
Subtyping Week 9

CS 456

Programming Languages
Fall 2024

Week 12
Axiomatic Semantics and Hoare Logic

Homework
Install Dafny:

see www.dafny.org

http://www.dafny.org

Semantics
3

- Operational Semantics
★ Simple abstract machine shows how to evaluate expression

Can Prove:
- Determinism of Evaluation
- Soundness of Program Transformations
- Program Equivalence

Metatheoretic

Properties

- Denotational Semantics
★ Map language construct to mathematical domains (e.g., sets)

to describe what expressions mean

Axiomatic Semantics
4

Axiomatic Semantics
 - Meaning given by proof rules
 - Useful for reasoning about properties of specific programs

- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs

of claims
- Step 3: Verify specific programs

Assertions
5

- Not unusual to see pre- and post-conditions in code
comments:

- Step 1A: Define a language of assertions to capture
these sorts of claims

/*Precondition: 0 <= i <= A.length
 Postcondition: returns A[i]*/

public int get(int i) {
return A[i]

}

Assertions
6

- Step 1A: Define a language of assertions to capture
these claims about states

- Examples:
- The value of the variable X is greater than 4
- The variable Y holds an even number
- The value of X is half of the value of Z

- Formalize claims in some logic with variables
- Proof Assistant (Coq, Isabelle, Agda, …)
- smt-lib (many automated verifiers)
- First-order logic: ∀, ∃, ⋀, →, X = Y

Hoare Triple
7

✍Step 1B: Define a judgement for claims about
programs involving assertions

✍Partial Correctness Triple:

{P} c {Q}

 then that final
state satisfies Q

If we start in
 a

state satisfying P
And c

terminates
in a state,

Hoare Triple
8

C. A. R. Hoare. 1969. An axiomatic basis for computer programming.
Commun. ACM 12, 10 (Oct. 1969), 576–580.

Hoare Triple
9

- Step 1B: Define a judgement for claims about
programs involving assertions

- Partial Correctness Triple:
- {P} c {Q}
- Total Correctness Triple:
- [P] c [Q]
- A triple that makes a true claim is said to be valid

Hoare Triples
10

What should these mean:
{True} c {X = 5}

∀m. {X = m} c {X = m + 5}
[X <= Y] c [Y <= X]

Concept Check
11

Which of these should be valid?
{X = 2} X := X + 1 {X = 3}
{X = 2} X := 5; Y := 3 {X = 5}
{False} skip {True}
[Y = 5] X := Y + 3 [X = 5]
{True} while true do SKIP end {False}
[True] while true do SKIP end [False]
[True] while true do SKIP end [True]

Axiomatic Semantics
12

- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs

of claims
- Step 3: Verify specific programs

Imp Assertions
13

One assertion language for Imp commands is:

X ∈ Id N ∈ ℕ
A ::= N | A + A | A - A | A * A | X

P, Q ::= T | ⊥ | A < A | A = A
 | P ⋀ Q | P ⋁ Q | ¬P

Examples Assertions:
The value of the variable X is greater than 4
The variable Y holds an even number
The value of X is half of the value of Z

Satisfiability
14

★ We define a semantics for this
language to identify when a state
σ satisfies an assertion P: σ ⊧ P

σ, a1 ⇓ v1 σ, a2 ⇓ v2 v1 <N v2
σ ⊧ a1 < a2

σ, a1 ⇓ v1 σ, a2 ⇓ v2 v1 =N v2
σ ⊧ a1 = a2

σ ⊧T

Satisfability
15

We define a semantics for this
language to identify when a state σ
satisfies an assertion P: σ ⊧ P

σ ⊧ P σ ⊧ Q
σ ⊧ P ⋀ Q

σ ⊧ P
σ ⊧ P ⋁ Q

 σ ⊧ Q
σ ⊧ P ⋁ Q

σ ⊭ P
σ ⊧ ¬P

Validity
16

We can now precisely define when
a partial Hoare Triple is valid:

σ ⊧ P
VALIDITY {P} c {Q} ≡

∀σ. σ ⊧ P →
 ∀σˈ. σ, c ⇓ σˈ
→
 σˈ ⊧ Q

 then that final

state satisfies Q

If w
e s

tar
t in

 a

sta
te

sa
tis

fyi
ng

 P

And c
terminates

Proving Validity
17

- That gives us the first part of axiomatic semantics
- Step 1: Define a language of claims

- How to prove that {P} c {Q} is valid?
- Could reason directly about the semantics of c
- Step 2: Define a set of rules (axioms) to build proofs of

claims without reasoning directly about states and
executions

⊢{P} c {Q}

Proof Rules
18

How to prove that {P} c {Q} is valid?

