
CS 456

Programming Languages
Fall 2024

Week 1
Introduction, Functional Programming, OCaml,Datatypes

Administrivia
2

Instructor: Suresh Jagannathan
Office Hours: Tu,Th, 12pm - 1pm (LWSN 3154J)

Who:

BHEE 236Where:

August 20 - December 5, 2024When:

Discussion Board: Piazza
Homeworks: Brightspace and Gradescope

UTA: Priyam Gupta
gupta751@purdue.edu

https://piazza.com/class/lqva01t0ish656/

Grading
3

Quizzes (5%)
• Mostly weekly autograded multiple-choice via Gradescope

Homeworks (35%)
• Approximately 8 over the course of the semester
• Typically 1.5 weeks to complete
• Involves programming (OCaml) and proving (Dafny)

• In-class
• October 17

Midterm (25%)

Final (35%)
• Cumulative

Textbooks (none required)
4

Software Foundations

 Program Proofs

Types and Programming Languages

 Practical Foundations of Programming Languages

 OCaml from the Very Beginning

http://softwarefoundations.cis.upenn.edu
https://mitpress.mit.edu/9780262546232/program-proofs/
https://www.amazon.com/Types-Programming-Languages-MIT-Press/dp/0262162091
https://www.cs.cmu.edu/~rwh/pfpl.html
https://ocaml-book.com

How
Should be familiar with:
‣ Programming in a high-level language

(Python, Java, Rust, Haskell, OCaml, …)
‣ Basic logic and proofs techniques
 sets, relations, functions, …
‣ Basic data structures and algorithms
Participate!

5

to succeed

in CS 456

What
6

You The Machine

}Describe

Pr
og

ra
m

m
in

g
La

ng
ua

ge

}Implement

The focus in this class

What
7

Functional Programming Language
★ Write interpreters to exercise various PL concepts

related to data abstraction, control-flow, and types
★ Web Page: ocaml.org

Verifier-Aware
Programming Language

★ Write programs along with specifications that are
automatically verified

★ Web Page: dafny.org

http://ocaml.org

Why?
8

★ Develop a more sophisticated appreciation of programs,
their structure, and design
- Judge, distinguish, and relate different language features
- Define and prove formal claims about a program’s (or

programming language’s) meaning
- Develop sound intuitions to better judge language

properties
- Devise expressive, interpretable, and useful ways to specify

what a program should do without having to say how it
does it

★ Develop tools to be better programmers, designers, and
computer scientists

Why Not?
9

★ An introduction to advanced programming
techniques

★ Discussion of machine implementations
- Not motivated from the perspective of a compiler

writer
- Impact of language design decisions on

implementation tractability will be considered
when appropriate

★ Survey of different languages

Foundations:
★ Functional Programming
★ State and Control
★ Types

Program Semantics:
★ Operational Semantics
★ Denotational Semantics

Automated Program Verification
★ Hoare Logic and Axiomatic Semantics
★ Verification-Aware Languages

What
10

Defining a Language
11

★ A “recipe” for defining a language:
1.Syntax:

- What are the valid expressions?
2.Semantics (Dynamic Semantics):

- What is the meaning of valid expressions?
3.Sanity Checks (Static Semantics):

- What expressions have meaningful evaluations?

Defining English
12

1.Syntax: 2.Semantics:

Defining A Programming Language
13

2 SYNTAX OF THE CORE 11

atexp ::= scon special constant
hopilongvid value identifier
{ hexprowi } record
let dec in exp end local declaration
(exp)

exprow ::= lab = exp h , exprowi expression row

exp ::= atexp atomic
exp atexp application (L)
exp1 vid exp2 infixed application
exp : ty typed (L)
exp handle match handle exception
raise exp raise exception
fn match function

match ::= mrule h | matchi
mrule ::= pat => exp

dec ::= val tyvarseq valbind value declaration
type typbind type declaration
datatype datbind datatype declaration
datatype tycon -=- datatype longtycon datatype replication
abstype datbind with dec end abstype declaration
exception exbind exception declaration
local dec1 in dec2 end local declaration
open longstrid1 ··· longstridn open declaration (n � 1)

empty declaration
dec1 h;i dec2 sequential declaration
infix hdi vid1 ··· vidn infix (L) directive
infixr hdi vid1 ··· vidn infix (R) directive
nonfix vid1 ··· vidn nonfix directive

valbind ::= pat = exp hand valbindi
rec valbind

typbind ::= tyvarseq tycon = ty hand typbindi
datbind ::= tyvarseq tycon = conbind hand datbindi
conbind ::= hopivid hof tyi h | conbindi
exbind ::= hopivid hof tyi hand exbindi

hopivid = hopilongvid hand exbindi

Figure 4: Grammar: Expressions, Matches, Declarations and Bindings

1.Syntax

6 DYNAMIC SEMANTICS FOR THE CORE 48

hE ` exprow) ri
E ` { hexprowi }) {}h+ ri in Val

(92)

E ` dec) E 0 E + E 0 ` exp) v

E ` let dec in exp end) v
(93)

E ` exp) v

E ` (exp)) v
(94)

Comments:

(91) As in the static semantics, value identifiers are looked up in the envi-
ronment and the identifier status is not used.

