Online Learning under Logarithmic Loss

Changlong Wu & Wojciech Szpankowski

Center for Science of Information
Purdue University

October 21, 2024

Overview

» Sequential Probability Assignment

- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

» Minimax Regret under Log-loss

- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

» Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.
But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.
But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
» The probability distribution for rain is different every day.

> \We only observe one outcome (i.e., rain or no rain) for each distribution.

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.
But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
» The probability distribution for rain is different every day.

> \We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function £ : A({0,1}) x {0,1} - R

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.
But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
» The probability distribution for rain is different every day.

> \We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function £ : A({0,1}) x {0,1} — R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

Vp,q € A({0,1}), Eyp[€(p, y)] < Eynpll(q,y)l-

2. Ideally, the function ¢ should have a natural interpretation.

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and A(Y) be the set of all distributions over Y.

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).
Let Y be a label space, and A(Y) be the set of all distributions over Y.

The logarithmic loss for any p € A(Y) and y € Y is defined as:

£%(p,y) = —log ply].

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).
Let Y be a label space, and A(Y) be the set of all distributions over Y.

The logarithmic loss for any p € A(Y) and y € Y is defined as:

£%(p,y) = —log ply].

Key properties of log-loss:

> |t relates naturally to Shannon entropy and KL-divergence as: (verify it!)

Vp,q € AWY), Eynpll®®(q,y)] = H(p) + KL(p, q).

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).
Let Y be a label space, and A(Y) be the set of all distributions over Y.

The logarithmic loss for any p € A(Y) and y € Y is defined as:

£%(p,y) = —log ply].

Key properties of log-loss:

> |t relates naturally to Shannon entropy and KL-divergence as: (verify it!)

Vp,q € AWY), Eynpll®®(q,y)] = H(p) + KL(p, q).

» By the non-negativity of KL-divergence, this implies:

Eyns[0%(p, y)] < Eynn[l(q, y)]-

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).
Let Y be a label space, and A(Y) be the set of all distributions over Y.

The logarithmic loss for any p € A(Y) and y € Y is defined as:

£%(p,y) = —log ply].

Key properties of log-loss:

> |t relates naturally to Shannon entropy and KL-divergence as: (verify it!)

Vp,q € AWY), Eynpll®®(q,y)] = H(p) + KL(p, q).

» By the non-negativity of KL-divergence, this implies:

Eyns[0%(p, y)] < Eynn[l(q, y)]-

» Equality is achieved when p = q.

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let)V be the Iabgl space, V= A()) be the prediction space, X be the instance
space and H C V¥ be the hypothesis class.

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let)V be the Iabgl space, V= A()) be the prediction space, X be the instance
space and H C V¥ be the hypothesis class.

Fort=1,---,T

Nature selects an instance x; € X;
Leaner predicts distribution p; € V;
Nature selects true label y; € Y,

Learner suffers loss £°8(py, yt).

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let)V be the Iabgl space, V= A()) be the prediction space, X be the instance
space and H C V¥ be the hypothesis class.

Fort=1,---,T
» Nature selects an instance x; € X;
» Leaner predicts distribution p; € V;
» Nature selects true label y; € V;

» Learner suffers loss €'°g(,bt7yf).

Goal of Learner: Find predictor ® that minimizes the worst-case regret:

T

.
regr(H,) = sup ZZIOg(ﬁt,yt) - I}gﬁZZIOg(h(xt),yt)
=1

XT,}’T t=1

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm ® enjoys the
worst-case regret for bounded convex:

reg (1,) < O(y/Tlog [1]).

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm ® enjoys the
worst-case regret for bounded convex:

reg (1,) < O(y/Tlog [1]).

Unfortunately, this does not apply to log-loss, since £°8(-, y) is not bounded.

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm ® enjoys the
worst-case regret for bounded convex:

regr (1, ®) < O(y/Tlog [1]).
Unfortunately, this does not apply to log-loss, since £°8(-, y) is not bounded.
Let H = {h1, -, hx}.
The Bayesian Algorithm:
1. Maintain a weight vector w*) € R¥ initially w'® = (1,---,1).
2. At each step t, predict pr := Sk, pe[k] - hi(x:), where

Wl((t—l)

K (t—1) "
k=1 Wk

vk € [K], pilk] =

3. Let y: be the true label, and update w,(f) = wff_l) < hi(x¢) [ye]-

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm ® enjoys the
worst-case regret for bounded convex:

regr (1, ®) < O(y/Tlog [1]).
Unfortunately, this does not apply to log-loss, since £°8(-, y) is not bounded.
Let H = {h1, -, hx}.

