CS 456

Programming Languages

Fall 2024

Week 12

Axiomatic Semantics and Hoare Logic

Homework

Install Dafny:
see www.dafny.org

> { Elements: N:

Sh < > (18
b.Length == c.Length 0 <= n <= |Elements|
<n & c[b[i]] ==i } O

(length: , initial:) 0O &
& i:: 0<=1 <N ==> Elements[i] ==
th, _ => initial); default := initial; a, b,
a[i] default } @
:= Elements[i := x]; } (&1

i1

(ks)i <
iy}, U - {y}, x); ¥ ¥}
&& (Repr - : Elements
|Elz 1 { front :
IR ¢ 4 —Ants 1l-
% < >)

h: (=3
_&& (cEEkIoub e

(af..i]) +
0 { |
{ a0, al :=
= ListLibrary
< >)
((q.front,
@) <==> (
0}

< >,
i -Tlo==n}
N);
< > depot:
cO0 + [xX] + cl1; }

O <O K. Rustan M. Leino
illustrated by Kaleb Leino

PROGRAM PROOFS

http://www.dafny.org

Semantics

- Operational Semantics
* Simple abstract machine shows how to evaluate expression

- Denotational Semantics

* Map language construct to mathematical domains (e.g., sets)
to describe what expressions mean

Can Prove:

- Determinism of Evaluation
- Soundness of Program Transformations

- Program Equivalence

Axiomatic Semantics

Axiomatic Semantics

- Meaning given by proof rules
- Useful for reasoning about properties of specific programs

- Step |: Define a language of claims

- Step 2: Define a set of rules (axioms) to build proofs
of claims
- Step 3:Verify specific programs

Assertions
s |

Not unusual to see pre- and post-conditions in code
comments:

/*Precondltlon 0 <= i <= A.length
. Postcondition: returns A[i]*/

publlc int get(int 1) {
return A[1]

- Step | A: Define a language of assertions to capture
these sorts of claims

Assertions

Step | A: Define a language of assertions to capture
these claims about states

Examples:

The value of the variable X is greater than 4
The variable Y holds an even nhumber
The value of X is half of the value of Z

Formalize claims in some logic with variables

Proof Assistant (Coq, Isabelle,Agda, ...)
smt-lib (many automated verifiers)

First-order logic: v, 3, A, >, X =Y

Hoare Triple

“Step |B: Define a judgement for claims about
programs involving assertions

“ Partial Correctness Triple:

terminates
In a state,

Hoare Triple

An Axiomatic Basis for
Computer Programming

C. A. R. HoAre
The Queen’s Unwversity of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES:
proofs of programs, formal language definition, programming language

axiomatic method, theory of programming’

design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

C. A. R. Hoare.
Commun. ACM 12, 10

of axioms it is possible to deduce such simple theorems as:
xr=x+yXO0
y<r>r+yXgqg=0-—-y)+yX A+ q)
The proof of the second of these is:
A5 (r—y)+y X (1+9q)
= —-y)+ GX1+yXg)

A9 =@ —-y)+ +yXq)
A3 =(r—y)+y)+yXqg
A6 =r+y Xq providedy <r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’ which are
manipulated by computers provided that they are con-
fined to monnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are striet, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion 1s taken as the maximum value represented.

1969. An axiomatic basis for computer programming.
(Oct.

1969), 576-580.

Hoare Triple

Step |B: Define a judgement for claims about
programs involving assertions

Partial Correctness Triple:
1P} c{Qj
Total Correctness Triple:

[P] ¢ [Q]

A triple that makes a true claim is said to be valid

Hoare Triples

What should these mean:

{True} ¢ {X = 5}

Vm. {X m} ¢ {X =m + 5}
[X <= Y] c [Y <= X]

Concept Check

Which of these should be valid?
(X =2} X := X + 1 {X = 3}

{X = 2} X :=5; Y := 3 {X =5}
{False} skip {True}
[Y = 5] X :=Y + 3 [X = 5]

{True} while true do SKIP end {False}
‘'True] while true do SKIP end [False]
‘'True] while true do SKIP end [True]

