CS 456

Programming Languages Fall 2024

Week 4
Type Systems, Simply-Typed Lambda Calculus

A Simple Expression Language

- Expressions:

- Looks good, we can now write (and evaluate):

$$x * ((y > 3) ? 3 : y)$$

- But we can also write:

$$x * ((3 + (6 \land 5)) ? 3 : y)$$

- How do we evaluate this? What's the problem?

Bad Behaviors

- What constitutes a "bad" expression in this language?
 - * One that adds two booleans: true + 3 \rightarrow ?
 - * One with a non-boolean conditional: 3 ? $x : y \rightarrow ?$
 - *A use of an unassigned variable: $x + y \rightarrow ?$
- What about OCaml?
 - * Bad pattern match discriminees: match 0 with [] -> ...
 - * Function applied to wrong argument types: plus 9 minus
 - *Application of non-function: 9 minus

What about other languages?

Static Semantics

A recipe for defining a language:

- 1.Syntax:
 - What are the valid expressions?
- 2. Semantics (Dynamic Semantics):
 - How do I evaluate valid expressions?
- 3. Sanity Checks (Static Semantics):
 - What expressions are "good", i.e have meaningful evaluations?

Type systems identify a subset of good expressions

A recipe for type systems:

- 1. Define bad programs
- 2. Define typing rules for classifying programs
- 3. Show that the type system is sound, i.e. that it only identifies good programs

Typing

- First step is to define badness:
 - Needs to be broad, program-independent properties
 - Some user-provided specification is okay (type annotations)
- What are bad expressions?

- Those that evaluate to a stuck expression: a normal form that isn't a value

- First step is to define badness:
 - Needs to be broad ties
 - Some annota
- What are

$$x * ((y > 3) ? 3 : y)$$

rue + 3

- Those that evaluate to a stuck expression: a normal form that isn't a value

Next, define a classifier for good, well-formed programs:

⊢ e :T

Goal is to classify good uses of each type of expression:

Goal is to classify good uses of each type of expression:

Goal is to classify good uses of each type of expression:

Goal is to classify good uses of each type of expression:

Type Safety

- When is a type system correct?
 - * Need to show this classification is sound. i.e. no false positives

$$\vdash e:T \rightarrow v \in [e]$$

- The set of values an expression can yield is non-empty (ie inhabited)
- If the a language's type system is sound, it is said to be type-safe.
- Soundness relates provable claims to semantic property

Theorem [PROGRESS]: Suppose e is a well-typed expression (⊢e:T). Then either e is a value or there exists some e' such that e evaluates to e'.

Values:

 $\begin{array}{c} -\frac{}{\text{value true}} & \text{TValue} \\ \hline & n \in N \\ \hline & \text{value n} \end{array}$

Preservation

Theorem [PRESERVATION]: Suppose e is a well-typed term (\vdash e :T). Then, if e evaluates to e', e' is also a well-typed term under the empty context, with the same type as e (\vdash e' :T).

Type Soundness

Theorem [Type Soundness]: If an expression e has type T, and e reduces to e' in zero or more steps, then e' is not a stuck term.

★ Corollary [Normalization]: If an expression e has type T, e reduces to a value in zero or more steps.

Recap

- Type systems classify semantically meaningful expressions
- Our recipe for defining a type system
 - I. Define bad states (irreducible, non-value expressions)
 - 2. Define a typing judgement and rules classifying good expressions (\vdash e :T)
 - 3. Show that the type system is sound, i.e. that good expressions don't reduce to bad states

Typing Lambda Calculus

- ★ What are bad states for lambda terms (with natural numbers)?
 - \star Applying a non-function to an argument: λy . I y
 - \star Adding a function: ($\lambda y.y$) + 1
 - ★ Terms with free variables? x I
 - \star Diverging terms? Ω

Typing \(\lambda\)

- ★ We first extend the syntax of terms to include type annotations
- **★** Updated Syntax:

$$T ::= T \rightarrow T \mid nat$$
 $n \in \mathbb{N}$

 $t := x \mid \lambda x : T. t \mid tt \mid n \mid t+1$

$$(\lambda x:T. t_1) t_2 \longrightarrow [x:=t_2]t_1$$

 $n \in N$ value n

value (λx:T.t)

Typing \(\lambda\)

- ★ Need to refine our typing judgement:
 - We have two kinds of variables now
 - Variables can be unbound

Typing \(\lambda\)

- ★ Need to refine our typing judgement:
 - We have two kinds of variables now
 - Variables can be unbound

TNUM

★ Here are the typing rules:

$$\frac{\Gamma[x \mapsto T_1] \vdash t : T_2}{\Gamma \vdash \lambda x : T_1 . t : T_1 \to T_2} \quad \text{TABS} \qquad \frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad \text{TVAF}$$

Concept Check

★Can you type this term:

$$((\lambda x: \square.x) (\lambda x: \square.\lambda y: \square.y x)) 1 (\lambda x: \square.x)$$

- ★Can you type (λy : .x y)?
- ★What about Ω : ($\lambda x : \Box .x x$) ($\lambda x : \Box .x x$)?

