
ŷT

[
EzT [`(ŷT , zT )]− EzT [F (zT )]

]

= sup
µT ∈∆(X×Y)

[
inf
ŷT

EzT [`(ŷT , zT )]− EzT [F (zT )]

]
= sup

µT ∈∆(X×Y)

EzT

[
inf
ŷT

EzT [`(ŷT , zT )]− F (zT )

]
.

Applying this argument for another T − 1 steps, we obtain:

regT (H) = sup
µ1

Ez1∼µ1 · · · sup
µT

EzT ∼µT

[ T∑
t=1

inf
ŷT

Ezt [`(ŷt , zt)]− F (zT )

]
.
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ŷT

EzT ∼µT

[
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Proof of Theorem 1

Note that
sup
µ1

Ez1∼µ1 · · · sup
µT

EzT ∼µT

(F)
≡ sup

µ∈∆((X×Y)T )

EzT ∼µ,

where µ is a joint distribution over (X × Y)T .

We conclude:

regT (H) = sup
µ∈∆((X×Y)T )

EzT ∼µ

[ T∑
t=1

inf
ŷT

Ezt [`(ŷt , zt)]− F (zT )

]
.

Homework: Prove that for any function F : A × B → R and any distribution µ
over A, we have

Ea∼µ sup
b∈B

F (a, b) = sup
g∈BA

Ea∼µF (a, g(a)).

Consequently, (F) holds. (Hint: Use the same argument as in Skolemization
and switch the supµt operators.)
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The Sequential Rademacher Complexity

Sequential Rademacher Complexity: For any real-valued class H ⊂ RX , we
define the sequential Rademacher complexity of H as

sRadT (H) = sup
τ

EεT

[
sup
h∈H

T∑
t=1

εth(τ(εt−1))

]
,

where τ :
⋃

i≤T{0, 1}
i → X runs over all X -valued binary trees of depth T , and

εT is sampled uniformly over {−1,+1}T .

I Similar to classical Rademacher complexity, except that the optimizing is
over trees instead of sequences.

Example 1: Let Hlin := {hw(x) = 〈w, x〉 : w ∈ B2} be the class of linear
functions with weight w lie in a unit L2 ball. Let X := B2 as well, we have

sRadT (Hlin) ≤
√

T .
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Proof of Example 1

Fix any tree τ and denote xt := τ(εt−1), we have:

sRadT (Hlin) = sup
τ

EεT

[
sup

w∈B2

T∑
t=1

εt〈w, xt)〉

]

= sup
τ

EεT

[
sup

w∈B2

〈
w,

T∑
t=1

εtxt)

〉]

≤ sup
τ

EεT

√√√√〈 T∑
t=1

εtxt ,

T∑
t=1

εtxt

〉
, (Why?)

≤ sup
τ

√√√√EεT

〈 T∑
t=1

εtxt ,

T∑
t=1

εtxt

〉
, by Jensen’s inequality

≤ sup
τ

√√√√√EεT

T +
∑

i 6=j≤T

εiεjxT
i xj

, by ‖xt‖2 ≤ 1

=
√

T . (Why?)
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Reduction to Sequential Rademacher Complexity: Symmetrization

We now introduce a general approach for reducing the minimax regret to
sequential Rademacher complexity.

From Theorem 1, we know that the minimax regret can be expressed as

sup
µ

E

[ T∑
t=1

inf
ŷ∈Ŷ

Et [`(ŷt , yt)]− inf
h∈H

T∑
t=1

`(h(xt), yt)

]

= sup
µ

E

[
sup
h∈H

{ T∑
t=1

inf
ŷ∈Ŷ

Et [`(ŷt , yt)]−
T∑

t=1

`(h(xt), yt)

}]

≤ sup
µ

E

[
sup
h∈H

{ T∑
t=1

Et [`(h(xt), yt)]−
T∑

t=1

`(h(xt), yt)

}]
.