Axiomatic Semantics
o2)

- Step |: Define a language of claims

- Step 2: Define a set of rules (axioms) to build proofs
of claims
- Step 3:Verify specific programs

Imp Assertions

One assertion language for Imp commands is:

X € Id N € N
A ::=N | A+A|A-A]|A*A]| X
P, Q ::= T 1 | A <A
P A O | PV Q

Examples Assertions:

The value of the variable X is greater than 4
The variable Y holds an even nhumber
The value of X is half of the value of Z

Satistiability

* We define a semantics for this
language to identify when a state

O satisfies an assertion P:

o At

g, a1d vy g,a2ldve Vi<yVe
OFai<az

g,atdve 0O,alve Vi=yW
OFai=az

Satistability

We define a semantics for this

language to identify when a state O
satisfies an assertion P:

okrP ok Q
o:EP AQ
orP ok Q

oP v Q orP Vv Q

oF-P

Validity

We can now precisely define whg
a partial Hoare Triple is valid: 48 e |

A terminates

Proving Validity

- That gives us the first part of axiomatic semantics

- Step |: Define a language of claims
- How to prove that {P} c {Q} is valid?

- Could reason directly about the semantics of c

- Step 2: Define a set of rules (axioms) to build proofs of
claims without reasoning directly about states and
executions

Proof Rules

How to prove that {P} ¢ {Q} is valid?

- Define a set of rules (axioms) to build proofs of
claims without reasoning directly about states
and executions

Hoare Skip

Use our intuition about what we want to be able to
prove to guide definition of rules

{P}C{Q} =

vc otP - vo.o,cl O —>0|:Q

Hoare Skip?

{?}sklp{Q}—
Vo.0k? = vo.o,skipll o — o I=Q

—{?} skip {Q}

Hoare Skip!

{Q}sklp{Q}—
vo.0kQ — vo.o,skipllo = o |=Q

HLSKIP

—{Q} skip {Q}

Hoare Assign?

{77 }X:=2a{Q} =
vc ok ?? —
. vo.o,X:=al o —>0|:Q

—{ ?? } X:=a{Q}

Hoare Assign!
23

:{[X -a]Q} X :=a{Q} =
vc ok[X:=a]Q —
. vo.o,X=al o —>G|=Q

—{[X:=a]Q} X:=a {Q}

HLASSIGN

Hoare Assignbad
24

* Why not this “forward” rule?

—{P} X:=a {{X:=a]P}

Hoare Assign!
N

{[X alQ} X.a{Q} =
vc ok[X=a]Q —
. vo.o,Xallo 2o |=Q

—{[X:=a]Q} X:=a {Q}

HLASSIGN

Hoare Seq?

{'7}01 c2{Q} =
vc OE"? —
- vo.o,ci:cll o —>0|=Q

—{ ? } c1;c2{Q)}

Hoare Seq?

{ ?}c1;c2{Q} =
_‘v’01 O1E? — VOs.
 (302.0,c1 02 A 0, c2\l 03) =

—{ ? }c1;c2{Q}

Hoare Seq?

{ ?1 }c1;c2{Q} =
_v01 O1F?1 = VOs.
~ (302.0,c1l o2 A 0,c2 O3) —

—{?1}c1{?2} F{72}C2{Q}
—{ ?1 } c1;c2{Q}

Hoare Seq!

{P}C1 c2{Q} =
vc oEP —
. VvOo.o,ci;cll o —>0|=Q

—{P}c1{R} H{R}c2{Q}
—{P} c1;c2{Q} HLSEQ

Hoare Seq!

—{P}c1{R} H{R}c2{Q}

—{P} c1; c2 {Q}
HLSEQ

Hoare If!
EN e

—{P A b}c1{Q} H{P A =b}c2{Q}
—{P} if b then c1 else c2 end {Q}

HLIF

Proof Rules
EX e

- What if Assertions don’t align?

