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Overview

I The Next-Token Prediction Paradigm
- Stochastic modeling of languages
- Conditional distribution estimation

I The Transformer Architecture
- Attention mechanism: Self-attention and multi-head attention
- Positional encoding and why it’s needed
- Layer structure: Encoder vs. decoder

I Generative Pre-trained Transformer (GPT) Models
- Pretraining: Learning from large, diverse datasets
- Fine-tuning: Specializing GPT for specific tasks
- GPT-3 and beyond: Scaling and capabilities
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Shannon’s Stochastic Approximation of English

I “... a discrete source as generating the message, symbol by symbol. It will
choose successive symbols according to certain probabilities depending...”

I Shannon also introduces the ”n-gram” model, where one models the
conditional probability of next word depending on its previous n words.
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What is a Language Model?

Let Y be a set of tokens (which may include symbols, words, subwords...), which
is the basic building block of language models.

A language model P is a probability distribution over Y∗.

It is typically represented by specifying the conditional distribution:

P(yt | y t−1), for y t−1 ∈ Y∗.

The probability assigned to a sentence yT ∈ Y∗ is given by

P(yT ) =

T∏
t=1

P(yt | y t−1).

Goal: Find an algorithm for computing the conditional distribution P(· | y t).
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Learning Language Models

Let H := {hθ : θ ∈ Θ} ⊂ ∆(Y)Y
∗

be a hypothesis class of language models.

We interpret hθ(y t−1) ∈ ∆(Y) as the conditional distribution on the past y t−1.

Let yT ∈ Y∗ be the training data, the Maximum Likelihood Estimation (MLE) is
given by:

θ̂ := arg max
θ∈Θ

T∏
t=1

hθ(y t−1)[yt ]

Equivalently, we can express this as:

θ̂ = arg min
θ∈Θ

T∑
t=1

− log hθ(y t−1)[yt ]

= arg min
θ∈Θ

T∑
t=1

`log(hθ(y t−1), yt).

Here, `log(p, y) refers to the logarithmic loss (see Lecture 4).

The MLE θ̂ is typically computed via gradient based algorithms (e.g., SGD).
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Choosing the Hypothesis Classes

The key to learning a language model is choosing an appropriate architecture for
the hypothesis class H.

Major Architectures Include:
I n-gram Models: Use fixed-length context of n − 1 words.

I Recurrent Neural Networks (RNNs): Process sequences word-by-word,
capturing temporal dependencies.

I Long Short-Term Memory (LSTM): A type of RNN designed to capture
long-range dependencies.

I Transformer Models: Use self-attention to process sequences in parallel
(e.g., GPT, BERT).

This lecture will focus entirely on the transformer-based models.
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The Transformer Architecture

1. The input to the transformer is a sequence
of tokens.

· These tokens are obtained through a
non-learnable tokenization process.

2. The tokens are mapped to vectors via a
learnable embedding layer.

3. These vectors are combined with
non-learnable positional encoding.

4. The processed vectors are passed through
N repeated layers.

· Each layer includes multi-head attention
and a feed-forward MLP.

· Each layer transforms the vectors into
another of the same shape.

5. The output is a probability distribution over
all possible tokens.
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The Vector Embedding

Let Y be the set of all tokens. For example, in GPT-3, we have |Y| ∼ 50, 000.

The embedding layer is represented by a large matrix, M ∈ Rd×|Y|.

Here, d is the embedding dimension (e.g., for GPT-3, d = 12, 288).

For any token y ∈ Y, let ey ∈ RY be the standard basis vector, where:

ey [y ′] =

{
1, if y = y ′

0, otherwise
.

The embedding layer maps each token y ∈ Y to a vector xy (viewed vertically)
as follows:

xy := Mey ∈ Rd .

The matrix M is part of the model’s parameters in a Transformer architecture
and will be updated during training.
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Multi-Head Attention Layer

Let y1, · · · , yt be a set of input tokens, and let x1, · · · , xt ∈ Rd be the
corresponding embedding vectors (after position embedding).

Denote X := [x1, · · · , xt ]
> ∈ Rt×d .

The multi-head attention layer consists of h attention heads, where h divides d.

Each attention head i is associated with three matrices W i
k ,W i

q,W i
v ∈ Rd×d′

,
where d ′ = d/h.

These matrices are then used to transform X into a matrix Xi ∈ Rt×d′
(to be

explained in the next slides).

The outputs matrices are concatenated to form a matrix [X1, · · · ,Xh] ∈ Rt×d .

Then, a linear projection with matrix W O ∈ Rd×d is applied to obtain the final
output:

X ′ := [X1, · · · ,Xh]W O ∈ Rt×d .

Note that X ′ has the same shape as X and will be fed to the next layer.