The Bayesian Algorithm:
1. Maintain a weight vector w*) € R¥ initially w'® = (1,---,1).
2. At each step t, predict pr := Sk, pe[k] - hi(x:), where

B Wl((t—l)
Vk € [K], pelk] = =K D"
k=1 Wk

3. Let y: be the true label, and update w,(f) = wff_l) < hi(x¢) [ye]-

Observe that hy(x.)[y:] = e IOy e the Bayesian algorithm is simply
the EWA algorithm with a learning rate of n = 1.

Regret Bound for Bayesian Algorithm

Theorem 1: Let 7 be a finite class. The Bayesian algorithm & enjoys the
worst-case regret under logarithmic loss:

regr (7, @) < log|?H|.

Regret Bound for Bayesian Algorithm

Theorem 1: Let 7 be a finite class. The Bayesian algorithm & enjoys the
worst-case regret under logarithmic loss:

regr (7, @) < log|?H|.

> Observe that the regret bound is tighter than the O(y/Tlog |#|) regret
bound for bounded Lipschitz losses.

Regret Bound for Bayesian Algorithm

Theorem 1: Let 7 be a finite class. The Bayesian algorithm & enjoys the
worst-case regret under logarithmic loss:

regr (7, @) < log|?H|.

> Observe that the regret bound is tighter than the O(y/Tlog |#|) regret
bound for bounded Lipschitz losses.

» Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

Regret Bound for Bayesian Algorithm

Theorem 1: Let 7 be a finite class. The Bayesian algorithm & enjoys the
worst-case regret under logarithmic loss:

regr (7, @) < log|?H|.

> Observe that the regret bound is tighter than the O(y/Tlog |#|) regret
bound for bounded Lipschitz losses.

» Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

» The regret bound holds for any individual sequences x”, y7.

Proof of Theorem 1

We again define the potential W = K w,(f) with W© = K.

Proof of Theorem 1
We again define the potential W = K w,(f) with W© = K.

Observe that

W K (t 1) |
log yny W (t—1) IOgZ W (t— 1) xe)[ye] = log pe[ye| = —€%(pe, y).

Proof of Theorem 1
We again define the potential W = K w,(f) with W© = K.

Observe that

W K (t 1) |
log yny W (t—1) IOgZ W (t— 1) xe)[ye] = log pe[ye| = —€%(pe, y).

Summing from t =1 to T, we have

W(T) T or -
lOg Q) - = Zel g(Pt7)/t)~
t=1

Proof of Theorem 1
We again define the potential W = K w,(f) with W© = K.
Observe that

W K (t 1) |
log yy=1y W (t—1) IOgZ W (t— 1) xe)[ye] = log pe[ye| = —€%(pe, y).

Summing from t =1 to T, we have

W(T) T or -
lOg Q) - = Zel g(Pt7)/t)~
t=1

Note that

log W™ > stiplogwf(= suplogH hi(xe)[ye] = —mfZK"g(hk Xt), Yt)-

t=1 t=1

Proof of Theorem 1
We again define the potential W) = Zle w,(f) with W© = K.
Observe that

wt K (t 1) |
lOg W(t 1) IOgZ W(t 1) [t] = 1ogf3t[yt} = —Eog(f)f,yt).

Summing from t =1 to T, we have

W(T) T s
lOg W(O) - Zel g(pt7yt)~
t=1

Note that

log W > suplogw,” = suplogH he(xe)lye] = —mfZK"g(hk Xt)s Ye)-

t=1 t=1

Therefore,
-

Zf (Pes ye) lanE (he(xe),y:) < logK.

t=1

Overview

» Minimax Regret under Log-loss
- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log || regret under
log-loss for a finite class .

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log || regret under
log-loss for a finite class .
Several issues remain:

1. The Bayesian algorithm cannot be applied directly to infinite classes.

2. It is unclear whether the log |H| bound is tight.

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log || regret under
log-loss for a finite class .

