
1/29

Online Learning under Logarithmic Loss

Changlong Wu & Wojciech Szpankowski

Center for Science of Information
Purdue University

October 21, 2024

2/29

Overview

I Sequential Probability Assignment
- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

I Minimax Regret under Log-loss
- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

I Application of Prediction with Log-loss
- Portfolio optimization
- Converting prediction to investment strategy

3/29

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
I The probability distribution for rain is different every day.
I We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function ` : ∆({0, 1})× {0, 1} → R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

∀p, q ∈ ∆({0, 1}), Ey∼p [`(p, y)] ≤ Ey∼p [`(q, y)].

2. Ideally, the function ` should have a natural interpretation.

3/29

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
I The probability distribution for rain is different every day.
I We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function ` : ∆({0, 1})× {0, 1} → R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

∀p, q ∈ ∆({0, 1}), Ey∼p [`(p, y)] ≤ Ey∼p [`(q, y)].

2. Ideally, the function ` should have a natural interpretation.

3/29

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?

I The probability distribution for rain is different every day.
I We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function ` : ∆({0, 1})× {0, 1} → R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

∀p, q ∈ ∆({0, 1}), Ey∼p [`(p, y)] ≤ Ey∼p [`(q, y)].

2. Ideally, the function ` should have a natural interpretation.

3/29

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
I The probability distribution for rain is different every day.
I We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function ` : ∆({0, 1})× {0, 1} → R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

∀p, q ∈ ∆({0, 1}), Ey∼p [`(p, y)] ≤ Ey∼p [`(q, y)].

2. Ideally, the function ` should have a natural interpretation.

3/29

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
I The probability distribution for rain is different every day.
I We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function ` : ∆({0, 1})× {0, 1} → R

that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

∀p, q ∈ ∆({0, 1}), Ey∼p [`(p, y)] ≤ Ey∼p [`(q, y)].

2. Ideally, the function ` should have a natural interpretation.

3/29

Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.

But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
I The probability distribution for rain is different every day.
I We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function ` : ∆({0, 1})× {0, 1} → R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

∀p, q ∈ ∆({0, 1}), Ey∼p [`(p, y)] ≤ Ey∼p [`(q, y)].

2. Ideally, the function ` should have a natural interpretation.

4/29

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and ∆(Y) be the set of all distributions over Y.

The logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

`log(p, y) = − log p[y].

Key properties of log-loss:
I It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

∀p, q ∈ ∆(Y), Ey∼p [`
log(q, y)] = H(p) + KL(p, q).

I By the non-negativity of KL-divergence, this implies:

Ey∼p [`
log(p, y)] ≤ Ey∼p [`

log(q, y)].

I Equality is achieved when p = q.

4/29

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and ∆(Y) be the set of all distributions over Y.

The logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

`log(p, y) = − log p[y].

Key properties of log-loss:
I It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

∀p, q ∈ ∆(Y), Ey∼p [`
log(q, y)] = H(p) + KL(p, q).

I By the non-negativity of KL-divergence, this implies:

Ey∼p [`
log(p, y)] ≤ Ey∼p [`

log(q, y)].

I Equality is achieved when p = q.

4/29

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and ∆(Y) be the set of all distributions over Y.

The logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

`log(p, y) = − log p[y].

Key properties of log-loss:
I It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

∀p, q ∈ ∆(Y), Ey∼p [`
log(q, y)] = H(p) + KL(p, q).

I By the non-negativity of KL-divergence, this implies:

Ey∼p [`
log(p, y)] ≤ Ey∼p [`

log(q, y)].

I Equality is achieved when p = q.

4/29

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and ∆(Y) be the set of all distributions over Y.

The logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

`log(p, y) = − log p[y].

Key properties of log-loss:
I It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

∀p, q ∈ ∆(Y), Ey∼p [`
log(q, y)] = H(p) + KL(p, q).

I By the non-negativity of KL-divergence, this implies:

Ey∼p [`
log(p, y)] ≤ Ey∼p [`

log(q, y)].

I Equality is achieved when p = q.

4/29

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and ∆(Y) be the set of all distributions over Y.

The logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

`log(p, y) = − log p[y].

Key properties of log-loss:
I It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

∀p, q ∈ ∆(Y), Ey∼p [`
log(q, y)] = H(p) + KL(p, q).

I By the non-negativity of KL-divergence, this implies:

Ey∼p [`
log(p, y)] ≤ Ey∼p [`

log(q, y)].

I Equality is achieved when p = q.

4/29

The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).

Let Y be a label space, and ∆(Y) be the set of all distributions over Y.

The logarithmic loss for any p ∈ ∆(Y) and y ∈ Y is defined as:

`log(p, y) = − log p[y].

Key properties of log-loss:
I It relates naturally to Shannon entropy and KL-divergence as: (verify it!)

∀p, q ∈ ∆(Y), Ey∼p [`
log(q, y)] = H(p) + KL(p, q).

I By the non-negativity of KL-divergence, this implies:

Ey∼p [`
log(p, y)] ≤ Ey∼p [`

log(q, y)].

I Equality is achieved when p = q.

5/29

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, Ŷ := ∆(Y) be the prediction space, X be the instance
space and H ⊂ ŶX be the hypothesis class.

For t = 1, · · · ,T
I Nature selects an instance xt ∈ X ;
I Leaner predicts distribution p̂t ∈ Ŷ;
I Nature selects true label yt ∈ Y;
I Learner suffers loss `log(p̂t , yt).

Goal of Learner: Find predictor Φ that minimizes the worst-case regret:

regT (H,Φ) = sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

5/29

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, Ŷ := ∆(Y) be the prediction space, X be the instance
space and H ⊂ ŶX be the hypothesis class.

For t = 1, · · · ,T
I Nature selects an instance xt ∈ X ;
I Leaner predicts distribution p̂t ∈ Ŷ;
I Nature selects true label yt ∈ Y;
I Learner suffers loss `log(p̂t , yt).

Goal of Learner: Find predictor Φ that minimizes the worst-case regret:

regT (H,Φ) = sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

5/29

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, Ŷ := ∆(Y) be the prediction space, X be the instance
space and H ⊂ ŶX be the hypothesis class.

For t = 1, · · · ,T
I Nature selects an instance xt ∈ X ;
I Leaner predicts distribution p̂t ∈ Ŷ;
I Nature selects true label yt ∈ Y;
I Learner suffers loss `log(p̂t , yt).

Goal of Learner: Find predictor Φ that minimizes the worst-case regret:

regT (H,Φ) = sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

5/29

Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let Y be the label space, Ŷ := ∆(Y) be the prediction space, X be the instance
space and H ⊂ ŶX be the hypothesis class.

For t = 1, · · · ,T
I Nature selects an instance xt ∈ X ;
I Leaner predicts distribution p̂t ∈ Ŷ;
I Nature selects true label yt ∈ Y;
I Learner suffers loss `log(p̂t , yt).

