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Overview

» Sequential Probability Assignment

- Weather forecasting, proper scoring, logarithmic loss
- Bayesian algorithm

» Minimax Regret under Log-loss

- Fixed design, Shtarkov sum
- Truncated Bayesian Algorithm
- Contextual Shtarkov sum

» Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy
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Sequential Probability Assignment

Imagine a weather forecaster predicts the probability of rain tomorrow is 70%.
But, it ends up being sunny the next day.

How should we meaningfully quantify the accuracy of this prediction?
» The probability distribution for rain is different every day.

> \We only observe one outcome (i.e., rain or no rain) for each distribution.

Formally, we aim to find a loss function £ : A({0,1}) x {0,1} — R that satisfies
the following minimal criteria:

1. It should penalize the true distribution minimally, i.e.,

Vp,q € A({0,1}), Eyp[€(p, y)] < Eynpll(q,y)l-

2. Ideally, the function ¢ should have a natural interpretation.
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The Logarithmic Loss

It turns out that a natural choice is the so-called logarithmic loss (log-loss).
Let Y be a label space, and A(Y) be the set of all distributions over Y.

The logarithmic loss for any p € A(Y) and y € Y is defined as:

£%(p,y) = —log ply].

Key properties of log-loss:

> |t relates naturally to Shannon entropy and KL-divergence as: (verify it!)

Vp,q € AWY), Eynpll®®(q,y)] = H(p) + KL(p, q).

» By the non-negativity of KL-divergence, this implies:

Eyns[0%(p, y)] < Eynn[l(q, y)]-

» Equality is achieved when p = q.
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Sequential Probability Assignment as Online Game

We now introduce the main learning paradigm of this lecture.

Let )V be the Iabgl space, V= A()) be the prediction space, X be the instance
space and H C V¥ be the hypothesis class.

Fort=1,---,T
» Nature selects an instance x; € X;
» Leaner predicts distribution p; € V;
» Nature selects true label y; € V;

» Learner suffers loss €'°g(,bt7yf).

Goal of Learner: Find predictor ® that minimizes the worst-case regret:

T

.
regr(H, ) = sup ZZIOg(ﬁt,yt) - I}gﬁZZIOg(h(xt),yt)
=1

XT,}’T t=1
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Regret Bound for Finite Class: the Bayesian Algorithm

Recall from Lecture 2 that for a finite class H, the EWA algorithm ® enjoys the
worst-case regret for bounded convex:

regr (1, ®) < O(y/Tlog [1]).
Unfortunately, this does not apply to log-loss, since £°8(-, y) is not bounded.
Let H = {h1, -, hx}.

The Bayesian Algorithm:
1. Maintain a weight vector w*) € R¥ initially w'® = (1,---,1).
2. At each step t, predict pr := Sk, pe[k] - hi(x:), where

B Wl((t—l)
Vk € [K], pelk] = =K D"
k=1 Wk

3. Let y: be the true label, and update w,(f) = wff_l) < hi(x¢) [ye]-

Observe that hy(x.)[y:] = e IOy e the Bayesian algorithm is simply
the EWA algorithm with a learning rate of n = 1.
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Regret Bound for Bayesian Algorithm

Theorem 1: Let 7 be a finite class. The Bayesian algorithm & enjoys the
worst-case regret under logarithmic loss:

regr (7, @) < log|?H|.

> Observe that the regret bound is tighter than the O(y/Tlog |#|) regret
bound for bounded Lipschitz losses.

» Although our predictions are probabilities, we do not assume any
probabilistic mechanism for generating the data.

» The regret bound holds for any individual sequences x”, y7.
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We again define the potential W = K w,(f) with W© = K.
Observe that

W K (t 1) |
log yy=1y W (t—1) IOgZ W (t— 1) xe)[ye] = log pe[ye| = —€%(pe, y).

Summing from t =1 to T, we have
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Proof of Theorem 1
We again define the potential W) = Zle w,(f) with W© = K.
Observe that

wt K (t 1) |
lOg W(t 1) IOgZ W(t 1) [ t] = 1ogf3t[yt} = —Eog(f)f,yt).

Summing from t =1 to T, we have

W(T) T s
lOg W(O) - Zel g(pt7yt)~
t=1

Note that

log W > suplogw,” = suplogH he(xe)lye] = —mfZK"g(hk Xt)s Ye)-

t=1 t=1

Therefore,
-

Zf (Pes ye) lanE (he(xe),y:) < logK.

t=1
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Minimax Regret under Log-loss

We have demonstrated that the Bayesian algorithm achieves log || regret under
log-loss for a finite class .

Several issues remain:

1. The Bayesian algorithm cannot be applied directly to infinite classes.
2. It is unclear whether the log |H| bound is tight.

Problem 1: What intrinsic complexity measure of H determines the minimax
regret reg(#H) under log-loss?

