Online Learning under Logarithmic Loss

Changlong Wu & Wojciech Szpankowski

Center for Science of Information Purdue University

October 21, 2024

Overview

Example 3 Sequential Probability Assignment

- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

Minimax Regret under Log-loss

- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

▶ Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%. But, it ends up being sunny the next day.

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?

- \blacktriangleright The probability distribution for rain is different every day.
- \triangleright We only observe one outcome (i.e., rain or no rain) for each distribution.

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%. But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?

- \blacktriangleright The probability distribution for rain is different every day.
- \triangleright We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function $\ell : \Delta({0, 1}) \times {0, 1} \rightarrow \mathbb{R}$

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%. But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?

- \blacktriangleright The probability distribution for rain is different every day.
- \triangleright We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function $\ell : \Delta({0, 1}) \times {0, 1} \rightarrow \mathbb{R}$ that satisfies the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

 $\forall p, q \in \Delta(\{0, 1\}), \mathbb{E}_{\mathbf{v} \sim p}[\ell(p, y)] \leq \mathbb{E}_{\mathbf{v} \sim p}[\ell(q, y)].$

2. Ideally, the function ℓ should have a natural interpretation.

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and $\Delta(Y)$ be the set of all distributions over Y .

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and $\Delta(Y)$ be the set of all distributions over Y .

The logarithmic loss for any $p \in \Delta(\mathcal{Y})$ and $y \in \mathcal{Y}$ is defined as:

 $\ell^{\sf log}({\pmb{\rho}},{\pmb{y}}) = -\log {\pmb{\rho}}[{\pmb{y}}].$

It turns out that a natural choice is the so-called logarithmic loss (log-loss). Let Y be a label space, and $\Delta(y)$ be the set of all distributions over Y.

The logarithmic loss for any $p \in \Delta(\mathcal{Y})$ and $y \in \mathcal{Y}$ is defined as:

$$
\ell^{\log}(p, y) = -\log p[y].
$$

Key properties of log-loss:

It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

$$
\forall p, q \in \Delta(\mathcal{Y}), \ \mathbb{E}_{y \sim p}[\ell^{\log}(q, y)] = H(p) + \mathsf{KL}(p, q).
$$

It turns out that a natural choice is the so-called logarithmic loss (log-loss). Let Y be a label space, and $\Delta(y)$ be the set of all distributions over Y.

The logarithmic loss for any $p \in \Delta(\mathcal{Y})$ and $y \in \mathcal{Y}$ is defined as:

$$
\ell^{\log}(\mathbf{p}, \mathbf{y}) = -\log \mathbf{p}[\mathbf{y}].
$$

Key properties of log-loss:

It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

$$
\forall p, q \in \Delta(\mathcal{Y}), \ \mathbb{E}_{y \sim p}[\ell^{\log}(q, y)] = H(p) + \mathsf{KL}(p, q).
$$

 \triangleright By the non-negativity of KL-divergence, this implies:

$$
\mathbb{E}_{y \sim p}[\ell^{\log}(p, y)] \leq \mathbb{E}_{y \sim p}[\ell^{\log}(q, y)].
$$

It turns out that a natural choice is the so-called logarithmic loss (log-loss). Let Y be a label space, and $\Delta(y)$ be the set of all distributions over Y.

The logarithmic loss for any $p \in \Delta(\mathcal{Y})$ and $y \in \mathcal{Y}$ is defined as:

$$
\ell^{\log}(\mathbf{p}, \mathbf{y}) = -\log \mathbf{p}[\mathbf{y}].
$$

Key properties of log-loss:

It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

$$
\forall p, q \in \Delta(\mathcal{Y}), \ \mathbb{E}_{y \sim p}[\ell^{\log}(q, y)] = H(p) + \mathsf{KL}(p, q).
$$

 \triangleright By the non-negativity of KL-divergence, this implies:

$$
\mathbb{E}_{y \sim p}[\ell^{\log}(p, y)] \leq \mathbb{E}_{y \sim p}[\ell^{\log}(q, y)].
$$

Equality is achieved when $p = q$.

We now introduce the main learning paradigm of this lecture.

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, $\hat{y} := \Delta(y)$ be the prediction space, X be the instance space and $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ be the hypothesis class.

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, $\hat{y} := \Delta(y)$ be the prediction space, X be the instance space and $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ be the hypothesis class.

For $t = 1, \cdots, T$

- \triangleright Nature selects an instance $\mathbf{x}_t \in \mathcal{X}$;
- ► Leaner predicts distribution $\hat{p}_t \in \hat{\mathcal{Y}}$;
- \triangleright Nature selects true label $v_t \in \mathcal{Y}$;
- ▶ Learner suffers loss $\ell^{\log}(\hat{p}_t, y_t)$.

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, $\hat{y} := \Delta(y)$ be the prediction space, X be the instance space and $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ be the hypothesis class.

For $t = 1, \cdots, T$

- \triangleright Nature selects an instance $\mathbf{x}_t \in \mathcal{X}$;
- ► Leaner predicts distribution $\hat{p}_t \in \hat{\mathcal{Y}}$;
- \triangleright Nature selects true label $v_t \in \mathcal{Y}$;
- ▶ Learner suffers loss $\ell^{\log}(\hat{p}_t, y_t)$.

Goal of Learner: Find predictor Φ that minimizes the worst-case regret:

$$
\mathop{\rm reg}\nolimits_\mathcal T(\mathcal H,\Phi)=\sup_{\mathbf x^\mathcal T,y^\mathcal T}\left[\sum_{t=1}^\mathcal T\ell^{\log}(\hat\rho_t,y_t)-\inf_{\mathcal h\in\mathcal H}\sum_{t=1}^\mathcal T\ell^{\log}(\mathcal h(\mathbf x_t),y_t)\right].
$$

Recall from Lecture 2 that for a finite class H , the EWA algorithm Φ enjoys the worst-case regret for bounded convex:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq O(\sqrt{T \log |\mathcal{H}|}).$

Recall from **Lecture 2** that for a finite class H , the EWA algorithm Φ enjoys the worst-case regret for bounded convex:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq O(\sqrt{T \log |\mathcal{H}|}).$

Unfortunately, this does not apply to log-loss, since $\ell^{\log}(\cdot, y)$ is not bounded.

Recall from **Lecture 2** that for a finite class H , the EWA algorithm Φ enjoys the worst-case regret for bounded convex:

$$
\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq O(\sqrt{\mathcal{T}\log |\mathcal{H}|}).
$$

Unfortunately, this does not apply to log-loss, since $\ell^{\log}(\cdot, y)$ is not bounded.

Let $\mathcal{H} = \{h_1, \cdots, h_K\}.$

The Bayesian Algorithm:

1. Maintain a weight vector $\mathbf{w}^{(t)} \in \mathbb{R}^K$, initially $\mathbf{w}^{(0)} = (1, \dots, 1)$.

2. At each step t, predict $\hat{p}_t := \sum_{k=1}^K \tilde{p}_t[k] \cdot h_k(\mathbf{x}_t)$, where

$$
\forall k \in [K], \ \tilde{p}_t[k] = \frac{\mathbf{w}_k^{(t-1)}}{\sum_{k=1}^K \mathbf{w}_k^{(t-1)}}.
$$

3. Let y_t be the true label, and update $\mathbf{w}_k^{(t)} = \mathbf{w}_k^{(t-1)} \cdot h_k(\mathbf{x}_t)[y_t].$

Recall from **Lecture 2** that for a finite class H , the EWA algorithm Φ enjoys the worst-case regret for bounded convex:

$$
\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq O(\sqrt{\mathcal{T}\log |\mathcal{H}|}).
$$

Unfortunately, this does not apply to log-loss, since $\ell^{\log}(\cdot, y)$ is not bounded.

Let $\mathcal{H} = \{h_1, \cdots, h_K\}.$

The Bayesian Algorithm:

- 1. Maintain a weight vector $\mathbf{w}^{(t)} \in \mathbb{R}^K$, initially $\mathbf{w}^{(0)} = (1, \dots, 1)$.
- 2. At each step t, predict $\hat{p}_t := \sum_{k=1}^K \tilde{p}_t[k] \cdot h_k(\mathbf{x}_t)$, where

$$
\forall k \in [K], \ \tilde{p}_t[k] = \frac{\mathbf{w}_k^{(t-1)}}{\sum_{k=1}^K \mathbf{w}_k^{(t-1)}}.
$$

3. Let y_t be the true label, and update $\mathbf{w}_k^{(t)} = \mathbf{w}_k^{(t-1)} \cdot h_k(\mathbf{x}_t)[y_t].$

Observe that $h_k(\mathbf{x}_t)[y_t] = e^{-\ell^{\log}(h_k(\mathbf{x}_t),y_t)}$, i.e., the **Bayesian algorithm** is simply the EWA algorithm with a learning rate of $\eta = 1$.