Goal of Learner: Find predictor Φ that minimizes the worst-case regret:

regT (H,Φ) = sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

6/29

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm Φ enjoys the
worst-case regret for bounded convex:

regT (H,Φ) ≤ O(
√

T log |H|).

Unfortunately, this does not apply to log-loss, since `log(·, y) is not bounded.

Let H = {h1, · · · , hK}.

The Bayesian Algorithm:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, predict p̂t :=

∑K
k=1 p̃t [k] · hk(xt), where

∀k ∈ [K], p̃t [k] =
w(t−1)

k∑K
k=1 w(t−1)

k

.

3. Let yt be the true label, and update w(t)
k = w(t−1)

k · hk(xt)[yt].

Observe that hk(xt)[yt] = e−`log(hk(xt),yt), i.e., the Bayesian algorithm is simply
the EWA algorithm with a learning rate of η = 1.

6/29

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm Φ enjoys the
worst-case regret for bounded convex:

regT (H,Φ) ≤ O(
√

T log |H|).

Unfortunately, this does not apply to log-loss, since `log(·, y) is not bounded.

Let H = {h1, · · · , hK}.

The Bayesian Algorithm:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, predict p̂t :=

∑K
k=1 p̃t [k] · hk(xt), where

∀k ∈ [K], p̃t [k] =
w(t−1)

k∑K
k=1 w(t−1)

k

.

3. Let yt be the true label, and update w(t)
k = w(t−1)

k · hk(xt)[yt].

Observe that hk(xt)[yt] = e−`log(hk(xt),yt), i.e., the Bayesian algorithm is simply
the EWA algorithm with a learning rate of η = 1.

6/29

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm Φ enjoys the
worst-case regret for bounded convex:

regT (H,Φ) ≤ O(
√

T log |H|).

Unfortunately, this does not apply to log-loss, since `log(·, y) is not bounded.

Let H = {h1, · · · , hK}.

The Bayesian Algorithm:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, predict p̂t :=

∑K
k=1 p̃t [k] · hk(xt), where

∀k ∈ [K], p̃t [k] =
w(t−1)

k∑K
k=1 w(t−1)

k

.

3. Let yt be the true label, and update w(t)
k = w(t−1)

k · hk(xt)[yt].

Observe that hk(xt)[yt] = e−`log(hk(xt),yt), i.e., the Bayesian algorithm is simply
the EWA algorithm with a learning rate of η = 1.

6/29

Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm Φ enjoys the
worst-case regret for bounded convex:

regT (H,Φ) ≤ O(
√

T log |H|).

Unfortunately, this does not apply to log-loss, since `log(·, y) is not bounded.

Let H = {h1, · · · , hK}.

The Bayesian Algorithm:
1. Maintain a weight vector w(t) ∈ RK , initially w(0) = (1, · · · , 1).
2. At each step t, predict p̂t :=

∑K
k=1 p̃t [k] · hk(xt), where

∀k ∈ [K], p̃t [k] =
w(t−1)

k∑K
k=1 w(t−1)

k

.

3. Let yt be the true label, and update w(t)
k = w(t−1)

k · hk(xt)[yt].

Observe that hk(xt)[yt] = e−`log(hk(xt),yt), i.e., the Bayesian algorithm is simply
the EWA algorithm with a learning rate of η = 1.

7/29

Regret Bound for Bayesian Algorithm

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the
worst-case regret under logarithmic loss:

regT (H,Φ) ≤ log |H|.

I Observe that the regret bound is tighter than the O(
√

T log |H|) regret
bound for bounded Lipschitz losses.

I Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

I The regret bound holds for any individual sequences xT , yT .

7/29

Regret Bound for Bayesian Algorithm

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the
worst-case regret under logarithmic loss:

regT (H,Φ) ≤ log |H|.

I Observe that the regret bound is tighter than the O(
√

T log |H|) regret
bound for bounded Lipschitz losses.

I Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

I The regret bound holds for any individual sequences xT , yT .

7/29

Regret Bound for Bayesian Algorithm

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the
worst-case regret under logarithmic loss:

regT (H,Φ) ≤ log |H|.

I Observe that the regret bound is tighter than the O(
√

T log |H|) regret
bound for bounded Lipschitz losses.

I Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

I The regret bound holds for any individual sequences xT , yT .

7/29

Regret Bound for Bayesian Algorithm

Theorem 1: Let H be a finite class. The Bayesian algorithm Φ enjoys the
worst-case regret under logarithmic loss:

regT (H,Φ) ≤ log |H|.

I Observe that the regret bound is tighter than the O(
√

T log |H|) regret
bound for bounded Lipschitz losses.

I Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

I The regret bound holds for any individual sequences xT , yT .

8/29

Proof of Theorem 1
We again define the potential W (t) =

∑K
k=1 w(t)

k with W (0) = K .

Observe that

log W (t)

W (t−1)
= log

K∑
k=1

w(t−1)
k

W (t−1)
hk(xt)[yt] = log p̂t [yt] = −`log(p̂t , yt).

Summing from t = 1 to T , we have

log W (T)

W (0)
= −

T∑
t=1

`log(p̂t , yt).

Note that

log W (T) ≥ sup
k

log w(T)
k = sup

k
log

T∏
t=1

hk(xt)[yt] = − inf
k

T∑
t=1

`log(hk(xt), yt).

Therefore,
T∑

t=1

`log(p̂t , yt)− inf
k

T∑
t=1

`log(hk(xt), yt) ≤ log K .

8/29

Proof of Theorem 1
We again define the potential W (t) =

∑K
k=1 w(t)

k with W (0) = K .

Observe that

log W (t)

W (t−1)
= log

K∑
k=1

w(t−1)
k

W (t−1)
hk(xt)[yt] = log p̂t [yt] = −`log(p̂t , yt).

Summing from t = 1 to T , we have

log W (T)

W (0)
= −

T∑
t=1

`log(p̂t , yt).

Note that

log W (T) ≥ sup
k

log w(T)
k = sup

k
log

T∏
t=1

hk(xt)[yt] = − inf
k

T∑
t=1

`log(hk(xt), yt).

Therefore,
T∑

t=1

`log(p̂t , yt)− inf
k

T∑
t=1

`log(hk(xt), yt) ≤ log K .

8/29

Proof of Theorem 1
We again define the potential W (t) =

∑K
k=1 w(t)

k with W (0) = K .

Observe that

log W (t)

W (t−1)
= log

K∑
k=1

w(t−1)
k

W (t−1)
hk(xt)[yt] = log p̂t [yt] = −`log(p̂t , yt).

Summing from t = 1 to T , we have

log W (T)

W (0)
= −

T∑
t=1

`log(p̂t , yt).

Note that

log W (T) ≥ sup
k

log w(T)
k = sup

k
log

T∏
t=1

hk(xt)[yt] = − inf
k

T∑
t=1

`log(hk(xt), yt).