The matrices {W i
k ,W i

q,W i
v ,W O}i≤h are part of the trainable parameters.
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Multi-Head Attention Layer
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Scaled Dot-Product Attention
The attention head i transform input X ∈ Rt×d into Xi ∈ Rt×d′

as follows:
1. Compute matrices (interpreted as query, key and value):

Qi := XW i
q, Ki := XW i

k , Vi := XW i
v , ∈ Rt×d′

.

2. Compute the scaled attention scores matrix

Si :=
(QiKi

>)√
d ′

∈ Rt×t .

3. Denote sj as the jth row of Si for j ≤ t, which is interpreted as the
attention scores for the jth token. The output is given by

Xi :=

softmax(s1)
· · ·

softmax(st)

Vi ∈ Rt×d′

Here, for any z = (z1, · · · , zt), softmax(z) corresponds to a vector z′ such that

∀j ∈ [t], z ′
j :=

ezj∑t
r=1 ezr

.

Goal: the attention head map a sequence of embeddings into another sequence
of the same length (t) with improved representation incorporating the context.
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of the same length (t) with improved representation incorporating the context.
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Feed-Forward Layer
The feed-forward layer is a two-layer fully connected neural network with ReLU
activation applied position-wise.

Let X = [x1, · · · , xt ]
> ∈ Rt×d be the input to the feed-forward layer.

The first layer computes outputs:

X ′ =

ReLU
(
x>
1 W1 + b>

1

)
...

ReLU
(
x>

t W1 + b>
1

)
 ∈ Rt×dff ,

where W1 ∈ Rd×dff , b1 ∈ Rdff , and ReLU(x) := max{0, x} is applied entry-wise.

Denote X ′ = [x′
1, · · · , x′

t ]
>. The final output is given by:x′>

1 W2 + b>
2

...
x′>

t W2 + b>
2

 ∈ Rt×d ,

where W2 ∈ Rdff×d , b2 ∈ Rd .

The matrices W1,W2 and vectors b1, b2 are trainable parameters.
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Final Output Distribution

The final output layer transforms the final embeddings into a probability
distribution over the token space Y.

There are various methods to implement this transformation.

Here, we describe how GPT models achieve this.

Let X = [x1, · · · , xt ]
> ∈ Rt×d be the final embeddings after passing through all

the internal layers.

GPT models select the embedding at the last position, xt , and compute:

zt = x>
t M ∈ R|Y|,

where M ∈ Rd×|Y| is the initial embedding matrix (weight tying is applied).

The probabilities over Y are obtained using the softmax function:

P(y | context) = exp(zt [y ])∑
y′∈Y exp(zt [y ′])

.
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Positional Embedding

Transformer blocks, such as multi-head attention and feed-forward layers, are
permutation invariant.

This means they cannot capture positional information, which is crucial for
language modeling.

To address this, positional embeddings are introduced.

Let X = [x1, . . . , xt ]
> ∈ Rt×d be the input token embeddings.

Positional embeddings define, for each position i , a vector pi ∈ Rd .

Let P = [p1, p2, . . . , pt ]
> ∈ Rt×d . The resulting combined embeddings are:

X ′ = X + P ∈ Rt×d .

The positional embeddings P can either be learned or predefined, such as with
sinusoidal embeddings, where for 2k, 2k + 1 ∈ [d]:

pi [2k] = sin
(

i
100002k/d

)
, pi [2k + 1] = cos

(
i

100002k/d

)
.
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Layer Normalization

After each multi-head attention or feed-forward layer, an operation named layer
normalization is applied position-wise to stabilize processed embeddings.

Let X = [x1, . . . , xt ]
> ∈ Rt×d be the processed embeddings.

For any j ≤ t, the layer normalization computes:

µj =
1

d

d∑
i=1

xj [i ], σ2
j =

1

d

d∑
i=1

(xj [i ]− µj)
2

Then, the normalized output is:

x′
j = γ �

 xj − µj√
σ2

j + ε

+ β

where γ, β ∈ Rd are learnable parameters, and ε is a small constant.
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Encoder vs. Decoder

There are two types of block stacks in the Transformer architecture: the encoder
and the decoder.

The encoder stack consists of multi-head self-attention layers and feed-forward
layers.

The decoder stack consists of multi-head self-attention, masked multi-head
self-attention, and feed-forward layers.

Let Si =
Qi Ki

>
√

d′ ∈ Rt×t be the attention score matrix. The masked attention
modifies the score matrix to

Si +


0 −∞ −∞ · · ·
0 0 −∞ · · ·
0 0 0 · · ·
...

...
...

. . .


