CS 456

Programming Languages Fall 2024

Week 6

Type Inference

Inference

★ How should we fill in these type annotations?

 λx : ... if x then x else false

 $\lambda x: \square$. $\lambda y: \square$. if x then y + 1 else y

 $(\lambda x: \square. \lambda y: \square. if x then y else y) true 1$

 $\lambda x: \square$. $\lambda y: \square$. if x then y else y

Type Inference

- More interesting question is how to avoid annotations if possible?
- * Today: A type inference algorithm infers the principal type of a term missing some type annotations.
 - ★ Such algorithms are key to OCaml's type system:

```
fold f acc [] = acc
fold f acc (x :: xs) = f x (fold f acc xs)
map (fun x -> x + 4) [1; 2]
```

Type Variables

★ First step: extend STLC with Type Variables:

```
n \in \mathbb{N} X_? \in TypeVariables
T ::= Nat | Bool | T \rightarrow T | X_?
t ::= x | \lambda x : T. t | t t | n | t + t
| true | false | if t then t else t
```

★ Typing rules and Operational Semantics are same as before:

$$\frac{\Gamma[x \mapsto T_1] \vdash t : T_2}{\Gamma \vdash \lambda x : T_1 . t : T_1 \rightarrow T_2} \quad \text{TABS}$$

Type Inference

- ★ Two ways to interpret a term with type variables:
 - 1. Are all instantiations well-typed terms?
 - $\lambda x: Y_? \rightarrow Bool. \ \lambda y: Y_?. \ x \ y: (Y_? \rightarrow Bool) \rightarrow Y_? \rightarrow Bool$
 - 2. Is some instantiation a well-typed term?
 - λx:X_?. λy: Y_?. x (x y) :
- ★ Represent 'missing' type annotations with Type Variables:
 - × λx. λy:Bool. **if** x y **then** false **else** true
 - √ λx:X_?. λy:Bool. **if** x y **then** false **else** true
- ★ Our Goal: Build a well-typed term by filling or substituting in concrete types for type variables:
 - * λx:Bool → Bool. λy:Bool. if x y then false else true

Type Substitution

- * A type substitution is a mapping, γ, from variables to types:
 - * [Y?→Bool, X?→Bool→Bool]
 - \star [X?→Bool→Bool, Y?→X?]
- ★ We apply a type substitution to a type T like so:

$$\gamma(X_?) \equiv T$$
 if $(X_? \mapsto T) \in \gamma$
 $\gamma(X_?) \equiv X_?$ if $X_? \not\in \gamma$
 $\gamma(Bool) \equiv Bool$ $\gamma(Nat) \equiv Nat$
 $\gamma(T_1 \rightarrow T_2) \equiv \gamma(T_1) \rightarrow \gamma(T_1)$

★ Examples Application:

$$(Y_? \rightarrow X_?)[X_? \mapsto Bool \rightarrow Bool, Y_? \mapsto Bool] \equiv Bool \rightarrow (Bool \rightarrow Bool)$$

 $(Y_? \rightarrow X_?)[X_? \mapsto Bool \rightarrow Bool, Y_? \mapsto X_?] \equiv X_? \rightarrow (Bool \rightarrow Bool)$

Type Substitution

Theorem: Type substitution preserves typing: for every type substitution γ , if $\Gamma \vdash e:T$, then $\gamma(\Gamma) \vdash \gamma(e):\gamma(T)$.

* A **solution** for a context Γ and term e is a type T and a substitution γ such that:

$$\gamma(\Gamma) \vdash \gamma(e) : \gamma(T)$$

- **\star** For the empty context, $\lambda x: X_{?}$. $\lambda y: Y_{?}$. x(xy), a solution is:
 - **Type**: $X_? \rightarrow Y_? \rightarrow Y_?$
 - **★ Substitution**: [X? →Y?→Y?]

Concept Check

* A solution for a context Γ and term e is a type T and a substitution γ such that:

$$\gamma(\Gamma) \vdash \gamma(e) : \gamma(T)$$

***** Can you find two solutions for the empty context and the term: $\lambda x: X_i$. $\lambda y: Y_i$. $\lambda z: Z_i$. if y then x z else z

Type Inference

Algorithm InferType(Γ, e_{in})

Input: Typing Context Γ, Untyped Lambda term ein

Output: Well-typed STLC term or ill-typed

- e₁ ← annotate all lambda abstractions in e_{in} with fresh Type Variables;
- 2. (T, ξ) ← calculate type and constraints that *any* solution for Γ and e₁ must satisfy
- 3. $\gamma \leftarrow$ find solution to ξ , or report none exists (\bot)
- 4. if $\gamma == \bot$ then return ill-typed
- 5. **return** $\gamma(\Gamma) \vdash \gamma(e_1) : \gamma(T)$

Type Inference

```
Since typing does not affect dynamic stuck if InferType returns a well-typed
                must satisfy
   Solution to \xi, or report none exists (\perp)
 4. if \gamma == \bot then return ill-typed
```

