CS 456

Programming Languages

Fall 2024

Week 2
Lambda-Calculus

A Digression ...

- Property-Based Testing
- Test a“property’”’ of a program
- Properties hold for class of inputs
- Don’t need to write tests one-by-one
- Randomly generate testcases to check a property

Examples

Idempotence: Applying a function twice same as applying it once
Equivalence: Optimized function mirrors reference version
Well-formedness:
A tree is a BST
A list is sorted
Relationships Between Functions:
An inserted value is a member of a BST
Deleteing an value from a BST means it is no longer a member
Inverse: One function “undoes” another function

Property-Based Testing

Quickcheck: A library for PBT of OCaml programs

Basic ldea:
- Write a random input generator using Quickcheck provided functions

- Write properties of the program you would like to test

* Quickcheck will generate random inputs from the provided generator
and check that the provided properties hold over those inputs
** When an input fails, Quickcheck will “shrink” it to find a minimal

failing test case

Tests are described by
0 a (delivering random input)

O a (Boolean-valued function)

true

false counterexample
found

Property-Based Testing
_ 4

- Test that list reverse is involutive: List.rev (List.rev |) == | for
any list |.

create a generator

let test =
QCheck.Test.make ~count:1000 ~name:"list rev is involutive"
QCheck.(list small nat)

(fun 1 -> ﬂiQi;fev (List.rev 1) = 1);;

generate random lists of small numbers check the pr operty holds for each
such generated list

QCheck.Test.check exn test;; —

/ Different mechanisms to run tests
QCheck runner.run tests [test];;

Property-Based Testing
5

type tree = Leaf of int | Node of tree * tree

Generates a size and applies it

let leaf x = Leaf x to the generator returned by fix
let node x y = Node (X,VY)

let tree gen = QCheck.Gen.(sized @@ fix
(fun self n -> match n with

| 0 -=> map leaf nat _
| n =-> __ Generate a natural number and
supply it as an argument to leaf

frequency

[1, map leaf nat;
2, map2 node (self (n/2)) (self (n/2))]

v ‘\\\\\\\\\\

Generate two subtrees and supply them as
arguments to node

Defining a Language

A “recipe” for defining a language:
1.Syntax:
- What are the valid expressions?

2.Semantics (Dynamic Semantics):
- What is the meaning of valid expressions!?

3.Sanity Checks (Static Semantics):
- What expressions have meaningful evaluations?

Defining a Programming Language
T2 1

atexp

exprow

erp

match
mrule

dec

valbind

typbind
datbind
conbind

exbind

1.Syntax

scon

(op)longvid

{ (exprow) }

let dec in exp end
Cexp)

lab = exp (, exprow)

atexp

exp atexp

exp, vid exp,

exp : ty

erp handle match
raise exp

fn match

mrule { | match)

pat => exp

val tyvarseq valbind

type typbind

datatype datbind

datatype tycon —=- datatype longtycon
abstype datbind with dec end
exception exbind

local dec; in decy end
open longstrid, --- longstrid,,

decy (;) decy

infix (d) vid; --- vid,
infixr (d) vidy --- vid,
nonfix wvidy --- vid,

pat = exp (and valbind)
rec valbind

tyvarseq tycon = ty (and typbind)
tyvarseq tycon = conbind (and datbind)
(op)vid (of ty) (| conbind)

(op)vid (of ty) (and ezxbind)
(op)vid = (op)longvid (and exbind)

special constant
value identifier
record

local declaration

expression row

atomic
application (L)
infixed application
typed (L)

handle exception
raise exception
function

value declaration
type declaration
datatype declaratic
datatype replicatio:
abstype declaratior
exception declarati
local declaration
open declaration (7
empty declaration
sequential declarat;i
infix (L) directive
infix (R) directive
nonfix directive

Figure 4: Grammar: Expressions, Matches, Declarations and Bindings

2.Semantics

E & atexp = v (96)
E - atexp = v
E+ exp = vid vid # ref E+ atexp = v (97)
E exp atexp = (vid,v)
Elexp = en E atexp = v (98)
E & exp atexp = (en,v)
s,E+ exp = ref ,s s’ E F atexp = v, s” a ¢ Dom(mem of s”)
s, E+ exp atexp = a, s" + {a > v}
(99)
s,E+ewp= :=¢ s, Et aterp = {1 — a, 2~ v},s" (100)
s, E+ exp atexp = {} in Val, s" + {a — v}
Etexp=1»> E+ atexp = v APPLY (b,v) =v'/p (101)
E & exp atexp = v'/p
E + exp = (match, E', VE) E+ atexp = v
E' 4+ RecVE, v F match = v (102)
E + exp atexp = v/
E & exp = (match, E',VE) E+ atexp = v
E' 4+ RecVE, v F match = FAIL (103)
E |- exp atexp = [Match]
EFexp=wv (104)
E F exp handle match = v
E+ exp = [e] E, e F match = v (105)
E + exp handle match = v
EF exp = [e] E, e match = FAIL (106)
E I exp handle match = €]
Elrerp=e (107)
E |- raise ezp = [¢]
(108)