Expression Rows E ` exprow) r/p

E ` exp) v hE ` exprow) ri
E ` lab = exp h , exprowi) {lab 7! v}h+ ri (95)

Comment: We may think of components as being evaluated from left to right,
because of the state and exception conventions.

Expressions E ` exp) v/p

E ` atexp) v

E ` atexp) v
(96)

E ` exp) vid vid 6= ref E ` atexp) v

E ` exp atexp) (vid , v)
(97)

E ` exp) en E ` atexp) v

E ` exp atexp) (en, v)
(98)

s, E ` exp) ref , s0 s0, E ` atexp) v, s00 a /2 Dom(mem of s00)

s, E ` exp atexp) a, s00 + {a 7! v}
(99)

6 DYNAMIC SEMANTICS FOR THE CORE 49

s, E ` exp) := , s0 s0, E ` atexp) {1 7! a, 2 7! v}, s00

s, E ` exp atexp) {} in Val, s00 + {a 7! v} (100)

E ` exp) b E ` atexp) v APPLY(b, v) = v0/p

E ` exp atexp) v0/p
(101)

E ` exp) (match, E 0, VE) E ` atexp) v
E 0 + RecVE, v ` match) v0

E ` exp atexp) v0
(102)

E ` exp) (match, E 0, VE) E ` atexp) v
E 0 + RecVE, v ` match) FAIL

E ` exp atexp) [Match]
(103)

E ` exp) v

E ` exp handle match) v
(104)

E ` exp) [e] E, e ` match) v

E ` exp handle match) v
(105)

E ` exp) [e] E, e ` match) FAIL

E ` exp handle match) [e]
(106)

E ` exp) e

E ` raise exp) [e]
(107)

E ` fn match) (match, E, {}) (108)

Comments:

(99) The side condition ensures that a new address is chosen. There are no
rules concerning disposal of inaccessible addresses.

(97)–(103) Note that none of the rules for function application has a premise
in which the operator evaluates to a constructed value, a record or an
address. This is because we are interested in the evaluation of well-
typed programs only, and in such programs exp will always have a
functional type.

2.Semantics

Syntax
14

 A ::= ℕ
 | A + A
 | A - A
 | A * A

 B ::= true
 | false
 | A = A
 | A ≤ A
 | not B
 | B and B

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions:

Abstract Syntax
15

“1+2*3”
Concrete Syntax +

Abstract Syntax
Tree

1 *
2 3

Lexer
+

Parser

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Programs as Data
16

 A ::=
 | ℕ
 | A + A
 | A * A
 | - A

type aexp =
 Const of int
 | Plus of (aexp * aexp)
 | Times of (aexp * aexp)
 | Neg of aexp

Abstract Syntax Times (Plus (Const 1)
 (Const 2))
 (Neg (Const 0))

(* Can you write down
 (1 + 2) * (- 0)
 as an aexp? *)

Programs as Data
17

type aexp =
 Const of int
 | Plus of (exp * exp)
 | Times of (exp * exp)
 | Neg of exp

★ This implementation strategy is a deep embedding of
the source language
★ ASTs are encoded as data types in the host language
★ Programs are values of this type, and can be manipulated

and examined within the host language

Semantics
18

le
xe

r

pa
rs

er

tokens

+

1 *

2 3

AST

1+2*3

source

What’s the meaning of the expression “1+2*3”?

Semantics
19

+

1 *

2 3

AST

Meaning
7?

Semantics
20

aeval: aexp -> int

let aeval = function
 | Const i -> i
 | Plus (a1,a2) ->(aeval a1) + (aeval a2)
 | Times (a1,a2) -> (aeval a1) * (aeval a2)
 | Neg a1 -> - (aeval a1)

★ One way to assign meaning is through evaluation

Desiderata
21

Growing a Language

Guy L. Steele Jr.

Sun Microsystems Laboratories
1 Network Drive

Burlington, Massachusetts 01803

guy.steele@sun.com

October 1998

[This is the text of a talk I once gave, but with a few bugs fixed here and there, and a
phrase or two changed to make my thoughts more clear. The talk as I first gave it can be
had on tape [12].]