︸ ︷︷ ︸

mask matrix

∈ Rt×t ,

The mask matrix ensures that the attention score at each position attends only
to previous tokens.
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Additional Remarks

I The attention layer is the only mechanism in the Transformer that
incorporates context information between different embedding positions.

I All other blocks are applied position-wise.

I Technically, there are also residual connections that add the input of each
layer to its output to help prevent vanishing gradient issues.

I There are many variants of the Transformer architecture. For example, in
GPT, only the decoder block is used.
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Overview

I The Next-Token Prediction Paradigm
- Stochastic modeling of languages
- Conditional distribution estimation

I The Transformer Architecture
- Vector embedding
- Attention mechanism: Self-attention and multi-head attention
- Positional encoding and why it’s needed

I Generative Pre-trained Transformer (GPT) Models
- Pretraining: Learning from large, diverse datasets
- Fine-tuning: Specializing GPT for specific tasks
- GPT-3 and beyond: Scaling and capabilities
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The Generative Pre-trained Transformer (GPT) Models

The Generative Pre-trained Transformer (GPT) models are Transformer
architectures that utilize only the decoder blocks.

I E.g., GPT-3 Small model has 125 million parameters, consisting of 12
layers, an embedding dimension of 768, a feed-forward dimension (dff) of
3, 072, 12 attention heads, and each head has an output dimension of 64.

The model is first pre-trained on a large amount of data (such as Wikipedia)
using autoregressive training.

The pre-trained model is then fine-tuned for downstream tasks (such as text
classification, translation, and chatbots) using one of two methods:
I Supervised fine-tuning, which retrains the model on a small amount of

well-organized data specific to the task.

I Reinforcement Learning from Human Feedback (RLHF), which uses human
annotations to train a reward model, further employed to fine-tune the
original model.
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Fine-tuning Pipeline of Training GPT models
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Pre-training Process of GPT

Autoregressive Modeling: GPT models the probability of a sequence of tokens
y1, y2, . . . , yT as the product of conditional probabilities:

P(y1, y2, . . . , yT ) =

T∏
t=1

P(yt | y t−1).

Objective: Minimize the negative log-likelihood loss over the training data
D ⊂ Y∗:

L(θ) = − 1

|D|
∑

(y1,y2,...,yT )∈D

T∑
t=1

log Pθ(yt | y t−1)

where θ represents the model parameters.

Training: The model minimizes the loss L(θ) by updating the parameters θ using
backpropagation and gradient descent.
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Supervised Fine-tuning (SFT) Process of GPT

Objective: After pre-training, GPT is fine-tuned on a specific downstream task
by minimizing a task-specific loss function.

For example, for chatbots (like ChatGPT), the objective is:

Lfine-tune(θ) = − 1

|Dfine-tune|
∑

(x,y)∈Dfine-tune

log Pθ(y | x)

where x ∈ Y∗ is the prompt and y ∈ Y∗ is the human-annotated answer.

Here, Dfine-tune is a small dataset with human-crafted answers.

Training: The model minimizes the loss Lfine-tune(θ) by updating the parameters
θ using backpropagation and gradient descent, with θ initialized as the
pre-trained model.
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where x ∈ Y∗ is the prompt and y ∈ Y∗ is the human-annotated answer.

Here, Dfine-tune is a small dataset with human-crafted answers.

Training: The model minimizes the loss Lfine-tune(θ) by updating the parameters
θ using backpropagation and gradient descent, with θ initialized as the
pre-trained model.
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Reinforcement Learning with Human Feedback (RLHF)

Objective: Fine-tune a pretrained language model using human feedback to align
model outputs with desired behaviors.

The process starts by training a reward model, which is initialized from the
pretrained model after supervised fine-tuning, with its final layer replaced by a
linear map that produces a scalar output.

The input to the reward model rθ(x, y) is a prompt-response pair (x, y), and the
output is a scalar that evaluates the quality of the response.

Training the Reward Model: For each prompt x, K responses y1, . . . , yK are
sampled from the pretrained model after SFT. Human labelers rank these
responses, and the reward model is updated using the following loss:

loss(θ) = −E(x,yw ,yl )∼D [logσ (rθ(x, yw )− rθ(x, yl))] ,

where yw is ranked higher than yl , and the pairs are sampled from a dataset D
of human comparisons.

Finally, the reward model is used to fine-tune a policy model using Proximal
Policy Optimization (PPO).
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Proximal Policy Optimization (PPO)
Let πφ be the policy model, which is initially set to πSFT, the pre-trained model
after supervised fine-tuning, and let rθ be the reward model.

