
CS 456

Programming Languages
Fall 2024

Week 5

System F

Polymorphism
2

★ In OCaml polymorphic functions can have arguments of
different types:

let id x = x
val id : ‘a -> ‘a = <fun>
let double f x = f (f x)
val double: (‘a -> ‘a) -> ‘a -> ‘a
let compose f g a = g (f a)
val compose: (‘a -> ‘b) -> (‘b -> ‘c) -> ‘a -> ‘c

let foo = id 1
let bar = double not (id True)

Polymorphism
3

★ Principle of Abstraction: When similar functions are carried
out by distinct piece of code, it is generally a good idea to
combine them into one by abstracting out the varying parts.

★ In OCaml polymorphic functions can have arguments of different
types:

let id = (\ x -> x) in (id 1, id true)
let double := (\ f x -> f (f x)) in

if (double plus1 len < 5)
 then (hd (double tl l)) else (hd l)

★ Problem: We can’t type id and double in STLC
★ Solution?

System F
4

The fundamental problem addressed by a type theory is to insure that
programs have meaning. The fundamental problem caused by a type
theory is that meaningful programs may not have meanings ascribed to
them. The quest for richer type systems results from this tension.

—Mark Manasse.
★We’ll be looking at System F, a calculus in which polymorphic

functions can be written.
★Name was coined by Jean-Yves Girad, was originally a logic

★A core calculus for parametric polymorphism.
★Can capture module systems and data abstraction
★ Enough for type safe ‘pure’ OO (w/o inheritance)

System F
5

★ Here is the syntax of pure System F, with new bits
highlighted.
t ::= x | λx:T.t | t t
 | ΛX.t
 | t [T]

v ::= λx:T.t | ΛX.t

T ::= T → T
 | ∀X.T
 | X

⇐ Type Abstraction
⇐ Type Application

⇐ Universal Type
⇐ Type Variable

System F
6

★ Here are the new bits of the operational semantics

e1 e2 ⟶ e1' e2

e1 ⟶ e1'
EAPP1 v e2 ⟶ v e2'

e2 ⟶ e2'
EAPP2

(λx:T.e) v ⟶ e1 [x ↦ v]
EAPPABS

(ΛX.e1) [T] ⟶ e1 [X ≔ T]
ETAPPTABS

e1 [T2] ⟶ e1' [T2]
e1 ⟶ e1'

ETAPP Where is ETAPP2?

Example
7

(ΛX. λx:X. x) [bool] true

(λf:(∀X.X→X). if f [bool] true then f [nat] 1

 else 2) id

System F
8

★ Here are the new bits of the typing rules

Γ, [x ↦ T1] ⊢ t : T2

Γ ⊢ λx:T1.t : T1→T2
TABS

Γ(x) = T
Γ ⊢ x : T TVAR

Γ ⊢ t1 : T1→T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
TAPP

Γ ⊢ t1 : ∀X.T2

Γ ⊢ t1 [T1] : T2[X ≔ T1]
TTAPP

Γ ⊢ t : T2

Γ ⊢ ΛX.t : ∀X.T2
TTABS

Concept Check
9

★What is the type of this System F term:
⊢ ΛT. double [T → T] (double [T1]) : ?

where double ≡ ΛX. λf:X→X. λy:X. f (f y)

System F Metatheory
10

★ System F shares many of STLC’s metatheoretic properties:
- Theorem [PROGRESS]: Suppose t is a closed, well-typed System

F term (i.e. ⊢ p : T). Then either t is a value or there exists
some t’ such that t evaluates to t'.

- Theorem [PRESERVATION]: Suppose t is a well-typed System F
term under context Γ (i.e. Γ ⊢ p : T). Then, if t evaluates to t’, t’is
also a well-typed term under context Γ, with the same type as t.

- Theorem [NORMALIZATION]: Suppose t is a closed, well-typed
System F term (i.e. ⊢ p : T). Then, t halts, that is there must
exist some value v, such that t evaluates to v.

System F Metatheory
11

★ Type Erasure
⌈x⌉ = x
⌈λx∶T.M⌉ = λx.⌈M⌉
⌈M1 M2⌉ = ⌈M1⌉ ⌈M2⌉
⌈ΛX.t⌉ = ⌈t⌉
⌈t1 [T2]⌉ = ⌈t1⌉

- Theorem [SOUNDNESS OF TYPE ERASURE]: If a System F term t
evaluates to t’, then the erasure of t evaluates to the erasure of t’
under the untyped evaluation relation. That is, t⟶t’ implies ⌈t⌉⟶⌈t’⌉.

System F Metatheory
12

★ OTOH, the metatheory of System F diverges from STLC in key
ways with respect to type inference:
⌈x⌉ = x
⌈λx∶T.M⌉ = λx.⌈M⌉
⌈M1 M2⌉ = ⌈M1⌉ ⌈M2⌉
⌈ΛX.t⌉ = ⌈t⌉
⌈t1 [T2]⌉ = ⌈t1⌉

- Theorem [TYPE INFERENCE IS UNDECIDABLE]: Suppose m is a closed
term in the untyped lambda calculus. Then it is undecidable if there
exists some well-typed term system F term, t , such that ⌈t ⌉ = m.

★Bummer!