Therefore,
T∑

t=1

`log(p̂t , yt)− inf
k

T∑
t=1

`log(hk(xt), yt) ≤ log K .

8/29

Proof of Theorem 1
We again define the potential W (t) =

∑K
k=1 w(t)

k with W (0) = K .

Observe that

log W (t)

W (t−1)
= log

K∑
k=1

w(t−1)
k

W (t−1)
hk(xt)[yt] = log p̂t [yt] = −`log(p̂t , yt).

Summing from t = 1 to T , we have

log W (T)

W (0)
= −

T∑
t=1

`log(p̂t , yt).

Note that

log W (T) ≥ sup
k

log w(T)
k = sup

k
log

T∏
t=1

hk(xt)[yt] = − inf
k

T∑
t=1

`log(hk(xt), yt).

Therefore,
T∑

t=1

`log(p̂t , yt)− inf
k

T∑
t=1

`log(hk(xt), yt) ≤ log K .

8/29

Proof of Theorem 1
We again define the potential W (t) =

∑K
k=1 w(t)

k with W (0) = K .

Observe that

log W (t)

W (t−1)
= log

K∑
k=1

w(t−1)
k

W (t−1)
hk(xt)[yt] = log p̂t [yt] = −`log(p̂t , yt).

Summing from t = 1 to T , we have

log W (T)

W (0)
= −

T∑
t=1

`log(p̂t , yt).

Note that

log W (T) ≥ sup
k

log w(T)
k = sup

k
log

T∏
t=1

hk(xt)[yt] = − inf
k

T∑
t=1

`log(hk(xt), yt).

Therefore,
T∑

t=1

`log(p̂t , yt)− inf
k

T∑
t=1

`log(hk(xt), yt) ≤ log K .

9/29

Overview

I Sequential Probability Assignment
- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

I Minimax Regret under Log-loss
- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

I Application of Prediction with Log-loss
- Portfolio optimization
- Converting prediction to investment strategy

10/29

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log |H| regret under
log-loss for a finite class H.

Several issues remain:
1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret regT (H) under log-loss?

Problem 2: What algorithm achieves the minimax regret?

10/29

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log |H| regret under
log-loss for a finite class H.

Several issues remain:
1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret regT (H) under log-loss?

Problem 2: What algorithm achieves the minimax regret?

10/29

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log |H| regret under
log-loss for a finite class H.

Several issues remain:
1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret regT (H) under log-loss?

Problem 2: What algorithm achieves the minimax regret?

10/29

Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log |H| regret under
log-loss for a finite class H.

Several issues remain:
1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret regT (H) under log-loss?

Problem 2: What algorithm achieves the minimax regret?

11/29

Sequential vs. Fixed Design Regret

For simplicity, we will assume Y is finite in our following discussions.

For any given xT , we define the fixed design minimax regret as:

regfix
T (H | xT) = inf

Φ
sup
yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Recall the (sequential) minimax regret is defined as:

regT (H) = inf
Φ

sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

It is easy to observe that: (Why?)

sup
xT

regfix
T (H | xT) ≤ regT (H).

11/29

Sequential vs. Fixed Design Regret

For simplicity, we will assume Y is finite in our following discussions.

For any given xT , we define the fixed design minimax regret as:

regfix
T (H | xT) = inf

Φ
sup
yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Recall the (sequential) minimax regret is defined as:

regT (H) = inf
Φ

sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

It is easy to observe that: (Why?)

sup
xT

regfix
T (H | xT) ≤ regT (H).

11/29

Sequential vs. Fixed Design Regret

For simplicity, we will assume Y is finite in our following discussions.

For any given xT , we define the fixed design minimax regret as:

regfix
T (H | xT) = inf

Φ
sup
yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Recall the (sequential) minimax regret is defined as:

regT (H) = inf
Φ

sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

It is easy to observe that: (Why?)

sup
xT

regfix
T (H | xT) ≤ regT (H).

11/29

Sequential vs. Fixed Design Regret

For simplicity, we will assume Y is finite in our following discussions.

For any given xT , we define the fixed design minimax regret as:

regfix
T (H | xT) = inf

Φ
sup
yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Recall the (sequential) minimax regret is defined as:

regT (H) = inf
Φ

sup
xT ,yT

[T∑
t=1

`log(p̂t , yt)− inf
h∈H

T∑
t=1

`log(h(xt), yt)

]
.

It is easy to observe that: (Why?)

sup
xT

regfix
T (H | xT) ≤ regT (H).

12/29

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Shtarkov Sum: Let H ⊂ ∆(Y)X be a hypothesis class and xT be any given
instances. The Shtarkov sum of H conditioning on xT is defined as

Sht(H | xT) =
∑

yT ∈YT

sup
h∈H

T∏
t=1

h(xt)[yt].

Example 1: Let H be a finite class, we have for any xT that

Sht(H | xT) =
∑

yT ∈YT

sup
h∈H

T∏
t=1

h(xt)[yt]

≤
∑

yT ∈YT

∑
h∈H

T∏
t=1

h(xt)[yt]

=
∑
h∈H

∑
yT ∈YT

T∏
t=1

h(xt)[yt]
(?)

≤
∑
h∈H

1 = |H|.

12/29

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Shtarkov Sum: Let H ⊂ ∆(Y)X be a hypothesis class and xT be any given
instances. The Shtarkov sum of H conditioning on xT is defined as

Sht(H | xT) =
∑

yT ∈YT

sup
h∈H

T∏
t=1

h(xt)[yt].

Example 1: Let H be a finite class, we have for any xT that

Sht(H | xT) =
∑

yT ∈YT

sup
h∈H

T∏
t=1

h(xt)[yt]

≤
∑

yT ∈YT

∑
h∈H

T∏
t=1

h(xt)[yt]

=
∑
h∈H

∑
yT ∈YT

T∏
t=1

h(xt)[yt]
(?)

≤
∑
h∈H

1 = |H|.

13/29

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Theorem 2: Let H ⊂ ∆(Y)X be any hypothesis class, and let xT be any given
instances. Then

regfix
T (H | xT) = log Sht(H | xT).

I These two quantities are exactly equal.
I For a finite class H, we immediately have

regfix
T (H | xT) = log Sht(H | xT) ≤ log |H|.

I The Shtarkov sum forms a lower bound for the (sequential) minimax regret:

regT (H) ≥ sup
xT

regfix
T (H | xT) ≥ sup

xT
log Sht(H | xT).

13/29

Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Theorem 2: Let H ⊂ ∆(Y)X be any hypothesis class, and let xT be any given
instances. Then

regfix
T (H | xT) = log Sht(H | xT).

I These two quantities are exactly equal.
I For a finite class H, we immediately have

regfix
T (H | xT) = log Sht(H | xT) ≤ log |H|.

I The Shtarkov sum forms a lower bound for the (sequential) minimax regret:

regT (H) ≥ sup
xT

regfix
T (H | xT) ≥ sup

xT
log Sht(H | xT).