Denote h`(zt) := `(h(xt), yt) where zt = (xt , yt). We obtain upper bound

sup
µ

E

[
sup
h∈H

{ T∑
t=1

Et [h`(zt)]− h`(zt)

}]
.
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Et [`(ŷt , yt)]−
T∑

t=1

`(h(xt), yt)

}]

≤ sup
µ

E

[
sup
h∈H

{ T∑
t=1

Et [`(h(xt), yt)]−
T∑

t=1

`(h(xt), yt)

}]
.

Denote h`(zt) := `(h(xt), yt) where zt = (xt , yt). We obtain upper bound

sup
µ

E

[
sup
h∈H

{ T∑
t=1

Et [h`(zt)]− h`(zt)

}]
.



12/32

Reduction to Sequential Rademacher Complexity: Symmetrization

We now introduce a tangent sequence z′1, · · · , z′T such that z′t = (x′
t , y ′

t ) with
x′

t = xt and y ′
t being an i .i .d. copy of yt conditioning on xt , y t−1.

The upper bound can be expresses as

sup
µ

EzT

[
sup
h∈H

{ T∑
t=1

Et [h`(z′t)]− h`(zt)

}]
, by definition of z′T

≤ sup
µ

EzT Ez′T

[
sup
h∈H

{ T∑
t=1

h`(z′t)− h`(zt)

}]
, by supE ≤ E sup

(F)
= sup

µ
Ex1Ey1,y′1Eε1 · · ·ExT EyT ,y′T

EεT

[
sup
h∈H

{ T∑
t=1

εt(h`(z′t)− h`(zt))

}]
(??)

≤ 2 sup
µ

Ex1Ey1Eε1 · · ·ExT EyT EεT

[
sup
h∈H

{ T∑
t=1

εth`(zt)

}]

where εt is uniform over {±1} and is (conditional) independent of yt , y ′
t .

Here (F) follows by the conditional symmetries of yt , y ′
t and (??) follows by

sup(A + B) ≤ sup A + sup B and symmetries between yt , y ′
t .
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Reduction to Sequential Rademacher Complexity: Symmetrization

Note that, the following operator inequality holds (by E ≤ sup):

Ex1Ey1Eε1 · · ·ExT EyT EεT ≤ sup
x1,y1

Eε1 · · · sup
xT ,yT

EεT .

By Skolemization again, the upper bound equals

sup
x1,y1

Eε1 · · · sup
xT ,yT

EεT

[
sup
h∈H

{ T∑
t=1

εth`(zt)

}]
= sup

τ
EεT

[
sup
h∈H

{ T∑
t=1

εth`(τ(εt−1))

}]
︸ ︷︷ ︸

sRad(H`)

,

where τ runs over all (X × Y)-valued binary trees.

Lemma 1: Putting everything together, we have proved that

regT (H) ≤ 2 · sRadT (H`),

where H` := {`(h(x), y) : h ∈ H} ∈ Ŷ(X×Y).
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14/32

The Lipschitz Contraction Lemma

Lemma 2: Let H ⊂ RZ and φ : R×Z → R. If for all z ∈ Z, φ(·, z) is a
L-Lipschitz function, then

sRadT (φ(H)) ≤ L · sRadT (H),

where φ(H) = {z → φ(h(z), z) : h ∈ H}.

I This lemma mirrors Talagrand’s contraction lemma for regular Rademacher
complexity.

I Apply this lemma to H` := {`(h(x), y) : h ∈ H} for Lipschitz loss `, we
have

sRadT (H`) ≤ O(sRadT (H)).

I Therefore, by Lemma 1, we have

regT (H) ≤ O(sRadT (H)).
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Proof of Lemma 2

Fix any tree τ and denote zt = τ(εt−1). Let Sh
t =

∑t
i=1 εiφ(h(zi), zi).

EεT

[
sup

h
Sh

T

]
= EεT−1

[
1

2

{
sup

h
{Sh

T−1+φ(h(zT ), zT )}+ sup
h
{Sh

T−1−φ(h(zT ), zT )}
}]

= EεT−1

[
1

2
sup
h,h′

{
Sh

T−1 + Sh′
T−1 + φ(h(zT ), zT )− φ(h′(zT ), zT )

}]
(?)