I think you know what a man is. A woman is more or less like a man, but not of the
same sex. (This may seem like a strange thing for me to start with, but soon you will
see why.)

Next, I shall say that a person is a woman or a man (young or old).
To keep things short, when I say “he” I mean “he or she,” and when I say “his” I mean

“his or her.”
A machine is a thing that can do a task with no help, or not much help, from a person.
(As a rule, we can speak of two or more of a thing if we add an “s” or “z” sound to

the end of a word that names it.)

⟨noun⟩ ::= ⟨noun that names one thing⟩ “s”
| ⟨noun that names one thing⟩ “es”

These are names of persons: Alan Turing, Alonzo Church, Charles Kay Ogden, Christo-
pher Alexander, Eric Raymond, Fred Brooks, John Horton Conway, James Gosling, Bill
Joy, and Dick Gabriel.

The word other means “not the same.” The phrase other than means “not the same as.”
A number may be nought, or may be one more than a number. In this way we have a

set of numbers with no bound.

⟨number⟩ ::= 0
| 1 + ⟨number⟩

There are other numbers as well, but I shall not speak more of them yet.
These numbers—nought or one more than a number—can be used to count things. We

can add two numbers if we count up from the first number while we count down from the
number that is not the first till it comes to nought; then the first count is the sum.

4 + 2 = 5 + 1 = 6 + 0 = 6

Four plus two is the same as five plus one, which is the same as six plus nought, which is
six.

We shall take the word many to mean “more than two in number.”

1

Functional Programming

We’ll start our investigation by considering a small functional language
 - These languages tend to have a small core set of features
 - Datatypes, functions, and their application
 - Written in OCaml

22

> let double (n : int) : int = n + n;
val double : int -> int = <fun>

Functions
- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

23

> let double (n : int) : int = n + n;
val double : int -> int = <fun>

> double 1;
- : int = 2

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

Functions

> let rec concat (s : string list) : string =
 match s with
 | [] -> ""
 | s1 :: s2 -> s1 ^ (concat s2);
val concat : string list -> string = <fun>

> concat [“Hello" ;” " ;”World”];
- : string = "Hello World"

24

Functions
- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume value, produce value
- OCaml can automatically infer many type annotations

25

> let rec concat s =
 match s with
 | [] -> ""
 | s1 :: s2 -> s1 ^ (concat s2);
val concat : string list -> string = <fun>

> concat [“Hello" ; " “ ; ”World”];
- : string = "Hello World"

What about:
let rec repeat x n =
match n with
| 0 -> []
| m -> x :: (repeat x (m - 1))

Building Blocks
Given the following ingredients:
- bool: a datatype for booleans

Define a Boolean equality function in terms of
- andb: logical and
- orb: logical or
- negb: logical negation

26

> let eqb =
 let andb b1 b2 = if b1 then b2 else false in
 let orb b1 b2 = if b1 then true else if b2 then true else false in
 let negb b1 = if b1 then false else true in
 fun (b1,b2) -> orb (andb b1 b2) (andb (negb b1) (negb b2));
val eqb : bool * bool -> bool = <fun>

Algebraic Data Types
- Enumerated types are the simplest data types in Coq
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

27

type mybool = True | False;

type weekdays =
 Monday | Tuesday | Wednesday | Thursday | Friday;

Pattern Matching
- Pattern matching lets a program use values of a type
- Patterns are expected to be exhaustive

28

> let negb b =
 match b with
 | True -> False
 | False -> True
val negb : mybool -> mybool = <fun>

Pattern Matching
- Pattern matching lets a program use values of a type
- Patterns are expected to be exhaustive
- Use underscore (_) as wildcards

29

let eqb b1 b2 =
 match b1, b2 with
 | true, true -> true
 | false, false -> true
 | false, true -> false
 | true, _ -> false

Compound ADTs
- Can build new ADTs from existing ones:
 - A color is either black, white, or a primary color
 - Need to apply primary to something of type rgb:

- ADTs are algebraic because they are built from a small set of
operators (sums of product).

30

> type rgb = Red | Green | Blue;

> type color = Black | White | Primary of rgb;

> Primary Red;
- : color = Primary Red

Pattern Matching2

- Patterns on compound types need to mention arguments
 - Can be a variable

31

let monochrome (c : color) : bool :=
 match c with
 | Black -> true
 | White -> true
 | Primary p -> false (* could have also used a wildcard *)

Concept Check
- Define a type for the ‘basic’ (h, a, and p) html tags:

 - A header should include a nat indicating its importance
 - The anchor tag should include a string for its destination
 - The paragraph doesn’t need anything extra

- Define a pretty printer for opening a tag
 (* pp (H 3) = “<h3>” *) *)