14/29

Proof of Theorem 2

We introduce the short-hand notations

Ph(yT | xT) =
T∏

t=1

h(xt)[yt], Q̂(yT) =
T∏

t=1

p̂t [yt].

Observe, by definition of log-loss, that

regfix
T (H | xT) = inf

Q̂
sup
yT

[
− log Q̂(yT) + log sup

h
Ph(yT | xT)

]
= inf

Q̂
sup
yT

[
− log Q̂(yT) + log P∗(yT | xT)

]
+ log

∑
yT

sup
h

Ph(yT | xT)

(?)
= log

∑
yT

sup
h

Ph(yT | xT) = log Sht(H | xT),

where P∗(yT | xT) := suph Ph(yT |xT)∑
suph Ph(yT |xT)

and (?) attains when Q̂(·) ≡ P∗(· | xT).

15/29

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

Q̂(·) ≡ P∗(· | xT),

where P∗(yT | xT) := suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

. and Q̂(yT) =
∏T

t=1 p̂t [yt].

To satisfy the equality, we can define (Why?)

p̂t [y] =
∑

yT−t P∗(y t−1yyT−t | xT)∑
yT−t+1 P∗(y t−1yT−t+1 | xT)

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.

15/29

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

Q̂(·) ≡ P∗(· | xT),

where P∗(yT | xT) := suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

. and Q̂(yT) =
∏T

t=1 p̂t [yt].

To satisfy the equality, we can define (Why?)

p̂t [y] =
∑

yT−t P∗(y t−1yyT−t | xT)∑
yT−t+1 P∗(y t−1yT−t+1 | xT)

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.

15/29

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

Q̂(·) ≡ P∗(· | xT),

where P∗(yT | xT) := suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

. and Q̂(yT) =
∏T

t=1 p̂t [yt].

To satisfy the equality, we can define (Why?)

p̂t [y] =
∑

yT−t P∗(y t−1yyT−t | xT)∑
yT−t+1 P∗(y t−1yT−t+1 | xT)

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.

15/29

Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

Q̂(·) ≡ P∗(· | xT),

where P∗(yT | xT) := suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

. and Q̂(yT) =
∏T

t=1 p̂t [yt].

To satisfy the equality, we can define (Why?)

p̂t [y] =
∑

yT−t P∗(y t−1yyT−t | xT)∑
yT−t+1 P∗(y t−1yT−t+1 | xT)

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

16/29

Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let H ⊂ ∆(Y)X be a hypothesis class. We
say a sequential function class G ⊂ ∆(Y)X

∗
sequentially α-covers H up to step

T if, for any h ∈ H and xT , there exists g ∈ G such that

∀t ≤ T , ‖g(xt)− h(xt)‖∞ ≤ α,

where ‖p − q‖∞ = supy∈Y |p[y]− q[y]|.

I Note that a crucial property when we apply the sequential cover for a
Lipschitz loss ` is that: `(ŷ1, y)− `(ŷ2, y) ≤ L|ŷ1 − ŷ2|.

I Therefore, small regret on the cover Gα automatically implies small regret
on H, offset by αLT .

I This, unfortunately, is not true for log-loss, e.g., `log(0, y)− `log(α, y) = ∞.

17/29

From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential α-cover of H. Then, for any h ∈ H and
xT , yT , there exists g ∈ G such that∏T

t=1 h(xt)[yt]∏T
t=1 g(α)(xt)[yt]

≤ (1 + α|Y|)T ,

where g(α) = g+α
1+α|Y| is the smooth truncation of g .

Proof: For any h ∈ H and xT , yT , we choose g ∈ G as the sequential α-cover of
h on xT . This implies that, for all t ≤ T and y ∈ Y,

h(xt)[y] ≤ g(xt)[y] + α.

Therefore, for any t ≤ T , we have

h[yt]

g(α)[yt]
=

h[yt]

(g [yt] + α)/(1 + α|Y|) ≤ (1 + α|Y|).

17/29

From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential α-cover of H. Then, for any h ∈ H and
xT , yT , there exists g ∈ G such that∏T

t=1 h(xt)[yt]∏T
t=1 g(α)(xt)[yt]

≤ (1 + α|Y|)T ,

where g(α) = g+α
1+α|Y| is the smooth truncation of g .

Proof: For any h ∈ H and xT , yT , we choose g ∈ G as the sequential α-cover of
h on xT . This implies that, for all t ≤ T and y ∈ Y,

h(xt)[y] ≤ g(xt)[y] + α.

Therefore, for any t ≤ T , we have

h[yt]

g(α)[yt]
=

h[yt]

(g [yt] + α)/(1 + α|Y|) ≤ (1 + α|Y|).

18/29

Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let H ⊂ ∆(Y)X be a hypothesis class that admits a sequential
α-cover Gα for all α ≥ 0. Then

regT (H) ≤ inf
α≥0

{α|Y|T + log |Gα|}.

Example 2: Let Y := {0, 1}, X := B2 and

Hlin := {hw(x) := |〈w, x〉| : w ∈ B2} ⊂ [0, 1]X .

Here we interpreter h(x) ∈ [0, 1] as Bernoulli distribution with parameter h(x).

From lecture 3, we know that | logGα| ≤ Õ(α−2). This leads to the regret
bound (verify it!)

regT (H
lin) ≤ Õ(T 2/3).

18/29

Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let H ⊂ ∆(Y)X be a hypothesis class that admits a sequential
α-cover Gα for all α ≥ 0. Then

regT (H) ≤ inf
α≥0

{α|Y|T + log |Gα|}.

Example 2: Let Y := {0, 1}, X := B2 and

Hlin := {hw(x) := |〈w, x〉| : w ∈ B2} ⊂ [0, 1]X .

Here we interpreter h(x) ∈ [0, 1] as Bernoulli distribution with parameter h(x).

From lecture 3, we know that | logGα| ≤ Õ(α−2). This leads to the regret
bound (verify it!)

regT (H
lin) ≤ Õ(T 2/3).

19/29

Proof of Theorem 2

Define G(α)
α =

{
g+α

1+α|Y| : g ∈ Gα

}
as the smooth truncated class of Gα.

Let Φ be the predictor running the Bayesian algorithm over G(α)
α .

We have for any xT , yT that

T∑
t=1

`log(p̂t , yt)− inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) ≤ log |G(α)
α | = log |Gα|.

Invoking Lemma 1, we have (verify it!)

− inf
h∈H

T∑
t=1

`log(h(xt), yt) ≤ − inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) + T log(1 + α|Y|). (1)

The theorem follows by noting that log(1 + α|Y|) ≤ α|Y|.

Note: The use of G(α)
α instead of Gα is crucial for (1) to work.

19/29

Proof of Theorem 2

Define G(α)
α =

{
g+α

1+α|Y| : g ∈ Gα

}
as the smooth truncated class of Gα.