E + £n match = (match, E,{})

Lambda Calculus
8

* Lambda calculus was developed by Alonzo
Church in the 30s

- A core language in which everything is a
function

* Syntax of Lambda terms;
\JaraP®
t 1= X

Lambda
}\X - T abstraction
t €

Lambda Calculus

X € Var éAppWingafunction:é
n €N (Ax.x) 42

Lambda Calculus s

£ oRiT X AX.X
)\X. + ..
‘ £ + e
| D é MXX+X
‘ £ + t ..
<« € Var T — R P

£ o= X AX . X
Ax .t é ..
‘ £ + - oub|efunct|on
| n é - Ax.x + x
: ‘ £ + t ..
e | T e

nEN (A Ay.x) (7\XX)

Lambda Calculus

Conventions

* Application associates to the
. ... Ieft:

s tu= (s t) u

* Group sequences of lambda
t €t abstractions:

AX y. x = Ax. Ay. X

r + t * Bodies of abstraction extend
5 as far to the right as possible:

xEVar AX V. XV X =
n €N Ax. (Ay. ((x y) X))

Variable Scopes

t ::= X
AX.t
t t
n
t + €
X € Var
n € N

1.A variable x is bound when it
occurs in the body t of a lambda
abstraction Ax. t:

2.A variable x is free if it is not
bound by an enclosing lambda
expression:

3.A closed term has no free
variables

Concept Check

What the free and bound variables in these terms!?
- AX.Ay.y X z

- (AX.Ay.y x) (5+2) Ax.x+1

- (Ax.X) (Ax.xy) (Az.(Ay.y) z)

a-Equivalence

Variables are bound to the closest
enclosing lambda:

The name of bound variables is
not important:

Expressions ti1 and t; that differ
only in bound variable names are

called a-equivalent

Concept Check

Which of these terms are a-equivalent?

(AX.X) ((Aw.w) ((Az.(Ay.y) 2)) =a (AX.X) ((AX.X) ((AX.(AX.X) X))
(AX.Ay.y X) (5+2) Ax.x+1 =q (Ag.Ay.y q) (5+2) (Ay.y+1)

(AX.Ay.y X)(5+2)Ax.x+1 =« ((Ag.Ay.y g)(5+2)) (Ax.x+1)

(AX.Ay.y x) (5+2) Ax.x+1 =«(Ax.Ay.y x) 7 Ax.x+1

(AX.Ay.y X 2)=a (Aa.Ab.b c 2z)

(AV.AXx.X v q)=a (AX.Ay.y X 2)

Inference Rules

To describe the meaning of lambda-calculus expressions, we will use
a notation called inference (or reduction) rules.

Informally, a rule of the form:

A17A27°°°7An
t1 — To

reads:
Expression t1 evaluates to (or “reduces” to) t»
if the constraints defined by A4, A5, ..., A, hold

We'll delve into a more formal characterization of what these rules
signify later in the course ...

Semantics

(J o)

LiJ

= ! lue t t t,'
= ti — t1 va 1 2 — T2
‘E t; t, — t1' ty t: t2 — t1 t2

—

S

o value t»

LLJ

e (Ax.t1) t2 — [x=t2]t:

Read [x=t,]t1 as “replace all free
occurrences of x in t;1 with t5”

value (Ax.t)

VALUE
RULES

W

Semantics "

o« Value ti t, — to &
; t; t, — t1 to' t, + t2 — t1 + t2
o

E tl — tl' tl — tll

E t:1 t2 — ti1' to t1 + t2 — t1' + t
—

= lue t

é va 2 n E Z m E Z

(Ax.t1) t2 — [x=t2]t: n+m-—n+7m

value (Ax.t)

VALUE
RULES

Concept Review

ne/Z me/Z
N+M — N+7zM nN"Mm — nN*zm
EADDCONST EMULCONST
en — eo en — eo
en+em — €0+ €em EADDL en em — eo em EMULL
em — €o em — €o

en+m — en+ €o EADDR en*em — en*eo EMULR

Substitution

Need to ensure that we don’t inadvertently bind free variables!