Several issues remain:

1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret reg(#H) under log-loss?

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log || regret under
log-loss for a finite class .

Several issues remain:

1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret reg(#H) under log-loss?

Problem 2: What algorithm achieves the minimax regret?

Sequential vs. Fixed Design Regret

For simplicity, we will assume) is finite in our following discussions.

Sequential vs. Fixed Design Regret

For simplicity, we will assume) is finite in our following discussions.

For any given x”, we define the fixed design minimax regret as:

T T
regy (H | x7) = infsup | > 0(pi, y0) — inf > L% (h(xe), y:)
y t=1

t=1

Sequential vs. Fixed Design Regret

For simplicity, we will assume) is finite in our following discussions.

For any given x”, we define the fixed design minimax regret as:

T T
regh (H | x") = igfsqu |:Z 0% (pe, ye) — hiélleZIOg(h(X:)v}/t)] .
y =1

t=1
Recall the (sequential) minimax regret is defined as:

T T
regr(H) = inf sup {Z 0% (b,) = inf >~ %% (h(x,), yt)} .
X,y t=1 t=1

Sequential vs. Fixed Design Regret

For simplicity, we will assume) is finite in our following discussions.

For any given x”, we define the fixed design minimax regret as:

T T
regh (H | x") = igfsqu |:Z 0% (pe, ye) — hiélleZIOg(h(Xt)v)’t)] .
y =1

t=1
Recall the (sequential) minimax regret is defined as:

T T
regr(H) = inf sup {Z 0% (pr, ye) — hiélvf{Ze"’g(h(xf),yf)} .
X,y t=1 t=1

It is easy to observe that: (Why?)

sup reg?((’r'{ | xT) < regr(H).
xT

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Shtarkov Sum: Let # C A())™ be a hypothesis class and x” be any given
instances. The Shtarkov sum of H conditioning on x” is defined as

T

Sht(H | x") = Z sup H h(xe)[ye].

heH
yTeyT t=1

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Shtarkov Sum: Let # C A())™ be a hypothesis class and x” be any given
instances. The Shtarkov sum of H conditioning on x” is defined as

Sht(H | x") = Z sup H h(xe)[y:]-

heH
yTG)}T t=1

Example 1: Let 7{ be a finite class, we have for any x” that

S sup [rxo)l]

yTeyT M€=y

> > IThxold

yTeyT heH t=1

> 2 Inxod ¢ ST 1=

heH yTeyT t=1 heH

Sht(H | x")

IA

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Theorem 2: Let % C A(Y)”™ be any hypothesis class, and let x” be any given
instances. Then
regh*(# | x") = log Sht(# | x").

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Theorem 2: Let % C A(Y)”™ be any hypothesis class, and let x” be any given
instances. Then
regh*(# | x") = log Sht(# | x").

» These two quantities are exactly equal.
» For a finite class #, we immediately have
regh(H | x") = log Sht(# | x") < log |#|.
» The Shtarkov sum forms a lower bound for the (sequential) minimax regret:

reg, (H) > supregh (# | x™) > suplog Sht(H | x").
xT xT

Proof of Theorem 2

We introduce the short-hand notations

Poly™ | x) =] hx)lel, Q™) =[] belyel-

t=1
Observe, by definition of log-loss, that
regh(# | x") = infsup {f log Q(y") + logsup Pu(y" | xT)}
Q T h

= infsup [~1og Q(y") +log P (y" |x)] +1og Y sup Pa(y " | x")

Q yT yT
w longup Pu(y" | x") =logSht(# | x"),
T "
#(uT | 5TY . _5upy Ph(y"x7) i () = P(- | xT
where P*(y' | x") := Seu PG TIRT) and () attains when Q(-) = P*(- | x').

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

QL)Y =P(-[x"),

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

QL) =P (- |x"),

w0 T | 7Y o _suph PGy D) AvTY — TTIT 5
where P*(y' | x'):= S, s PO TR and Q(y") =T[1,_1 Pely:].

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality
~ _ p* T
QU =P (-[x),
/. T Ty . supy, Pp(T\XT) A~ Ty T =
where P (y ‘ X) = %. and Q(y) = Ht:l pt[yt]

To satisfy the equality, we can define (Why?)

