CS 456

Programming Languages

Fall 2024

Week 10
Introduction to Semantics, IMP



Propositions

A proposition is a factual claim.
Have seen a couple of propositions:
equalities: 0+ n=n
implications: P -> Q
universally quantified propositions: forall x, P
A proof is some evidence for the truth of a proposition

A proof system is a formalization of particular kinds of
evidence.



Propositions

Example:

Proposition

® forall n, m: int, n =0 /\m =0 ->n+m =0

Evidence
e Assume n=0and m =0. Substitute O for n and m in
n+ m = 0. By reflexivity of equality, the proposition is
proven.



Propositions

Propositions can be polymorphic and make claims
about objects of arbitrary type, including functions:

Example:
forall A,B: Type, f: A->B,
forall x, y: A, £ x==fy ->x =y



Proofs and Judgements
N

A judgement is a claim of a proof system

The judgement || |—£\_| is read as:
“assuming the propositions in [ are true,A is true”.




Inference Rules
6 |

Proof systems construct evidence of judgements via
inference rules:

CAEB 1| |FLA—SB MEAT
[FA—B - T -B

Inference Rules




Example Proof
S22

—FA2 (B2 Q)= (A= B) »A 20

A—-B—->OCel Ael A-Bel Ael
[FA2B—-2C) [ FHA [FA—2B [ A
[ B —>C [ - B

=A— (B— C),A—>BAFC
A— (B—C,A—>B+-A—-C
A — (B = C)—(A = B) =(A —C)
FA=2> B~ CQ) = (A—B)>A—=Q)



Symbol Pushing

Inference Rules for A




Introduction

Sl Rules for Or?
[LA -C [,B - C
[ Av BHFC

Inference Rules for v




[LAFC [,BFH C

[ Av BHFC

Inference Rules for v







Implication

Inference Rules for —




Less Than

n<mz=3k ntk=m

Definition of <

Inference Rules for <




Eveness

eVo

EvenR 0

eV,
[ mEvenR n

[ —EvenR (2+n)

Inference Rules for EvenR




Syntax

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions:

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



-------------------------------------------------------------------------

C:C
if B then C

else C end
: | while B do C end




Imp Program

...

* Key Feature: State”

. X =5
if B then C Z = X;
[ en E
. | while B do C end



Imp Program
e ).

* Key Feature: Control Flow

| if B then C X =5-Y
else C end o
I while B do C end : else Z:=4



Imp Program

* Key Feature: Control Flow

P Z v
S while (0 < X) do
if B then C X =X-1;

: Ise C end :
Iwhﬁesgdoercl)end Y=Y+/Z




Imp Program

* Key Feature: Control Flow

e Z —v
S while (0 <Y) do
. |if Bthen C : X =X-1;

: Ise C end =
Iwhﬁesgdoercl)end Yi=Y+/Z




Semantics

let rec aeval (a : aexp) (st : var -> int): int =
match a with

ANum n => n

APlus al a2 => (aeval al) + (aeval a2)

AMinus al a2 => (aeval al) - (aeval a2)

AMult al a2 => (aeval al) * (aeval a2)

AId x => st X

Could equivalently have written this definition
as a set of inference rules



Semantics

let rec ceval (¢ : com) (st : var -> 1int) =

match ¢ with

Skip => st

Assn X a => update st x (aeval st a)

Seq cl c2 => let st' = ceval st cl in ceval st' c2

If b cl c2 => if (beval st b) then ceval st cl
else ceval st c2

| While b ¢ => st (* bogus *)

Not so clear what to do here: suppose the while loop does
not terminate. Then, our formulation of the semantics as
an interpreter won'’t be well-defined either



Semantics

23

AS A RELATION

Key Idea: Define evaluation as a Inductive Relation

aevalR: total_map =& A — N — Proposition
* Ternary relation on states, expressions and values

* Read ‘o, a U n’ as ‘a evaluates to n in state o’