{(X=2} X = X + 1 {X = 3}

- Have rule for weakening postconditions and
strengthening preconditions

—{Pw}c{Qs} P—=Pw Qs—Q
—{P;c{Q}

HLCONSEQ |

HLASSIGN
F{X+1=3} X =X +1{X =3} X=2— X+1 =3 X=3—X=3

H{X=2} X=X+ 1{X =3} HLCONSEQ

Rule Review
33 |

HLASSIGN HLSKIP
—{Q[X:=a]}X:=a{Q} —{Q} skip {Q}

—{P} c1 {R} —{R} c2 {Q}
—{P} c1;c2 {Q} ALSEQ

—{P A b} c1{Q} —{P A =b} c2 {Q}

—{P} if b then c4 else c2 {Q} HALIF

~{Pw} c{Qs} P-Pw Qs—Q
(P} c{Q}

HLCONSEQ

Hoare While?

—{X <3} while (X<3)do X:=X+1end{X =3}

1?1 C7)
—{?} while b do cend {Q}

Hoare While?

HX <4} X =X+ 1{X<4}
—{X <4} while (X<3)do X:=X+1end{X<4}

—H{X <3} while (X<3)do X:=X+1end{X =3}

—HQ }c{Q}
—{Q} while bdo cend{Q }

Hoare While?

FHIX<4 AX<3} X =X+1{X<4}

—{X <4} while (X<3)do X=X+1end{X<4}
—H{X <3} while (X<3)do X:=X+1end{X =3}

—{Q Ab}c{Q}
—{Q} while bdo cend{Q }

Hoare While?

FHX<4 AX<3}I X =X+1{X<4}
—H{X <4} while (X<3)do X=X+1end{X<4A-X<3}
—H{X <3} while (X<3)do X:=X+1end{X =3}

—{Q A b}c{Q}
—{Q} while b do cend {Q A -b}

Hoare While!

| Is a loop Invariant:
-Holds before loop
-Holds after each loop iteration
-Holds when the loop exits

—{l AbYc{l}

—{I} while b do cend {l A b
S { } HLWHILE

Loop Invariants

Hoare Logic is a structural model-theoretic proof system
- Rules characterize a set of states consistent with the requirements

imposed by the pre- and post-conditions
- Highly mechanical: intermediate states can almost always be

automatically constructed
- One major exception:

—{l A b} c{l}
—{I} while b do c end {IA—Db}

The invariant must:
- be weak enough to be implied by the precondition
- hold across each iteration
- be strong enough to imply the postcondition

HLWHILE

Rule Review
‘4l
HLASSIGN HLSKIP

H{Q[X:=a]}X=a{Q} —{Q} skip {Q}

—{P} c1 {R} —{R}c2{Q} HLSEQ
—{P} c1;c2 {Q}

—{P A b} c1{Q} —H{P A =b} c2 {Q}

—{P} if b then c1 else c2 {Q} ALIF

—{l A b} c{l}
—{I} while b do c end {IA-Db} HLWHILE

Hoare in Action
o]

- Want to build proof trees:

O

®

®
H((z-1)-x-1)=p-mAx<0}z=z-1;x=x-H{z-1)-(x-1)=p-m}
H((z-1)-(x-1)=p-mlwhils r=p-mA (x=0)}

—{p=p}z :=p{z = p}

mpositiond'

Ol Sws structure o
FH{m=m}x:=m{Xx=m} \grog‘,am‘ {z=p-mA (x=0)}

B-m A (Xx=0)}

FHm=m}x:=m;z:=p

H{True } x:=m; z .=®Whilexz0doz:=z-1;x=x-1end{z=p-m}

Decorated Programs
a4

ldea: include assertions in program

{True} > {m=m}

X:=m;
{X=m}—=>{X=mAp=p}
Z=p;
{X=mAZ=p}—2>{Z-X=p-m}
while X #0 do
{Z-X=p-mAXz0}—=>{(Z-1)-(X-1)=p-m}
Z=7-1;
{Z-(X-1)=p-m}
X =X-1
{Z-X=p-m}

