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Homework
Install Dafny: 

see www.dafny.org

http://www.dafny.org


Semantics
3

- Operational Semantics
★ Simple abstract machine shows how to evaluate expression

Can Prove:
- Determinism of Evaluation
- Soundness of Program Transformations
- Program Equivalence

Metatheoretic

Properties

- Denotational Semantics
★ Map language construct to mathematical domains (e.g., sets) 

to describe what expressions mean



Axiomatic Semantics
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Axiomatic Semantics
    -  Meaning given by proof rules
    -  Useful for reasoning about properties of specific programs

- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs 

of claims 
-  Step 3: Verify specific programs



Assertions
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- Not unusual to see pre- and post-conditions in code 
comments: 

- Step 1A: Define a language of assertions to capture 
these sorts of claims

/*Precondition: 0 <= i <= A.length 
  Postcondition: returns A[i]*/ 

public int get(int i) {
return A[i]

}



Assertions
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- Step 1A: Define a language of assertions to capture 
these claims about states

- Examples: 
- The value of the variable X is greater than 4
- The variable Y holds an even number
- The value of X is half of the value of Z

- Formalize claims in some logic with variables
- Proof Assistant (Coq, Isabelle, Agda, …)
- smt-lib (many automated verifiers)
- First-order logic: ∀, ∃, ⋀, →, X = Y



Hoare Triple
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✍Step 1B: Define a judgement for claims about  
programs involving assertions

✍Partial Correctness Triple:

{P} c {Q}

 then that final
state satisfies Q

If we start in
 a

state satisfying P
And c 

terminates
in a state,



Hoare Triple
8

C. A. R. Hoare. 1969. An axiomatic basis for computer programming. 
Commun. ACM 12, 10 (Oct. 1969), 576–580.



Hoare Triple
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- Step 1B: Define a judgement for claims about  
programs involving assertions

- Partial Correctness Triple:
- {P} c {Q}
- Total Correctness Triple:
- [P] c [Q]
- A triple that makes a true claim is said to be valid



Hoare Triples
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What should these mean:
{True} c {X = 5}

∀m. {X = m} c {X = m + 5}
[X <= Y] c [Y <= X]



Concept Check
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Which of these should be valid?
{X = 2} X := X + 1 {X = 3}
{X = 2} X := 5; Y := 3 {X = 5}
{False} skip {True}
[Y = 5] X := Y + 3 [X = 5]
{True} while true do SKIP end {False}
[True] while true do SKIP end [False]
[True] while true do SKIP end [True]



Axiomatic Semantics
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- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs 

of claims 
- Step 3: Verify specific programs



Imp Assertions
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One assertion language for Imp commands is:

X ∈ Id                      N ∈  ℕ      
A ::= N  | A + A | A - A | A * A | X 

P, Q ::= T   |   ⊥       |   A < A   |   A = A 
             |   P ⋀ Q   |   P ⋁ Q   |   ¬P

Examples Assertions: 
The value of the variable X is greater than 4
The variable Y holds an even number
The value of X is half of the value of Z



Satisfiability
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★ We define a semantics  for this 
language to identify when a state 
σ satisfies an assertion P: σ ⊧ P

σ, a1 ⇓ v1    σ, a2 ⇓ v2       v1 <N v2
σ ⊧ a1 < a2

σ, a1 ⇓ v1    σ, a2 ⇓ v2       v1 =N v2
σ ⊧ a1 = a2

σ ⊧T           



Satisfability
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We define a semantics  for this 
language to identify when a state σ 
satisfies an assertion P: σ ⊧ P

σ ⊧ P        σ ⊧ Q 
σ ⊧ P ⋀ Q 

σ ⊧ P   
σ ⊧ P ⋁ Q 

 σ ⊧ Q 
σ ⊧ P ⋁ Q 

σ ⊭ P   
σ ⊧ ¬P



Validity
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We can now precisely define when 
a partial Hoare Triple is valid: 

σ ⊧ P
VALIDITY {P} c {Q}  ≡ 

∀σ. σ ⊧ P → 
        ∀σˈ. σ, c ⇓ σˈ 
→
                  σˈ ⊧ Q

 then that final

state satisfies Q

If w
e s

tar
t in

 a

sta
te 

sa
tis

fyi
ng

 P

And c 
terminates



Proving Validity
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- That gives us the first part of axiomatic semantics
- Step 1: Define a language of claims

- How to prove that {P} c {Q} is valid? 
- Could reason directly about the semantics of c
- Step 2: Define a set of rules (axioms) to build proofs of 

claims without reasoning directly about states and 
executions

⊢{P} c {Q}



Proof Rules
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How to prove that {P} c {Q} is valid? 

