CS 456

Programming Languages

Fall 2024

Week 5
System F

Polymorphism

In OCaml polymorphic functions can have arguments of
different types:
X=X
val id : ‘a -> ‘a = <fun>
let fx=1(fx)
val double: (‘a ->‘a) ->‘a->"‘a

let composefga=g(fa)
val compose: (‘a -> D) -> ('

=id 1
let = double not (id True)

Polymorphism

I When similar functions are carried
out by distinct piece of code, it is generally a good idea to
combine them into one by abstracting out the varying parts.

In OCaml polymorphic functions can have arguments of different
types:

id = (\ X -> x) in (id 1, id true)
double := (\ £ x -=> £ (f x)) in

(double plusl len < 5)
(hd (double tl1l 1)) (hd 1)

Problem:We can’t type id and double in STLC
4

System F

The fundamental problem addressed by a type theory is to insure that
programs have meaning. The fundamental problem caused by a type
theory is that meaningful programs may not have meanings ascribed to
them. The quest for richer type systems results from this tension.

—Mark Manasse.

We'll be looking at System F, a calculus in which polymorphic
functions can be written.

Name was coined by Jean-Yves Girad, was originally a logic

A core calculus for parametric polymorphism.
Can capture module systems and data abstraction
Enough for type safe ‘pure’ OO (w/o inheritance)

System F

-]
* Here is the syntax of pure System F, with new bits
highlighted.

t:= x| ATttt
| AX.t < Type Abstraction

It [T] < Type Application

V= ACTHIAXT

Ti=T->T
| vX.T <= Universal Type
| X < Type Variable

System F

* Here are the new bits of the operational semantics

e1 — eq' e> —, e
: EAPP; : EAPP:
e1e2 — e eo Ve Ve
EAPPABS

(AX:T.e) V— e1 [Xp V]

€1 — &1 S Where is ETAPP2?
e1[T2] — eq'[T7]

ETAPPTABS

(AX.e1) [T] — e1 [X =T]

Example
SN2 1

(AX. AX:X. X) [bool] true

(Af:(vX.X—X). if f [bool] true then f [nat] 1
else 2) id

System F

* Here are the new bits of the typing rules

[Ixe TH] T T2 rx)=T
TABS TV
[AXT1.t: T1—2T> Ae [—x:T o
[—t1:T1—=T2 T 1o: TH TAPP
[ttt To
[=1:T>
TTABS

= AXt: vX.To

[t ; vX.To
TTAPP

[t [T1] : To[X = T4]

Concept Check

* What is the type of this System F term:
— AT. double [T — T] (double [T1]) : ?

where double = AX. Af: X=X, Ay:X. f (T y)

System F Metatheory

System F shares many of STLC’s metatheoretic properties:

Theorem [PROGRESS]: Suppose t is a closed, well-typed System
F term (ie. + p:T).Then eithertisa value or there exists

some t’ such that t evaluates to t'.

Theorem [PRESERVATION]: Suppose t is a well-typed System F
term under context [(i.e.[= p:T).Then,if t evaluates to t’, tis

also a well-typed term under context [, with the same type as t.

Theorem [NORMALIZATION]: Suppose t is a closed, well-typed
System F term (i.e. - p :T).Then,t halts, that is there must

exist some value v, such that t evaluates to v.

System F Metatheory

* Type Erasure

X | =X

Ax:TM] = Ax.[M]

MM =[Mi] [M]

AXt] = [t]

't [Tz]] = [t]

- Theorem [SOUNDNESS OF TYPE ERASURE]: If a System F term t

evaluates to t, then the erasure of t evaluates to the erasure of t’
under the untyped evaluation relation. That is, t—t’ implies [t] —[t'].

System F Metatheory

* OTOH, the metatheory of System F diverges from STLC in key
ways with respect to type inference:

X | =X

Ax:TM] = Ax.[M]

MiM2] =[M] [M]

AXt] = [t]

t [T2]] = [ul

- Theorem [TYPE INFERENCE IS UNDECIDABLE]: Suppose m is a closed

term in the untyped lambda calculus.Then it is undecidable if there
exists some well-typed term system F term, t, such that [t | = m.

*Bummer!

System F Fragments

But, *some™ restricted forms of System F have tractable
type reconstruction.

Key ldea: Restrict uses of polymorphism in types to enable
type reconstruction.

Can you think of one?

Type schemas from let-polymorphism are restricted from of
universal types

Quantifiers appear at the start of a formula
Also called prenex polymorphism

Theorem [Prenex TYPE INFERENCE]: Suppose m is a closed term
In the untyped lambda calculus. Then it is decidable if there
exists some well-typed term system F term, t , which only
contains types in prenex normal form, such that [t | = m.