32

> type tag = H of int | A of string | P;
> let pp t =
 match t with
 | H i -> "<h" ^ ((string_of_int i) ^ ">")
 | A hr -> "")
 | _ -> “<p>”;

val pp : tag -> string = <fun>

So Far:
33

type rgb = Red | Green | Blue;

type color = Black | White | Primary of rgb;

rgb

color

Natural Numbers
34

type nat = O | S of nat

nat

O

S O

O

S O

S (S O)

S (S (S O))

…

…

…

Functions
The interpretation of these constructors comes from how we use
them to compute:

35

> let pred (n : nat) : nat =
 match n with
 | O -> O
 | S m -> m
val pred : nat -> nat = <fun>

type tickNat = stop | tick of tickNat;;

Use recursion to enumerate the elements of an inductive (algebraic)
datatype

Recursion

let rec iseven (n : nat) : bool =
 match n with
 | O -> true
 | S 0 -> false
 | S (S m) -> iseven m

36

Recursion
Use recursion to enumerate the elements of an inductive (algebraic)
datatype

37

> let rec plus (n,m)=
 match n with
 | O -> m
 | S x -> S (plus x m);
val plus : nat * nat -> nat = <fun>

> plus ((S (S O)), (S (S (S O))));
- : nat = S (S (S (S (S O)))

Note that plus (S (S O), (S (S (S O)))) = S (plus ((S O), (S (S (S O)))))

Tuples, Currying
38

> let rec plus (n,m) =
 match n with
 | O -> m
 | S x -> S (plus(x, m));
val plus : nat * nat -> nat = <fun>

> plus ((S (S O)), (S (S (S O))));
- : nat = S (S (S (S (S O)))

> let n = S (S O) in
 let m = S (S (S O)) in
 plus (n,m);
- : nat = S (S (S (S (S O)))

Use a tuple type (a finite collection of heterogeneous elements) to
mimic multi-argument functions.

Functions abstract values
39

> let rec mapAdd2 (l : int list) =
 match l with
 | [] -> []
 | hd :: tl -> (hd + 2) :: mapAdd2 tl
val mapAdd2 : int list -> int list = <fun>

> let rec mapAdd6 (l : int list) =
 match l with
 | [] -> []
 | hd :: tl -> (hd + 6) :: mapAdd2 tl
val mapAdd2 : int list -> int list = <fun>

> let rec mapAdd2 (n : int, l : int list) =
 match l with
 | [] -> []
 | hd :: tl -> (hd + n) :: mapAdd2 tl
val mapAdd2 : int * int list -> int list = <fun>

Functions abstract computation
40

> let rec mapInc lst = function
 | [] -> []
 | hd :: tl -> (hd + 1) :: (mapInc tl)
val mapInc : int list -> int list

> let rec mapDouble lst = function
 | [] -> []
 | hd :: tl -> (hd * 2) :: (mapDouble tl)
val mapInc : int list -> int list

> let rec map (f, lst) =
 match lst with
 | [] -> []
 | hd :: tl -> (f hd) :: (map (f,tl))
val map: (int -> int) * int list -> int list

> let inc n = n + 1;
val inc : int -> int

> let double n = n * 2;
val double : int -> int

> map (inc,[1;2;3]);
- : int list = (::) (2, [3; 4])

> map (double[1;2;3]);
- : int list = (::) (2, [4; 6])

map is a “higher-order” function

Functions abstract computation
41

> let rec map (f, lst) =
 match lst with
 | [] -> []
 | hd :: tl -> (f hd) :: (map (f,tl))
val map: (int -> int) * int list -> int list

> map ((fun n -> n + 1), [1;2;3])
-: int list = (::) (2, [3; 4])

> map ((fun n -> n * 2), [1;2;3])
- : int list = (::) (2, [4; 6])

> map (inc,[1;2;3]);
- : int list = (::) (2, [3; 4])

> map (double[1;2;3]);
- : int list = (::) (2, [4; 6])

Functions can be “anonymous” i.e., they can be treated like values
(just like values of any other type)

In this example, a function value was supplied as an argument, but
function values can also be returned as a result by a function. When
is that useful?

Currying
42

> let rec map f lst =
 match lst with
 | [] -> []
 | hd :: tl -> (f hd) :: (map (f,tl))
val map: (int -> int) -> int list -> int list

> let mapDouble = map (fun n -> n * 2)
-: int list -> int list

> mapDouble [1;2;3];
-: int list = (::) ([2; [4; 6])

> mapDouble [2;3;4]
-: int list = (::) ([4; [6; 8])

> let plus m n =
 match n with
 | O -> m
 | S x -> S (plus x m);

> let plus2 = plus (S (S O))

> plus2 (S (S (S O)))