Type Soundness

- ★ Theorem [TYPE SOUNDNESS]: If an STLC term t has type T in the empty context, and t reduces to t' in zero or more steps, either t' is a value, or it can be reduced further (i.e. t' isn't a stuck term).
- ★ This is an example of a metatheory proof.
 - ★ The prefix meta- (μετα) means 'beyond' in Greek.
- **★ theory**: noun I the·o·ry I 'thē-ə-rē: the general or abstract principles of a body of fact or a science.
- ★ In this sense, a type system is a theory for deducing whether a program is well-formed.
- ★ Properties of that theory are thus meta-theoretic properties

- ★ Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.
- ★ Proof relies on following lemmas:
- ★ Lemma [Canonical Form of Nat]: If t has type nat in the empty context and t is a value, then t is a number.
- **Lemma** [Canonical Form of Arrow]: If t has type T → T in the empty context and t is a value, then t is a lambda abstraction.

Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.

Proof. By induction on \vdash t : T.

_____ TΝυм Γ ⊢ n : nat

★ Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.

Proof. By induction on \vdash t : T.

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad TVAR$$

Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.

Proof. By induction on \vdash t : T.

$$\frac{\Gamma[x \mapsto T_1] \vdash t : T_2}{\Gamma \vdash \lambda x : T_1 . t : T_1 \rightarrow T_2} \quad \text{TABS}$$

★ Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.

Proof. By induction on \vdash t : T.

★ Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.

Proof. By induction on \vdash t : T.

$$\frac{\Gamma \vdash t_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 \ t_2 : T_2} \quad TAPP$$

This inductive proof resembles a recursive function definition...

Preservation

- **Theorem** [PRESERVATION]: Suppose t is a well-typed term under the empty context (i.e. ⊢ t : T). Then, if t evaluates to t', t' is also a well-typed term under the empty context, with the same type as t.
- ★ Proof relies on following Lemma:
- ★ Lemma [Preservation of Types under Substitution]: Suppose t is a well-typed term under context Γ[x→S] (Γ[x→S] ⊢ t: T). Then, if s is a well-typed term under Γ with type S, t[x→s] is a well-typed term under context Γ with type T (Γ⊢ t[x→s] : T).

Normalization

★ Theorem [Normalization]: If an expression e has type T in the empty context, e reduces to a value in zero or more steps.

Proof.

Key proof idea: strengthen induction hypothesis!

Proof has two parts:

- 1. Show that ⊢ t: T implies a stronger property
- 2. Show that the stronger property implies the desired one

λ+Pairs

★ Updated Syntax:

λ+Pairs

★ Updated Semantics:

$$\begin{array}{c} t_1 \longrightarrow t_1' \\ \hline (t_1,\,t_2) \longrightarrow (t_1',\,t_2) \\ \hline t_1 \longrightarrow t_1' \\ \hline fst\,t_1 \longrightarrow fst\,t_1' \\ \hline t_1 \longrightarrow t_1' \\ \hline snd\,t_1 \longrightarrow snd\,t_1' \\ \end{array}$$

value
$$t_1$$
 $t_2 \rightarrow t_2$ '
 $(t_1, t_2) \rightarrow (t_1, t_2)$
value t_1 value t_2
 $fst (t_1, t_2) \rightarrow t_1$

value t_1 value t_2
 $fst (t_1, t_2) \rightarrow t_2$

value t₁ value t₂ value (t₁, t₂)

λ+Pairs

★ Updated Typing Rules:

$$\frac{\Gamma \vdash t_1 : T_1 * T_2}{\Gamma \vdash \mathsf{fst}\ t_1 : T_1} \quad \mathsf{TFST}$$

$$\frac{\Gamma \vdash t_1 : T_1 * T_2}{\Gamma \vdash snd \ t_1 : T_2} \quad TSND$$

λ+Let

★ Updated Syntax:

$$t ::= ... \mid let x = t in t$$

$$t_1 \longrightarrow t_1'$$

let
$$x = t_1$$
 in $t_2 \rightarrow let x = t_1'$ in t_2

let
$$x = t_1$$
 in $t_2 \longrightarrow [x = t_1]t_2$

★ Updated Typing Rules:

