CS 456

Programming Languages

Fall 2024

Week 6

Type Inference

Inference

How should we fill in these type annotations?

AX:

AX:

AX:

. Ay:

. Ay:

. AY:

. If X then x else false

.ifxtheny + 1elsey

. If xthen y else y) true 1

.ifxthenyelsey

Type Inference

More interesting question is how to avoid annotations if
possible?

Today: A algorithm infers the
of a term missing some type annotations.

Such algorithms are key to OCaml’s type system:

facc[]=acc
facc (x :: xs) =f x (fold f acc xs)

(funx->x+4)[1; 2]

Type Variables
_ 4

* First step: extend STLC with Type Variables:

neN X2 € TypeVariables

T:x=NatlBooll T—=T1 X»

ti=xIAX:T.tIttlnlt+t
| true | false | if t then t else t

* Typing rules and Operational Semantics are same as

before:
[t Ti—= T2 Tt Ty TAPE F(x)=T VAR
[~ t1fo: T [—x:T
[[Xxe T1]—1t: T2 TABS

[= AXT1t: T1—2T> "

Type Inference

Two ways to interpret a term with type variables:
Are all instantiations well-typed terms?
Ax:Y2 = Bool. Ay: Y2. xy : (Y2 = Bool) = Y2 = Bool
Is some instantiation a well-typed term?
AX:X2. AY: Yo X (X Y) :

Represent ‘missing’ type annotations with Type Variables:
X AX. Ay:Bool. if x y then false else true
V' Ax:X2. Ay:Bool. if x y then false else true

Our Goal: Build a well-typed term by filling or substituting
in concrete types for type variables:

* AXx:Bool — Bool. Ay:Bool. if x y then false else true

Type Substitution

A type substitution is a mapping, y, from variables to types:
Yo»Bool, X»»Bool—Bool]
Xo»Bool—=Bool, Y2»X-]
We apply a type substitution to a type T like so:
Y(X?) = if (Xo»T) ey
Y(X?) = X? if Xo ¢y
Y(Bool) = Bool Y(Nat) = Nat
Y(T1 = T2) = y(T1) = y(T4)
Examples Application:
(Yo = X9)[X2»Bool—Bool,Y2»Bool] = Bool—(Bool—Bool)
(Yo = X7)[X2»Bool—Bool, Y»X2] = X2 = (Bool—Bool)

Type Substitution

* Theorem: Type substitution preserves typing: for every type
substitution Y, if [- e:T, then y(I) + y(e) : y(T).

* A solution for a context [and term e isa typeT and a
substitution Y such that:

Y(I) = y(e) : Y(T)

* For the empty context, Ax:X:. Ay:Y:. x (X y), a solution is:
* Type: X; =2 Y; =Y,
* Substitution: [X;»Y;—Y)]

Concept Check

* A solution for a context [and term e is a type T and a
substitution Y such that:

Y(I') = v(e) : Y(T)

* Can you find two solutions for the empty context and the term:
Ax:Xo. Ay:Yo. Az:Z. if y then x z else z

Type Inference
o4

Algorithm InferType(r, ein)

Input: Typing Context I', Untyped Lambda term ein

Output: Well-typed STLC term or ill-typed

: 1. @1 + annotate all lambda abstractions in ein with fresh Type

: Variables; :
: 2. (T, &) « calculate type and constraints that any solution for I :
: and e1 must satisfy :
: 3. Y « find solution to &, or report none exists (L)

: 4. If y == L then return ill-typed

: 5. return y(IN) = y(e1) : y(T)

Type Inference
oy

Algorithm InferType(r, @in) ... m\C
: Input Typing Conics feC cl d\l“ ot ge

d g

groonstraints that any
, 1 must satisty

: d solution to &, or report none exists (1)

: 4. if y == L then return ill-typed

Constraint-Based Typing

* Key Ideai: record a set of constraints about how variables
are used, and figure out how to solve them later