Let Φ be the predictor running the Bayesian algorithm over G(α)
α .

We have for any xT , yT that

T∑
t=1

`log(p̂t , yt)− inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) ≤ log |G(α)
α | = log |Gα|.

Invoking Lemma 1, we have (verify it!)

− inf
h∈H

T∑
t=1

`log(h(xt), yt) ≤ − inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) + T log(1 + α|Y|). (1)

The theorem follows by noting that log(1 + α|Y|) ≤ α|Y|.

Note: The use of G(α)
α instead of Gα is crucial for (1) to work.

19/29

Proof of Theorem 2

Define G(α)
α =

{
g+α

1+α|Y| : g ∈ Gα

}
as the smooth truncated class of Gα.

Let Φ be the predictor running the Bayesian algorithm over G(α)
α .

We have for any xT , yT that

T∑
t=1

`log(p̂t , yt)− inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) ≤ log |G(α)
α | = log |Gα|.

Invoking Lemma 1, we have (verify it!)

− inf
h∈H

T∑
t=1

`log(h(xt), yt) ≤ − inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) + T log(1 + α|Y|). (1)

The theorem follows by noting that log(1 + α|Y|) ≤ α|Y|.

Note: The use of G(α)
α instead of Gα is crucial for (1) to work.

19/29

Proof of Theorem 2

Define G(α)
α =

{
g+α

1+α|Y| : g ∈ Gα

}
as the smooth truncated class of Gα.

Let Φ be the predictor running the Bayesian algorithm over G(α)
α .

We have for any xT , yT that

T∑
t=1

`log(p̂t , yt)− inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) ≤ log |G(α)
α | = log |Gα|.

Invoking Lemma 1, we have (verify it!)

− inf
h∈H

T∑
t=1

`log(h(xt), yt) ≤ − inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) + T log(1 + α|Y|). (1)

The theorem follows by noting that log(1 + α|Y|) ≤ α|Y|.

Note: The use of G(α)
α instead of Gα is crucial for (1) to work.

19/29

Proof of Theorem 2

Define G(α)
α =

{
g+α

1+α|Y| : g ∈ Gα

}
as the smooth truncated class of Gα.

Let Φ be the predictor running the Bayesian algorithm over G(α)
α .

We have for any xT , yT that

T∑
t=1

`log(p̂t , yt)− inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) ≤ log |G(α)
α | = log |Gα|.

Invoking Lemma 1, we have (verify it!)

− inf
h∈H

T∑
t=1

`log(h(xt), yt) ≤ − inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) + T log(1 + α|Y|). (1)

The theorem follows by noting that log(1 + α|Y|) ≤ α|Y|.

Note: The use of G(α)
α instead of Gα is crucial for (1) to work.

19/29

Proof of Theorem 2

Define G(α)
α =

{
g+α

1+α|Y| : g ∈ Gα

}
as the smooth truncated class of Gα.

Let Φ be the predictor running the Bayesian algorithm over G(α)
α .

We have for any xT , yT that

T∑
t=1

`log(p̂t , yt)− inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) ≤ log |G(α)
α | = log |Gα|.

Invoking Lemma 1, we have (verify it!)

− inf
h∈H

T∑
t=1

`log(h(xt), yt) ≤ − inf
g∈G(α)

α

T∑
t=1

`log(g(xt), yt) + T log(1 + α|Y|). (1)

The theorem follows by noting that log(1 + α|Y|) ≤ α|Y|.

Note: The use of G(α)
α instead of Gα is crucial for (1) to work.

20/29

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let Y := {0, 1}, and assume Ŷ := [0, 1], interpreted as Bernoulli
distributions. Then for any class H ⊂ ŶX with a sequential α-cover Gα of size
log |Gα| ≤ Õ(α−p) for all α ≥ 0, we have

regT (H) ≤ Õ(T
p

p+1).

Moreover, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≥ Ω̃(T
p

p+1).

Furthermore, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≤ Õ(T
p−1

p).

I Sequential α-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurIPS 2022).
I We need a new complexity measure...

20/29

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let Y := {0, 1}, and assume Ŷ := [0, 1], interpreted as Bernoulli
distributions. Then for any class H ⊂ ŶX with a sequential α-cover Gα of size
log |Gα| ≤ Õ(α−p) for all α ≥ 0, we have

regT (H) ≤ Õ(T
p

p+1).

Moreover, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≥ Ω̃(T
p

p+1).

Furthermore, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≤ Õ(T
p−1

p).

I Sequential α-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurIPS 2022).
I We need a new complexity measure...

20/29

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let Y := {0, 1}, and assume Ŷ := [0, 1], interpreted as Bernoulli
distributions. Then for any class H ⊂ ŶX with a sequential α-cover Gα of size
log |Gα| ≤ Õ(α−p) for all α ≥ 0, we have

regT (H) ≤ Õ(T
p

p+1).

Moreover, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≥ Ω̃(T
p

p+1).

Furthermore, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≤ Õ(T
p−1

p).

I Sequential α-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurIPS 2022).

I We need a new complexity measure...

20/29

Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let Y := {0, 1}, and assume Ŷ := [0, 1], interpreted as Bernoulli
distributions. Then for any class H ⊂ ŶX with a sequential α-cover Gα of size
log |Gα| ≤ Õ(α−p) for all α ≥ 0, we have

regT (H) ≤ Õ(T
p

p+1).

Moreover, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≥ Ω̃(T
p

p+1).

Furthermore, for any p ≥ 2, there exists a class that satisfies the above condition
and

regT (H) ≤ Õ(T
p−1

p).

I Sequential α-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurIPS 2022).
I We need a new complexity measure...

21/29

The Contextual Shtarkov Sum
Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let τ :
⋃T

t=1 Y
t → X be an X -valued |Y|-ary tree

of depth T . The contextual Shtarkov sum w.r.t. τ is defined as

Sht(H | τ) =
∑
yT

sup
h∈H

T∏
t=1

h(τ(y t−1))[yt].

Theorem 4: Let H ⊂ ∆(Y)X be any hypothesis class. Then:

regT (H) = sup
τ

log Sht(H | τ).

I This result can be used to recover Theorem 2 using (smaller) local covers.
I It remains largely open how the contextual Shtarkov sum can be estimated

for any non-trivial classes beyond covering methods...

21/29

The Contextual Shtarkov Sum
Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let τ :
⋃T

t=1 Y
t → X be an X -valued |Y|-ary tree

of depth T . The contextual Shtarkov sum w.r.t. τ is defined as

Sht(H | τ) =
∑
yT

sup
h∈H

T∏
t=1

h(τ(y t−1))[yt].

Theorem 4: Let H ⊂ ∆(Y)X be any hypothesis class. Then:

regT (H) = sup
τ

log Sht(H | τ).

I This result can be used to recover Theorem 2 using (smaller) local covers.
I It remains largely open how the contextual Shtarkov sum can be estimated

for any non-trivial classes beyond covering methods...