λ+Sums

★ Updated Syntax:

value t₁ value in_L T t₁ value t_1 value $in_R T t_1$

λ+Sums

★ Updated Semantics:

$$\frac{t_1 \longrightarrow t_1'}{\text{in}_L \ T \ t_1 \longrightarrow \text{in}_L \ T \ t_1'}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{in}_R \ T \ t_1 \longrightarrow \text{in}_R \ T \ t_1'}$$

$$t \longrightarrow t'$$

case t of in_L $x => t_1 \mid in_R x => t_2 \rightarrow case t'$ of in_L $x => t_1 \mid in_R x => t_2$

value t

case in_L T t of in_L x =>
$$t_1$$
 I in_R x => $t_2 \rightarrow [x=t]t_1$

value t

case in_R T t of in_L x =>
$$t_1$$
 | in_R x => $t_2 \rightarrow [x=t]t_2$

★ Updated Typing Rules:

$$\begin{array}{c|c} & \Gamma \vdash t : T_1 \\ \hline \Gamma \vdash \text{in}_L T_2 \, t : T_{1+} T_2 \\ \hline \\ & \frac{\Gamma \vdash t : T_2}{\Gamma \vdash \text{in}_R T_1 \, t : T_{1+} T_2} & \text{TIN}_L \\ \hline \\ & \Gamma \vdash t : T_1 + T_2 \\ \hline \\ & \Gamma[x \mapsto T_1] \vdash t_1 : T_3 \\ \hline & \Gamma[x \mapsto T_2] \vdash t_2 : T_3 \\ \hline \\ & \Gamma \vdash \text{case t of in}_L \, x \Rightarrow t_1 \, \text{lin}_R \, x \Rightarrow t_2 : T_3 \end{array} \quad \text{TCASE}$$

★ Updated Syntax:

$$t ::= \dots | fix t$$

★ Updated Semantics:

$$fix (\lambda x:T.t_1) \longrightarrow [x:=fix (\lambda x:T.t_1)]t_1$$

λ+Fix

```
let F = (\f. \x. test x=0 then 1 else x * (f (pred x))) in fix F 3
\rightarrow (\x. test x=0 then 1 else x * (fix F (pred x))) 3
\rightarrow test 3=0 then 1 else 3 * (fix F (pred 3))
\rightarrow 3 * (fix F (pred 3))
\rightarrow 3 * ((\x. test x=0 then 1 else x * (fix F (pred x))) (pred 3))
\rightarrow 3 * ((\x. test x=0 then 1 else x * (fix F (pred x))) 2)

→ 3 * test 2=0 then 1 else 2 * (fix F (pred 2))
\rightarrow 3 * 2 * (fix F (pred 2))
→* 3 * 2 * 1 * 1
```


★ Updated Typing Rules:

$$\frac{\Gamma \vdash t : T_1 \rightarrow T_1}{\Gamma \vdash \text{fix } t : T_1} \quad \text{TFIX}$$

λ+Records

★ Updated Syntax:

```
T:= ... | {i<sub>1</sub>:T<sub>1</sub>, ..., i<sub>n</sub>:T<sub>n</sub>}
t:= ... | {i<sub>1</sub>=t<sub>1</sub>, ..., i<sub>n</sub>=t<sub>n</sub>}
| t.i
```

```
value t_1 ... value t_n value \{i_1=t_1,\ldots,\ i_n=t_n\}
```

λ+Records

★ Updated Semantics:

 $value \ t_1 \quad \dots \quad value \ t_{m\text{-}1} \qquad t_m \longrightarrow t_m'$

 $\{i_1=t_1, \ ..., \ i_m=t_m, \ ..., \ i_n=t_n\} \ \longrightarrow \{i_1=t_1, \ ..., \ i_m=t_m', \ ..., \ i_n=t_n\}$

value t₁ ... value t_n

 $\{i_1=t_1, \ldots, i_n=t_n\}.i_j \longrightarrow t_j$

λ+Records

★ Updated Typing Rules:

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2 \quad ... \quad \Gamma \vdash t_n : T_n}{\Gamma \vdash \{i_1 = t_1, \ ..., \ i_n = t_n\} : \{i_1 : T_1, \ ..., \ i_n : T_n\}}$$
 TRCD

$$\frac{\Gamma \vdash t : \{i_1,:T_1, \ldots, i_n:T_n\}}{\Gamma \vdash t.i_i : T_i}$$
 TPROJ