≤ EεT−1

[
1

2
sup
h,h′

{
Sh

T−1 + Sh′
T−1 + L|h(zT )− h′(zT )|

}]
, by Lipschitz of φ

(??)
= EεT−1

[
1

2
sup
h,h′

{
Sh

T−1 + Sh′
T−1 + L(h(zT )− h′(zT ))

}]
, by symmetries

= EεT

[
sup

h
Sh

T−1 + LεT h(zT )

]
, by reversing of step one

Continue the same argument for another T − 1 steps, the lemma follows.



16/32

Bounding the Minimax Regret via Sequential Rademacher Complexity

Theorem 2: Let Y = Ŷ := [0, 1] and H ⊂ ŶX be a real-valued class. If the loss
function ` is bounded, convex, and Lipschitz in its first argument, then:

regT (H) ≤ O(sRadT (H)).

Moreover, for the absolute loss `(ŷ , y) = |ŷ − y |, we have

regT (H) ≥ Ω(sRadT (H)).

I The upper bound follows by our previous discussions (c.f. Lemma 1 and 2).

I The lower bound follows by constructing a specific hard data distribution,
which we prove below.

I For linear functions, we have regT (H
lin) ≤ O(

√
T ).
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Theorem 2: Let Y = Ŷ := [0, 1] and H ⊂ ŶX be a real-valued class. If the loss
function ` is bounded, convex, and Lipschitz in its first argument, then:

regT (H) ≤ O(sRadT (H)).

Moreover, for the absolute loss `(ŷ , y) = |ŷ − y |, we have
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Proof of Regret Lower Bound

Let τ :
⋃

i≤T{0, 1}
i → X be any X -valued binary tree of depth T .

We define a specific distribution µ over (X × Y)T as follows:
1. Sample yT uniformly from {0, 1}T ;
2. Let xt = τ(y t−1).

Note that infŷ∈Ŷ Et [|ŷt − yt |] = 1
2
, since yt is uniform over {0, 1} conditioning

on xt , y t−1. That is the Bayesian optimal risk equals T
2

.

Moreover, |h(xt)− yt | = εth(xt) + (1− εt)/2, where εt = 1− 2yt ∈ {−1,+1}.

Therefore, by Theorem 1, we have

regT (H) ≥ EyT

[
T
2

− inf
h∈H

T∑
t=1

(
εth(xt) +

1− εt

2

)]
= EεT

[
sup
h∈H

T∑
t=1

εth(xt)

]
,

where the equality follows by Eyt [(1− εt)/2] =
1
2

and changing measure to εT .

Since τ is selected arbitrary, the inequality remain holds when taking supτ . We
conclude that regT (H) ≥ sRadT (H), as needed.
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The Sequential Fat-Shattering Dimension

We have shown that for Lipschitz losses, the minimax regret is tightly
characterized by the sequential Rademacher complexity.

But: How can we bound the sequential Rademacher complexity?

Sequential Fat-Shattering: Let H ⊂ [0, 1]X . We say a X -valued binary tree
τ :

⋃
i≤d{0, 1}

i → X is α-fat-shattered by H, witnessed by a R-valued binary
tree s :

⋃
i≤d{0, 1}

i → R, if for any εd ∈ {0, 1}d , there exists h ∈ H such that:

1. If εt = 0, then h(τ(εt−1)) ≤ s(εt−1)− α;
2. If εt = 1, then h(τ(εt−1)) ≥ s(εt−1) + α.

Sequential Fat-Shattering Dimension: The Sequential α-Fat-Shattering
Dimension sfatα(H) for a class H ⊂ [0, 1]X is defined as the maximal number d
such that H can α-fat-shatter certain trees τ, s of depth d.