- Define a set of rules (axioms) to build proofs of
claims without reasoning directly about states
and executions

⊢{P} c {Q}

Hoare Skip
19

{P} c {Q} ≡
∀σ. σ ⊧ P → ∀σˈ. σ, c ⇓ σˈ → σˈ ⊧ Q

Use our intuition about what we want to be able to
prove to guide definition of rules

Hoare Skip?
20

⊢{?} skip {Q}

{?} skip {Q} ≡
∀σ. σ ⊧ ? → ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q

Hoare Skip!
21

⊢{Q} skip {Q} HLSKIP

{Q} skip {Q} ≡
∀σ. σ ⊧ Q → ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q

Hoare Assign?
22

⊢{ ?? } X: = a {Q}

{ ?? } X : = a {Q} ≡
∀σ. σ ⊧ ?? →
 ∀σˈ. σ, X : = a ⇓ σˈ → σˈ ⊧ Q

Hoare Assign!
23

⊢{[X≔a]Q} X : = a {Q}
HLASSIGN

{[X≔a]Q} X : = a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
 ∀σˈ. σ, X : = a ⇓ σˈ → σˈ ⊧ Q

Hoare Assignbad
24

⊢{P} X: = a {[X≔a]P}

★ Why not this “forward” rule?

Hoare Assign!
25

⊢{[X≔a]Q} X : = a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
 ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q

Hoare Seq?
26

⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ. σ ⊧ ? →
 ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q

Hoare Seq?
27

⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ? → ∀σ3.
 (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
 σ3 ⊧ Q

Hoare Seq?
28

⊢{ ?1 } c1; c2 {Q}
⊢{?1} c1 {?2} ⊢{?2} c2 {Q}

{ ?1 } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ?1 → ∀σ3.
 (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
 σ3 ⊧ Q

Hoare Seq!
29

⊢{P} c1; c2 {Q} HLSEQ

{ P } c1; c2 {Q} ≡
∀σ. σ ⊧ P →
 ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q

⊢{P} c1 {R} ⊢{R} c2 {Q}

Hoare Seq!
30

⊢{P} c1; c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

Hoare If!
31

⊢{P} if b then c1 else c2 end {Q}

HLIF

⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

Proof Rules
32

- What if Assertions don’t align?

- Have rule for weakening postconditions and
strengthening preconditions

{X=2} X ≔ X + 1 {X = 3}

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q

⊢{X=2} X ≔ X + 1 {X = 3} HLCONSEQ

⊢{X+1=3} X ≔ X + 1 {X = 3}
HLASSIGN

X=2→ X+1 =3 X=3→X=3

Rule Review
33

⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q} HLSEQ⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{Q[X≔a]}X≔a{Q}
HLASSIGN

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q

Hoare While?
34

⊢{?} while b do c end {Q}

⊢{?} c {?}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

Hoare While?
35

⊢{Q} while b do c end {Q }

⊢{Q } c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4}
⊢{X < 4} X := X + 1 {X < 4}

Hoare While?
36

⊢{Q} while b do c end {Q }

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4}

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}

Hoare While?
37

⊢{Q} while b do c end {Q ⋀ ¬b}

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4 ⋀ ¬X < 3 }

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}

Hoare While!
38

⊢{I} while b do c end {I ⋀ ¬b}

⊢{I ⋀ b} c {I}

I is a loop invariant:
-Holds before loop
-Holds after each loop iteration
-Holds when the loop exits

HLWHILE

Loop Invariants
39

Hoare Logic is a structural model-theoretic proof system
- Rules characterize a set of states consistent with the requirements
imposed by the pre- and post-conditions

- Highly mechanical: intermediate states can almost always be
automatically constructed

- One major exception:

⊢{I} while b do c end {I⋀¬b}
HLWHILE

⊢{I ⋀ b} c {I}

The invariant must:
 - be weak enough to be implied by the precondition
 - hold across each iteration
 - be strong enough to imply the postcondition

Rule Review
40

⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q}
HLSEQ⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{I} while b do c end {I⋀¬b} HLWHILE
⊢{I ⋀ b} c {I}

⊢{Q[X≔a]}X≔a{Q}

HLASSIGN

Hoare in Action
41

⊢{ True } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m }

⊢{ m = m } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

- Want to build proof trees:

⊢{ m = m } x := m {x = m} ⊢{x=m} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{x = m ⋀ p=p} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{p=p} z := p {z = p} ⊢{x = m ⋀ z=p} while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m } while x ≠ 0 do z := z - 1; x := x - 1 {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m ⋀ x <> 0 } z := z - 1; x := x - 1{(z - 1) - (x - 1) = p - m}

Proof is compositional:

it follows structure of

program!