 X=S X = S

X=s]y =y 1f xzy
x=s]Ax.t = Ax.t

'x=s]Ay.t = Ay.[xX=s]t where x#y
Xi=s]t to = [X=s]t1 [X=s]t:

[x=w](Ay.X) = Ay. W

[x=Az.2 W] (Ay.X) Ay z. z w

[x=y](AX.X) = AX.X

[X=w Vv Z2](A2.X 2) = Az. (WY 2Z) Z

[x=w Vv Z2](AZ2.X 2) =Az.(w Vv 2) Z

=q [x=w y 2] (Au.X u) = Au.(wy 2) u

Semantics
24 |

t; — t1' value t; t, — t2

t1 t, — ti1' t t: t2 — t1 t2

value t
(Ax.t1) t2 — [x=t2]t:

[-redex /

(AX. Ay. XVy) (Az. z) (AW. W) —
(AY. (Az. 2) y¥) (AW. W) —

(Az. 2) (AW. W) —
(AW W) A term with no redexes is

said to be in normal form

Example
2y

t — t]_' value t1 t, — t2'

t1 t, — ti1' t t: t2 — t1 t2

value t
(AX.t1) t2 — [x=t2]t:

(Ax.x) (Ax. x (At £. £) (At £. t)) (At f. t)
— (Ax. x (At £. £) (At £. t)) (At f. t)

— (At £. t) (At f£. £f) (At f. t)
— (Af. (At £. £)) (At f£. t)

., At f. £

Concept Check

ldentify any redexes in the following terms:

(AX.X) (AX.X)
Az.(AX.X) z

(Ax.x) ((Ay.y) (Az.(Ax.xX) 2))

AX v. X Vv X

Evaluation Strategies o\

Recall that lambda abstractions and numbers are values:

expressions

The lambda calculus’ values are the functions:

value AXx.t

This is called a call-by-value semantics: redexes are always the
top-most function that is applied to a value:

ti1 — t1' value t; t, — to'

t: t2 — t1' t2 t; t, — t1 to'
value t»

(AX.t1) t2 — [x=t2]t:

Examples ns
2y

(AX. X + x) ((AX. x + x) (5 + 3)) —
(AXx. X + x)((Ax. x + x) 8) —
(AX. x + X)(8 + 8) —
((Ax. x + x) 16) —

16 + 16 —

32

(AX.Ay.y X)(5+2) Ax.x+1
s (Ax.Av.y x) 7 Ax.x+1
—(Ay. v 7)) Ax.x+1
—>()\X. X+1) 7

— 8

Normalization

If every program in a language is guaranteed to always evaluate
to a normal term, we say the language is strongly normalizing.

Formally:

Statement of Strong Normalization:

For any term t, all sequences of reduction steps starting from t
eventually reaches a normal form t'.

Every program in a strongly normalizing language terminates.

Q

Is the lambda calculus strongly normalizing under beta
reduction!?

Does every expression eventually evaluate to a normal form?
No!

This is a diverging computation, i.e. one that does not terminate

We'll call this)

Q= Az (xx)Ax (xx))

Evaluation Strategies s
ag

An alternative: beta-reductions are performed as soon as

possible:

ti, — t1
(Ax.t1) t2 — [X = t2]t: £ t, — t1' t,
(AX.Av.v x)(5+2)Ax.x+1
—(Ay.y (5+2)) Ax.x+1
s (Ax.x+1) (5+2)
—(5 + 2) + 1 (Af.£ 7)((AX.X X) Ay.y)

. 7 + 1 — ((AYy. ¥) (Ay. y)) 7

(
— 8 —>(7\y-y)7\
7

—_ term

duplicated!

E :
valuation Strategie
s

o .Q,\\'\\N
(AX.X +X)(+ 6 N3
. §|51 + 6) + (5 + 6) o AW
—>11+(5+6) (A X+)5 (5
—>22+11 &yg+5) (5-:_66))
............................ —95+5 °) 11
VA can \ead — 10
o d \ical d L e
e \cae\Nor Str'\c’mess n \ead to
....‘.‘f}?‘?.‘??‘.?ﬂ.\!. wor KL

Concept Check

Evaluate this expression using both CBV and CBN
strategies:

(AX.X) ((Ay.y) (Az.(Ax.xX) 2))

(Recall application is left-associative)

Eta-reduction
e,

One common additional reduction rule is called eta reduction:

x does not appear in t

(AXx.t Xx) — t

Captures the idea that Ax (Ay.y x) and Ay.y are equivalent

Expressivity

Church’s Thesis (1935): Informally, any function on the natural
numbers that can be effectively computed (i.e., can be expressed
as an algorithm) can be computed using the A-calculus. In other
words, A-calculus is equivalent in its expressive power to Turing
Machines.

