
Subtyping Week 9

CS 456

Programming Languages
Fall 2024

Week 13
Dafny

Dafny
- Solver-aided language and verifier
- Language is statically-typed
- Imperative (with lots of functional language features)
- Compiles to C#, Java, Go, Python, …

2

Reference manual:

https://dafny.org/dafny/DafnyRef/DafnyRef.html

Dafny
- Applies Hoare reasoning to programs
- User provides specifications in the form of pre- and
postconditions, along with other assertions
- Dafny verifies that the program meets the specification
‣When successful, Dafny guarantees (total) functional correctness of the
program

3

Correctness:

- Reflects base-level semantic properties (no runtime errors (e.g.,
 divide-by-zero, null pointer dereferences, etc.)
- But, also justifies higher-level application-specific properties (e.g.,
correctness of distributed systems, …)

Types of Program Verification
4

functional	
correctness

limited	
checking

automatic		
decision	

procedures

interactive	
proof	assistants

traditional
mechanical program

verification

extended static
checking

Dafny

Adapted from slides of Bryan Parno

Architecture
5

SMT	formulas

Dafny	code

Implementation

Proof

Desired	properties

C#	code Boogie	code

Dafny

Z3

SAT,	UNSAT,	or	
Timeout

Boogie

Dafny

SMT	formulas

Boogie	code

Z3

SAT,	UNSAT,	or	
Timeout

Boogie

Dafny’s	architecture
Adapted from slides of Bryan Parno

Pipeline
6

Adapted from slides of Jon Howell and Manos Kapritsos

Specifications
7

- Specifications are meant to capture salient behavior of an application, eliding
 issues of efficiency and low-level representation.

 forall k:int :: 0 <= k < a.Length ==> 0 < a[k]

- Specifications in Dafny can be arbitrarily sophisticated.

- We can think of Dafny as being two smaller languages rolled into one:

 - An imperative core that has methods, loops, arrays, if statements... and
 other features found in realistic programming languages. This core can
 be compiled and executed.

 - A pure (functional) specification language that supports functions, sets,
 predicates, algebraic datatypes, etc. This language is used by the prover
 but is not compiled.

Examples
8

method Triple (x: int) returns (r : int) {
 var y := 2 * x;
 r := x + y;
 assert r == 3 * x;
}

method Caller () {
 var t := Triple(9);
 assert t == 27;
}

// assert fails: why?

method TripleSpec (x: int) returns (r : int)
ensures r == 3 * x

{
var y := 2 * x;
r := x + y;

}

method CallerSpec () {
 var t := TripleSpec(9);

assert t == 27; // assert succeeds
}

Examples
9

// Valid method
method Index (n: int) returns (i : int)

requires 1 <= n
ensures 0 <= i <= n

{
i := n /2;

}

// Invalid assert - how would you fix this?
method CallIndex() {

var t1 := Index(50);
var t2 := Index(50);
assert t1 == t2;

}

Examples
10

method Min (x : int, y : int) returns (m : int)
 ensures m <=x && m <= y
{
 m := if x <= y then x else y;
}

The implementation satisfies the spec but does not capture
the intended behavior!

method Min (x : int, y : int) returns (m : int)
 ensures m <=x && m <= y
 ensures m == x || m == y
{
 m := if x <= y then x else y;
}

Functions vs. Methods
- Functions in Dafny have no computational effect
‣Deterministic
‣Can be used in specifications!

11

function average(a: int, b: int): int {
 (a + b) / 2
}

method Triple (x: int) returns (r: int)
ensures average(r, 3 * x) == 3 * x

{
 if (x < 0) { return -x; } else { return x; }
}

Alternative definition: function average(a: int, b: int): int
 requires 0 <= a && 0 <= b
{
 (a + b) / 2
}

Functions
12

function fib(n: nat): nat
{
 if n == 0 then 0 else
 if n == 1 then 1 else
 fib(n - 1) + fib(n - 2)
}

method Fib (n: nat) returns (x: nat)
ensures x == fib(n);

{
 var i := 0;
 x := 0;
 var y := 1;
 while (i < n) {
 x, y := y, x+y;

 i := i + 1;
}

}

Dafny fails to verify this
program. Why?

Invariants
- Follows the same principle as Hoare logic

13

method ComputeFib (n: nat) returns (y: nat)
ensures y == fib(n);

{
if (n == 0) { return 0; }

 var i := 1;
 var x := 0;
 y := 1;

while (i < n)
 invariant 0 < i <= n

 invariant x == fib (i - 1)
 invariant y == fib (i)

{
 x, y := y, x+y;

 i := i + 1;
}

}

Invariants
14

method loopEx (n : nat)
{

var i : int := 0;
while (i < n)

invariant 0 <= i
{

i := i + 1;
}
assert i == n;

}

Dafny will not verify this
program. Why?