Regret Bound for Bayesian Algorithm

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the worst-case regret under logarithmic loss:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq \log |\mathcal{H}|.$

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the worst-case regret under logarithmic loss:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq \log |\mathcal{H}|.$

 \blacktriangleright Observe that the regret bound is tighter than the $O(\sqrt{T\log|\mathcal{H}|})$ regret bound for bounded Lipschitz losses.

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the worst-case regret under logarithmic loss:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq \log |\mathcal{H}|.$

- \blacktriangleright Observe that the regret bound is tighter than the $O(\sqrt{T\log|\mathcal{H}|})$ regret bound for bounded Lipschitz losses.
- \blacktriangleright Although our predictions are probabilities, we do not assume any probabilistic mechanism for generating the data.

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the worst-case regret under logarithmic loss:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}, \Phi) \leq \log |\mathcal{H}|.$

- \blacktriangleright Observe that the regret bound is tighter than the $O(\sqrt{T\log|\mathcal{H}|})$ regret bound for bounded Lipschitz losses.
- \blacktriangleright Although our predictions are probabilities, we do not assume any probabilistic mechanism for generating the data.
- The regret bound holds for any individual sequences x^T, y^T .

We again define the potential $W^{(t)} = \sum_{k=1}^{K} w_k^{(t)}$ with $W^{(0)} = K$.

We again define the potential $W^{(t)} = \sum_{k=1}^{K} w_k^{(t)}$ with $W^{(0)} = K$. Observe that

 $\log \frac{W^{(t)}}{W^{(t-1)}} = \log \sum_{k=1}^{K}$ $\frac{\mathbf{w}_k^{(t-1)}}{W^{(t-1)}} h_k(\mathbf{x}_t)[y_t] = \log \hat{p}_t[y_t] = -\ell^{\log}(\hat{p}_t, y_t).$

We again define the potential $W^{(t)} = \sum_{k=1}^{K} w_k^{(t)}$ with $W^{(0)} = K$. Observe that

 $\log \frac{W^{(t)}}{W^{(t-1)}} = \log \sum_{k=1}^{K}$ $\frac{\mathbf{w}_k^{(t-1)}}{W^{(t-1)}} h_k(\mathbf{x}_t)[y_t] = \log \hat{p}_t[y_t] = -\ell^{\log}(\hat{p}_t, y_t).$

Summing from $t = 1$ to T, we have

$$
\log \frac{W^{(T)}}{W^{(0)}} = -\sum_{t=1}^T \ell^{\log}(\hat{p}_t, y_t).
$$

We again define the potential $W^{(t)} = \sum_{k=1}^{K} w_k^{(t)}$ with $W^{(0)} = K$. Observe that

$$
\log\frac{\mathsf{W}^{(t)}}{\mathsf{W}^{(t-1)}}=\log\sum_{k=1}^K\frac{\textbf{w}_k^{(t-1)}}{\mathsf{W}^{(t-1)}}\mathit{h}_k(\textbf{x}_t)[y_t]=\log\hat{p}_t[y_t]=-\ell^{\log}(\hat{p}_t,y_t).
$$

Summing from $t = 1$ to T, we have

$$
\log \frac{W^{(T)}}{W^{(0)}} = -\sum_{t=1}^T \ell^{\log}(\hat{p}_t, y_t).
$$

Note that

$$
\log W^{(T)} \geq \sup_k \log \mathbf{w}_k^{(T)} = \sup_k \log \prod_{t=1}^T h_k(\mathbf{x}_t)[y_t] = -\inf_k \sum_{t=1}^T \ell^{\log}(h_k(\mathbf{x}_t), y_t).
$$

We again define the potential $W^{(t)} = \sum_{k=1}^{K} w_k^{(t)}$ with $W^{(0)} = K$. Observe that

$$
\log \frac{W^{(t)}}{W^{(t-1)}} = \log \sum_{k=1}^K \frac{\mathbf{w}_k^{(t-1)}}{W^{(t-1)}} h_k(\mathbf{x}_t)[y_t] = \log \hat{p}_t[y_t] = -\ell^{\log}(\hat{p}_t, y_t).
$$

Summing from $t = 1$ to T, we have

$$
\log \frac{W^{(T)}}{W^{(0)}} = -\sum_{t=1}^T \ell^{\log}(\hat{p}_t, y_t).
$$

Note that

$$
\log W^{(T)} \geq \sup_k \log \mathbf{w}_k^{(T)} = \sup_k \log \prod_{t=1}^T h_k(\mathbf{x}_t)[y_t] = -\inf_k \sum_{t=1}^T \ell^{\log}(h_k(\mathbf{x}_t), y_t).
$$

Therefore,

$$
\sum_{t=1}^T \ell^{\log}(\hat{p}_t, y_t) - \inf_k \sum_{t=1}^T \ell^{\log}(h_k(\mathbf{x}_t), y_t) \leq \log K.
$$

Overview

▶ Sequential Probability Assignment

- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

EXECUTE: Minimax Regret under Log-loss

- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

▶ Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy

We have demonstrated that the Bayesian algorithm achieves $\log |\mathcal{H}|$ regret under log-loss for a finite class H .

We have demonstrated that the Bayesian algorithm achieves $\log |\mathcal{H}|$ regret under log-loss for a finite class H .

Several issues remain:

- 1. The Bayesian algorithm cannot be applied directly to infinite classes.
- 2. It is unclear whether the $\log |\mathcal{H}|$ bound is tight.

We have demonstrated that the Bayesian algorithm achieves $\log |\mathcal{H}|$ regret under log-loss for a finite class H .

Several issues remain:

- 1. The Bayesian algorithm cannot be applied directly to infinite classes.
- 2. It is unclear whether the $\log |\mathcal{H}|$ bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax regret reg $_\mathcal{T}(\mathcal{H})$ under log-loss?

We have demonstrated that the Bayesian algorithm achieves $\log |\mathcal{H}|$ regret under log-loss for a finite class H .

Several issues remain:

- 1. The Bayesian algorithm cannot be applied directly to infinite classes.
- 2. It is unclear whether the $\log |\mathcal{H}|$ bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax regret reg $_\mathcal{T}(\mathcal{H})$ under log-loss?

Problem 2: What algorithm achieves the minimax regret?
For simplicity, we will assume $\mathcal Y$ is finite in our following discussions.

For simplicity, we will assume $\mathcal Y$ is finite in our following discussions. For any given x^T , we define the fixed design minimax regret as:

$$
\operatorname{reg}_{\mathsf{T}}^{\operatorname{fix}}(\mathcal{H} \mid \mathbf{x}^{\mathsf{T}}) = \inf_{\Phi} \sup_{\mathsf{y}^{\mathsf{T}}} \left[\sum_{t=1}^{\mathsf{T}} \ell^{\log}(\hat{\rho}_t, y_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{\mathsf{T}} \ell^{\log}(h(\mathbf{x}_t), y_t) \right].
$$

For simplicity, we will assume $\mathcal Y$ is finite in our following discussions. For any given x^T , we define the fixed design minimax regret as:

$$
\operatorname{reg}_{\mathcal{T}}^{\operatorname{fix}}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}) = \inf_{\Phi} \sup_{y^{\mathcal{T}}} \left[\sum_{t=1}^{\mathcal{T}} \ell^{\log}(\hat{\rho}_t, y_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{\mathcal{T}} \ell^{\log}(h(\mathbf{x}_t), y_t) \right].
$$

Recall the (sequential) minimax regret is defined as:

$$
\mathop{\rm reg}\nolimits_\mathcal T(\mathcal H)=\inf_\Phi\sup_{\mathbf x^\mathcal T,\mathbf y^\mathcal T}\left[\sum_{t=1}^\mathcal T\ell^{\log}(\hat\rho_t,\mathbf y_t)-\inf_{\mathbf h\in\mathcal H}\sum_{t=1}^\mathcal T\ell^{\log}(\mathbf h(\mathbf x_t),\mathbf y_t)\right].
$$