= S P
Pty = ZyT*Hl P*(yt—lyT—t+l |XT)

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality
~ _ p* T
QU =P (-[x),
/. T Ty . supy, Pp(T\XT) A~ Ty T =
where P (y ‘ X) = %. and Q(y) = Ht:l pt[yt]

To satisfy the equality, we can define (Why?)

= S P
Pty = ZyT*Hl P*(yt—lyT—t+l |XT)

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let 7 C A())™ be a hypothesis class. We
say a sequential function class G C A(y)X sequentially a-covers 7 up to step
T if, for any h € 7 and x", there exists g € G such that

VES T, [lg(x) — hixe)lloo < o,

where |[p — q|lsc = sup,¢y, [p[y] — qly]l-

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let 7 C A())™ be a hypothesis class. We
say a sequential function class G C A(y)X sequentially a-covers 7 up to step
T if, for any h € 7 and x", there exists g € G such that

VEST, [lg(x) — h(xe)lloo < o,

where |[p — q|lsc = sup,¢y, [p[y] — qly]l-

» Note that a crucial property when we apply the sequential cover for a
Lipschitz loss £ is that: £(y1,y) — £(y2,y) < L|y1 — ol

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let 7 C A())™ be a hypothesis class. We
say a sequential function class G C A(y)X sequentially a-covers 7 up to step
T if, for any h € 7 and x", there exists g € G such that

VES T, [lg(x’) = hixe)lleo < a,

where |[p — q|lsc = sup,¢y, [p[y] — qly]l-

» Note that a crucial property when we apply the sequential cover for a
Lipschitz loss £ is that: £(y1,y) — £(y2,y) < L|y1 — ol

» Therefore, small regret on the cover G, automatically implies small regret
on 7, offset by oL T.

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let 7 C A())™ be a hypothesis class. We
say a sequential function class G C A(y)X sequentially a-covers 7 up to step
T if, for any h € 7 and x", there exists g € G such that

VE< T, [lgx") — h(xe)[lo < @,
where [p — gllc = sup,cy |ply] — qly]|.
» Note that a crucial property when we apply the sequential cover for a

Lipschitz loss £ is that: £(y1,y) — £(y2,y) < L|y1 — ol

» Therefore, small regret on the cover G, automatically implies small regret
on 7, offset by oL T.

> This, unfortunately, is not true for log-loss, e.g., £°8(0, y) — £'°§(a, y) = oo.

From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential a-cover of . Then, for any h € H and
x",yT, there exists g € G such that

II7, A(xo)ly o
I, g < TP

E19_ js the smooth truncation of g.

1+alY|

where g(®) =

From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential a-cover of . Then, for any h € H and
x",y", there exists g € G such that

II7, hxo)lvd .
I, g < TP

g+a_ is the smooth truncation of g.

1+alY|

where g(®) =

Proof: Forany h € H and x", y", we choose g € G as the sequential a-cover of
hon x". This implies that, for all t < T and y € Y,

h(xe)ly] < g(x)ly] + o

Therefore, for any t < T, we have

h[)’t] _ h[)’t] a
£ ~ @t/ rap) < e

Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let % C A(Y)”™ be a hypothesis class that admits a sequential
a-cover G, for all &« > 0. Then

regr(H) < inf {a|V|T +log|Gal}.

Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let % C A(Y)”™ be a hypothesis class that admits a sequential
a-cover G, for all &« > 0. Then

regr(H) < inf {a|V|T +log|Gal}.

Example 2: Let J := {0,1}, X := B and
H™ = {hu(x) := [(w,x)| : w € By} C [0,1]7.
Here we interpreter h(x) € [0, 1] as Bernoulli distribution with parameter h(x).

From lecture 3, we know that |log G.| < O(a~2). This leads to the regret
bound (verify it!)

reg, (H'™) < O(T*®).

Proof of Theorem 2

Define gf;‘) — {ﬁ‘;“‘y‘ 1g € g,,} as the smooth truncated class of G,.