21/29

The Contextual Shtarkov Sum
Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let τ :
⋃T

t=1 Y
t → X be an X -valued |Y|-ary tree

of depth T . The contextual Shtarkov sum w.r.t. τ is defined as

Sht(H | τ) =
∑
yT

sup
h∈H

T∏
t=1

h(τ(y t−1))[yt].

Theorem 4: Let H ⊂ ∆(Y)X be any hypothesis class. Then:

regT (H) = sup
τ

log Sht(H | τ).

I This result can be used to recover Theorem 2 using (smaller) local covers.
I It remains largely open how the contextual Shtarkov sum can be estimated

for any non-trivial classes beyond covering methods...

21/29

The Contextual Shtarkov Sum
Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let τ :
⋃T

t=1 Y
t → X be an X -valued |Y|-ary tree

of depth T . The contextual Shtarkov sum w.r.t. τ is defined as

Sht(H | τ) =
∑
yT

sup
h∈H

T∏
t=1

h(τ(y t−1))[yt].

Theorem 4: Let H ⊂ ∆(Y)X be any hypothesis class. Then:

regT (H) = sup
τ

log Sht(H | τ).

I This result can be used to recover Theorem 2 using (smaller) local covers.

I It remains largely open how the contextual Shtarkov sum can be estimated
for any non-trivial classes beyond covering methods...

21/29

The Contextual Shtarkov Sum
Very recently, Liu, Attias, and Roy (to appear in NeurIPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let τ :
⋃T

t=1 Y
t → X be an X -valued |Y|-ary tree

of depth T . The contextual Shtarkov sum w.r.t. τ is defined as

Sht(H | τ) =
∑
yT

sup
h∈H

T∏
t=1

h(τ(y t−1))[yt].

Theorem 4: Let H ⊂ ∆(Y)X be any hypothesis class. Then:

regT (H) = sup
τ

log Sht(H | τ).

I This result can be used to recover Theorem 2 using (smaller) local covers.
I It remains largely open how the contextual Shtarkov sum can be estimated

for any non-trivial classes beyond covering methods...

22/29

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

sup
x1,p1

Ey1∼p1 · · · sup
xT ,pT

EyT ∼pT

[T∑
t=1

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
− inf

h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Step Two: Show that (recall from our previous slides):

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
= H(pt),

where H(pt) is the Shannon entropy.

Step Three: Show that via Skolemization the expression reduces to:

sup
τ

sup
P

EyT ∼P

[
H(P)− inf

h∈H

T∑
t=1

`log(h(τ(y t−1)), yt)

]
,

where τ runs over trees τ :
⋃T

t=1 Y
t → X and P ∈ ∆(YT).

22/29

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

sup
x1,p1

Ey1∼p1 · · · sup
xT ,pT

EyT ∼pT

[T∑
t=1

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
− inf

h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Step Two: Show that (recall from our previous slides):

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
= H(pt),

where H(pt) is the Shannon entropy.

Step Three: Show that via Skolemization the expression reduces to:

sup
τ

sup
P

EyT ∼P

[
H(P)− inf

h∈H

T∑
t=1

`log(h(τ(y t−1)), yt)

]
,

where τ runs over trees τ :
⋃T

t=1 Y
t → X and P ∈ ∆(YT).

22/29

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

sup
x1,p1

Ey1∼p1 · · · sup
xT ,pT

EyT ∼pT

[T∑
t=1

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
− inf

h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Step Two: Show that (recall from our previous slides):

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
= H(pt),

where H(pt) is the Shannon entropy.

Step Three: Show that via Skolemization the expression reduces to:

sup
τ

sup
P

EyT ∼P

[
H(P)− inf

h∈H

T∑
t=1

`log(h(τ(y t−1)), yt)

]
,

where τ runs over trees τ :
⋃T

t=1 Y
t → X and P ∈ ∆(YT).

22/29

Proof of Theorem 4

We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

sup
x1,p1

Ey1∼p1 · · · sup
xT ,pT

EyT ∼pT

[T∑
t=1

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
− inf

h∈H

T∑
t=1

`log(h(xt), yt)

]
.

Step Two: Show that (recall from our previous slides):

inf
p̂t

Eyt∼pt

[
`log(p̂t , yt)

]
= H(pt),

where H(pt) is the Shannon entropy.

Step Three: Show that via Skolemization the expression reduces to:

sup
τ

sup
P

EyT ∼P

[
H(P)− inf

h∈H

T∑
t=1

`log(h(τ(y t−1)), yt)

]
,

where τ runs over trees τ :
⋃T

t=1 Y
t → X and P ∈ ∆(YT).

23/29

Proof of Theorem 4

Step Four: Denote xt = τ(y t−1), and let Ph(yT |xT) =
∏T

t=1 h(xt)[yt].

We have

inf
h∈H

T∑
t=1

`log(h(τ(y t−1)), yt) = inf
h
− log Ph(yT |xT) = − sup

h
log Ph(yT |xT).

Therefore, we are reduced to

sup
P

EyT ∼P

[
H(P) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log P∗(yT |xT)

]
+ log

∑
yT

sup
h

T∏
t=1

h(xt)[yt]

= sup
P

−KL(P ,P∗)︸ ︷︷ ︸
=0

+ log
∑
yT

sup
h

T∏
t=1

h(xt)[yt].

Here, P∗(yT |xT) = suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

, and equality is attained at P = P∗.

Note: The distribution P∗ is not a minimax optimal strategy; achieving this
would require using the relaxation-based approach (c.f. lecture 3)...

23/29

Proof of Theorem 4

Step Four: Denote xt = τ(y t−1), and let Ph(yT |xT) =
∏T

t=1 h(xt)[yt]. We have

inf
h∈H

T∑
t=1

`log(h(τ(y t−1)), yt) = inf
h
− log Ph(yT |xT) = − sup

h
log Ph(yT |xT).

Therefore, we are reduced to

sup
P

EyT ∼P

[
H(P) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log P∗(yT |xT)

]
+ log

∑
yT

sup
h

T∏
t=1

h(xt)[yt]

= sup
P

−KL(P ,P∗)︸ ︷︷ ︸
=0

+ log
∑
yT

sup
h

T∏
t=1

h(xt)[yt].

Here, P∗(yT |xT) = suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

, and equality is attained at P = P∗.

Note: The distribution P∗ is not a minimax optimal strategy; achieving this
would require using the relaxation-based approach (c.f. lecture 3)...

23/29

Proof of Theorem 4

Step Four: Denote xt = τ(y t−1), and let Ph(yT |xT) =
∏T

t=1 h(xt)[yt]. We have

inf
h∈H

T∑
t=1

`log(h(τ(y t−1)), yt) = inf
h
− log Ph(yT |xT) = − sup

h
log Ph(yT |xT).