Decorated Programs
42

Idea: include assertions in program
 { True } → { m = m }
 X := m;
 { X = m } → { X = m ⋀ p = p }
 Z := p;
 { X = m ⋀ Z = p } → { Z - X = p - m }
 while X ≠ 0 do
 { Z - X = p - m ⋀ X ≠ 0 } → { (Z - 1) - (X - 1) = p - m }
 Z := Z - 1;
{ Z - (X - 1) = p - m }
 X := X - 1
 { Z - X = p - m }
 end;
 { Z - X = p - m ⋀ ¬ (X ≠ 0) } → { Z = p - m }

Decorated Programs
43

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n }
 X := X + Y
{ ?? }
 Y := X - Y
{ ?? }
 X := X - Y
{ X = n ⋀ Y = m }

Decorated Programs
44

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n }
 X := X + Y
{ ?? }
 Y := X - Y
{ X - Y = n ⋀ Y = m }
 X := X - Y
{ X = n ⋀ Y = m }

Decorated Programs
45

➡Idea: include assertions in program
➡If each individual command is correct, so is the

program

{ X = m ⋀ Y = n }
 X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
 Y := X - Y
{ X - Y = n ⋀ Y = m }
 X := X - Y
{ X = n ⋀ Y = m }

Decorated Programs
46

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n} →
{(X + Y) - ((X + Y) - Y) = n ⋀ (X + Y) - Y = m}
 X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
 Y := X - Y
{ X - Y = n ⋀ Y = m }
 X := X - Y
{ X = n ⋀ Y = m }

Example
47

 {{ True }}
 if X <= Y then
 {{ }}
 Z := Y - X
 {{ }}
 else
 {{ }}
 Y := X + Z
 {{ }}
 end
 {{ Y = X + Z }}

Our proof rules provide
a systematic way of
generating intermediate
assertions. The
fully decorated program
constitutes a proof that
the program when executed
in a state that satisfies the
precondition, will produce
a state satisfying the postcondition.

Example
48

 {{ True }}
 if X <= Y then
 {{ }}
 Z := Y - X
 {{ }}
 else
 {{ }}
 Y := X + Z
 {{Y = X + Z}}
 end
 {{ Y = X + Z }}

follows from the postcondition

Example
49

 {{ True }}
 if X <= Y then
 {{ }}
 Z := Y - X
 {{Y = X + Z}}
 else
 {{ }}
 Y := X + Z
 {{ Y = X + Z}}
 end
 {{ Y = X + Z }}

50

 {{ True }}
 if X <= Y then
 {{X <= Y}}
 Z := Y - X
 {{Y = X + Z}}
 else
 {{X > Y}}
 Y := X + Z
 {{Y = X + Z}}
 end
 {{ Y = X + Z }}

Example

- By If Rule
- But, shape of precondition in

assignments does not match
the shape demanded by the
Assgn rule

Example
51

 {{ True }}
 if X <= Y then
 {{X <= Y}} —>
 {{Y = X + (Y - X)}}
 Z := Y - X
 {{Y = X + Z}}
 else
 {{X > Y}} —>
 {{X + Z = X + Z}}
 Y := X + Z
 {{Y = X + Z}}
 end
 {{ Y = X + Z }}

Update precondition using rule of
consequence and Assgn rule

Non-trivial implication

Proof can be constructed automatically, reasoning
backwards from the postcondition

Loop Invariants
52

- Largely straightforward

- Except for loops!

{ X = m }
 while X ≠ 0 do
 X := X - 1;
 end
{ X = 0 }

Loops
53

 {{ True }} —->
 {{ }}
 X := a;
 {{ }}
 Y := b;
 {{ }}
 Z := 0;
 {{ }}
 while X <> 0 && Y <> 0 do
 {{ }}
 X := X - 1;
 {{ }}
 Y := Y - 1;
 {{ }}
 Z := Z + 1;
 {{ }}
 end
 {{ Z = min a b }}