Decorated Programs
I 1

- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}
X=X+Y
{77}

Y =X-Y
{77}
X=X-Y
{X=nAY=m}

Decorated Programs
4y

- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}
X=X+Y

{77}

Y =X-Y
{X-Y=nAY=m}
X=X-Y
{X=nAY=m}

Decorated Programs
ey

=ldea: include assertions in program

=|f each individual command is correct, so is the
program

{X=mAY=n}

X=X+Y
{X-(X-Y)=nAX-Y=m}
Y =X-Y
{X-Y=nAY=m}
X=X-Y

{X=nAY=m}

Decorated Programs

3
- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}—
X+Y)-(X+Y)-Y)=nAX+Y)-Y=m)

X=X+Y
{X-(X-Y)=nAX-Y=m}
Y =X-Y
{X-Y=nAY=m}
X=X-Y

{X=nAY=m}

Example
a4

{{igr ;e<i}Y chen Our proof rules provide
0o yy @ systematic way of
7 += ¥ - X generating intermediate
{4 }} assertions. The
else fully decorated program
{{ }} constitutes a proof that
Y := X + Z the program when executed
{{ '} in a state that satisfies the
end precondition, will produce
{{Y=X+ 72 1}}

a state satisfying the postcondition.

Example
2

{{ True }}
if X <= Y then
{{ }}
Zz =Y - X
{{ }}
else
{{ }}
Y := X + Z N
({Y = X + Z}} follows from the postcondition
end
({ Y =X+ 2 }}

Example
o4

{{ True }}
if X <= Y then
{{ }}
2z =Y - X
{{Y = X + Z}}
else
{{ +}
Y := X + Z
{{ Y =X+ 7}}
end
{({ Y =X+ 7 }}

Example
sJ

{{ True }}
if X <= Y then
{{X <= Y}} - By If Rule
Z =Y - X i . .
(Y = X 4 739 ButT shape of precondition in
else assignments does not match
x> ¥i} the shape demanded by the
Y := X + Z
(Y = X + 2}) Assgn rule
end

{{ ¥Y=X+ 72 }}

Example

{{ True }}
if X <= Y then

{{X <= Y}} =
{{Y = X + (Y - X)}}

Z =Y - X .y .
(Y = X + 2}) Update precondition using rule of
else consequence and Assgn rule
{{x > ¥}} —
({X +2Z =X+ 2}}
Y := X + Z
{{Y = X + Z}}

end
{{ Y =X+ 7 }}

Non-trivial implication

Proof can be constructed automatically, reasoning
backwards from the postcondition

Loop Invariants
s2]

- Largely straightforward
- Except for loops!

{X=m}
while X #0 do
X=X-1;
end

{X=0}

Loops
sy .

{{ True }} —>

{1 +}
X = ay

i +}
Y := b;

i +}
z = 0;

{1 +}
while X <> 0 && Y <> 0 do

{ +}
X =X -1,

i +}
Y :=Y - 1;

{1 +}
Z := 27 + 1;

{ +}
end

{{ Z = min a b }}

Loops
sl

{{ True }}

X

Y

2 :

{{
{{
:= b;
{{
= 0;
{{

while X

X

Y

Z

{{
= X
{
=Y
{1
2= Z
{{

end

{{ 2

= min

<> 0 && Y <> 0 do

a

+}
+}
+}
+}
+}
+}
+}
+}

postcondition given in terms
of inputs a and b

loop invariant expresses constraints
on local variables X and Y

candidate invariant:
727 + min X Y = min a b

Loops
sy ...

{{ True }}
{{ min a b = min a b }}
X = ay
{{ min X b = min a b }}
Y := b;
{{ min X Y = min a b }}
Z := 0;
{{ Inv }}
while X <> 0 && Y <> 0 do
{{Z + 1+ min (X - 1) (Y - 1) = min a b }}
X =X - 1;
{{ Z + 1+ min X (Y - 1) = min a b }}
Y : =Y - 1;
{{ Z + 1+ min XY = min a b }}
Z =72 + 1;
{{ Inv }}
end

{{ ~(X<>0/\ Y<>0) /\ Inv) }} —
{{ Z = min a b }}

Inv == (Z + min X Y = min a b)

Precondition Inference

{{ True }t — This style of proof
4 _nnes—mren b construction is known
{{ min X b = min a b }} as Weakest
Y := b;