I Note that sfatα(H) mirrors the Littlestone dimension.
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Shattering and Witness Trees

Shattering Tree

x1
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x4 x5

x3

x6 x7

0
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1

Witness Tree
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s4 s5

s3

s6 s7

−α
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s2

s5

−α

+α

+α

Consider a path {0, 1}, the α-fat shattering ensures ∃h ∈ H such that:
1. h(x1) ≤ s1−α.
2. h(x2) ≥ s2+α.
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Sequential Covering for Real-valued Functions

(Real-valued) Sequential Cover: Let H ⊂ [0, 1]X and G ⊂ [0, 1]X
∗

be a class
mapping X ∗ → [0, 1]. We say that the class G sequentially α-covers H up to
step T if, for any xT ∈ X T and h ∈ H, there exists g ∈ G such that

∀t ≤ T , |g(xt)− h(xt)| ≤ α.

Similar to the binary-valued case, we can bound the (real-valued) sequential
cover via the sequential fat-shattering dimension as follows:

Lemma 3: For any class H ⊂ [0, 1]X with sequential α-fat-shattering dimension
sfatα(H), there exists a sequential α-cover Gα of H such that

log |Gα| ≤ Õ(sfatα/3(H)),

where Õ hides poly-logarithmic factors in α and T .
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Proof of Lemma 3

Let K = {2iα : i ≤ [1/(2α)]} be a discretization of [0, 1] such that for any
a ∈ [0, 1], there exists b ∈ K where |a − b| ≤ α.

For any h ∈ H, we define a function h′ ∈ KX such that

h′(x) = arg min
β∈K

|h(x)− β|.

Let H′ = {h′ : h ∈ H} ⊂ KX . It is easy to observe that any sequential 2α-cover
of H′ implies a sequential 3α-cover of H. (Verify this!)

Our primary goal is now reduced to bounding the 2α-covering set size of H′.

To achieve this, we introduce the following concept:

1-Shattering Dimension: The 1-shattering number of H′ is defined as the
maximum number d such that there exist a X -valued tree τ and a K -valued tree
s, both of depth d, such that ∀εd ∈ {0, 1}d , ∃h′ ∈ H′ we have:

1. If εt = 0, then h′(τ(εt−1)) ≤ s(εt−1)− 2α;
2. If εt = 1, then h′(τ(εt−1)) ≥ s(εt−1) + 2α.

We denote FAT1(H′) as the 1-shattering dimension of H′.
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Proof of Lemma 3

It is easy to observe that FAT1(H′) ≤ sfatα(H). (verify this!)

The M-SOA Algorithm
1. Maintain a running hypothesis class H(t), initially H(0) = H′.
2. At time step t, for each β ∈ K , let: H(t)

β = {h ∈ H(t−1) : h(xt) = β}.

3. Predict ŷt := arg maxβ∈K{FAT1(H(t)
β ) : β ∈ K}.

4. Let yt be the true label, and update:

H(t) =

{
H(t)

yt , if |ŷt − yt | > 2α,

H(t−1), otherwise.

Claim 1: The M-SOA algorithm enjoys the following realizable risk bound:

sup
xT

sup
h′∈H′

T∑
t=1

1{|ŷt − h′(xt)| > 2α} ≤ FAT1(H′).

Proof: Show that for any time step t where |ŷt − yt | > 2α happens, FAT1(H(t))
is reduced by at least 1... (verify this!)
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yt , if |ŷt − yt | > 2α,

H(t−1), otherwise.

Claim 1: The M-SOA algorithm enjoys the following realizable risk bound:

sup
xT

sup
h′∈H′

T∑
t=1
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Proof of Lemma 3

Let Φ be the M-SOA algorithm.

For any I ⊂ [T ] and {βt}t∈I ∈ K |I|, we define a sequential function by
simulating the M-SOA algorithm with the following modification at each step t:

1. If t ∈ I, update H(t) = H(t)
βt

;
2. If t 6∈ I, make no change.

Let G be the collection of all such sequential functions with |I| ≤ FAT1(H).

Claim 2: The class G sequentially 2α-covers H′, and

log |G| ≤ O(FAT1(H′) log(|K |T )).