* Types constrain how things can be used:
* The condition of an if expression must have type bool
* Only expressions of type nat can be added together

* Formally, we define a new typing algorithm with the
following judgement:

[Fe:Tl@

Constraint-Based Typing

* Here are the rules for this type system:

* Expressions which don’t ‘use’ anything don’t impose any new
constraints:

() : T
[— true : Booll @ Ne=x:Tlo
nelN
CTFALSE T n:Natl o CTNum

[false : Bool I @

[Xp Ti]Ht:T21C

CTA
[AXT1.1: T1—=2T21C o

Constraint-Based Typing

[mei:nat [+ e2: nat

[- e1 + e2: nat

[Fe1:T1IC1 Trex:TolCo

[-ei1+exxnatlC1uC 2 u{Ty1=nat, T2 =nat}

Constraint-Based Typing

[ec : Bool [Fet: T [T rHee:T
[~ ifectheneielseee: T

C=CcuCiuCeu{lc=Bool, Ti=Te}
Type variables in C do not overlap
[Fec:TclCec THe:TilCt ThHee:TelCe CTIe
[~ ifecthenetelseee : Tt C

Constraint-Based Typing

[t :T1—2 T Tt TH
[Ftito: T

Type Variables in FV(T2), FV(T4),C1, Cg2, t1, to and I don’t overlap
X gFV(T2), FV(T1),C1, Co, t1, t2 or I C=CiuCou{T1= T2 — X}

[t :T11C1 T H1:T21C
[Ft1t2: XIC

CTApp

Concept Check

What is the constrained type for:

AXX.AY:Y. Az Z. X (Y 2)

Implicit Type Annotations

* These rules gives us an algorithm for type reconstruction for an
expression e in the (unannotated) lambda calculus:

- Add a (fresh) type variable to every lambda term in e
- Use constraint-based typing rules to gather constraints
- Find a solution

* An alternative: Add a typing rule for unannotated lambda terms

XgTiorC [[XxPp X]Ht:T2IC
[AX.t: X=2T20C

CTABS

Solving Constraints

Note that this algorithm never fails: it always returns a set of
constraints:

- F(Ax:Bool.x)(Ay:Bool.y):%Z> | {Bool- Bool = Bool-Bool- Z-}
- FAX:X?. X X : X>-Z> | {X> = X 7>}

Step 2 is to find a solution to the results of constraint-based
rules

A solutionto [+ e:T | Cis a type S and a substitution Yy such
that Y is consistent with Candy T =S.

A substitution is consistent with a constraint if it applying
makes both sides of the equation exactly the same, i.e. unifies
them.

Solving Constraints

* Step 2 is to find a solution to the results of constraint-based
rules

* Asolutiontol —=e: T|Cisatype S and a substitution y
such that y is consistent with Candy T = S.

* A solution to:

)\X:X?.)\Y:Y?.)\Z:Z?. (X 2) (y 2) : X:»Y:»Z.-R:
| {X:=Z:-Q:, Y:=Z:»P:, Q:=P:-R:} is:

[X;» Z.-»P.-» R., Y, » Z.-» P>;] and the type
(Z2.-»P>» R?) - (Z:»P;) - Z; - R-.

Concept Check

* What is a solution to the constraints generated by:

(Ax: X2. Ay: Y,. if x then y + 1 else y)

Sensibility of Approach

Let’s take a step back and ask when this makes sense.
How does this relate to the original type system?

Theorem: Constraint typing is sound. Thatis, if ' —e: T 1 C,

then any solution S and y must also be a solution for I and
e.

Theorem: Constraint typing is complete. Thatis, if Sand y
are a solutionforeandland ' —e: T | C, then if y and the

type variables in C do not overlap, there must exist some
solution for the original typing derivation, y2 and S’.

Theorem: Constraint typing is sane: there is a solution to I
—e: T | Cif and only if there is a solution to I" and e.