({ minXY-minab 1} precondition inference

Z := 0;

{{ Inv }} . ..
hile X <> 0 88 Y <> 0 do |dentify a precondition
{{ Inv /N (X <> 0) /N Y <> 0) }} -> that satisfies the largest
{{Z+ 1+ min (X - 1) (Y - 1) = min a b }} .
X —— set of states that still
{{ 2+ 1+min X (Y - 1) = min a b }} enable verification of
Y :=Y - 1; . .
{({Z2+1+min XY =min a b }} the postcondition
Z =7 + 1;
In .
end{{ Vo Can automate this
{{ ~(x <>0/\ Y <>0) /\ Inv) }} — inference once we

{{ Z = min a b }}
know the loop

invariant

Concept Check

szl

{{ ? }} skip {{ X =5 }} X =5

{({ ? }} X:=Y+ Z {{X =5 1}} Y + %2 =5

{{ ? }} X :=Y {{X=Y1}} True

({21 _ .)
if X = 0 then (X =0/\2 =4) \/ (X<>0/\W=3)

Y : =272 + 1

else Y := W + 2

{{ Y =5 }}

{{? }} X :=5 {{ X=0 }} False

{{ ? }} while true do
X =0 True

end

{{ X =20 }}

Loop Invariants
58 |

- Largely straightfc

? needs to

- Except for loc k enough to be implied by
P 1iRg Yc\;%%‘s precondition,

{X=mAaY¥=nj = {7} PRIEIUE enou_ct;_h to imply the
while X = 0 do loop's postcondition | | h
ORIl - e preserved Dy ONe teration of the

e loop
{[X=X-1] ?}
X:=X-1
{?}
end
{?2AX=0}=>{Y=n-m}

Loop Invariants
59 |

- Largely straightfc

? needs to

1 be weak enough 10 be implied by

the loop's precondition,

- EX for loo |
cept 2 be strong enou h to imply the

loop's postcondi ion

CEIUFREI RO - he preserved Dy ONE iteration of the
while X # 0 do 00D
{True AX20} = {[X=X-1][Y:=Y-1] True }
Y=Y-1;
{ [X=X-1] True }
X =X-1
{ True }
end
{True AX=0)} 2 {Y=n-m}

Loop Invariants

60 |
? needs to

nough to be implied by

- Largely strai
raichtife: weak €
4 gh the loop's precondition,

B ST IR dle 2 be strong enough to imply the
loop's postcond| ion

{(X=mAY=n} -
while X £ 0 dno} {Tr” preserved by one iteration of the
{True AX%0} — L 00P
Y=Y - 1;;) { [X=X-1] [Y:=Y-1] True}
{[X:=X-1] True }
X =X-1
e ? is True?

end
{True AX=0} 2{Y=n-m}

What fails 10 hold when

Loop Invariants
61

? needs to

- olied by
k enough to be implie
1i‘t312 Yc\gec})%‘s precondition,

. enou h tO |mp|y the
*Largely straight ROkt

* Except for |00 e R e GRS A iteration of the

loop
{X=mAY=n} 2> {Y¥Y=n-m}
while X # 0 do
{Y=n-mAXz0} 2{X=X-1][Y=Y-1]Y=n-m}
Y=Y-1;
{Y=[X=X-1]n-m}
X=X-1
{Y=n-m}
end

{Y=n-mAX=0} 2{Y=n-m}

Loop Invariants

62
* Largely straightforwart

? needs 10 |
1 be weak enough 10 be implied by
* Except for loops! the loop's precondmo.n, e

trong enough to Imply
Ziggps‘,s po%tcondl%on

{X=mAY=n} = {Y-X= 3.pe preserved by one iter

ation of the

while X £ 0 do

{Y-X=n-m A X=z0}=[X: =n-m
Y=Y-1;

{Y-X=n-m[X=X-1]}
X =X-1

{Y-X=n-m}

end

{Y-X=n-mAX=0} 2{Y=n-m}

Recap

Developed a logic for proving that {P} c {Q} is valid
We defined a set of rules (axioms) to build proofs of
claims without reasoning directly about states and

executions
Saw how to verify specific programs