For simplicity, we will assume $\mathcal Y$ is finite in our following discussions. For any given x^T , we define the fixed design minimax regret as:

$$
\operatorname{reg}_{\mathsf{T}}^{\operatorname{fix}}(\mathcal{H} \mid \mathbf{x}^{\mathsf{T}}) = \inf_{\Phi} \sup_{\mathsf{y}^{\mathsf{T}}} \left[\sum_{t=1}^{\mathsf{T}} \ell^{\log}(\hat{\rho}_t, y_t) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{\mathsf{T}} \ell^{\log}(h(\mathbf{x}_t), y_t) \right].
$$

Recall the (sequential) minimax regret is defined as:

$$
\mathop{\rm reg}\nolimits_\mathcal T(\mathcal H)=\inf_\Phi\sup_{\mathbf x^\mathcal T,\mathbf y^\mathcal T}\left[\sum_{t=1}^\mathcal T\ell^{\log}(\hat\rho_t,\mathbf y_t)-\inf_{\mathbf h\in\mathcal H}\sum_{t=1}^\mathcal T\ell^{\log}(\mathbf h(\mathbf x_t),\mathbf y_t)\right].
$$

It is easy to observe that: (Why?)

$$
\sup_{\mathbf{x}^\mathcal{T}} {\rm reg}^{\rm fix}_\mathcal{T}(\mathcal{H} \mid \mathbf{x}^\mathcal{T}) \leq {\rm reg}_\mathcal{T}(\mathcal{H}).
$$

 ${\sf Shtarkov\ Sum}\colon \mathsf{Let}\ \mathcal H\subset \Delta(\mathcal Y)^{\mathcal X}$ be a hypothesis class and $\mathbf x^{\mathcal T}$ be any given instances. The *Shtarkov sum* of ${\mathcal H}$ conditioning on ${\mathbf x}^{\mathcal T}$ is defined as

$$
\mathsf{Sht}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}) = \sum_{y^{\mathcal{T}} \in \mathcal{Y}^{\mathcal{T}}} \sup_{h \in \mathcal{H}} \prod_{t=1}^{\mathcal{T}} h(\mathbf{x}_t) [y_t].
$$

 ${\sf Shtarkov\ Sum}\colon \mathsf{Let}\ \mathcal H\subset \Delta(\mathcal Y)^{\mathcal X}$ be a hypothesis class and $\mathbf x^{\mathcal T}$ be any given instances. The *Shtarkov sum* of ${\mathcal H}$ conditioning on ${\mathbf x}^{\mathcal T}$ is defined as

$$
\mathsf{Sht}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}) = \sum_{y^{\mathcal{T}} \in \mathcal{Y}^{\mathcal{T}}} \sup_{h \in \mathcal{H}} \prod_{t=1}^{\mathcal{T}} h(\mathbf{x}_t) [y_t].
$$

Example 1: Let \mathcal{H} be a finite class, we have for any \mathbf{x}^T that

$$
\begin{split} \textnormal{Sht}(\mathcal{H} \mid \mathbf{x}^T) &= \sum_{y^T \in \mathcal{Y}^T} \sup_{h \in \mathcal{H}} \prod_{t=1}^T h(\mathbf{x}_t) [y_t] \\ &\leq \sum_{y^T \in \mathcal{Y}^T} \sum_{h \in \mathcal{H}} \prod_{t=1}^T h(\mathbf{x}_t) [y_t] \\ &= \sum_{h \in \mathcal{H}} \sum_{y^T \in \mathcal{Y}^T} \prod_{t=1}^T h(\mathbf{x}_t) [y_t] \stackrel{(*)}{\leq} \sum_{h \in \mathcal{H}} 1 = |\mathcal{H}|. \end{split}
$$

Theorem 2: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be any hypothesis class, and let $\mathbf{x}^{\mathcal{T}}$ be any given instances. Then

 $\mathsf{reg}^{\mathsf{fix}}_{\mathcal{T}}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}) = \log \mathsf{Sht}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}).$

Theorem 2: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be any hypothesis class, and let $\mathbf{x}^{\mathcal{T}}$ be any given instances. Then

$$
reg_T^{\text{fix}}(\mathcal{H} \mid \mathbf{x}^T) = \log \text{Sht}(\mathcal{H} \mid \mathbf{x}^T).
$$

 \blacktriangleright These two quantities are exactly equal.

 \blacktriangleright For a finite class H , we immediately have

$$
\mathsf{reg}_{\mathcal{T}}^{\mathsf{fix}}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}) = \log \mathsf{Sht}(\mathcal{H} \mid \mathbf{x}^{\mathcal{T}}) \leq \log |\mathcal{H}|.
$$

 \blacktriangleright The Shtarkov sum forms a lower bound for the (sequential) minimax regret:

$$
\mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \geq \sup_{\mathbf{x}^\mathcal{T}} \mathsf{reg}^{\mathsf{fix}}_\mathcal{T}(\mathcal{H} \mid \mathbf{x}^\mathcal{T}) \geq \sup_{\mathbf{x}^\mathcal{T}} \log \mathsf{Sht}(\mathcal{H} \mid \mathbf{x}^\mathcal{T}).
$$

We introduce the short-hand notations

$$
P_h(\mathbf{y}^T \mid \mathbf{x}^T) = \prod_{t=1}^T h(\mathbf{x}_t)[y_t], \qquad \hat{Q}(\mathbf{y}^T) = \prod_{t=1}^T \hat{p}_t[y_t].
$$

Observe, by definition of log-loss, that

$$
\operatorname{reg}_{T}^{\operatorname{fix}}(\mathcal{H} \mid \mathbf{x}^{T}) = \inf_{\hat{Q}} \sup_{y^{T}} \left[-\log \hat{Q}(y^{T}) + \log \sup_{h} P_{h}(y^{T} \mid \mathbf{x}^{T}) \right]
$$

\n
$$
= \inf_{\hat{Q}} \sup_{y^{T}} \left[-\log \hat{Q}(y^{T}) + \log P^{*}(y^{T} \mid \mathbf{x}^{T}) \right] + \log \sum_{y^{T}} \sup_{h} P_{h}(y^{T} \mid \mathbf{x}^{T})
$$

\n
$$
\stackrel{(*)}{=} \log \sum_{y^{T}} \sup_{h} P_{h}(y^{T} \mid \mathbf{x}^{T}) = \log \operatorname{Sht}(\mathcal{H} \mid \mathbf{x}^{T}),
$$

where $P^*(y^T | \mathbf{x}^T) := \frac{\sup_h P_h(y^T | \mathbf{x}^T)}{\sum_{v \in \mathcal{V}_h} P_h(y^T | \mathbf{x}^T)}$ $\frac{\sup_h P_h(y'|x')}{\sum \sup_h P_h(y'|x')}\}$ and (\star) attains when $\hat{Q}(\cdot) \equiv P^*(\cdot \mid \mathbf{x}^{\mathcal{T}}).$

A by-product of our previous proof shows that the minimax optimal predictor satisfies equality

$$
\hat{Q}(\cdot) \equiv P^*(\cdot \mid \mathbf{x}^{\mathsf{T}}),
$$

A by-product of our previous proof shows that the minimax optimal predictor satisfies equality

$$
\hat{Q}(\cdot) \equiv P^*(\cdot \mid \mathbf{x}^{\mathsf{T}}),
$$

where $P^*(y^T | x^T) := \frac{\sup_h P_h(y^T | x^T)}{\sum_{x \text{ sum } P_h(y^T)}}$ $\frac{\sup_h P_h(y'|x')}{\sum_{y'} \sup_h P_h(y'|x')}.$ and $\hat{Q}(y^{\mathcal{T}}) = \prod_{t=1}^{\mathcal{T}} \hat{p}_t[y_t].$

A by-product of our previous proof shows that the minimax optimal predictor satisfies equality

$$
\hat{Q}(\cdot) \equiv P^*(\cdot \mid \mathbf{x}^{\mathsf{T}}),
$$

where $P^*(y^T | x^T) := \frac{\sup_h P_h(y^T | x^T)}{\sum_{x \text{ sum } P_h(y^T)}}$ $\frac{\sup_h P_h(y'|x')}{\sum_{y'} \sup_h P_h(y'|x')}.$ and $\hat{Q}(y^{\mathcal{T}}) = \prod_{t=1}^{\mathcal{T}} \hat{p}_t[y_t].$

To satisfy the equality, we can define (Why?)