Proof of Theorem 2

Define G = {ﬁz‘”y‘ 1g € g,,} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

Proof of Theorem 2

Define G\ {ﬁz‘”y‘ ge€ g”} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that

T

> 0% (pr,ye) — inf Ze'°g), ye) < log|G\| = log|Ga|.
t=1 gegf\” =

Proof of Theorem 2

Define G\ {ﬁz‘”y‘ ge€ g(,} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that
T
> 0% (pr,ye) — inf Ze“’g), ye) < log|G\| = log|Ga|.
t=1 gegf\” =

Invoking Lemma 1, we have (verify it!)

T T

— inf > 0% (h(xc),y:) < — inf > L*5(g(x"),y:) + Tlog(1 + a|Y)).

h .
SH gecM o

(1)

Proof of Theorem 2

Define G\ {ﬁz‘”y‘ ge€ g(,} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that

T

> 0% (pr,ye) — inf Ze“’g), ye) < log|G\| = log|Ga|.

t=1 gegr(\” =

Invoking Lemma 1, we have (verify it!)
T T

— inf > £%%(h(x:),y:) < — inf (%5 (g(x"), ye) + Tlog(L +alY]). (1)

h .
SH gecM o

The theorem follows by noting that log(1 + «|Y|) < ||

Proof of Theorem 2

Define G\° {15:\{31\ ge€ g”} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that
T
> 0% (pr,ye) — inf Ze“’g), ye) < log|G\| = log|Ga|.

t=1 gegr(\” =

Invoking Lemma 1, we have (verify it!)
T T
—inf SO (h(xe),y) < — inf ST 0% (g(x),) + Tlog(1 + alY)). (1)

h .
SH gecM o

The theorem follows by noting that log(1 + «|Y|) < ||

Note: The use of G\ instead of G.. is crucial for (1) to work.

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let)V := {0,1}, and assume) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition

and bt

reg () < O(T").

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let)V := {0,1}, and assume) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition

and
p—1

reg () < O(T").

» Sequential a-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let)V := {0,1}, and assume) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition

and
p—1

reg () < O(T").

» Sequential a-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurlPS 2022).

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let)V := {0,1}, and assume) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition

and
p—1

reg () < O(T").

» Sequential a-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurlPS 2022).
» We need a new complexity measure...

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurlPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurlPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let 7: J/_, V' — X be an X-valued |)|-ary tree
of depth T. The contextual Shtarkov sum w.r.t. 7 is defined as

Sht(H | 7) = Zsuth [ye]-

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurlPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let 7: J/_, V' — X be an X-valued |)|-ary tree
of depth T. The contextual Shtarkov sum w.r.t. 7 is defined as

Sht(H | 7) = Zsuth [ye]-

Theorem 4: Let % C A(Y)™ be any hypothesis class. Then:

reg;(#H) = sup log Sht(H | 7).

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurlPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let 7: J/_, V' — X be an X-valued |)|-ary tree
of depth T. The contextual Shtarkov sum w.r.t. 7 is defined as

Sht(H | 7) = Zsuth [ye]-

Theorem 4: Let % C A(Y)™ be any hypothesis class. Then:

reg;(#H) = sup log Sht(H | 7).

» This result can be used to recover Theorem 2 using (smaller) local covers.

The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurlPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let 7: J/_, V' — X be an X-valued |)|-ary tree
of depth T. The contextual Shtarkov sum w.r.t. 7 is defined as

Sht(H | 7) = Zsuth [ye]-

Theorem 4: Let % C A(Y)™ be any hypothesis class. Then:

reg;(#H) = sup log Sht(H | 7).

» This result can be used to recover Theorem 2 using (smaller) local covers.

» |t remains largely open how the contextual Shtarkov sum can be estimated
for any non-trivial classes beyond covering methods...

Proof of Theorem 4

We provide only the high-level idea.

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

T T
sup By, p, -+ sup Eypepr Zinf]EYtNPt [Zlog(f’h}’t)] — jnf Zélog(h(xt)vyt)
X1,P1 XT,PT —1 pt heH vt

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

T T
. | ~ . |
sup Ey;~p, - sup Eyrnpy E infEy,~p, [Zog(phyt)] — inf § gog(h(xt)vyt)
X1,P1 XT,PT —1 Pt heH =7

Step Two: Show that (recall from our previous slides):
i, [£% (B, y0)| = Hipo),
Pt

where H(p:) is the Shannon entropy.