System F Fragments

Another restriction is rank=-2 polymorphism.

A type is said to be or rank 2 if no path from its root to a v

quantifier passes to the left of 2 or more arrows, when drawn as
a tree.

(VX. X = X) = Nat
Nat = (VX. X = X) = Nat — Nat
((vX. X = X) = Nat) = Nat
Contrast:
frvrva.((a—r)—2a—=r)—r
with
f'vr(va.(a—=>r)—2a—-r)—r

Theorem [RANK-2 TYPE RECONSTRUCTION]: Suppose m is a closed
term in the untyped lambda calculus.Then it is decidable if there
exists some well-typed term system F term, t , which only contains
types in of rank-2 or less, such that [t | = m.

System F Fragments

* How high can we go (in rank?)

2

* Theorem [RANK-(>2) TYPE RECONSTRUCTION]: Suppose m is a
closed term in the untyped lambda calculus. Then it is
undecidable if there exists some well-typed term system F
term, t, which only contains types in of rank-n or less (where n
>2), such that [t] = m.

* However, if let-bound parameters with a polymorphic type are
annotated, type reconstruction for higher-rank let-polymorphism
IS possible.

letpolyf (f:va.a —a) =(f1,fTrue)ine

Prenex Polymorphism

In other good news, some restricted forms of System F
have tractable type reconstruction.

Key Idea: Restrict uses of polymorphism in types to enable
type reconstruction.

Can you think of one?

Quantifiers only appear at the start of a formula
Also called prenex polymorphism

Theorem [Prenex TYPE INFERENCE]: Suppose m is a closed term
In the untyped lambda calculus. Then it is decidable if there
exists some well-typed term system F term, t , which only
contains types in prenex normal form, such that [t | = m.

Prenex Predicative Polymorphism

* Key ldea: Restrict uses of polymorphism in types to enable
type reconstruction.

* Can you think of one?

- Quantifiers only appear at the start of a formula and can
only be instantiated with monomorphic types

- This restriction can be expressed syntactically

T ::=Db | T1 - T2 | t
O ::= T | Vt. ©
e ::= x | e1 e2 | Ax:T. e | ANt.e | e [T]

- Type application is restricted to mono types
(Vt.t = t) = (Vt.t = t) is not a valid type

- Abstraction only on mono types
- Cannot apply “id” to itself anymore
- Simple semantics and termination proof

Expressiveness

- We have simplified too much !

- Not expressive enough to encode
bool = Vtt 2>t > t
true = At. Ax:t.Ay:t. x

false = At. Ax:t.Ay:t.y
But such encodings are only of theoretical interest anyway

s it expressive enough in practice?
Almost
Cannot write something like

(As:Vt.T....s [nat] x ... s [bool]y) (At.... code for sort)
Because the type of formal argument s cannot be polymorphic

ML's Polymorphic Let

ML solution: slight extension
el in e?2”

Introduce““let x : O

- With the semantics of “(Ax : 0.€2) e]|”
- And typed as “[e|/x] e2”

[Fe1:0 l,x:0Fe>:T

[Fletx:0 =eqines T

This lets us write the polymorphic sort as

let

s : Vt.T = At. ... code for polymorphic sort ...

in

. S [nat] X s [booOl] vy

ML Polymorphism and References

let is evaluated using call-by-value but is typed using call-by-name
What if there are side effects !

Example:
let x : Vt. (t -=> t) ref = At. ref (Ax : t. Xx)
in

X [bool] := Ax: bool. not x

(! x [1nt]) 5

Will apply “not” to 5
Similar examples can be constructed with exceptions
It took 10 years to find and agree on a clean solution

The Value Restriction in ML

A type in a let is generalized only for syntactic values

[Fei1:0 TNx:okey:T e Is a syntactic
value or o 1S
monomorphic

[Fletx:0 =eqines: T

Since e| is a value, its evaluation cannot have side-effects

In this case call-by-name and call-by-value are the same

In the previous example ref (Ax:t. x) is not a value
This is not too restrictive in practice !

Recap

* System F = a core calculus for parametric polymorphism which
extends STLC with type abstraction and type application

* Embodies meta-theoretic properties of polymorphic languages:

Sound Type-
Normalization Erasure
Semantics

Progress +

Type

e ICHON Reconstruction

Preservation

None v v v X
Prenex
Polymorphism v v v v
Rank-2
Polymorphism v v v v
Rank-n Let-
Polymorphism
with polymorphic \/ ‘/ \/ \/
annotations