I The covering follows from the risk bound in Claim 1. (Why?)
I The size follows by counting the number of such I’s and {βt}t∈I ’s.
I Lemma 3 follows by combining all of the previous results. (Verify this!)
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Let Φ be the M-SOA algorithm.

For any I ⊂ [T ] and {βt}t∈I ∈ K |I|, we define a sequential function by
simulating the M-SOA algorithm with the following modification at each step t:

1. If t ∈ I, update H(t) = H(t)
βt

;
2. If t 6∈ I, make no change.
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Claim 2: The class G sequentially 2α-covers H′, and
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Relating the Complexity Measures

Theorem 3: Let Y = Ŷ := [0, 1], and H ⊂ [0, 1]X . Assume the loss is bounded,
convex, and Lipschitz. Then, the following statements are equivalent for a given
p ≥ 2 (the Õ hides poly-logarithmic factors in α and T ):

1. The Sequential Fat-Shattering Dimension sfatα(H) = Θ̃(α−p);
2. There exists a Sequential α-cover Gα with log |Gα| = Θ̃(α−p);

3. The Sequential Rademacher Complexity sRadT (H) = Θ̃(T
p−1

p );

4. The minimax regret regT (H) = Θ̃(T
p−1

p ).

I In this lecture, we showed that 1 ⇒ 2 (Lemma 3) and 3 ⇔ 4 (Theorem 2).
The other implications require more technical treatment.

- For these proofs, refer to (Rakhlin, Sridharan, Tewari, JMLR 2016)...

I Note that a naïve implication 2 ⇒ 4 can be obtained via the EWA algorithm,
but with a bound of regT (H) ≤ Õ(T

p+1
p+2 ). (Proof left as Homework).

I The tighter Õ(T
p−1

p ) regret bound arises from the benefit of chaining,
through the path 2 ⇒ 3 ⇒ 4.
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p ≥ 2 (the Õ hides poly-logarithmic factors in α and T ):

1. The Sequential Fat-Shattering Dimension sfatα(H) = Θ̃(α−p);
2. There exists a Sequential α-cover Gα with log |Gα| = Θ̃(α−p);

3. The Sequential Rademacher Complexity sRadT (H) = Θ̃(T
p−1

p );

4. The minimax regret regT (H) = Θ̃(T
p−1

p ).

I In this lecture, we showed that 1 ⇒ 2 (Lemma 3) and 3 ⇔ 4 (Theorem 2).
The other implications require more technical treatment.

- For these proofs, refer to (Rakhlin, Sridharan, Tewari, JMLR 2016)...

I Note that a naïve implication 2 ⇒ 4 can be obtained via the EWA algorithm,
but with a bound of regT (H) ≤ Õ(T
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Overview

I Bayesian Representation of Minimax Regret
- The minimax switching trick

I Bounding the Minimax Regret: Real-valued Case
- The sequential Rademacher complexity, symmetrization
- The Sequential fat-shattering dimension
- Regret bounds via Sequential fat-shattering dimension

I From Value to Algorithm
- The relaxation framework
- The hybrid setting, random play-out
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From Value to Algorithm

So far, we have discussed various approaches to bound the minimax regret
without designing an algorithm.

What algorithm achieves such regret?

For any xt−1 and y t−1, we define the partial minimax regret as:

reg(t)
T (H, xt−1, y t−1)

= Qt

[
`(ŷt , yt) +Qt+1

[
`(ŷt+1, yt+1) + · · · − inf

h∈H

T∑
t=1

`(h(xT ), yT )

]]

where Qt := supxt infŷt supyt .

It is easy to observe that the following naïve algorithm is minimax optimal:

ŷt = arg min
ŷ

sup
y

[
`(ŷ , y) + reg(t+1)

T (H, xt , y t−1y)
]
.

(Hint: Backward induction on reg(t)
T (H, xt−1, y t−1) from t = T to 1.)



26/32

From Value to Algorithm

So far, we have discussed various approaches to bound the minimax regret
without designing an algorithm.

What algorithm achieves such regret?