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

T T
sup By, p, -+ sup Eypepr [Z InfEy,.~p, [Zlog(f)h}’t)] - hié%f{ Zglog(h(xt)aﬁ)
t=1

X1,p1 XT,PT —1 Pt

Step Two: Show that (recall from our previous slides):
i, [£% (B, y0)| = Hipo),
Pt

where H(p:) is the Shannon entropy.

Step Three: Show that via Skolemization the expression reduces to:

heH
t=1

.
supsupE,r_p [H(P) — inf €'°g(h(7(yt_1)),yt)],
T P

where T runs over trees 7 : UZ—=1 V' = Xand Pc AQYT).

Proof of Theorem 4

Step Four: Denote x; = 7(y*™'), and let Py(y"|x") = H;l h(xe)[ye]-

Proof of Theorem 4

Step Four: Denote x; = 7(y*™'), and let Py(y"|x") = H;l h(x¢)[yt]. We have

T

Jof > €% (h(r(y*)), ye) = inf—log Pa(y " [x") = —suplog Pa(y[x").
t=1 h

Proof of Theorem 4

Step Four: Denote x; = 7(y*™'), and let Py(y"|x") = H;l h(x¢)[yt]. We have
T
inf 3 %% (h(r(y* 1)), ye) = inf ~log Py(y"[x") = — suplog Pa(y"|xT).
h

heH
t=1

Therefore, we are reduced to

supE, 7 _p [H(P) + log sup Ph(yT|xT)} =supE [— log P(yT) + log sup Ph(yT|xT)]
P P

-
= sgpIE [f log P(yT) + log P*(yT|xT)] + logz 51’11p H h(xt)[yt]
VT t=1

.
= sup —KL(P, P") +log Z sup H h(x¢)[ye]-
P VT t=1
=0

W T1 Ty supp Pa(yTIxT) ey ; _ p*
Here, P*(y'|x") = S, sups PrOTIRT” and equality is attained at P = P™.

Proof of Theorem 4

Step Four: Denote x; = 7(y*™'), and let Py(y"|x") = H;l h(x¢)[yt]. We have
T
inf 3 %% (h(r(y* 1)), ye) = inf ~log Py(y"[x") = — suplog Pa(y"|xT).
h

heH
t=1

Therefore, we are reduced to

supE, 7 _p [H(P) + log sup Ph(yT|xT)} =supE [— log P(yT) + log sup Ph(yT|xT)]
P P

-
= sgpIE [f log P(yT) + log P*(yT|xT)] + logz 51’11p H h(xt)[yt]
VT t=1

.
= sup —KL(P, P") +log Z sup H h(xe)[ye].
P VT t=1
=0

W T1 Ty supp Pa(yTIxT) ey ; _ p*
Here, P*(y'|x") = S, sups PrOTIRT” and equality is attained at P = P™.

Note: The distribution P* is not a minimax optimal strategy; achieving this
would require using the relaxation-based approach (c.f. lecture 3)...

Overview

» Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let)V be a set of assets (stocks) across which we want to allocate our
investment.

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let)V be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p: € A()), such that
Pt[y] determines the portion of our total wealth allocated to asset y.

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let)V be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p: € A()), such that
Pt[y] determines the portion of our total wealth allocated to asset y.

Let v; € RY be the market vector, where v.[y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let)V be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p: € A()), such that
Pt[y] determines the portion of our total wealth allocated to asset y.

Let v; € RY be the market vector, where v.[y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

H Z]+ Pely]

t=1 \yey

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let)V be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p: € A()), such that
Pt[y] determines the portion of our total wealth allocated to asset y.

Let v; € RY be the market vector, where v.[y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

H Z]+ Pely]

t=1 \yey

Goal: Find an investment strategy p’ that maximizes total wealth.

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p: (such as past market values).

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p: (such as past market values).

An investment strategy is a function mapping X — A()).

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p: (such as past market values).

An investment strategy is a function mapping X — A()).

Let H C A(y)X be a hypothesis class of investment strategies.

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p: (such as past market values).

An investment strategy is a function mapping X — A()).
Let H C A(y)X be a hypothesis class of investment strategies.