Therefore, we are reduced to

sup
P

EyT ∼P

[
H(P) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log P∗(yT |xT)

]
+ log

∑
yT

sup
h

T∏
t=1

h(xt)[yt]

= sup
P

−KL(P ,P∗)︸ ︷︷ ︸
=0

+ log
∑
yT

sup
h

T∏
t=1

h(xt)[yt].

Here, P∗(yT |xT) = suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

, and equality is attained at P = P∗.

Note: The distribution P∗ is not a minimax optimal strategy; achieving this
would require using the relaxation-based approach (c.f. lecture 3)...

23/29

Proof of Theorem 4

Step Four: Denote xt = τ(y t−1), and let Ph(yT |xT) =
∏T

t=1 h(xt)[yt]. We have

inf
h∈H

T∑
t=1

`log(h(τ(y t−1)), yt) = inf
h
− log Ph(yT |xT) = − sup

h
log Ph(yT |xT).

Therefore, we are reduced to

sup
P

EyT ∼P

[
H(P) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log sup Ph(yT |xT)

]
= sup

P
E
[
− log P(yT) + log P∗(yT |xT)

]
+ log

∑
yT

sup
h

T∏
t=1

h(xt)[yt]

= sup
P

−KL(P ,P∗)︸ ︷︷ ︸
=0

+ log
∑
yT

sup
h

T∏
t=1

h(xt)[yt].

Here, P∗(yT |xT) = suph Ph(yT |xT)∑
yT suph Ph(yT |xT)

, and equality is attained at P = P∗.

Note: The distribution P∗ is not a minimax optimal strategy; achieving this
would require using the relaxation-based approach (c.f. lecture 3)...

24/29

Overview

I Sequential Probability Assignment
- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

I Minimax Regret under Log-loss
- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

I Application of Prediction with Log-loss
- Portfolio optimization
- Converting prediction to investment strategy

25/29

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p̂t ∈ ∆(Y), such that
p̂t [y] determines the portion of our total wealth allocated to asset y .

Let vt ∈ RY be the market vector, where vt [y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

T∏
t=1

∑
y∈Y

vt [y] · p̂t [y]

 .

Goal: Find an investment strategy p̂T that maximizes total wealth.

25/29

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p̂t ∈ ∆(Y), such that
p̂t [y] determines the portion of our total wealth allocated to asset y .

Let vt ∈ RY be the market vector, where vt [y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

T∏
t=1

∑
y∈Y

vt [y] · p̂t [y]

 .

Goal: Find an investment strategy p̂T that maximizes total wealth.

25/29

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p̂t ∈ ∆(Y), such that
p̂t [y] determines the portion of our total wealth allocated to asset y .

Let vt ∈ RY be the market vector, where vt [y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

T∏
t=1

∑
y∈Y

vt [y] · p̂t [y]

 .

Goal: Find an investment strategy p̂T that maximizes total wealth.

25/29

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p̂t ∈ ∆(Y), such that
p̂t [y] determines the portion of our total wealth allocated to asset y .

Let vt ∈ RY be the market vector, where vt [y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

T∏
t=1

∑
y∈Y

vt [y] · p̂t [y]

 .

Goal: Find an investment strategy p̂T that maximizes total wealth.

25/29

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p̂t ∈ ∆(Y), such that
p̂t [y] determines the portion of our total wealth allocated to asset y .

Let vt ∈ RY be the market vector, where vt [y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

T∏
t=1

∑
y∈Y

vt [y] · p̂t [y]

 .

Goal: Find an investment strategy p̂T that maximizes total wealth.

25/29

Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let Y be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p̂t ∈ ∆(Y), such that
p̂t [y] determines the portion of our total wealth allocated to asset y .

Let vt ∈ RY be the market vector, where vt [y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

T∏
t=1

∑
y∈Y

vt [y] · p̂t [y]

 .

Goal: Find an investment strategy p̂T that maximizes total wealth.

26/29

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p̂t (such as past market values).

An investment strategy is a function mapping X → ∆(Y).

Let H ⊂ ∆(Y)X be a hypothesis class of investment strategies.

For any given investment strategy Φ, market vectors vT , and side information
xT , we define its total wealth as

ST (vT , xT ,Φ) =

T∏
t=1

(∑
y

vt [y] · Φ(xt)[y]
)
.

Here, we assume that vt−1 ⊂ xt , i.e., the side information contains all the past
market vectors, so that our investment strategy could rely solely on xT .

26/29

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p̂t (such as past market values).

An investment strategy is a function mapping X → ∆(Y).

Let H ⊂ ∆(Y)X be a hypothesis class of investment strategies.

For any given investment strategy Φ, market vectors vT , and side information
xT , we define its total wealth as

ST (vT , xT ,Φ) =

T∏
t=1

(∑
y

vt [y] · Φ(xt)[y]
)
.

Here, we assume that vt−1 ⊂ xt , i.e., the side information contains all the past
market vectors, so that our investment strategy could rely solely on xT .

26/29

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p̂t (such as past market values).

An investment strategy is a function mapping X → ∆(Y).

Let H ⊂ ∆(Y)X be a hypothesis class of investment strategies.

For any given investment strategy Φ, market vectors vT , and side information
xT , we define its total wealth as

ST (vT , xT ,Φ) =

T∏
t=1

(∑
y

vt [y] · Φ(xt)[y]
)
.

Here, we assume that vt−1 ⊂ xt , i.e., the side information contains all the past
market vectors, so that our investment strategy could rely solely on xT .

26/29

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p̂t (such as past market values).

An investment strategy is a function mapping X → ∆(Y).

Let H ⊂ ∆(Y)X be a hypothesis class of investment strategies.

For any given investment strategy Φ, market vectors vT , and side information
xT , we define its total wealth as

ST (vT , xT ,Φ) =
T∏

t=1

(∑
y

vt [y] · Φ(xt)[y]
)
.

Here, we assume that vt−1 ⊂ xt , i.e., the side information contains all the past
market vectors, so that our investment strategy could rely solely on xT .

26/29

Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p̂t (such as past market values).

An investment strategy is a function mapping X → ∆(Y).

Let H ⊂ ∆(Y)X be a hypothesis class of investment strategies.

For any given investment strategy Φ, market vectors vT , and side information
xT , we define its total wealth as

ST (vT , xT ,Φ) =
T∏

t=1

(∑
y

vt [y] · Φ(xt)[y]
)
.

Here, we assume that vt−1 ⊂ xt , i.e., the side information contains all the past
market vectors, so that our investment strategy could rely solely on xT .

27/29

From Prediction to Investment

Recall that an online predictor is a function Φ : (X × Y)∗ × Y → ∆(Y).

For any online predictor Φ, we can define the following investment strategy:

Ψ(xt) =
∑
y t−1

Φ(xt , y t−1)

∏t−1
i=1 p̂i [yi]

∏t−1
i=1 vi [yi]∑

y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

,

where p̂i := Φ(xi , y i−1) ∈ ∆(Y).