For any xt−1 and y t−1, we define the partial minimax regret as:

reg(t)
T (H, xt−1, y t−1)

= Qt

[
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`(ŷ , y) + reg(t+1)

T (H, xt , y t−1y)
]
.

(Hint: Backward induction on reg(t)
T (H, xt−1, y t−1) from t = T to 1.)



26/32

From Value to Algorithm

So far, we have discussed various approaches to bound the minimax regret
without designing an algorithm.

What algorithm achieves such regret?

For any xt−1 and y t−1, we define the partial minimax regret as:

reg(t)
T (H, xt−1, y t−1)

= Qt

[
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ŷ

sup
y

[
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ŷt = arg min
ŷ
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`(ŷ , y) + reg(t+1)

T (H, xt , y t−1y)
]
.

(Hint: Backward induction on reg(t)
T (H, xt−1, y t−1) from t = T to 1.)



27/32

Relaxation
Note that the partial minimax regret involves complicated iterative minimax
optimizations, which is generally not easy to compute.

A natural approach is to replace the actual partial minimax regret with some
more manageable functions.

We define the relaxation as a function: RelT : (X × Y)∗ → R.

A relaxation Rel is said to be admissible w.r.t. a class H if for any xT , yT

1. RelT (xT , yT ) ≥ − infh∈H
∑T

t=1 `(h(xt), yt).
2. For any t < T , we have

sup
x

inf
ŷ

sup
y

[
`(ŷ , y) + Rel(xt−1x, y t−1y)

]
≤ Rel(xt−1, y t−1).

Lemma 4: Let RelT be a relaxation that is admissible w.r.t. a class H, then the
following predictor Φ

ŷt = arg min
ŷ

sup
y

[
`(ŷ , y) + RelT (xt , y t−1y)

]
achieves the worst-case regret regT (H,Φ) ≤ RelT (∅).
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Proof of Lemma 4

By condition 1 of admissibility, we have

sup
x1,y1

· · · sup
xT−1,yT−1

[T−1∑
t=1

`(ŷt , yt) + sup
xT ,yT

[
`(ŷT , yT )− inf

h∈H

T∑
t=1

`(h(xt , yt))

]]

≤ sup
x1,y1

· · · sup
xT−1,yT−1

[T−1∑
t=1

`(ŷt , yt) + sup
xT ,yT

[
`(ŷT , yT ) + RelT (xT , yT )

]]

Note that, by definition of ŷT , we have

sup
xT ,yT

[
`(ŷT , yT ) + RelT (xT , yT )

]
= sup

xT
inf
ŷT

sup
yT

[
`(ŷT , yT ) + RelT (xT , yT )

]
(?)

≤ RelT (xT−1, yT−1)

where (?) follows by condition 2 of admissibility.

Continue this argument for another T − 1 steps, we have regT (H,Φ) ≤ RelT (∅).
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`(ŷT , yT )− inf

h∈H

T∑
t=1

`(h(xt , yt))

]]

≤ sup
x1,y1

· · · sup
xT−1,yT−1

[T−1∑
t=1
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`(ŷT , yT ) + RelT (xT , yT )

]
(?)

≤ RelT (xT−1, yT−1)

where (?) follows by condition 2 of admissibility.

Continue this argument for another T − 1 steps, we have regT (H,Φ) ≤ RelT (∅).



28/32

Proof of Lemma 4

By condition 1 of admissibility, we have

sup
x1,y1

· · · sup
xT−1,yT−1

[T−1∑
t=1
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`(ŷT , yT ) + RelT (xT , yT )

]]

Note that, by definition of ŷT , we have
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The Hybrid Setup

We have shown that a good relaxation automatically provides a good algorithm
by solving an optimization problem with respect to the relaxation.

However, the computation is typically quite expensive.

How can we construct a relaxation that leads to efficient algorithms?

I It turns out that a generic efficient algorithm is not possible for worst-case
regret, even for finite classes.

- See ”The Computational Power of Optimization in Online Learning” by E.
Hazan and T. Koren (STOC 2016).