$$
\hat{p}_t[y] = \frac{\sum_{y^T-t} P^*(y^{t-1}yy^{T-t} | \mathbf{x}^T)}{\sum_{y^T-t+1} P^*(y^{t-1}y^{T-t+1} | \mathbf{x}^T)}
$$

A by-product of our previous proof shows that the minimax optimal predictor satisfies equality

$$
\hat{Q}(\cdot) \equiv P^*(\cdot \mid \mathbf{x}^T),
$$

where $P^*(y^T | x^T) := \frac{\sup_h P_h(y^T | x^T)}{\sum_{x \text{ sum } P_h(y^T)}}$ $\frac{\sup_h P_h(y'|x')}{\sum_{y'} \sup_h P_h(y'|x')}.$ and $\hat{Q}(y^{\mathcal{T}}) = \prod_{t=1}^{\mathcal{T}} \hat{p}_t[y_t].$

To satisfy the equality, we can define (Why?)

$$
\hat{p}_t[y] = \frac{\sum_{y^T-t} P^*(y^{t-1}yy^{T-t} | \mathbf{x}^T)}{\sum_{y^T-t+1} P^*(y^{t-1}y^{T-t+1} | \mathbf{x}^T)}
$$

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class. We say a sequential function class $\mathcal{G} \subset \Delta(\mathcal{Y})^{\mathcal{X}^*}$ sequentially α -covers $\mathcal H$ up to step T if, for any $h \in \mathcal{H}$ and \mathbf{x}^T , there exists $g \in \mathcal{G}$ such that

$$
\forall t \leq T, \ \|\mathbf{g}(\mathbf{x}^t) - h(\mathbf{x}_t)\|_{\infty} \leq \alpha,
$$

where $||p - q||_{\infty} = \sup_{y \in \mathcal{Y}} |p[y] - q[y]|$.

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class. We say a sequential function class $\mathcal{G} \subset \Delta(\mathcal{Y})^{\mathcal{X}^*}$ sequentially α -covers $\mathcal H$ up to step T if, for any $h \in \mathcal{H}$ and \mathbf{x}^T , there exists $g \in \mathcal{G}$ such that

$$
\forall t \leq T, \ \|\mathbf{g}(\mathbf{x}^t) - h(\mathbf{x}_t)\|_{\infty} \leq \alpha,
$$

where $||p - q||_{\infty} = \sup_{y \in \mathcal{Y}} |p[y] - q[y]|$.

 \triangleright Note that a crucial property when we apply the sequential cover for a Lipschitz loss ℓ is that: $\ell(\hat{\mathbf{y}}_1, \mathbf{y}) - \ell(\hat{\mathbf{y}}_2, \mathbf{y}) \leq L|\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2|$.

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class. We say a sequential function class $\mathcal{G} \subset \Delta(\mathcal{Y})^{\mathcal{X}^*}$ sequentially α -covers $\mathcal H$ up to step T if, for any $h \in \mathcal{H}$ and \mathbf{x}^T , there exists $g \in \mathcal{G}$ such that

$$
\forall t \leq T, \ \|g(\mathbf{x}^t) - h(\mathbf{x}_t)\|_{\infty} \leq \alpha,
$$

where $||p - q||_{\infty} = \sup_{y \in \mathcal{Y}} |p[y] - q[y]|$.

- \triangleright Note that a crucial property when we apply the sequential cover for a Lipschitz loss ℓ is that: $\ell(\hat{\mathbf{y}}_1, \mathbf{y}) - \ell(\hat{\mathbf{y}}_2, \mathbf{y}) \le L|\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2|$.
- **I** Therefore, small regret on the cover \mathcal{G}_{α} automatically implies small regret on H , offset by αLT .

We have shown that the fixed-design minimax regret is completely characterized by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class. We say a sequential function class $\mathcal{G} \subset \Delta(\mathcal{Y})^{\mathcal{X}^*}$ sequentially α -covers $\mathcal H$ up to step T if, for any $h \in \mathcal{H}$ and \mathbf{x}^T , there exists $g \in \mathcal{G}$ such that

$$
\forall t \leq T, \ \|g(\mathbf{x}^t) - h(\mathbf{x}_t)\|_{\infty} \leq \alpha,
$$

where $||p - q||_{\infty} = \sup_{y \in \mathcal{Y}} |p[y] - q[y]|$.

- \triangleright Note that a crucial property when we apply the sequential cover for a Lipschitz loss ℓ is that: $\ell(\hat{\mathbf{y}}_1, \mathbf{y}) - \ell(\hat{\mathbf{y}}_2, \mathbf{y}) \leq L|\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2|$.
- **I** Therefore, small regret on the cover \mathcal{G}_{α} automatically implies small regret on H , offset by αLT .

Fine This, unfortunately, is not true for log-loss, e.g., $\ell^{\log}(0, y) - \ell^{\log}(\alpha, y) = \infty$.

From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential α -cover of H. Then, for any $h \in \mathcal{H}$ and $\mathbf{x}^\mathcal{T}, \mathbf{y}^\mathcal{T}$, there exists $\mathbf{g} \in \mathcal{G}$ such that

$$
\frac{\prod_{t=1}^T h(\mathbf{x}_t)[y_t]}{\prod_{t=1}^T g^{(\alpha)}(\mathbf{x}^t)[y_t]} \leq (1+\alpha|\mathcal{Y}|)^T,
$$

where $g^{(\alpha)}=\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}$ is the smooth truncation of g .

From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential α -cover of H. Then, for any $h \in \mathcal{H}$ and $\mathbf{x}^\mathcal{T}, \mathbf{y}^\mathcal{T}$, there exists $\mathbf{g} \in \mathcal{G}$ such that

$$
\frac{\prod_{t=1}^T h(\mathbf{x}_t)[y_t]}{\prod_{t=1}^T g^{(\alpha)}(\mathbf{x}^t)[y_t]} \leq (1+\alpha|\mathcal{Y}|)^T,
$$

where $g^{(\alpha)}=\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}$ is the smooth truncation of g .

Proof: For any $h \in \mathcal{H}$ and $\mathbf{x}^T, \mathbf{y}^T$, we choose $\mathbf{g} \in \mathcal{G}$ as the sequential α -cover of h on $\textbf{x}^\mathcal{T}$. This implies that, for all $t\leq \mathcal{T}$ and $y\in \mathcal{Y}$,

$$
h(\mathbf{x}_t)[y] \leq g(\mathbf{x}^t)[y] + \alpha.
$$

Therefore, for any $t \leq T$, we have

$$
\frac{h[y_t]}{g^{(\alpha)}[y_t]} = \frac{h[y_t]}{(g[y_t] + \alpha)/(1 + \alpha|y|)} \leq (1 + \alpha|y|).
$$

Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class that admits a sequential α -cover \mathcal{G}_{α} for all $\alpha \geq 0$. Then

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \leq \inf_{\alpha \geq 0}\{\alpha|\mathcal{Y}| \, \mathcal{T} + \log |\mathcal{G}_{\alpha}|\}.$

Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class that admits a sequential α -cover \mathcal{G}_{α} for all $\alpha \geq 0$. Then

$$
\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \leq \inf_{\alpha \geq 0} \{ \alpha | \mathcal{Y} | \mathcal{T} + \log |\mathcal{G}_{\alpha}| \}.
$$

Example 2: Let $\mathcal{Y} := \{0, 1\}$, $\mathcal{X} := B_2$ and

$$
\mathcal{H}^{\text{lin}}:=\{h_{\mathbf{w}}(\mathbf{x}):=|\langle \mathbf{w}, \mathbf{x}\rangle|: \mathbf{w}\in B_2\}\subset [0,1]^{\mathcal{X}}.
$$

Here we interpreter $h(\mathbf{x}) \in [0, 1]$ as Bernoulli distribution with parameter $h(\mathbf{x})$.

From **lecture 3**, we know that $|\log \mathcal{G}_\alpha| \leq \tilde{O}(\alpha^{-2})$. This leads to the regret bound (verify it!)