Problem 2: What algorithm achieves the minimax regret?
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Sequential vs. Fixed Design Regret

For simplicity, we will assume ) is finite in our following discussions.

For any given x”, we define the fixed design minimax regret as:

T T
regh (H | x") = igfsqu |:Z 0% (pe, ye) — hiélleZIOg(h(Xt)v)’t)] .
y =1

t=1
Recall the (sequential) minimax regret is defined as:

T T
regr(H) = inf sup {Z 0% (pr, ye) — hiélvf{Ze"’g(h(xf),yf)} .
X,y t=1 t=1

It is easy to observe that: (Why?)

sup reg?((’r'{ | xT) < regr(H).
xT
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instances. The Shtarkov sum of H conditioning on x” is defined as
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Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Shtarkov Sum: Let # C A())™ be a hypothesis class and x” be any given
instances. The Shtarkov sum of H conditioning on x” is defined as

Sht(H | x") = Z sup H h(xe)[y:]-

heH
yTG)}T t=1

Example 1: Let 7{ be a finite class, we have for any x” that

S sup [ rxo)l]

yTeyT M€=y

> > IThxold

yTeyT heH t=1

> 2 Inxod ¢ ST 1=

heH yTeyT t=1 heH

Sht(H | x")

IA
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Characterizing Fixed-Design Minimax Regret: Shtarkov Sum

Theorem 2: Let % C A(Y)”™ be any hypothesis class, and let x” be any given
instances. Then
regh*(# | x") = log Sht(# | x").

» These two quantities are exactly equal.
» For a finite class #, we immediately have
regh(H | x") = log Sht(# | x") < log |#|.
» The Shtarkov sum forms a lower bound for the (sequential) minimax regret:

reg, (H) > supregh (# | x™) > suplog Sht(H | x").
xT xT



Proof of Theorem 2

We introduce the short-hand notations

Poly™ | x) =] hx)lel, Q™) =[] belyel-

t=1
Observe, by definition of log-loss, that
regh(# | x") = infsup {f log Q(y") + logsup Pu(y" | xT)}
Q T h

= infsup [~1og Q(y") +log P (y" |x)] +1og Y sup Pa(y " | x")

Q yT yT
w longup Pu(y" | x") =logSht(# | x"),
T "
#(uT | 5TY . _5upy Ph(y"x7) i () = P(- | xT
where P*(y' | x") := Seu PG TIRT) and () attains when Q(-) = P*(- | x').
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A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality

QL) =P (- |x"),

w0 T | 7Y o _suph PGy D) AvTY — TTIT 5
where P*(y' | x'):= S, s PO TR and Q(y") =T[1,_1 Pely:].
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Minimax Optimal Predictor: Normalized Maximum Likelihood

A by-product of our previous proof shows that the minimax optimal predictor
satisfies equality
~ _ p* T
QU =P (-[x),
/. T Ty . supy, Pp( T\XT) A~ Ty T =
where P (y ‘ X ) = %. and Q(y ) = Ht:l pt[yt]

To satisfy the equality, we can define (Why?)

= S P
Pty = ZyT*Hl P*(yt—lyT—t+l |XT)

This predictor is known as the Normalized Maximum Likelihood (NML) predictor.
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We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let 7 C A())™ be a hypothesis class. We
say a sequential function class G C A(y)X sequentially a-covers 7 up to step
T if, for any h € 7 and x", there exists g € G such that
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on 7, offset by oL T.



Bounding the (Sequential) Minimax Regret

We have shown that the fixed-design minimax regret is completely characterized
by the Shtarkov sum.

Moreover, the minimax optimal predictor is given by the NML predictor.

What about the sequential minimax regret?

(Distribution) Sequential Cover: Let 7 C A())™ be a hypothesis class. We
say a sequential function class G C A(y)X sequentially a-covers 7 up to step
T if, for any h € 7 and x", there exists g € G such that

VE< T, [lgx") — h(xe)[lo < @,
where [p — gllc = sup,cy |ply] — qly]|.
» Note that a crucial property when we apply the sequential cover for a

Lipschitz loss £ is that: £(y1,y) — £(y2,y) < L|y1 — ol

» Therefore, small regret on the cover G, automatically implies small regret
on 7, offset by oL T.

> This, unfortunately, is not true for log-loss, e.g., £°8(0, y) — £'°§(a, y) = oo.
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From Covering to Dominance: The Smooth Truncation

Lemma 1: Let G be a sequential a-cover of . Then, for any h € H and
x",y", there exists g € G such that

II7, hxo)lvd .
I, g < TP

g+a_ is the smooth truncation of g.

