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Dafny
- Solver-aided language and verifier 
- Language is statically-typed 
- Imperative (with lots of functional language features) 
- Compiles to C#, Java, Go, Python, …
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Reference manual:

https://dafny.org/dafny/DafnyRef/DafnyRef.html



Dafny
- Applies Hoare reasoning to programs 
- User provides specifications in the form of pre- and 
postconditions, along with other assertions 
- Dafny verifies that the program meets the specification 
‣When successful, Dafny guarantees (total) functional correctness of the 
program
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Correctness:

- Reflects base-level semantic properties (no runtime errors (e.g., 
  divide-by-zero, null pointer dereferences, etc.)
- But, also justifies higher-level application-specific properties (e.g., 
correctness of distributed systems, …)



Types of Program Verification
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Architecture
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Pipeline
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Adapted from slides of Jon Howell and Manos Kapritsos



Specifications
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- Specifications are meant to capture salient behavior of an application, eliding
  issues of efficiency and low-level representation.

          forall k:int :: 0 <= k < a.Length ==> 0 < a[k]

- Specifications in Dafny can be arbitrarily sophisticated.
  
- We can think of Dafny as being two smaller languages rolled into one:

   - An imperative core that has methods, loops, arrays, if statements... and
     other features found in realistic programming languages.  This core can
     be compiled and executed.

   - A pure (functional) specification language that supports functions, sets,
     predicates, algebraic datatypes, etc.  This language is used by the prover
     but is not compiled.



Examples
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method Triple (x: int) returns (r : int) {
  var y := 2 * x;
  r := x + y;
  assert r == 3 * x;
}

method Caller () {
  var t := Triple(9);
  assert t == 27;
}

// assert fails: why?

method TripleSpec (x: int) returns (r : int)
ensures r == 3 * x

{
var y := 2 * x;
r := x + y;

}

method CallerSpec () {
  var t := TripleSpec(9);

assert t == 27; // assert succeeds
}



Examples
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// Valid method
method Index (n: int) returns (i : int)

requires 1 <= n
ensures 0 <= i <= n

{
i := n /2;

}

// Invalid assert - how would you fix this?
method CallIndex() {

var t1 := Index(50);
var t2 := Index(50);
assert t1 == t2;

}



Examples
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method Min (x : int, y : int) returns (m : int)
  ensures m <=x && m <= y
{ 
   m := if x <= y then x else y;
}

The implementation satisfies the spec but does not capture
the intended behavior!

method Min (x : int, y : int) returns (m : int)
  ensures m <=x && m <= y
  ensures m == x || m == y
{ 
   m := if x <= y then x else y;
}



Functions vs. Methods
- Functions in Dafny have no computational effect 
‣Deterministic 
‣Can be used in specifications! 
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function average(a: int, b: int): int {
  (a + b) / 2
}

method Triple (x: int) returns (r: int)
ensures average(r, 3 * x) == 3 * x

{
  if (x < 0) { return -x; } else { return x; }
}

Alternative definition: function average(a: int, b: int): int 
  requires 0 <= a && 0 <= b
{
  (a + b) / 2
}



Functions
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function fib(n: nat): nat
{
   if n == 0 then 0 else
   if n == 1 then 1 else
            fib(n - 1) + fib(n - 2)
}

method Fib (n: nat) returns (x: nat)
ensures x == fib(n);

{
  var i := 0;
  x := 0;
  var y := 1;
  while (i < n) {
    x, y := y, x+y;

 i := i + 1;
}

}

Dafny fails to verify this
program.  Why?



Invariants
- Follows the same principle as Hoare logic
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method ComputeFib (n: nat) returns (y: nat)
ensures y == fib(n);

{
if (n == 0) { return 0; }

  var i := 1;
  var x := 0;
  y := 1;

while (i < n) 
   invariant 0 < i <= n 

      invariant x == fib (i - 1) 
      invariant y == fib (i)

{
      x, y := y, x+y;

   i := i + 1;
}

}



Invariants
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method loopEx (n : nat)
{

var i : int := 0;
while (i < n)

invariant 0 <= i
{ 

i := i + 1;
}
assert i == n;

}

Dafny will not verify this
program.  Why?