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}^{\mathsf{lin}}) \leq \tilde{O}(\mathcal{T}^{2/3}).$

$$
\text{Define } \mathcal{G}_{\alpha}^{(\alpha)} = \left\{\tfrac{g+\alpha}{1+\alpha|\mathcal{Y}|} : g \in \mathcal{G}_{\alpha}\right\} \text{ as the smooth truncated class of } \mathcal{G}_{\alpha}.
$$

Define $\mathcal{G}_{\alpha}^{(\alpha)}=\left\{\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}:g\in\mathcal{G}_{\alpha}\right\}$ as the smooth truncated class of $\mathcal{G}_{\alpha}.$

Let Φ be the predictor running the Bayesian algorithm over $\mathcal{G}^{(\alpha)}_\alpha.$

Define $\mathcal{G}_{\alpha}^{(\alpha)}=\left\{\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}:g\in\mathcal{G}_{\alpha}\right\}$ as the smooth truncated class of $\mathcal{G}_{\alpha}.$

Let Φ be the predictor running the Bayesian algorithm over $\mathcal{G}^{(\alpha)}_\alpha.$

We have for any $\mathbf{x}^{\mathcal{T}}, \mathbf{y}^{\mathcal{T}}$ that

$$
\sum_{t=1}^T \ell^{\log}(\hat p_t, y_t) - \inf_{g \in \mathcal{G}_{\alpha}^{(\alpha)}} \sum_{t=1}^T \ell^{\log}(g(\mathbf{x}^t), y_t) \leq \log |\mathcal{G}_{\alpha}^{(\alpha)}| = \log |\mathcal{G}_{\alpha}|.
$$

Define $\mathcal{G}_{\alpha}^{(\alpha)}=\left\{\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}:g\in\mathcal{G}_{\alpha}\right\}$ as the smooth truncated class of $\mathcal{G}_{\alpha}.$

Let Φ be the predictor running the Bayesian algorithm over $\mathcal{G}^{(\alpha)}_\alpha.$

We have for any $\mathbf{x}^{\mathcal{T}}, \mathbf{y}^{\mathcal{T}}$ that

$$
\sum_{t=1}^T \ell^{\log}(\hat{p}_t, y_t) - \inf_{g \in \mathcal{G}_{\alpha}^{(\alpha)}} \sum_{t=1}^T \ell^{\log}(g(\mathbf{x}^t), y_t) \leq \log |\mathcal{G}_{\alpha}^{(\alpha)}| = \log |\mathcal{G}_{\alpha}|.
$$

Invoking Lemma 1, we have (verify it!)

$$
-\inf_{h\in\mathcal{H}}\sum_{t=1}^\mathcal{T}\ell^{\log}(h(\mathbf{x}_t),y_t)\leq -\inf_{g\in\mathcal{G}^{(\alpha)}_\alpha}\sum_{t=1}^\mathcal{T}\ell^{\log}(g(\mathbf{x}^t),y_t)+\mathcal{T}\log(1+\alpha|\mathcal{Y}|). \quad \textbf{(1)}
$$

Define $\mathcal{G}_{\alpha}^{(\alpha)}=\left\{\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}:g\in\mathcal{G}_{\alpha}\right\}$ as the smooth truncated class of $\mathcal{G}_{\alpha}.$

Let Φ be the predictor running the Bayesian algorithm over $\mathcal{G}^{(\alpha)}_\alpha.$

We have for any $\mathbf{x}^{\mathcal{T}}, \mathbf{y}^{\mathcal{T}}$ that

$$
\sum_{t=1}^T \ell^{\log}(\hat{\rho}_t, y_t) - \inf_{\mathsf{g} \in \mathcal{G}_{\alpha}^{(\alpha)}} \sum_{t=1}^T \ell^{\log}(\mathsf{g}(\mathbf{x}^t), y_t) \leq \log |\mathcal{G}_{\alpha}^{(\alpha)}| = \log |\mathcal{G}_{\alpha}|.
$$

Invoking Lemma 1, we have (verify it!)

$$
-\inf_{h\in\mathcal{H}}\sum_{t=1}^T \ell^{\log}(h(\mathbf{x}_t),y_t)\leq -\inf_{g\in\mathcal{G}_{\alpha}^{(\alpha)}}\sum_{t=1}^T \ell^{\log}(g(\mathbf{x}^t),y_t)+\mathcal{T}\log(1+\alpha|\mathcal{Y}|). \quad \textbf{(1)}
$$

The theorem follows by noting that $\log(1 + \alpha |y|) \leq \alpha |y|$.

Define $\mathcal{G}_{\alpha}^{(\alpha)}=\left\{\frac{g+\alpha}{1+\alpha|\mathcal{Y}|}:g\in\mathcal{G}_{\alpha}\right\}$ as the smooth truncated class of $\mathcal{G}_{\alpha}.$

Let Φ be the predictor running the Bayesian algorithm over $\mathcal{G}^{(\alpha)}_\alpha.$

We have for any $\mathbf{x}^{\mathcal{T}}, \mathbf{y}^{\mathcal{T}}$ that

$$
\sum_{t=1}^T \ell^{\log}(\hat{p}_t, y_t) - \inf_{g \in \mathcal{G}_{\alpha}^{(\alpha)}} \sum_{t=1}^T \ell^{\log}(g(\mathbf{x}^t), y_t) \leq \log |\mathcal{G}_{\alpha}^{(\alpha)}| = \log |\mathcal{G}_{\alpha}|.
$$

Invoking Lemma 1, we have (verify it!)

$$
-\inf_{h\in\mathcal{H}}\sum_{t=1}^T \ell^{\log}(h(\mathbf{x}_t),y_t)\leq -\inf_{g\in\mathcal{G}_{\alpha}^{(\alpha)}}\sum_{t=1}^T \ell^{\log}(g(\mathbf{x}^t),y_t)+\mathcal{T}\log(1+\alpha|\mathcal{Y}|). \quad \textbf{(1)}
$$

The theorem follows by noting that $\log(1 + \alpha |y|) \leq \alpha |y|$.

Note: The use of $\mathcal{G}^{(\alpha)}_\alpha$ instead of \mathcal{G}_α is crucial for (1) to work.

We now mention the following theorem without proof.

Theorem 3: Let $\mathcal{Y} := \{0, 1\}$, and assume $\hat{\mathcal{Y}} := [0, 1]$, interpreted as Bernoulli distributions. Then for any class $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ with a sequential α -cover \mathcal{G}_{α} of size $\log|\mathcal{G}_\alpha|\leq \tilde{O}(\alpha^{-p})$ for all $\alpha\geq 0,$ we have

$$
\operatorname{reg}_{\mathcal T}(\mathcal H) \leq \tilde O(\operatorname{\mathcal T}^{\frac{p}{p+1}}).
$$

Moreover, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\operatorname{reg}_{\mathcal T}(\mathcal H) \geq \tilde \Omega(\, \mathcal T^{\frac{\rho}{\rho+1}}).
$$

Furthermore, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \leq \tilde{O}(\mathcal{T}^{\frac{p-1}{p}}).
$$

We now mention the following theorem without proof.

Theorem 3: Let $\mathcal{Y} := \{0, 1\}$, and assume $\hat{\mathcal{Y}} := [0, 1]$, interpreted as Bernoulli distributions. Then for any class $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ with a sequential α -cover \mathcal{G}_{α} of size $\log|\mathcal{G}_\alpha|\leq \tilde{O}(\alpha^{-p})$ for all $\alpha\geq 0,$ we have

$$
\mathop{\rm reg}\nolimits_{\mathcal T}(\mathcal H)\leq \tilde O(\mathcal T^{\frac{p}{p+1}}).
$$

Moreover, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \geq \tilde{\Omega}(\mathcal{T}^{\frac{p}{p+1}}).
$$

Furthermore, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \leq \tilde{O}(\mathcal{T}^{\frac{p-1}{p}}).
$$

I Sequential α -covering characterizes minimax regret for the worst classes, but not for certain easy classes!

We now mention the following theorem without proof.

Theorem 3: Let $\mathcal{Y} := \{0, 1\}$, and assume $\hat{\mathcal{Y}} := [0, 1]$, interpreted as Bernoulli distributions. Then for any class $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ with a sequential α -cover \mathcal{G}_{α} of size $\log|\mathcal{G}_\alpha|\leq \tilde{O}(\alpha^{-p})$ for all $\alpha\geq 0,$ we have

$$
\operatorname{reg}_{\mathcal T}(\mathcal H) \leq \tilde O(\operatorname{\mathcal T}^{\frac{p}{p+1}}).
$$

Moreover, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \geq \tilde{\Omega}(\mathcal{T}^{\frac{p}{p+1}}).
$$

Furthermore, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \leq \tilde{O}(\mathcal{T}^{\frac{p-1}{p}}).
$$

- **I** Sequential α -covering characterizes minimax regret for the worst classes, but not for certain easy classes!
	- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurIPS 2022).

We now mention the following theorem without proof.