- This property holds for the pure A-calculus, i.e., the
calculus without primitive support for numbers!

- This means that function abstraction and application are
sufficiently powerful to model numbers and their
operations.

Booleans
36 |

true = A t. A f. t

false= A t. A f. £
(true v w) = ((A t.A £. t) Vv) w)
((A £. v) w)

\%
(false v w) = ((A t.A £. £) v) w)
((A £. £) w)

W

Booleans

- not=A b. b true false

The function that returns true if b is false, and false
if b Is true.

-and=A b. A c. b ¢ false

The function that given two Boolean values (v and
w) returns w if v is true and false if v is false.
Thus, (and v w) yields true only if both v and w
are true.

Church Numerals

There are no explicit operations to manipulate
numbers

Encode numbers using higher-order functions:
-2ero=A\A s. A z. Z
-ohe= A s. A z. (s z)
-ftwo=A s. A z. (s (s z))

Read “s” as successor and “z” as zero

Church Numerals

- succ An. As. Az . s (n s z)
A function that takes s and z and applies s repeatedly to z.

- plus Am. An. As. Az .ms (ns z)
takes two Church numerals and yields
another Church numeral that given s
and z applies s iterated n times to z
and then applies s iterated m times to
the result.

plus one two succ zero —>
one succ (two succ zero) ->
succ (two succ zero) ->

succ (succ (succ zero)) ->

3

Naming and substitution

Although we claimed that lambda calculus essentially manipulates functions (it does),
we've spent a lot of time thinking about variables

- substitutions
- free variables
- equivalence upto renaming

Implementations must consider these issues seriously
- Rename bound variables when performing substitutions with “fresh” names.
P g

- Impose a condition that all bound variables be distinct from each other, and other
free variables.

- Derive a canonical representation that does not require renaming at all.

Terms and Contexts

De Brujin indices:

- Have variable occurrences “point” directly to their binders rather than
referring to them by name.

- Do so by replacing variable occurrences with numbers:
number k stands for “the variable bound by the kth enclosing A-term

Example:A x. A y. x (y x) =A . A .1 (01)
Similar to static offsets in an activation record or display.

Examples

1l
>’
»3
»3
1l
>

identity 0
true = A x. A y. x = A.A. 1
false = A x. A y. v = A.A. 0
two = A s. Z

n
n
N
Il
>
>
=
—
o

Contexts

How do we replace free variables with their binders!?

- Assume an ordered context listing all free variables that can occur, and map free
variables to their index in this context (counting right to left)

Context: a, b
amr1l, bpr 0

Ax. a =AN. 2
A x. b=A.1
A x.b (ANy. a) = A.1(A.3)

Shifting and substitution

When substituting into a A term, indices must be adjusted:

Ay. X [z/xX]incontextx,y,z

[2 P 0] A. 2 =A. [3 P 1] 3 ALl

Key point: context becomes longer when substituting inside an abstraction. Need to be careful to
adjust free variables, not bound ones.

shift(d,c)(k) = k 1f k < c
k +d if k = ¢
shift(d,c)(A.t) = (A.shift(d,c+1)(t))

shift(d,c)(t] tg) = (shift(d,c)(t1))(shift(d,c)(t2))

Here c is a cutoff and d is the shift amount
shift(d,c) thus shifts the indices of free variables equal to or above cutoff ¢ by d

Example

2
shift(2,0)(A.1. 1 (0 2))

A 1 (0 4)

shift(2,0)(». 0 1 (A. 0 1 2))
A 03 (h 01 4)

Substitution

[J » s] k =s 1f k = 7
k otherwise

[» s](A .t) = A. [j+1 » shift(1l,0)s] t
[J » s](t] t2) = ([J » s) t1) ([J » s] t2)
Beta-reduction:

(A t) v » shift(-1,0)([0 » shift(1,0)(v)] t)

Examples
2

Assume context <a,b>Then,a » 1, b » 0

[a / b] b A x. ANy. b
[0» 11 OAN . A . 2
1A.AN.3 = alAzx.Ay. a

[(a (A z. a)) / b] (b (A x.b))
[0 » (1 (A. 2))] (0 A. 1)

1 (A . 2) (A. (2 (AN. 3)))

(a (A z. a)) (A x. (a (A z. a)))

Examples

N
[a/b] (A b. (b a))
[0~ 1] (~. (0 2))
(» . (02))
(A b. (b a))
[a/b] (A a. (b a))
[O» 1] A . (10)
A . (2 0)

(A a’. aa’)