Theorem 5: Let Φ be an online predictor and Ψ be the induced investment
strategy. Then, for any market vectors vT , side information xT , and hypothesis
class H, we have

sup
h∈H

log ST (vT , xT , h)
ST (vT , xT ,Ψ)

≤ sup
yT

sup
h∈H

log
∏T

t=1 h(xt)[yt]∏T
t=1 p̂t [yt]

≤ regT (H,Φ),

where p̂t := Φ(xt , y t−1).

I Any online predictor with low worst-case regret can be converted into an
investment strategy that achieves a low logarithmic wealth ratio.

27/29

From Prediction to Investment

Recall that an online predictor is a function Φ : (X × Y)∗ × Y → ∆(Y).

For any online predictor Φ, we can define the following investment strategy:

Ψ(xt) =
∑
y t−1

Φ(xt , y t−1)

∏t−1
i=1 p̂i [yi]

∏t−1
i=1 vi [yi]∑

y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

,

where p̂i := Φ(xi , y i−1) ∈ ∆(Y).

Theorem 5: Let Φ be an online predictor and Ψ be the induced investment
strategy. Then, for any market vectors vT , side information xT , and hypothesis
class H, we have

sup
h∈H

log ST (vT , xT , h)
ST (vT , xT ,Ψ)

≤ sup
yT

sup
h∈H

log
∏T

t=1 h(xt)[yt]∏T
t=1 p̂t [yt]

≤ regT (H,Φ),

where p̂t := Φ(xt , y t−1).

I Any online predictor with low worst-case regret can be converted into an
investment strategy that achieves a low logarithmic wealth ratio.

27/29

From Prediction to Investment

Recall that an online predictor is a function Φ : (X × Y)∗ × Y → ∆(Y).

For any online predictor Φ, we can define the following investment strategy:

Ψ(xt) =
∑
y t−1

Φ(xt , y t−1)

∏t−1
i=1 p̂i [yi]

∏t−1
i=1 vi [yi]∑

y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

,

where p̂i := Φ(xi , y i−1) ∈ ∆(Y).

Theorem 5: Let Φ be an online predictor and Ψ be the induced investment
strategy. Then, for any market vectors vT , side information xT , and hypothesis
class H, we have

sup
h∈H

log ST (vT , xT , h)
ST (vT , xT ,Ψ)

≤ sup
yT

sup
h∈H

log
∏T

t=1 h(xt)[yt]∏T
t=1 p̂t [yt]

≤ regT (H,Φ),

where p̂t := Φ(xt , y t−1).

I Any online predictor with low worst-case regret can be converted into an
investment strategy that achieves a low logarithmic wealth ratio.

27/29

From Prediction to Investment

Recall that an online predictor is a function Φ : (X × Y)∗ × Y → ∆(Y).

For any online predictor Φ, we can define the following investment strategy:

Ψ(xt) =
∑
y t−1

Φ(xt , y t−1)

∏t−1
i=1 p̂i [yi]

∏t−1
i=1 vi [yi]∑

y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

,

where p̂i := Φ(xi , y i−1) ∈ ∆(Y).

Theorem 5: Let Φ be an online predictor and Ψ be the induced investment
strategy. Then, for any market vectors vT , side information xT , and hypothesis
class H, we have

sup
h∈H

log ST (vT , xT , h)
ST (vT , xT ,Ψ)

≤ sup
yT

sup
h∈H

log
∏T

t=1 h(xt)[yt]∏T
t=1 p̂t [yt]

≤ regT (H,Φ),

where p̂t := Φ(xt , y t−1).

I Any online predictor with low worst-case regret can be converted into an
investment strategy that achieves a low logarithmic wealth ratio.

28/29

Proof of Theorem 5

Observe that

ST (vT , xT , h) =
T∏

t=1

(∑
y

vt [y] · h(xt)[y]
)

=
∑
yT

(T∏
t=1

vt [yt]

)(T∏
t=1

h(xt)[yt]

)
.

Moreover, by the definition of Ψ, we have

ST (vT , xT ,Ψ) =

T∏
t=1

∑
y
∑

y t−1 p̂t [y]vt [y]
∏t−1

i=1 p̂i [yi]
∏t−1

i=1 vi [yi]∑
y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

=

T∏
t=1

∑
y t
∏t

i=1 p̂i [yi]
∏t

i=1 vi [yi]∑
y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

=
∑
yT

T∏
t=1

p̂t [yt]

T∏
t=1

vt [yt].

The theorem now follows from the inequality log
∑

i ai∑
i bi

≤ supi log ai
bi

. (Why?)

28/29

Proof of Theorem 5

Observe that

ST (vT , xT , h) =
T∏

t=1

(∑
y

vt [y] · h(xt)[y]
)

=
∑
yT

(T∏
t=1

vt [yt]

)(T∏
t=1

h(xt)[yt]

)
.

Moreover, by the definition of Ψ, we have

ST (vT , xT ,Ψ) =

T∏
t=1

∑
y
∑

y t−1 p̂t [y]vt [y]
∏t−1

i=1 p̂i [yi]
∏t−1

i=1 vi [yi]∑
y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

=

T∏
t=1

∑
y t
∏t

i=1 p̂i [yi]
∏t

i=1 vi [yi]∑
y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

=
∑
yT

T∏
t=1

p̂t [yt]
T∏

t=1

vt [yt].

The theorem now follows from the inequality log
∑

i ai∑
i bi

≤ supi log ai
bi

. (Why?)

28/29

Proof of Theorem 5

Observe that

ST (vT , xT , h) =
T∏

t=1

(∑
y

vt [y] · h(xt)[y]
)

=
∑
yT

(T∏
t=1

vt [yt]

)(T∏
t=1

h(xt)[yt]

)
.

Moreover, by the definition of Ψ, we have

ST (vT , xT ,Ψ) =

T∏
t=1

∑
y
∑

y t−1 p̂t [y]vt [y]
∏t−1

i=1 p̂i [yi]
∏t−1

i=1 vi [yi]∑
y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

=

T∏
t=1

∑
y t
∏t

i=1 p̂i [yi]
∏t

i=1 vi [yi]∑
y t−1

∏t−1
i=1 p̂ i [yi]

∏t−1
i=1 vi [yi]

=
∑
yT

T∏
t=1

p̂t [yt]
T∏

t=1

vt [yt].

The theorem now follows from the inequality log
∑

i ai∑
i bi

≤ supi log ai
bi

. (Why?)

29/29

Concluding Remarks

I In this lecture, we introduced online learning under logarithmic loss.

I We provided several approaches, such as sequential covering and the
Shtarkov sum, for characterizing the minimax regret under log-loss.

I We also introduced an application of prediction under log-loss in the context
of portfolio optimization.

I There are also many other applications of log-loss across various domains,
such as universal compression, interactive decision-making, and online
distribution estimation, which we unfortunately could not cover.

- We refer interested readers to “Prediction, Learning, and Games” by N.
Cesa-Bianchi and G. Lugosi.