Theorem 3: Let $\mathcal{Y} := \{0, 1\}$, and assume $\hat{\mathcal{Y}} := [0, 1]$, interpreted as Bernoulli distributions. Then for any class $\mathcal{H} \subset \hat{\mathcal{Y}}^{\mathcal{X}}$ with a sequential α -cover \mathcal{G}_{α} of size $\log|\mathcal{G}_\alpha|\leq \tilde{O}(\alpha^{-p})$ for all $\alpha\geq 0,$ we have

$$
\mathop{\rm reg}\nolimits_{\mathcal T}(\mathcal H)\leq \tilde O(\mathcal T^{\frac{p}{p+1}}).
$$

Moreover, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\mathsf{reg}_{\mathcal{T}}(\mathcal{H}) \geq \tilde{\Omega}(\mathcal{T}^{\frac{p}{p+1}}).
$$

Furthermore, for any $p \geq 2$, there exists a class that satisfies the above condition and

$$
\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) \leq \tilde{O}(\mathcal{T}^{\frac{p-1}{p}}).
$$

- **I** Sequential α -covering characterizes minimax regret for the worst classes, but not for certain easy classes!
	- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurIPS 2022).
- \blacktriangleright We need a new complexity measure...

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated that a variant of the Shtarkov sum with context completely characterizes the (sequential) minimax regret...

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated that a variant of the Shtarkov sum with context completely characterizes the (sequential) minimax regret...

Contextual Shtarkov Sum: Let $\tau: \bigcup_{t=1}^T \mathcal{Y}^t \to \mathcal{X}$ be an $\mathcal{X}\text{-valued } |\mathcal{Y}|$ -ary tree of depth T. The contextual Shtarkov sum w.r.t. τ is defined as

$$
\textnormal{Sht}(\mathcal{H} \mid \tau) = \sum_{y^T} \sup_{h \in \mathcal{H}} \prod_{t=1}^T h(\tau(y^{t-1}))[y_t].
$$
The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated that a variant of the Shtarkov sum with context completely characterizes the (sequential) minimax regret...

Contextual Shtarkov Sum: Let $\tau: \bigcup_{t=1}^T \mathcal{Y}^t \to \mathcal{X}$ be an $\mathcal{X}\text{-valued } |\mathcal{Y}|$ -ary tree of depth T. The contextual Shtarkov sum w.r.t. τ is defined as

$$
\text{Sht}(\mathcal{H} \mid \tau) = \sum_{y^T} \sup_{h \in \mathcal{H}} \prod_{t=1}^T h(\tau(y^{t-1}))[y_t].
$$

Theorem 4: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be any hypothesis class. Then:

 $\mathsf{reg}_{\mathcal{T}}(\mathcal{H}) = \sup \log \mathsf{Sht}(\mathcal{H} \mid \tau).$ τ

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated that a variant of the Shtarkov sum with context completely characterizes the (sequential) minimax regret...

Contextual Shtarkov Sum: Let $\tau: \bigcup_{t=1}^T \mathcal{Y}^t \to \mathcal{X}$ be an $\mathcal{X}\text{-valued } |\mathcal{Y}|$ -ary tree of depth T. The contextual Shtarkov sum w.r.t. τ is defined as

$$
\text{Sht}(\mathcal{H} \mid \tau) = \sum_{y^T} \sup_{h \in \mathcal{H}} \prod_{t=1}^T h(\tau(y^{t-1}))[y_t].
$$

Theorem 4: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be any hypothesis class. Then:

$$
\mathop{\rm reg}\nolimits_{\mathcal T}(\mathcal H)=\sup_\tau\log\mathsf{Sht}(\mathcal H\mid\tau).
$$

In This result can be used to recover Theorem 2 using (smaller) local covers.

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated that a variant of the Shtarkov sum with context completely characterizes the (sequential) minimax regret...

Contextual Shtarkov Sum: Let $\tau: \bigcup_{t=1}^T \mathcal{Y}^t \to \mathcal{X}$ be an $\mathcal{X}\text{-valued } |\mathcal{Y}|$ -ary tree of depth T. The contextual Shtarkov sum w.r.t. τ is defined as

$$
\text{Sht}(\mathcal{H} \mid \tau) = \sum_{y^T} \sup_{h \in \mathcal{H}} \prod_{t=1}^T h(\tau(y^{t-1}))[y_t].
$$

Theorem 4: Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be any hypothesis class. Then:

$$
\operatorname{reg}_{\mathcal{T}}(\mathcal{H}) = \sup_{\tau} \log \operatorname{Sht}(\mathcal{H} \mid \tau).
$$

- \triangleright This result can be used to recover Theorem 2 using (smaller) local covers.
- It remains largely open how the contextual Shtarkov sum can be estimated for any non-trivial classes beyond covering methods...

We provide only the high-level idea.

We provide only the high-level idea.

Step One: Using the minimax switching trick (see **lecture 3**) to obtain the following Bayesian representation:

$$
\sup_{\mathbf{x}_1, \rho_1} \mathbb{E}_{y_1 \sim \rho_1} \cdots \sup_{\mathbf{x}_T, \rho_T} \mathbb{E}_{y_T \sim \rho_T} \left[\sum_{t=1}^T \inf_{\hat{\rho}_t} \mathbb{E}_{y_t \sim \rho_t} \left[\ell^{\log}(\hat{\rho}_t, y_t) \right] - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell^{\log}(h(\mathbf{x}_t), y_t) \right]
$$

.

We provide only the high-level idea.

Step One: Using the minimax switching trick (see **lecture 3**) to obtain the following Bayesian representation:

$$
\sup_{\mathbf{x}_1, \rho_1} \mathbb{E}_{y_1 \sim \rho_1} \cdots \sup_{\mathbf{x}_T, \rho_T} \mathbb{E}_{y_T \sim \rho_T} \left[\sum_{t=1}^T \inf_{\hat{\rho}_t} \mathbb{E}_{y_t \sim \rho_t} \left[\ell^{\log}(\hat{\rho}_t, y_t) \right] - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell^{\log}(h(\mathbf{x}_t), y_t) \right]
$$

Step Two: Show that (recall from our previous slides):

$$
\inf_{\hat{p}_t} \mathbb{E}_{y_t \sim p_t} \left[\ell^{\log}(\hat{p}_t, y_t) \right] = H(p_t),
$$

where $H(p_t)$ is the Shannon entropy.

.

We provide only the high-level idea.

Step One: Using the minimax switching trick (see **lecture 3**) to obtain the following Bayesian representation:

$$
\sup_{\mathbf{x}_1, \rho_1} \mathbb{E}_{y_1 \sim \rho_1} \cdots \sup_{\mathbf{x}_T, \rho_T} \mathbb{E}_{y_T \sim \rho_T} \left[\sum_{t=1}^T \inf_{\hat{\rho}_t} \mathbb{E}_{y_t \sim \rho_t} \left[\ell^{\log}(\hat{\rho}_t, y_t) \right] - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell^{\log}(h(\mathbf{x}_t), y_t) \right]
$$

Step Two: Show that (recall from our previous slides):

$$
\inf_{\hat{p}_t} \mathbb{E}_{y_t \sim p_t} \left[\ell^{\log}(\hat{p}_t, y_t) \right] = H(p_t),
$$

where $H(p_t)$ is the Shannon entropy.

Step Three: Show that via **Skolemization** the expression reduces to:

$$
\sup_{\tau} \sup_{P} \mathbb{E}_{y^{\mathsf{T}} \sim P} \left[H(P) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell^{\log}(h(\tau(y^{t-1})), y_t) \right],
$$

where τ runs over trees $\tau: \bigcup_{t=1}^T \mathcal{Y}^t \to \mathcal{X}$ and $P \in \Delta(\mathcal{Y}^T)$.

.

Step Four: Denote
$$
\mathbf{x}_t = \tau(\mathbf{y}^{t-1})
$$
, and let $P_h(\mathbf{y}^T|\mathbf{x}^T) = \prod_{t=1}^T h(\mathbf{x}_t)[y_t]$.