1+alY|

where g(®) =

Proof: Forany h € H and x", y", we choose g € G as the sequential a-cover of
hon x". This implies that, for all t < T and y € Y,

h(xe)ly] < g(x)ly] + o

Therefore, for any t < T, we have

h[)’t] _ h[)’t] a
£ ~ @t/ rap) < e
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Bounding sequential Minimax Regret via Sequential Cover

Theorem 2: Let % C A(Y)”™ be a hypothesis class that admits a sequential
a-cover G, for all &« > 0. Then

regr(H) < inf {a|V|T +log|Gal}.

Example 2: Let J := {0,1}, X := B and
H™ = {hu(x) := [(w,x)| : w € By} C [0,1]7.
Here we interpreter h(x) € [0, 1] as Bernoulli distribution with parameter h(x).

From lecture 3, we know that |log G.| < O(a~2). This leads to the regret
bound (verify it!)

reg, (H'™) < O(T*®).
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Define G\ {ﬁz‘”y‘ ge€ g(,} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that
T
> 0% (pr,ye) — inf Ze“’g ), ye) < log|G\| = log|Ga|.
t=1 gegf\” =

Invoking Lemma 1, we have (verify it!)
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Proof of Theorem 2

Define G\ {ﬁz‘”y‘ ge€ g(,} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that

T

> 0% (pr,ye) — inf Ze“’g ), ye) < log|G\| = log|Ga|.

t=1 gegr(\” =

Invoking Lemma 1, we have (verify it!)
T T

— inf > £%%(h(x:),y:) < — inf (%5 (g(x"), ye) + Tlog(L +alY]). (1)
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Proof of Theorem 2

Define G\° {15:\{31\ ge€ g”} as the smooth truncated class of G,.

Let ® be the predictor running the Bayesian algorithm over G{*.

We have for any x", y" that
T
> 0% (pr,ye) — inf Ze“’g ), ye) < log|G\| = log|Ga|.

t=1 gegr(\” =

Invoking Lemma 1, we have (verify it!)
T T
—inf SO (h(xe),y) < — inf ST 0% (g(x), ) + Tlog(1 + alY)). (1)

h .
SH gecM o

The theorem follows by noting that log(1 + «|Y|) < ||

Note: The use of G\ instead of G.. is crucial for (1) to work.



Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let )V := {0,1}, and assume ) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition
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Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let )V := {0,1}, and assume ) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition

and
p—1

reg () < O(T").

» Sequential a-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!
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Sub-optimality of Covering-Based Bounds

We now mention the following theorem without proof.

Theorem 3: Let )V := {0,1}, and assume ) := [0, 1], interpreted as Bernoulli
distributions. Then for any class £ C ¥ with a sequential a-cover G., of size
log |G.| < O(aP) for all o > 0, we have

regr(H) < O(T7T).

Moreover, for any p > 2, there exists a class that satisfies the above condition
and

reg (H) > Q(T#T).

Furthermore, for any p > 2, there exists a class that satisfies the above condition

and
p—1

reg () < O(T").

» Sequential a-covering characterizes minimax regret for the worst classes,
but not for certain easy classes!

- For the proof, see Wu, Heidari, Grama, Szpankowski in (NeurlPS 2022).
» We need a new complexity measure...
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The Contextual Shtarkov Sum

Very recently, Liu, Attias, and Roy (to appear in NeurlPS 2024) demonstrated
that a variant of the Shtarkov sum with context completely characterizes the
(sequential) minimax regret...

Contextual Shtarkov Sum: Let 7: J/_, V' — X be an X-valued |)|-ary tree
of depth T. The contextual Shtarkov sum w.r.t. 7 is defined as

Sht(H | 7) = Zsuth [ye]-

Theorem 4: Let % C A(Y)™ be any hypothesis class. Then:

reg;(#H) = sup log Sht(H | 7).

» This result can be used to recover Theorem 2 using (smaller) local covers.

» |t remains largely open how the contextual Shtarkov sum can be estimated
for any non-trivial classes beyond covering methods...
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We provide only the high-level idea.

Step One: Using the minimax switching trick (see lecture 3) to obtain the
following Bayesian representation:

T T
sup By, p, -+ sup Eypepr [Z InfEy,.~p, [Zlog(f)h}’t)] - hié%f{ Zglog(h(xt)aﬁ)
t=1

X1,p1 XT,PT —1 Pt

Step Two: Show that (recall from our previous slides):
i, [£% (B, y0)| = Hipo),
Pt

where H(p:) is the Shannon entropy.