System F Fragments
13

★ But, *some* restricted forms of System F have tractable
type reconstruction.

★ Key Idea: Restrict uses of polymorphism in types to enable
type reconstruction.

★ Can you think of one?
- Type schemas from let-polymorphism are restricted from of

universal types
- Quantifiers appear at the start of a formula
- Also called prenex polymorphism

- Theorem [Prenex TYPE INFERENCE]: Suppose m is a closed term
in the untyped lambda calculus. Then it is decidable if there
exists some well-typed term system F term, t , which only
contains types in prenex normal form, such that ⌈t ⌉ = m.

System F Fragments
14

★ Another restriction is rank-2 polymorphism.
★ A type is said to be or rank 2 if no path from its root to a ∀

quantifier passes to the left of 2 or more arrows, when drawn as
a tree.
- (∀X. X → X) → Nat
- Nat → (∀X. X → X) → Nat → Nat
- ((∀X. X → X) → Nat) → Nat

- Contrast:
 f :: ∀r.∀a.((a → r) → a → r) → r
 with
 f' :: ∀r.(∀a.(a → r) → a → r) → r

★ Theorem [RANK-2 TYPE RECONSTRUCTION]: Suppose m is a closed
term in the untyped lambda calculus. Then it is decidable if there
exists some well-typed term system F term, t , which only contains
types in of rank-2 or less, such that ⌈t ⌉ = m.

System F Fragments
15

★ How high can we go (in rank?)

2
★ Theorem [RANK-(>2) TYPE RECONSTRUCTION]: Suppose m is a

closed term in the untyped lambda calculus. Then it is
undecidable if there exists some well-typed term system F
term, t , which only contains types in of rank-n or less (where n
> 2), such that ⌈t ⌉ = m.

★ However, if let-bound parameters with a polymorphic type are
annotated, type reconstruction for higher-rank let-polymorphism
is possible.

let polyf (f : ∀ a. a → a) := (f 1, f True) in e

Prenex Polymorphism
16

★ In other good news, some restricted forms of System F
have tractable type reconstruction.

★ Key Idea: Restrict uses of polymorphism in types to enable
type reconstruction.

★ Can you think of one?
- Quantifiers only appear at the start of a formula
- Also called prenex polymorphism

- Theorem [Prenex TYPE INFERENCE]: Suppose m is a closed term
in the untyped lambda calculus. Then it is decidable if there
exists some well-typed term system F term, t , which only
contains types in prenex normal form, such that ⌈t ⌉ = m.

Prenex Predicative Polymorphism
17

- This restriction can be expressed syntactically
 τ ::= b | τ1 → τ2 | t
 σ ::= τ | ∀t. σ
 e ::= x | e1 e2 | λx:τ. e | Λt.e | e [τ]
- Type application is restricted to mono types

 (∀t. t → t) → (∀t. t → t) is not a valid type

- Abstraction only on mono types
- Cannot apply “id” to itself anymore

 - Simple semantics and termination proof

★ Key Idea: Restrict uses of polymorphism in types to enable
type reconstruction.

★ Can you think of one?
- Quantifiers only appear at the start of a formula and can

only be instantiated with monomorphic types
-

Expressiveness
18

- We have simplified too much !

- Not expressive enough to encode
 bool = ∀t.t → t → t
true = Λt. λx:t.λy:t. x
false = Λt. λx:t.λy:t. y
But such encodings are only of theoretical interest anyway

Is it expressive enough in practice?
Almost
Cannot write something like
 (λs:∀t.τ. ... s [nat] x ... s [bool] y) (Λt. ... code for sort)
Because the type of formal argument s cannot be polymorphic

ML’s Polymorphic Let
19

ML solution: slight extension
Introduce “let x : σ = e1 in e2”

 - With the semantics of “(λx : σ.e2) e1”
 - And typed as “[e1/x] e2”

This lets us write the polymorphic sort as
 let
 s : ∀t.τ = Λt. ... code for polymorphic sort ...
 in
 ... s [nat] x s [bool] y

ML Polymorphism and References
20

let is evaluated using call-by-value but is typed using call-by-name
What if there are side effects ?

Example:
let x : ∀t. (t -> t) ref = Λt. ref (λx : t. x)
in
 x [bool] := λx: bool. not x
 (! x [int]) 5

Will apply “not” to 5
Similar examples can be constructed with exceptions

 It took 10 years to find and agree on a clean solution

The Value Restriction in ML
21

A type in a let is generalized only for syntactic values

Since e1 is a value, its evaluation cannot have side-effects

In this case call-by-name and call-by-value are the same
In the previous example ref (λx:t. x) is not a value
This is not too restrictive in practice !

Recap
22

★ System F = a core calculus for parametric polymorphism which
extends STLC with type abstraction and type application

★ Embodies meta-theoretic properties of polymorphic languages:

Restriction Progress +
Preservation Normalization

Sound Type-
Erasure

Semantics

Type
Reconstruction

None ✔ ✔ ✔ 𐄂

Prenex
Polymorphism ✔ ✔ ✔ ✔

Rank-2
Polymorphism ✔ ✔ ✔ ✔

Rank-n Let-
Polymorphism

with polymorphic
annotations

✔ ✔ ✔ ✔