Step Four: Denote $\mathbf{x}_t = \tau(\mathbf{y}^{t-1})$, and let $P_h(\mathbf{y}^T|\mathbf{x}^T) = \prod_{t=1}^T h(\mathbf{x}_t)[y_t]$. We have

$$
\inf_{h\in\mathcal{H}}\sum_{t=1}^T \ell^{\log}(h(\tau(\mathbf{y}^{t-1})), \mathbf{y}_t) = \inf_h - \log P_h(\mathbf{y}^{\mathsf{T}}|\mathbf{x}^{\mathsf{T}}) = -\sup_h \log P_h(\mathbf{y}^{\mathsf{T}}|\mathbf{x}^{\mathsf{T}}).
$$

Step Four: Denote $\mathbf{x}_t = \tau(\mathbf{y}^{t-1})$, and let $P_h(\mathbf{y}^T|\mathbf{x}^T) = \prod_{t=1}^T h(\mathbf{x}_t)[y_t]$. We have

$$
\inf_{h\in\mathcal{H}}\sum_{t=1}^T \ell^{\log}(h(\tau(\mathbf{y}^{t-1})), y_t) = \inf_h -\log P_h(\mathbf{y}^T|\mathbf{x}^T) = -\sup_h \log P_h(\mathbf{y}^T|\mathbf{x}^T).
$$

Therefore, we are reduced to

$$
\sup_{P} \mathbb{E}_{y^T \sim P} \left[H(P) + \log \sup_{P} P_h(y^T | \mathbf{x}^T) \right] = \sup_{P} \mathbb{E} \left[-\log P(y^T) + \log \sup_{P} P_h(y^T | \mathbf{x}^T) \right]
$$

$$
= \sup_{P} \mathbb{E} \left[-\log P(y^T) + \log P^*(y^T | \mathbf{x}^T) \right] + \log \sum_{y^T} \sup_{h} \prod_{t=1}^T h(\mathbf{x}_t) [y_t]
$$

$$
= \sup_{P} -\mathsf{KL}(P, P^*) + \log \sum_{y^T} \sup_{h} \prod_{t=1}^T h(\mathbf{x}_t) [y_t].
$$

Here, $P^*(y^T|\mathbf{x}^T) = \frac{\sup_h P_h(y^T|\mathbf{x}^T)}{\sum_{\pi} \sup_h P_h(y^T)}$ $\frac{\sup_h P_h(y'|\mathbf{x}')}{\sum_{y} \tau \sup_h P_h(y \tau|\mathbf{x}')},$ and equality is attained at $P = P^*$.

Step Four: Denote $\mathbf{x}_t = \tau(\mathbf{y}^{t-1})$, and let $P_h(\mathbf{y}^T|\mathbf{x}^T) = \prod_{t=1}^T h(\mathbf{x}_t)[y_t]$. We have

$$
\inf_{h\in\mathcal{H}}\sum_{t=1}^T \ell^{\log}(h(\tau(\mathbf{y}^{t-1})), \mathbf{y}_t) = \inf_h - \log P_h(\mathbf{y}^{\mathsf{T}}|\mathbf{x}^{\mathsf{T}}) = -\sup_h \log P_h(\mathbf{y}^{\mathsf{T}}|\mathbf{x}^{\mathsf{T}}).
$$

Therefore, we are reduced to

$$
\sup_{P} \mathbb{E}_{y^T \sim P} \left[H(P) + \log \sup_{P} P_h(y^T | \mathbf{x}^T) \right] = \sup_{P} \mathbb{E} \left[-\log P(y^T) + \log \sup_{P} P_h(y^T | \mathbf{x}^T) \right]
$$

$$
= \sup_{P} \mathbb{E} \left[-\log P(y^T) + \log P^*(y^T | \mathbf{x}^T) \right] + \log \sum_{y^T} \sup_{h} \prod_{t=1}^T h(\mathbf{x}_t) [y_t]
$$

$$
= \sup_{P} -\mathsf{KL}(P, P^*) + \log \sum_{y^T} \sup_{h} \prod_{t=1}^T h(\mathbf{x}_t) [y_t].
$$

Here, $P^*(y^T|\mathbf{x}^T) = \frac{\sup_h P_h(y^T|\mathbf{x}^T)}{\sum_{\pi} \sup_h P_h(y^T)}$ $\frac{\sup_h P_h(y'|\mathbf{x}')}{\sum_{y} \tau \sup_h P_h(y \tau|\mathbf{x}')},$ and equality is attained at $P = P^*$.

Note: The distribution P^{*} is not a minimax optimal strategy; achieving this would require using the relaxation-based approach (c.f. **lecture 3**)...

Overview

▶ Sequential Probability Assignment

- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

\triangleright **Minimax Regret under Log-loss**

- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

Exercise Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy

Consider a (simplified) stock market that operates in discrete time steps.

Consider a (simplified) stock market that operates in discrete time steps. Let Y be a set of assets (stocks) across which we want to allocate our investment.

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our investment.

At the beginning of each step t, we specify a distribution $\hat{p}_t \in \Delta(\mathcal{Y})$, such that $\hat{p}_t[y]$ determines the portion of our total wealth allocated to asset y.

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our investment.

At the beginning of each step t, we specify a distribution $\hat{p}_t \in \Delta(\mathcal{Y})$, such that $\hat{p}_t[y]$ determines the portion of our total wealth allocated to asset y.

Let $\mathbf{v}_t \in \mathbb{R}^\mathcal{Y}$ be the market vector, where $\mathbf{v}_t[y]$ represents the ratio of the market value of asset y at closing to its value at opening at step t .

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our investment.

At the beginning of each step t, we specify a distribution $\hat{p}_t \in \Delta(\mathcal{Y})$, such that $\hat{p}_t[y]$ determines the portion of our total wealth allocated to asset y.

Let $\mathbf{v}_t \in \mathbb{R}^\mathcal{Y}$ be the market vector, where $\mathbf{v}_t[y]$ represents the ratio of the market value of asset y at closing to its value at opening at step t .

Assuming the initial wealth is 1, the total wealth after T steps is given by:

$$
\prod_{t=1}^T \left(\sum_{y \in \mathcal{Y}} \mathbf{v}_t[y] \cdot \hat{\boldsymbol{\rho}}_t[y] \right).
$$

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our investment.

At the beginning of each step t, we specify a distribution $\hat{p}_t \in \Delta(\mathcal{Y})$, such that $\hat{p}_t[y]$ determines the portion of our total wealth allocated to asset y.

Let $\mathbf{v}_t \in \mathbb{R}^\mathcal{Y}$ be the market vector, where $\mathbf{v}_t[y]$ represents the ratio of the market value of asset y at closing to its value at opening at step t .

Assuming the initial wealth is 1, the total wealth after T steps is given by:

$$
\prod_{t=1}^{\tau} \left(\sum_{y \in \mathcal{Y}} \mathbf{v}_t[y] \cdot \hat{\boldsymbol{\rho}}_t[y] \right).
$$

Goal: Find an investment strategy \hat{p}^T that maximizes total wealth.

Let X be a feature space, representing all the side information we can use when specifying \hat{p}_t (such as past market values).

Let X be a feature space, representing all the side information we can use when specifying \hat{p}_t (such as past market values).

An investment strategy is a function mapping $\mathcal{X} \to \Delta(\mathcal{Y})$.

Let X be a feature space, representing all the side information we can use when specifying \hat{p}_t (such as past market values).

An investment strategy is a function mapping $\mathcal{X} \to \Delta(\mathcal{Y})$.

Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class of investment strategies.

Let X be a feature space, representing all the side information we can use when specifying \hat{p}_t (such as past market values).

An investment strategy is a function mapping $\mathcal{X} \to \Delta(\mathcal{Y})$.

Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class of investment strategies.

For any given investment strategy Φ , market vectors $\mathbf{v}^{\mathcal{T}}$, and side information $\mathbf{x}^{\mathcal{T}}$, we define its total wealth as

$$
S_T(\mathbf{v}^T, \mathbf{x}^T, \Phi) = \prod_{t=1}^T \left(\sum_{y} \mathbf{v}_t[y] \cdot \Phi(\mathbf{x}_t)[y] \right).
$$

Let X be a feature space, representing all the side information we can use when specifying \hat{p}_t (such as past market values).

An investment strategy is a function mapping $\mathcal{X} \to \Delta(\mathcal{Y})$.

Let $\mathcal{H} \subset \Delta(\mathcal{Y})^{\mathcal{X}}$ be a hypothesis class of investment strategies.