Step Three: Show that via Skolemization the expression reduces to:

heH
t=1

.
supsupE,r_p [H(P) — inf €'°g(h(7(yt_1)),yt)],
T P

where T runs over trees 7 : UZ—=1 V' = Xand Pc AQYT).
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Step Four: Denote x; = 7(y*™'), and let Py(y"|x") = H;l h(x¢)[yt]. We have
T
inf 3 %% (h(r(y* 1)), ye) = inf ~log Py(y"[x") = — suplog Pa(y"|xT).
h

heH
t=1

Therefore, we are reduced to
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Step Four: Denote x; = 7(y*™'), and let Py(y"|x") = H;l h(x¢)[yt]. We have
T
inf 3 %% (h(r(y* 1)), ye) = inf ~log Py(y"[x") = — suplog Pa(y"|xT).
h

heH
t=1

Therefore, we are reduced to

supE, 7 _p [H(P) + log sup Ph(yT|xT)} =supE [— log P(yT) + log sup Ph(yT|xT)]
P P

-
= sgpIE [f log P(yT) + log P*(yT|xT)] + logz 51’11p H h(xt)[yt]
VT t=1

.
= sup —KL(P, P") +log Z sup H h(xe)[ye].
P VT t=1
=0

W T1 Ty supp Pa(yTIxT) ey ; _ p*
Here, P*(y'|x") = S, sups PrOTIRT” and equality is attained at P = P™.

Note: The distribution P* is not a minimax optimal strategy; achieving this
would require using the relaxation-based approach (c.f. lecture 3)...



Overview

» Application of Prediction with Log-loss

- Portfolio optimization
- Converting prediction to investment strategy
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Portfolio Optimization

Consider a (simplified) stock market that operates in discrete time steps.

Let )V be a set of assets (stocks) across which we want to allocate our
investment.

At the beginning of each step t, we specify a distribution p: € A()), such that
Pt[y] determines the portion of our total wealth allocated to asset y.

Let v; € RY be the market vector, where v.[y] represents the ratio of the market
value of asset y at closing to its value at opening at step t.

Assuming the initial wealth is 1, the total wealth after T steps is given by:

H Z ]+ Pely]

t=1 \yey

Goal: Find an investment strategy p’ that maximizes total wealth.
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Investment Strategies

Let X be a feature space, representing all the side information we can use when
specifying p: (such as past market values).

An investment strategy is a function mapping X — A()).
Let H C A(y)X be a hypothesis class of investment strategies.

For any given investment strategy ®, market vectors v', and side information
x", we define its total wealth as

srvix", @) =] <Z vely]- ‘P(Xr)[y]) :

t=1 y

Here, we assume that v~ C x;, i.e., the side information contains all the past

market vectors, so that our investment strategy could rely solely on x”.
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e TS A TS vilv)
= P(x", 1
2 26y )zyr_lnl I vl

where p; := ®(x',y'™1) € A(D).

Theorem 5: Let ® be an online predictor and ¥ be the induced investment
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From Prediction to Investment
Recall that an online predictor is a function ® : (X x Y)* x Y — A(Y).

For any online predictor ®, we can define the following investment strategy:

e TS A TS vilv)
= P(x", 1
2 26y )zyr_lnl I vl

where p; := ®(x',y'™1) € A(D).

Theorem 5: Let ® be an online predictor and ¥ be the induced investment
strategy. Then, for any market vectors v, side information x”, and hypothesis
class H, we have

Sr(v7,x", h) T12, h(x)lyd]
sup log ————~ < sup sup log =L~ < reg(H, D),
b8 ST w) S PR Tl S )

where p; := ®(x', y' ).

» Any online predictor with low worst-case regret can be converted into an
investment strategy that achieves a low logarithmic wealth ratio.
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Proof of Theorem 5

Observe that

Sr(vT,x7, ) H(zvt[y]-hm)m)

= <H vt[)/t}> <H h("t)[)’t]) :

Moreover, by the definition of ¥, we have

T D[y ve lp i
SrieT T ) szzyt_l pelylve I ITizy Pilyil ITicy vilyi]

=1 >y T2y pilyil T2, vilvi)
T X, ey Pl T, vilyi]
=1 Doyt Htl pilyil TTiZy vilvi]
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Proof of Theorem 5

Observe that

srvl x"m =] (Z vely]- h(Xr)M)
= Z <H Vt[)’t}) <H h("t)[)’t]) .

Moreover, by the definition of ¥, we have

s ZyZ 1 Pe[y]vely] H, 1 f’l[yi} H:; vilyi]

1 >y [TZ) pilyil T vilyi]
S [Timy Al Ty vilyd]

DIV | 11131‘[%'] [T:2] vily]
U

Pely:] H veye].

The theorem now follows from the inequality log %’ Zi < sup, log %:

(Why?)



Concluding Remarks

P In this lecture, we introduced online learning under logarithmic loss.

» We provided several approaches, such as sequential covering and the
Shtarkov sum, for characterizing the minimax regret under log-loss.

» We also introduced an application of prediction under log-loss in the context
of portfolio optimization.

» There are also many other applications of log-loss across various domains,
such as universal compression, interactive decision-making, and online
distribution estimation, which we unfortunately could not cover.

- We refer interested readers to “Prediction, Learning, and Games” by N.
Cesa-Bianchi and G. Lugosi.