The Proximal Policy Optimization (PPO) algorithm maximizes the following
objective function:

obj(φ) = E(x,y)∼Dπφ

[
rθ(x, y)− β log

(
πφ(y | x)
πSFT(y | x)

)]
−γEx∼Dpretrain [log(πφ(x))],

where:
I Dπφ is the dataset of prompts and responses generated by the current

policy model πφ,
I rθ(x, y) is the reward from the reward model,
I β controls the regularization term that penalizes the KL-divergence between

πφ and the supervised fine-tuned policy πSFT, preventing the policy from
deviating too much from πSFT,

I γ controls the entropy regularization term, which encourages exploration by
promoting higher entropy in the policy, preventing it from becoming too
deterministic.

PPO iteratively updates the policy πφ using a gradient-based approach by
sampling batches from Dπφ and Dpretrain.



25/27

Proximal Policy Optimization (PPO)
Let πφ be the policy model, which is initially set to πSFT, the pre-trained model
after supervised fine-tuning, and let rθ be the reward model.

The Proximal Policy Optimization (PPO) algorithm maximizes the following
objective function:

obj(φ) = E(x,y)∼Dπφ

[
rθ(x, y)− β log

(
πφ(y | x)
πSFT(y | x)

)]
−γEx∼Dpretrain [log(πφ(x))],

where:
I Dπφ is the dataset of prompts and responses generated by the current

policy model πφ,
I rθ(x, y) is the reward from the reward model,
I β controls the regularization term that penalizes the KL-divergence between

πφ and the supervised fine-tuned policy πSFT, preventing the policy from
deviating too much from πSFT,

I γ controls the entropy regularization term, which encourages exploration by
promoting higher entropy in the policy, preventing it from becoming too
deterministic.

PPO iteratively updates the policy πφ using a gradient-based approach by
sampling batches from Dπφ and Dpretrain.



25/27

Proximal Policy Optimization (PPO)
Let πφ be the policy model, which is initially set to πSFT, the pre-trained model
after supervised fine-tuning, and let rθ be the reward model.

The Proximal Policy Optimization (PPO) algorithm maximizes the following
objective function:

obj(φ) = E(x,y)∼Dπφ

[
rθ(x, y)− β log

(
πφ(y | x)
πSFT(y | x)

)]
−γEx∼Dpretrain [log(πφ(x))],

where:
I Dπφ is the dataset of prompts and responses generated by the current

policy model πφ,
I rθ(x, y) is the reward from the reward model,
I β controls the regularization term that penalizes the KL-divergence between

πφ and the supervised fine-tuned policy πSFT, preventing the policy from
deviating too much from πSFT,

I γ controls the entropy regularization term, which encourages exploration by
promoting higher entropy in the policy, preventing it from becoming too
deterministic.

PPO iteratively updates the policy πφ using a gradient-based approach by
sampling batches from Dπφ and Dpretrain.



25/27

Proximal Policy Optimization (PPO)
Let πφ be the policy model, which is initially set to πSFT, the pre-trained model
after supervised fine-tuning, and let rθ be the reward model.

The Proximal Policy Optimization (PPO) algorithm maximizes the following
objective function:

obj(φ) = E(x,y)∼Dπφ

[
rθ(x, y)− β log

(
πφ(y | x)
πSFT(y | x)

)]
−γEx∼Dpretrain [log(πφ(x))],

where:
I Dπφ is the dataset of prompts and responses generated by the current

policy model πφ,
I rθ(x, y) is the reward from the reward model,
I β controls the regularization term that penalizes the KL-divergence between

πφ and the supervised fine-tuned policy πSFT, preventing the policy from
deviating too much from πSFT,

I γ controls the entropy regularization term, which encourages exploration by
promoting higher entropy in the policy, preventing it from becoming too
deterministic.

PPO iteratively updates the policy πφ using a gradient-based approach by
sampling batches from Dπφ and Dpretrain.



26/27

The Scaling Law and Beyond

It has been observed that the performance of a large language model (LLM)
scales with its model size, which is hypothesized as the scaling law.

However, it remains an active area of research to understand how the structure
of LLMs, the data, and training processes impact their capabilities, such as
reasoning, generalization, and interpretability, among other tasks.

Future work aims to uncover the fundamental principles governing these
relationships and to identify optimal strategies for enhancing LLM performance
across various domains.

There is also active research focused on understanding the undesired behaviors of
LLMs, such as hallucination, and exploring the impact of alignment to mitigate
these issues.
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Concluding Remark

I In this lecture, we introduced the basic foundations of LLMs, from their
principal objective (next token prediction), to their underlying structure (the
transformer), to the training pipeline, and discussed their scalability and key
challenges.

I There has been significant recent research focused on understanding the
abilities of LLMs from both theoretical and empirical perspectives.

I We hope this lecture has provided readers with the basic knowledge of this
rapidly evolving field.