For any given investment strategy Φ , market vectors $\mathbf{v}^{\mathcal{T}}$, and side information $\mathbf{x}^{\mathcal{T}}$, we define its total wealth as

$$
S_{\mathcal{T}}(\mathbf{v}^{\mathcal{T}}, \mathbf{x}^{\mathcal{T}}, \Phi) = \prod_{t=1}^{\mathcal{T}} \left(\sum_{y} \mathbf{v}_t[y] \cdot \Phi(\mathbf{x}_t)[y] \right).
$$

Here, we assume that $\mathbf{v}^{t-1} \subset \mathbf{x}_t$, i.e., the side information contains all the past market vectors, so that our investment strategy could rely solely on $\mathsf{x}^\mathcal{T}.$

Recall that an online predictor is a function $\Phi : (\mathcal{X} \times \mathcal{Y})^* \times \mathcal{Y} \to \Delta(\mathcal{Y})$.

Recall that an online predictor is a function $\Phi : (\mathcal{X} \times \mathcal{Y})^* \times \mathcal{Y} \to \Delta(\mathcal{Y})$.

For any online predictor Φ, we can define the following investment strategy:

$$
\Psi(\mathbf{x}_t) = \sum_{y^{t-1}} \Phi(\mathbf{x}^t, y^{t-1}) \frac{\prod_{i=1}^{t-1} \hat{p}_i[y_i] \prod_{i=1}^{t-1} \mathbf{v}_i[y_i]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_i[y_i] \prod_{i=1}^{t-1} \mathbf{v}_i[y_i]},
$$

where $\hat{p}_i := \Phi(\mathbf{x}^i, y^{i-1}) \in \Delta(\mathcal{Y})$.

Recall that an online predictor is a function $\Phi : (\mathcal{X} \times \mathcal{Y})^* \times \mathcal{Y} \to \Delta(\mathcal{Y})$.

For any online predictor Φ, we can define the following investment strategy:

$$
\Psi(\mathbf{x}_t) = \sum_{y^{t-1}} \Phi(\mathbf{x}^t, y^{t-1}) \frac{\prod_{i=1}^{t-1} \hat{p}_i[y_i]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_i[y_i]} \frac{\prod_{i=1}^{t-1} \mathbf{v}_i[y_i]}{\prod_{i=1}^{t-1} \mathbf{v}_i[y_i]},
$$

where $\hat{p}_i := \Phi(\mathbf{x}^i, y^{i-1}) \in \Delta(\mathcal{Y})$.

Theorem 5: Let Φ be an online predictor and Ψ be the induced investment strategy. Then, for any market vectors $\mathbf{v}^\mathcal{T}$, side information $\mathbf{x}^\mathcal{T}$, and hypothesis class H , we have

$$
\sup_{h \in \mathcal{H}} \log \frac{S_T(\mathbf{v}^T, \mathbf{x}^T, h)}{S_T(\mathbf{v}^T, \mathbf{x}^T, \Psi)} \le \sup_{y^T} \sup_{h \in \mathcal{H}} \log \frac{\prod_{t=1}^T h(\mathbf{x}_t)[y_t]}{\prod_{t=1}^T \hat{p}_t[y_t]} \le \text{reg}_T(\mathcal{H}, \Phi),
$$
\nwhere $\hat{p}_t := \Phi(\mathbf{x}^t, y^{t-1})$.

Recall that an online predictor is a function $\Phi : (\mathcal{X} \times \mathcal{Y})^* \times \mathcal{Y} \to \Delta(\mathcal{Y})$.

For any online predictor Φ , we can define the following investment strategy:

$$
\Psi(\mathbf{x}_t) = \sum_{y^{t-1}} \Phi(\mathbf{x}^t, y^{t-1}) \frac{\prod_{i=1}^{t-1} \hat{p}_i[y_i]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_i[y_i]} \frac{\prod_{i=1}^{t-1} \mathbf{v}_i[y_i]}{\prod_{i=1}^{t-1} \mathbf{v}_i[y_i]},
$$

where $\hat{p}_i := \Phi(\mathbf{x}^i, y^{i-1}) \in \Delta(\mathcal{Y})$.

whe

Theorem 5: Let Φ be an online predictor and Ψ be the induced investment strategy. Then, for any market vectors $\mathbf{v}^\mathcal{T}$, side information $\mathbf{x}^\mathcal{T}$, and hypothesis class H , we have

$$
\sup_{h\in\mathcal{H}} \log \frac{S_T(\mathbf{v}^{\mathsf{T}}, \mathbf{x}^{\mathsf{T}}, h)}{S_T(\mathbf{v}^{\mathsf{T}}, \mathbf{x}^{\mathsf{T}}, \Psi)} \leq \sup_{y^{\mathsf{T}}} \sup_{h\in\mathcal{H}} \log \frac{\prod_{t=1}^{\mathsf{T}} h(\mathbf{x}_t)[y_t]}{\prod_{t=1}^{\mathsf{T}} \hat{p}_t[y_t]} \leq \mathsf{reg}_T(\mathcal{H}, \Phi),
$$

are $\hat{p}_t := \Phi(\mathbf{x}^t, y^{t-1}).$

Any online predictor with low worst-case regret can be converted into an investment strategy that achieves a low logarithmic wealth ratio.

Observe that

$$
S_T(\mathbf{v}^T, \mathbf{x}^T, h) = \prod_{t=1}^T \left(\sum_{y} \mathbf{v}_t[y] \cdot h(\mathbf{x}_t)[y] \right)
$$

=
$$
\sum_{y} \left(\prod_{t=1}^T \mathbf{v}_t[y_t] \right) \left(\prod_{t=1}^T h(\mathbf{x}_t)[y_t] \right).
$$

Observe that

$$
S_T(\mathbf{v}^T, \mathbf{x}^T, h) = \prod_{t=1}^T \left(\sum_{y} \mathbf{v}_t[y] \cdot h(\mathbf{x}_t)[y] \right)
$$

=
$$
\sum_{y} \left(\prod_{t=1}^T \mathbf{v}_t[y_t] \right) \left(\prod_{t=1}^T h(\mathbf{x}_t)[y_t] \right).
$$

Moreover, by the definition of Ψ , we have

$$
S_{T}(\mathbf{v}^{T}, \mathbf{x}^{T}, \Psi) = \prod_{t=1}^{T} \frac{\sum_{y} \sum_{y^{t-1}} \hat{p}_{t}[y] \mathbf{v}_{t}[y] \prod_{i=1}^{t-1} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}
$$

$$
= \prod_{t=1}^{T} \frac{\sum_{y^{t}} \prod_{i=1}^{t} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}
$$

$$
= \sum_{y^{T}} \prod_{t=1}^{T} \hat{p}_{t}[y_{t}] \prod_{t=1}^{T} \mathbf{v}_{t}[y_{t}].
$$

Observe that

$$
S_T(\mathbf{v}^T, \mathbf{x}^T, h) = \prod_{t=1}^T \left(\sum_{y} \mathbf{v}_t[y] \cdot h(\mathbf{x}_t)[y] \right)
$$

=
$$
\sum_{y} \left(\prod_{t=1}^T \mathbf{v}_t[y_t] \right) \left(\prod_{t=1}^T h(\mathbf{x}_t)[y_t] \right).
$$

Moreover, by the definition of Ψ , we have

$$
S_{T}(\mathbf{v}^{T}, \mathbf{x}^{T}, \Psi) = \prod_{t=1}^{T} \frac{\sum_{y} \sum_{y^{t-1}} \hat{p}_{t}[y] \mathbf{v}_{t}[y] \prod_{i=1}^{t-1} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}
$$

$$
= \prod_{t=1}^{T} \frac{\sum_{y^{t}} \prod_{i=1}^{t} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}{\sum_{y^{t-1}} \prod_{i=1}^{t-1} \hat{p}_{i}[y_{i}] \prod_{i=1}^{t-1} \mathbf{v}_{i}[y_{i}]}
$$

$$
= \sum_{y} \prod_{t=1}^{T} \hat{p}_{t}[y_{t}] \prod_{t=1}^{T} \mathbf{v}_{t}[y_{t}].
$$

The theorem now follows from the inequality $\log \frac{\sum_i a_i}{\sum_i b_i} \leq \sup_i \log \frac{a_i}{b_i}$. (Why?)

Concluding Remarks

- \blacktriangleright In this lecture, we introduced online learning under logarithmic loss.
- \triangleright We provided several approaches, such as sequential covering and the Shtarkov sum, for characterizing the minimax regret under log-loss.
- \triangleright We also introduced an application of prediction under log-loss in the context of portfolio optimization.
- \triangleright There are also many other applications of log-loss across various domains, such as universal compression, interactive decision-making, and online distribution estimation, which we unfortunately could not cover.
	- We refer interested readers to "Prediction, Learning, and Games" by N. Cesa-Bianchi and G. Lugosi.