For any given investment strategy ®, market vectors v', and side information
x", we define its total wealth as

srvix", @) =] <Z vely]- ‘I’(Xt)[y]> :

t=1

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p: (such as past market values).

An investment strategy is a function mapping X — A()).
Let H C A(y)X be a hypothesis class of investment strategies.

For any given investment strategy ®, market vectors v', and side information
x", we define its total wealth as

srvix", @) =] <Z vely]- ‘P(Xr)[y]) :

t=1 y

Here, we assume that v~ C x;, i.e., the side information contains all the past

market vectors, so that our investment strategy could rely solely on x”.

From Prediction to Investment

Recall that an online predictor is a function ® : (X x Y)* x Y — A(Y).

From Prediction to Investment
Recall that an online predictor is a function ® : (X x Y)* x Y — A(Y).

For any online predictor ®, we can define the following investment strategy:

e TS A TS vilv)
= P(x", 1
2 26y)zyr_lnl I vl

where p; := ®(x',y'™1) € A(D).

From Prediction to Investment
Recall that an online predictor is a function ® : (X x Y)* x Y — A(Y).

For any online predictor ®, we can define the following investment strategy:

e TS A TS vilv)
= P(x", 1
2 26y)zyr_lnl I vl

where p; := ®(x',y'™1) € A(D).

Theorem 5: Let ® be an online predictor and ¥ be the induced investment
strategy. Then, for any market vectors v, side information x”, and hypothesis
class H, we have

T T T h
sup logM < sup sup logw < regr(H, D),
her STV, XT, W) = 7 hey [, Pely]

where p; := ®(x', y').

From Prediction to Investment
Recall that an online predictor is a function ® : (X x Y)* x Y — A(Y).

For any online predictor ®, we can define the following investment strategy:

e TS A TS vilv)
= P(x", 1
2 26y)zyr_lnl I vl

where p; := ®(x',y'™1) € A(D).

Theorem 5: Let ® be an online predictor and ¥ be the induced investment
strategy. Then, for any market vectors v, side information x”, and hypothesis
class H, we have

Sr(v7,x", h) T12, h(x)lyd]
sup log ————~ < sup sup log =L~ < reg(H, D),
b8 ST w) S PR Tl S)

where p; := ®(x', y').

» Any online predictor with low worst-case regret can be converted into an
investment strategy that achieves a low logarithmic wealth ratio.

Proof of Theorem 5

Observe that

Sr(vT xT, h) H (th[y] : h(m)M)
= Z <HV:[}’t}> <H h("t)[)’t]) :

Proof of Theorem 5

Observe that

Sr(vT,x7,) H(zvt[y]-hm)m)

= <H vt[)/t}> <H h("t)[)’t]) :

Moreover, by the definition of ¥, we have

T D[y ve lp i
SrieT T) szzyt_l pelylve I ITizy Pilyil ITicy vilyi]

=1 >y T2y pilyil T2, vilvi)
T X, ey Pl T, vilyi]
=1 Doyt Htl pilyil TTiZy vilvi]

= Z H Pelyr] H"t[}’t}-

Proof of Theorem 5

Observe that

srvl x"m =] (Z vely]- h(Xr)M)
= Z <H Vt[)’t}) <H h("t)[)’t]) .

Moreover, by the definition of ¥, we have

s ZyZ 1 Pe[y]vely] H, 1 f’l[yi} H:; vilyi]

1 >y [TZ) pilyil T vilyi]
S [Timy Al Ty vilyd]

DIV | 11131‘[%'] [T:2] vily]
U

Pely:] H veye].

The theorem now follows from the inequality log %’ Zi < sup, log %:

(Why?)

Concluding Remarks

P In this lecture, we introduced online learning under logarithmic loss.

» We provided several approaches, such as sequential covering and the
Shtarkov sum, for characterizing the minimax regret under log-loss.

» We also introduced an application of prediction under log-loss in the context
of portfolio optimization.

» There are also many other applications of log-loss across various domains,
such as universal compression, interactive decision-making, and online
distribution estimation, which we unfortunately could not cover.

- We refer interested readers to “Prediction, Learning, and Games” by N.
Cesa-Bianchi and G. Lugosi.