- Define a set of rules (axioms) to build proofs of 
claims without reasoning directly about states 
and executions

⊢{P} c {Q}



Hoare Skip
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{P} c {Q} ≡
∀σ. σ ⊧ P →  ∀σˈ. σ, c ⇓ σˈ → σˈ ⊧ Q

Use our intuition about what we want to be able to 
prove to guide definition of rules



Hoare Skip?
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⊢{?} skip {Q}

{?} skip {Q} ≡
∀σ. σ ⊧ ? →  ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q



Hoare Skip!
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⊢{Q} skip {Q} HLSKIP

{Q} skip {Q} ≡
∀σ. σ ⊧ Q →  ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q



Hoare Assign?
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⊢{  ??  } X:   =  a {Q}

{  ??  } X  :   =   a {Q} ≡
∀σ. σ ⊧   ??   →
   ∀σˈ. σ, X :  =  a ⇓ σˈ → σˈ ⊧ Q



Hoare Assign!
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⊢{[X≔a]Q} X :  =   a {Q}
HLASSIGN

{[X≔a]Q} X : = a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
   ∀σˈ. σ, X : =   a ⇓ σˈ → σˈ ⊧ Q



Hoare Assignbad
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⊢{P} X:  =   a {[X≔a]P}

★ Why not this “forward” rule?



Hoare Assign!
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⊢{[X≔a]Q} X :  =   a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
   ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q



Hoare Seq?
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⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ. σ ⊧ ? →
   ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q



Hoare Seq?
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⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ? → ∀σ3.
    (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
    σ3 ⊧ Q



Hoare Seq?
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⊢{ ?1 } c1; c2 {Q}
⊢{?1} c1 {?2}  ⊢{?2} c2 {Q}

{ ?1 } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ?1 → ∀σ3.
    (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
    σ3 ⊧ Q



Hoare Seq!
29

⊢{P} c1; c2 {Q} HLSEQ

{ P } c1; c2 {Q} ≡
∀σ. σ ⊧ P →
   ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q

⊢{P} c1 {R}  ⊢{R} c2 {Q}



Hoare Seq!
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⊢{P} c1; c2 {Q}
HLSEQ

⊢{P} c1 {R}  ⊢{R} c2 {Q}



Hoare If!
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⊢{P} if b then c1 else c2 end {Q}

HLIF

⊢{P ⋀ b} c1 {Q}  ⊢{P ⋀ ¬b} c2 {Q}



Proof Rules
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- What if Assertions don’t align?

- Have rule for weakening postconditions and 
strengthening preconditions

{X=2} X ≔ X + 1 {X = 3}

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q

⊢{X=2} X ≔ X + 1 {X = 3} HLCONSEQ

⊢{X+1=3} X ≔ X + 1 {X = 3}
HLASSIGN

X=2→ X+1 =3 X=3→X=3



Rule Review
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⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q} HLSEQ⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{Q[X≔a]}X≔a{Q}
HLASSIGN

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q



Hoare While?
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⊢{?} while b do c end {Q}

⊢{?} c {?}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}



Hoare While?
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⊢{Q} while b do c end {Q    }

⊢{Q    } c {Q}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do  X := X + 1 end {X < 4}
⊢{X < 4} X := X + 1 {X < 4}



Hoare While?
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⊢{Q} while b do c end {Q      }

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do  X := X + 1 end {X < 4}

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}



Hoare While?
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⊢{Q} while b do c end {Q ⋀ ¬b}

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do  X := X + 1 end {X < 4 ⋀ ¬X < 3 }

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}



Hoare While!
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⊢{I} while b do c end {I ⋀ ¬b}

⊢{I ⋀ b} c {I}

I is a loop invariant: 
-Holds before loop
-Holds after each loop iteration
-Holds when the loop exits

HLWHILE



Loop Invariants
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Hoare Logic is a structural model-theoretic proof system
- Rules characterize a set of states consistent with the requirements 
imposed by the pre- and post-conditions

- Highly mechanical: intermediate states can almost always be 
automatically constructed

- One major exception:

⊢{I} while b do c end {I⋀¬b}
HLWHILE

⊢{I ⋀ b} c {I}

The invariant must:
    - be weak enough to be implied by the precondition
    - hold across each iteration
    - be strong enough to imply the postcondition



Rule Review
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⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q}
HLSEQ⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{I} while b do c end {I⋀¬b} HLWHILE
⊢{I ⋀ b} c {I}

⊢{Q[X≔a]}X≔a{Q}

HLASSIGN



Hoare in Action
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⊢{ True } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m }

⊢{ m = m } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

- Want to build proof trees:

⊢{ m = m } x := m {x = m} ⊢{x=m} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{x = m ⋀ p=p} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{p=p} z := p {z = p} ⊢{x = m ⋀ z=p} while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m } while x ≠ 0 do z := z - 1; x := x - 1 {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m ⋀ x <> 0 } z := z - 1; x := x - 1{(z - 1) - (x - 1) = p - m}

Proof is compositional: 

it follows structure of 

program!