Need invariants to be inductive!
 - hold in the initial state
 - hold in every state reachable from the initial state
 - strong enough to imply the postcondition

method loopExCheckFixed (n : nat)
{

var i : int := 0;
while (i < n)

invariant 0 <= i <= n
{

i := i + 1;
}
assert i == n;

}

Ghost vs. Compiled
15

- Ghost constructs are syntactic forms used only in specifications
- Pre- (requires) and post- (ensures) conditions are ghost constructs
- As are assert and invariant

- Some constructs such as functions exist in both ghost and compiled form
- Can explicitly declare variables, parameters, methods, etc. as ghost; such

objects are not compiled into executables
★Cannot assign ghost entities to complied ones

method Triple(x : int) returns (r: int)
 ensures r = 3 * x
{
 var y := 2 * x;
 r := x + y;
 ghost var a, b := DoubleQuadruple(x);
 assert a <= r <= b || b <= r <= a;
}

ghost method DoubleQuadruple (x : int) returns (a: int, b: int)
 ensures a = 2 * x && b = 4 * x
{
 a := 2 * x;
 b := 2 * a;
}

Assert
16

- assert E is a no-op if E holds, otherwise program faults.
- To show postcondition Q holds, i.e.,
 WP(assert E, Q)
 we must prove E && Q
- Backward reasoning

Alternative interpretation:
- assert E evaluates E and if E does not crash, continues
- No proof obligations introduced
- Forward reasoning

Concept Check
17

method MultipleReturnsSpec(x: int, y: int) returns (more: int, less: int)
{
 more := x + y;
 less := x - y;
}

What is a meaningful spec for this method?

method MultipleReturnsSpec(x: int, y: int) returns (more: int, less: int)
 ensures less < x
 ensures x < more
{
 more := x + y;
 less := x - y;
}

Concept Check
18

method Max (a : int, b : int) returns (c : int)
{

if (a < b) {
c := b;

}
else { c := a; }

}

method Max (a : int, b : int) returns (c : int)
ensures (a <= c && b <= c) && (b == c || a == c)

{
if (a < b) {

c := b;
}
else { c := a; }

}

What is a meaningful spec for this method?

Concept Check
19

method Abs(x: int) returns (r: int)
 ensures r >= 0

{
 if (x < 0)
 { return -x; }
 else
 { return x; }
 }

What’s wrong with this
spec? How would you
fix it?

method AbsFixed(x: int) returns (y: int)
 ensures 0 <= x ==> y == x
 ensures x < 0 ==> y == -x
{
 if (x < 0) { return -x; }
 else { return x; }
} method AbsFixedA(x: int) returns (y: int)

ensures 0 <= y && (y == x || y == -x)
{
 if (x < 0) { return -x; }
 else { return x; }
}

Basic setup
20

- Specify correctness conditions as pre/post-conditions that can be
checked (mostly) automatically using a WP inference procedure

- But, not all properties we wish to verify can be expressed in terms
of actions on the transition relation defined by axiomatic rules

Need proof techniques that allow us to verify properties over:
1. Inductive datatypes (e.g., lists, trees, …)
2. Semantic objects (e.g., heaps)
3. Imperative data structures (e.g, arrays)

Additionally, Dafny verifies total correctness
- Hoare rules only assert partial correctness properties
- Need additional insight to reason about termination

Decreases clause
21

function seqSum (s : seq<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|

{
if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)

}

Dafny complains that it cannot prove the recursive call terminates -
it is unable to identify a termination metric that signals every
recursive call gets “smaller”

function seqSum (s : seq<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|

 decreases hi - lo
{

if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)
}

What about using -lo as a decreases clause?

Examples
22

function F(x : int) : int {
 if x < 10 then x else F(x - 1)

}

function G(x : int) : int {
if 0 <= x then G(x - 2) else x

}

Are decreases clauses
required?

function H(x : int) : int

{

if x < -60 then x else H (x - 1)
}

Are decreases clauses
required here?

decreases x + 60

Why would `decreases x` not work?

function L(x: int) : int

{

if x < 100 then L(x + 1) + 10 else x
}

Are decreases clauses
required here?

decreases 100 - x

Well-Founded Relations

A binary relation is well-founded if it is:
‣ irreflexive
‣ transitive
‣ satisfies a descending chain condition, i.e. there is no infinite sequence of
values a0, a1, … such that a0 a1 …

Can establish such a relation for any datatype
‣ E.g., Booleans (true false), a less-than ordering relation on integers, or
a subset relation on a set

⪰

⪰ ⪰

⪰

23

function M(x: int, b: bool) : int

{
 if b then x else M(x + 25, true)
}

decreases if b then 0 else 1

Lexiographic Tuples
- Component-wise comparison of decreases clauses:

 4, 12 4, 11

 4, 6, 0 4, 6, 0, 25, 3

 2, 5 1

⪰
⪰

⪰

24

function Ack(m : nat, n: nat) : nat

{
 if m == 0 then
 n + 1
 else if n == 0 then
 Ack(m - 1, 1)
 else Ack(m - 1, Ack(m, n - 1))
}

What decreases
clause is necessary
to allow Dafny to verify
this program?

decreases m, n