Loops
54

 {{ True }}
 {{ }}
 X := a;
 {{ }}
 Y := b;
 {{ }}
 Z := 0;
 {{ }}
 while X <> 0 && Y <> 0 do
 {{ }}
 X := X - 1;
 {{ }}
 Y := Y - 1;
 {{ }}
 Z := Z + 1;
 {{ }}
 end
 {{ Z = min a b }}

postcondition given in terms
of inputs a and b

loop invariant expresses constraints
on local variables X and Y

candidate invariant:
 Z + min X Y = min a b

Loops
55

 {{ True }}
 {{ min a b = min a b }}
 X := a;
 {{ min X b = min a b }}
 Y := b;
 {{ min X Y = min a b }}
 Z := 0;
 {{ Inv }}
 while X <> 0 && Y <> 0 do
 {{ Z + 1 + min (X - 1) (Y - 1) = min a b }}
 X := X - 1;
 {{ Z + 1 + min X (Y - 1) = min a b }}
 Y := Y - 1;
 {{ Z + 1 + min X Y = min a b }}
 Z := Z + 1;
 {{ Inv }}
 end
 {{ ~(X <> 0 /\ Y <> 0) /\ Inv) }} —>
 {{ Z = min a b }}

Inv == (Z + min X Y = min a b)

Precondition Inference
56

 {{ True }} —>
 {{ min a b = min a b }}
 X := a;
 {{ min X b = min a b }}
 Y := b;
 {{ min X Y = min a b }}
 Z := 0;
 {{ Inv }}
 while X <> 0 && Y <> 0 do
 {{ Inv /\ (X <> 0) /\ Y <> 0) }} ->
 {{ Z + 1 + min (X - 1) (Y - 1) = min a b }}
 X := X - 1;
 {{ Z + 1 + min X (Y - 1) = min a b }}
 Y := Y - 1;
 {{ Z + 1 + min X Y = min a b }}
 Z := Z + 1;
 {{ Inv }}
 end
 {{ ~(X <> 0 /\ Y <> 0) /\ Inv) }} —>
 {{ Z = min a b }}

This style of proof
construction is known
as weakest
precondition inference

Identify a precondition
that satisfies the largest
set of states that still
enable verification of
the postcondition

Can automate this
inference once we
know the loop
invariant

Concept Check
57

 {{ ? }} skip {{ X = 5 }}

X = 5

{{ ? }} X := Y + Z {{ X = 5 }} Y + Z = 5

{{ ? }} X := Y {{ X = Y }} True

{{ ? }}
 if X = 0 then
 Y := Z + 1
 else Y := W + 2
{{ Y = 5 }}

(X = 0 /\ Z = 4) \/ (X <> 0 /\ W = 3)

{{ ? }} X := 5 {{ X = 0 }} False

{{ ? }} while true do
 X := 0
 end
{{ X = 0 }}

True

Loop Invariants
58

- Largely straightforward
- Except for loops!

{ X = m ⋀ Y = n } → { ? }
 while X ≠ 0 do
 { ? ⋀ X ≠ 0 } → { [X≔X-1] [Y≔Y-1] ?}
 Y := Y - 1;
 { [X≔X-1] ? }
 X := X - 1
 { ? }
 end
{ ? ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

Loop Invariants
59

- Largely straightforward
- Except for loops!

{ X = m ⋀ Y = n } → { True }
 while X ≠ 0 do
 { True ⋀ X ≠ 0 } → { [X≔X-1] [Y≔Y-1] True }
 Y := Y - 1;
 { [X≔X-1] True }
 X := X - 1
 { True }
 end
{ True ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

Loop Invariants
60

- Largely straightforward
- Except for loops!

{ X = m ⋀ Y = n } → { True }
 while X ≠ 0 do
 { True ⋀ X ≠ 0 } → { [X≔X-1] [Y≔Y-1] True}
 Y := Y - 1;
 { [X≔X-1] True }
 X := X - 1
 { True }
 end
{ True ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

What fails to hold when
? is True?

Loop Invariants
61

★Largely straightforward
★ Except for loops!

{ X = m ⋀ Y = n } → { Y = n - m }
 while X ≠ 0 do
 {Y = n - m ⋀ X ≠ 0} → {[X≔X-1] [Y≔Y-1] Y = n - m}
 Y := Y - 1;
 { Y = [X≔X-1] n - m }
 X := X - 1
 { Y = n - m }
 end
{ Y = n - m ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

What fails to hold
when

? is Postcondition?

Loop Invariants
62

★ Largely straightforward
★ Except for loops!

{ X = m ⋀ Y = n } → {Y-X = n - m }
 while X ≠ 0 do
 {Y-X = n - m ⋀ X ≠ 0}→{[X≔X-1][Y≔Y-1]Y-X = n - m}
 Y := Y - 1;
 { Y - X = n - m [X≔X-1] }
 X := X - 1
 { Y - X= n - m }
 end
{ Y - X = n - m ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

Success!

Recap
63

Developed a logic for proving that {P} c {Q} is valid
 We defined a set of rules (axioms) to build proofs of
 claims without reasoning directly about states and
 executions

Saw how to verify specific programs

⊢{P} c {Q}