Decorated Programs
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Idea: include assertions in program
 { True } →  { m = m }
    X := m;
 { X = m } → { X = m ⋀ p = p }
    Z := p;
 { X = m ⋀ Z = p } → { Z - X = p - m }
    while X ≠ 0 do
 { Z - X = p - m ⋀ X ≠ 0 } → { (Z - 1) - (X - 1) = p - m }
      Z := Z - 1;
{ Z - (X - 1) = p - m }
        X := X - 1
 { Z - X = p - m }
    end;
 { Z - X = p - m ⋀ ¬ (X ≠ 0) } →  { Z = p - m }



Decorated Programs
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- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n }
  X := X + Y
{ ?? }
  Y := X - Y
{ ?? }
  X := X - Y
{ X = n ⋀ Y = m }



Decorated Programs
44

- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n }
  X := X + Y
{ ?? }
  Y := X - Y
{ X - Y = n ⋀ Y = m }
  X := X - Y
{ X = n ⋀ Y = m }



Decorated Programs
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➡Idea: include assertions in program
➡If each individual command is correct, so is the 

program

{ X = m ⋀ Y = n }
  X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
  Y := X - Y
{ X - Y = n ⋀ Y = m }
  X := X - Y
{ X = n ⋀ Y = m }



Decorated Programs
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- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n} → 
{(X + Y) - ((X + Y) - Y) = n ⋀ (X + Y) - Y = m}
  X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
  Y := X - Y
{ X - Y = n ⋀ Y = m }
  X := X - Y
{ X = n ⋀ Y = m }



Example
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  {{ True }}
    if X <= Y then
              {{                         }}
      Z := Y - X
              {{                         }}
    else
              {{                         }}
      Y := X + Z
              {{                         }}
    end
  {{ Y = X + Z }}

Our proof rules provide
a systematic way of
generating intermediate
assertions.  The
fully decorated program
constitutes a proof that
the program when executed
in a state that satisfies the
precondition, will produce
a state satisfying the postcondition.



Example
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  {{ True }}
    if X <= Y then
              {{                         }}
      Z := Y - X
              {{                         }}
    else
              {{                         }}
      Y := X + Z
              {{Y = X + Z}}
    end
  {{ Y = X + Z }}

follows from the postcondition



Example
49

  {{ True }}
    if X <= Y then
              {{                         }}
      Z := Y - X
              {{Y = X + Z}}
    else
              {{                         }}
      Y := X + Z
              {{ Y = X + Z}}
    end
  {{ Y = X + Z }}
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  {{ True }}
    if X <= Y then
              {{X <= Y}}
      Z := Y - X
              {{Y = X + Z}}
    else
              {{X > Y}}
      Y := X + Z
              {{Y = X + Z}}
    end
  {{ Y = X + Z }}

Example

- By If Rule
- But, shape of precondition in 

assignments does not match 
the shape demanded by the 
Assgn rule



Example
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  {{ True }}
    if X <= Y then
              {{X <= Y}} —>
              {{Y = X + (Y - X)}}
      Z := Y - X
              {{Y = X + Z}}
    else
              {{X > Y}} —>
              {{X + Z = X + Z}}
      Y := X + Z
              {{Y = X + Z}}
    end
  {{ Y = X + Z }}

Update precondition using rule of 
consequence and Assgn rule

Non-trivial implication

Proof can be constructed automatically, reasoning
backwards from the postcondition



Loop Invariants
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- Largely straightforward

-  Except for loops!

{ X = m }
   while X ≠ 0 do
    X := X - 1;
   end
{ X = 0 }



Loops
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   {{ True }} —-> 
         {{                     }}
      X := a;
         {{                     }}
      Y := b;
         {{                     }}
      Z := 0;
         {{                     }}
      while X <> 0 && Y <> 0 do
         {{                     }} 
       X := X - 1;
         {{                     }}
       Y := Y - 1;
         {{                     }}
       Z := Z + 1;
         {{                     }}
      end
   {{ Z = min a b }}