I A workaround is to consider a weaker adversary/nature that generates data.

Hybrid Regret: Let µ be a distribution over X . The hybrid regret for a predictor
Φ is defined as:

˜regT (H,Φ, µ) = Ex1 sup
y1

· · ·ExT sup
yT

[ T∑
t=1

`(ŷt , yt)− inf
h∈H

T∑
t=1

`(h(xt), yt)

]
,

where xt ∼ µ and are independent for different t ≤ T .
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Oracle Efficiency

Since we do not impose any structural assumptions on H, a generic efficient
algorithm is out of reach in the standard computational model.

Instead, we consider a weaker notion of oracle efficiency:
I Given any data xt , y t , the Empirical Risk Minimization (ERM) oracle finds

ĥt = arg min
h∈H

t∑
i=1

`(h(xi), yi).

I A prediction rule is oracle efficient if it runs in polynomial time by accessing
the ERM oracle, with each oracle call counted as unit time.

I The ERM oracle can often be computed efficiently in practice, even for
non-convex classes like neural networks, using gradient-based methods.
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Oracle Efficient Regret for Hybrid Regret

Theorem 3: For any given distribution µ over X and class H ⊂ [0, 1]X , if the
loss function ` is convex and Lipschitz in its first argument, then there exists an
oracle efficient predictor Φ such that:

˜regT (H,Φ, µ) ≤ O(RadT (H)),

where RadT (H) is the standard (non-sequential) Rademacher complexity of H.

I The proof follows by finding an admissible relaxation RelT such that the
induced predictor ŷt = arg minŷ supy

[
`(ŷ , y) + RelT (xt , y t−1y)

]
can be

computed in an oracle efficient manner.
I The oracle efficiency follows by a random play-out approach that bypassed

the estimation of RelT with a single random value.
- See ”Relax and Randomize: From Value to Algorithms” by Rakhlin, Shamir,

and Sridharan (NeurIPS 2012).

I It remains an active research area to explore oracle efficient predictors for
more complex and unknown feature generation processes.

- See our recent paper ”Oracle-Efficient Hybrid Online Learning with Unknown
Distribution” by Wu, Sima, and Szpankowski (COLT 2024).
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`(ŷ , y) + RelT (xt , y t−1y)

]
can be

computed in an oracle efficient manner.
I The oracle efficiency follows by a random play-out approach that bypassed

the estimation of RelT with a single random value.
- See ”Relax and Randomize: From Value to Algorithms” by Rakhlin, Shamir,

and Sridharan (NeurIPS 2012).

I It remains an active research area to explore oracle efficient predictors for
more complex and unknown feature generation processes.

- See our recent paper ”Oracle-Efficient Hybrid Online Learning with Unknown
Distribution” by Wu, Sima, and Szpankowski (COLT 2024).



31/32

Oracle Efficient Regret for Hybrid Regret

Theorem 3: For any given distribution µ over X and class H ⊂ [0, 1]X , if the
loss function ` is convex and Lipschitz in its first argument, then there exists an
oracle efficient predictor Φ such that:

˜regT (H,Φ, µ) ≤ O(RadT (H)),

where RadT (H) is the standard (non-sequential) Rademacher complexity of H.

I The proof follows by finding an admissible relaxation RelT such that the
induced predictor ŷt = arg minŷ supy
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Concluding Remarks

I In this lecture, we introduced a general approach for bounding the minimax
regret by converting it to a Bayesian representation.

I We showed that this Bayesian representation can be naturally bounded by
the sequential Rademacher complexity through a symmetrization argument.

I We further demonstrated that the sequential Rademacher complexity can be
effectively controlled by the sequential fat-shattering dimension.

I Finally, we discussed a principled way to construct prediction algorithms via
the concept of admissible relaxation and addressed the issue of
computational efficiency.

I A key assumption we made throughout this lecture is the Lipschitz
condition of the loss, which is not always satisfied for certain natural losses.
We will address this in the upcoming lecture.