Need invariants to be inductive!
  - hold in the initial state
  - hold in every state reachable from the initial state
  - strong enough to imply the postcondition

method loopExCheckFixed (n : nat)
{

var i : int := 0;
while (i < n)

invariant 0 <= i <= n
{ 

i := i + 1;
}
assert i == n;

}



Ghost vs. Compiled
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- Ghost constructs are syntactic forms used only in specifications
- Pre- (requires) and post- (ensures) conditions are ghost constructs
- As are assert and invariant

- Some constructs such as functions exist in both ghost and compiled form
- Can explicitly declare variables, parameters, methods, etc. as ghost; such 

objects are not compiled into executables
★Cannot assign ghost entities to complied ones

method Triple(x : int) returns (r: int) 
  ensures r = 3 * x
{
   var y := 2 * x;
   r := x + y;
   ghost var a, b := DoubleQuadruple(x);
   assert a <= r <= b || b <= r <= a;
}

ghost method DoubleQuadruple (x : int) returns (a: int, b: int)
   ensures a = 2 * x && b = 4 * x
{
   a := 2 * x;
   b := 2 * a;
} 



Assert
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- assert E is a no-op if E holds, otherwise program faults.
- To show postcondition Q holds, i.e., 
        WP(assert E, Q)
  we must prove E && Q
- Backward reasoning

Alternative interpretation:
- assert E evaluates E and if E does not crash, continues
- No proof obligations introduced
- Forward reasoning



Concept Check
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method MultipleReturnsSpec(x: int, y: int) returns (more: int, less: int) 
{
  more := x + y;
  less := x - y;
}

What is a meaningful spec for this method?

method MultipleReturnsSpec(x: int, y: int) returns (more: int, less: int)
  ensures less < x
  ensures x < more 
{
  more := x + y;
  less := x - y;
}



Concept Check
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method Max (a : int, b : int) returns (c : int)
{

if (a < b) {
c := b;

}
else { c := a; }

}

method Max (a : int, b : int) returns (c : int)
ensures (a <= c && b <= c) && (b == c || a == c)

{
if (a < b) {

c := b;
}
else { c := a; }

}

What is a meaningful spec for this method?



Concept Check
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method Abs(x: int) returns (r: int) 
  ensures r >= 0

{
    if (x < 0)
      { return -x; }
    else
      { return x; }
  }

What’s wrong with this 
spec?  How would you 
fix it?

method AbsFixed(x: int) returns (y: int)
  ensures 0 <= x ==> y == x
  ensures x < 0 ==> y == -x
{
  if (x < 0) { return -x; }
     else { return x; }
} method AbsFixedA(x: int) returns (y: int)

ensures 0 <= y && ( y == x || y == -x)
{
  if (x < 0) { return -x; }
     else { return x; }
}



Basic setup
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- Specify correctness conditions as pre/post-conditions that can be 
checked (mostly) automatically using a WP inference procedure

- But, not all properties we wish to verify can be expressed in terms 
of actions on the transition relation defined by axiomatic rules

Need proof techniques that allow us to verify properties over:
1. Inductive datatypes (e.g., lists, trees, …)
2. Semantic objects (e.g., heaps)
3. Imperative data structures (e.g, arrays)

Additionally, Dafny verifies total correctness
- Hoare rules only assert partial correctness properties
- Need additional insight to reason about termination



Decreases clause
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function seqSum (s : seq<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|

{
if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)

}

Dafny complains that it cannot prove the recursive call terminates - 
it is unable to identify a termination metric that signals every 
recursive call gets “smaller”

function seqSum (s : seq<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|

    decreases hi - lo
{

if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)
}

What about using -lo as a decreases clause?



Examples
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function F(x : int) : int {
  if x < 10 then x else F(x - 1)

}

function G(x : int) : int {
if 0 <= x then G(x - 2) else x

}

Are decreases clauses
required?

function H(x : int) : int
 
{

if x < -60 then x else H (x - 1)
}

Are decreases clauses
required here?

decreases x + 60

Why would `decreases x` not work?

function L(x: int) : int
 
{

if x < 100 then L(x + 1) + 10 else x
}

Are decreases clauses
required here?

decreases 100 - x



Well-Founded Relations

A binary relation  is well-founded if it is: 
‣ irreflexive 
‣ transitive 
‣ satisfies a descending chain condition, i.e. there is no infinite sequence of 
values a0, a1, … such that a0  a1  … 

Can establish such a relation for any datatype 
‣ E.g., Booleans (true  false), a less-than ordering relation on integers, or 
a subset relation on a set

⪰

⪰ ⪰

⪰
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function M(x: int, b: bool) : int
 
{
  if b then x else M(x + 25, true)
}

decreases if b then 0 else 1



Lexiographic Tuples
- Component-wise comparison of decreases clauses: 

        4, 12  4, 11 

        4, 6, 0  4, 6, 0, 25, 3 

        2, 5  1

⪰
⪰

⪰
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function Ack(m : nat, n: nat) : nat
  
{
   if m == 0 then
     n + 1
   else if n == 0 then
     Ack(m - 1, 1)
   else Ack(m - 1, Ack(m, n - 1))
}

What decreases
clause is necessary
to allow Dafny to verify 
this program?

decreases m, n