* Relation precisely spells out what values program can
evaluate to

* Put another way, rules define an “abstract machine’ for
executing expression



Semantics
2

AS A RELATION

Key Idea: Define evaluation as a Inductive
Relation (V)

Inference Rules for U

o,nin

o,X U o(x) =VAR

0,en+em ¥ Vah+nVm EADD O,Gn*em U Vn *N Vm




Reduction
2/

ENuUM ENuM

0,505 |
¢ESUB — ENUM
0,5-2 U 5-n2 0,3 U 3
———— X EADD

0,5-24+3 U 6



Semantics
cevalR: (Id =& N) = C = (Id — N) — Proposition

Ternary relation on initial states, commands and
final state

Read ‘o, ¢ U 0’ as ‘when run in initial state o, ¢
produces (i.e. evaluates to) final state o’



Operational Semantics
7

Inference Rules for U (commands)

T T—
o,skip U O

o,al v
o,X:=a U[Xx~V]o
EASSN




Operational Semantics
N

Inference Rules for U (commands)

o,b U true 0,c1 U O
o,If b then c1 else c2 U 01

o,b U false 0,C2 U O

o,If b then c1 else c2 U O




Semantics
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Inference Rules for Y (commands
EWHILET

o1,0 U true o01,Cc U 0o oz,whilebdocend U o3

o1,while b do cend U 03

o,b U false
o, whilebdocend U o

Why is this a better formulation than the
definition of ceval?



Imp Program
ol
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Imp Program
o

if (X < 1)
0, thenv =3 U [X2]o

geEeZ:4



Imp Program

X=X 1 U [Yro(Y)+o(Y)+o(V)][X-0]
Yi=V+Z  [Yeo(Y)+o(V)]Xe1]
end  [Zeo(Y)][X2]o



Imp Program
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=2,
=Y,
while (0 <Y) do
O, : Xi=X-1;
 Y=Y+Z




Defining IMP +FLip

1. Syntax 2. Semantics
Cszlp .................................. Ty
: X «= A T —. EASSN
c; C o,x:=a {[x~V]o
if B then C :

else C end :
| while B do C end
| if flip C

o1Cc U 0o
o1,if flip c U o2

—  EFLIPF
O,if flip c U O

EFLIPT




Concept Check

Theorem [IMP+FLIP IS NOT DETERMINISTIC ]S

For some commands ¢, from any starting state 0, c can
evaluate to multiple final states:

30c0O 02.lf 0, C J\/ Ojand O, ¢ J\/ O2and O # Oy,

 Can you write an IMP+Flip program that
evaluates to different final states?

Can you write an IMP+Flip program that
evaluates to an infinite number of final states?@



Defining IMP +Ranp

36|
1. Syntax 2. Semantics
e
. on veN ERAND
C; C —
if B then C O, x := any U [XpV]O

else C end

| while B do C end | o
. IMP+Rand: infinite number of branches
| X := Any :

IMP+Flip: finite number of branches
infinite final states / \‘\\‘\‘A
N NN

AN



Double(Y) {
.................................................................... . skip;
kip § . return Y + Y}

if B then C Double(Y) {
i elseCend 7 = Y + Y;
: | while B do C end : :
: : : Z :
IX=F(A)  — 5 Wbt S

FEF e



:C := skip . - How to model set of
X = A . function calls!?
C;C :
it B then C . - Update the judgement!
: else C end
: | while B do C end At o, cl o
. 1 X = F(A) A F > FD
E . Read as ‘When run in initial state
FD = F(X) {C: return a) . Ol and using the function
................................................................... : dEﬁnItlonS in A’ C Produces (|.e.

evaluates to) final state 02"



un IMP

39
AI—O,a U v EASSN
Ar0O,x:=a U [xmv]o

A(F)= F(y) {c; return az} ECALL

A—-01,a U v Ar[ymv],c U 02 AF02,a2 U Vo

A+o1,x:= F(a) U [x~v2]o