Loops
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   {{ True }} 
         {{                     }}
      X := a;
         {{                     }}
      Y := b;
         {{                     }}
      Z := 0;
         {{                     }}
      while X <> 0 && Y <> 0 do
         {{                     }} 
       X := X - 1;
         {{                     }}
       Y := Y - 1;
         {{                     }}
       Z := Z + 1;
         {{                     }}
      end
   {{ Z = min a b }}

postcondition given in terms
of inputs a and b

loop invariant expresses constraints 
on local variables X and Y

candidate invariant:
  Z + min X Y = min a b



Loops
55

   {{ True }} 
         {{  min a b = min a b  }}
      X := a;
         {{  min X b = min a b  }}
      Y := b;
         {{  min X Y = min a b  }}
      Z := 0;
         {{  Inv                }}
      while X <> 0 && Y <> 0 do
         {{ Z + 1 + min (X - 1) (Y - 1) = min a b }} 
       X := X - 1;
         {{ Z + 1 + min X (Y - 1) = min a b }}
       Y := Y - 1;
         {{ Z + 1 + min X Y = min a b }}
       Z := Z + 1;
         {{ Inv  }}
      end
   {{ ~(X <> 0 /\ Y <> 0) /\ Inv) }} —>
   {{ Z = min a b }}

Inv == (Z + min X Y = min a b)



Precondition Inference
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   {{ True }} —>
         {{  min a b = min a b  }}
      X := a;
         {{  min X b = min a b  }}
      Y := b;
         {{  min X Y = min a b  }}
      Z := 0;
         {{  Inv                }}
      while X <> 0 && Y <> 0 do
         {{ Inv /\ (X <> 0) /\ Y <> 0) }} ->
         {{ Z + 1 + min (X - 1) (Y - 1) = min a b }} 
       X := X - 1;
         {{ Z + 1 + min X (Y - 1) = min a b }}
       Y := Y - 1;
         {{ Z + 1 + min X Y = min a b }}
       Z := Z + 1;
         {{ Inv  }}
      end
   {{ ~(X <> 0 /\ Y <> 0) /\ Inv) }} —>
   {{ Z = min a b }}

This style of proof 
construction is known 
as weakest 
precondition inference

Identify a precondition 
that satisfies the largest  
set of states that still 
enable verification of 
the postcondition

Can automate this 
inference once we 
know the loop 
invariant



Concept Check
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  {{ ? }}  skip  {{ X = 5 }}

 

X = 5

{{ ? }}  X := Y + Z {{ X = 5 }} Y + Z = 5

{{ ? }}  X := Y  {{ X = Y }} True

{{ ? }}
  if X = 0 then 
       Y := Z + 1 
  else Y := W + 2 
{{ Y = 5 }}

(X = 0 /\ Z = 4) \/ (X <> 0 /\ W = 3)

{{ ? }} X := 5 {{ X = 0 }} False

{{ ? }} while true do 
          X := 0 
        end 
{{ X = 0 }}

True



Loop Invariants
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- Largely straightforward
-  Except for loops!

{ X = m ⋀ Y = n }  →  { ? }
   while X ≠ 0 do
   { ? ⋀ X ≠ 0 }  →  { [X≔X-1] [Y≔Y-1] ?}
      Y := Y - 1;
   { [X≔X-1] ? }
      X := X - 1
   { ? }
   end
{ ? ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop



Loop Invariants
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- Largely straightforward
-  Except for loops!

{ X = m ⋀ Y = n }  →  { True }
   while X ≠ 0 do
   { True ⋀ X ≠ 0 }  →  { [X≔X-1] [Y≔Y-1] True }
      Y := Y - 1;
   { [X≔X-1] True }
      X := X - 1
   { True }
   end
{ True ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop



Loop Invariants
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- Largely straightforward
-  Except for loops!

{ X = m ⋀ Y = n }  →  { True }
   while X ≠ 0 do
   { True ⋀ X ≠ 0 }  →  { [X≔X-1] [Y≔Y-1] True}
      Y := Y - 1;
   { [X≔X-1] True }
      X := X - 1
   { True }
   end
{ True ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop

What fails to hold when
? is True?



Loop Invariants
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★Largely straightforward
★ Except for loops!

{ X = m ⋀ Y = n }  →  { Y = n - m }
   while X ≠ 0 do
   {Y = n - m ⋀ X ≠ 0} → {[X≔X-1] [Y≔Y-1] Y = n - m}
      Y := Y - 1;
   { Y = [X≔X-1] n - m }
      X := X - 1
   { Y = n - m }
   end
{ Y = n - m ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop

What fails to hold 
when

? is Postcondition?



Loop Invariants
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★ Largely straightforward
★  Except for loops!

{ X = m ⋀ Y = n }  →  {Y-X = n - m }
   while X ≠ 0 do
   {Y-X = n - m ⋀ X ≠ 0}→{[X≔X-1][Y≔Y-1]Y-X = n - m}
      Y := Y - 1;
   { Y - X = n - m [X≔X-1] }
      X := X - 1
   { Y - X= n - m }
   end
{ Y - X = n - m ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop

Success!



Recap
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Developed a logic for proving that {P} c {Q} is valid 
          We defined a set of rules (axioms) to build proofs of   
          claims without reasoning directly about states and 
          executions

Saw how to verify specific programs

⊢{P} c {Q}