- ★ Key Idea₁: record a set of constraints about how variables are used, and figure out how to solve them later
- ★ Types constrain how things can be used:
 - ★ The condition of an if expression must have type bool
 - ★ Only expressions of type nat can be added together
- ★ Formally, we define a new typing algorithm with the following judgement:

$$\Gamma \vdash e : T \mid \emptyset$$

- ★ Here are the rules for this type system:
 - ★ Expressions which don't 'use' anything don't impose any new constraints:

 $\Gamma \vdash e_1 : nat \quad \Gamma \vdash e_2 : nat$ $\Gamma \vdash e_1 + e_2 : nat$

Standard rule
TADD

Constraintbased

$$\Gamma \vdash e_1 : T_1 \mid C_1 \quad \Gamma \vdash e_2 : T_2 \mid C_2$$

$$\Gamma \vdash e_1 + e_2$$
: nat $I C_1 \cup C_2 \cup \{T_1 = \text{nat}, T_2 = \text{nat}\}$

 $\Gamma \vdash e_c : Bool \quad \Gamma \vdash e_t : T \quad \Gamma \vdash e_e : T$

 $\Gamma \vdash \text{if } e_c \text{ then } e_t \text{ else } e_e : T$

Standard rule

TIF

Constraintbased

 $C = C_c \cup C_t \cup C_e \cup \{T_c = Bool, T_t = T_e\}$ Type variables in C do not overlap

 $\Gamma \vdash e_c : T_c \mathrel{\mid} C_c \qquad \Gamma \vdash e_t : T_t \mathrel{\mid} C_t \qquad \Gamma \vdash e_e : T_e \mathrel{\mid} C_e$

CTIF

 $\Gamma \vdash \text{if } e_c \text{ then } e_t \text{ else } e_e : T_t \mid C$

Standard rule

TAPP

 $\begin{array}{cccc}
\Gamma \vdash t_1 : T_1 \to T_2 & \Gamma \vdash t_2 : T_1 \\
\hline
\Gamma \vdash t_1 t_2 : T_2
\end{array}$

Constraintbased

Type Variables in $FV(T_2)$, $FV(T_1)$, C_1 , C_2 , t_1 , t_2 and Γ don't overlap $X \not\in FV(T_2)$, $FV(T_1)$, C_1 , C_2 , t_1 , t_2 or Γ $C = C_1 \cup C_2 \cup \{T_1 = T_2 \rightarrow X\}$

$$\Gamma \vdash t_1 : T_1 \mid C_1 \quad \Gamma \vdash t_2 : T_2 \mid C_2$$

 $\Gamma \vdash t_1 t_2 : X \mid C$

CTApp

Concept Check

What is the constrained type for:

 $\lambda x:X. \lambda y:Y. \lambda z:Z. x (y z)$

Implicit Type Annotations

- ★ These rules gives us an algorithm for type reconstruction for an expression e in the (unannotated) lambda calculus:
 - Add a (fresh) type variable to every lambda term in e
 - Use constraint-based typing rules to gather constraints
 - Find a solution
- * An alternative: Add a typing rule for unannotated lambda terms

$$X \notin T_1 \text{ or } C$$
 $\Gamma, [x \mapsto X] \vdash t : T_2 \mid C$ $\Gamma \vdash \lambda x.t : X \rightarrow T_2 \mid C$ CTABS

Solving Constraints

★ Note that this algorithm never fails: it *always* returns a set of constraints:

```
- \vdash (\lambda x:Bool.x)(\lambda y:Bool.y):Z_? \mid \{Bool \rightarrow Bool = Bool \rightarrow Bool \rightarrow Z_?\}
- \vdash \lambda x:X_?. x x : X_? \rightarrow Z_? \mid \{X_? = X_? \rightarrow Z_?\}
```

- ★ Step 2 is to find a solution to the results of constraint-based rules
 - ***** A solution to $\Gamma \vdash e:T \mid C$ is a type S and a substitution γ such that γ is **consistent** with C and $\gamma T = S$.
 - * A substitution is **consistent** with a constraint if it applying makes both sides of the equation exactly the *same*, i.e. unifies them.

Solving Constraints

- Step 2 is to find a solution to the results of constraint-based rules
 - ***** A solution to $\Gamma \vdash e$: T | C is a type S and a substitution γ such that γ is **consistent** with C and γ T = S.
- ★ A solution to:

```
\lambda x: X_?. \lambda y: Y_?. \lambda z: Z_?. (x z) (y z): X_? \rightarrow Y_? \rightarrow Z_? \rightarrow R_?
X_? = Z_? \rightarrow Q_?, Y_? = Z_? \rightarrow P_?, Q_? = P_? \rightarrow R_? is:
X_? \rightarrow Z_? \rightarrow P_? \rightarrow R_?, Y_? \rightarrow Z_? \rightarrow P_? and the type
X_? \rightarrow P_? \rightarrow R_? \rightarrow R_? \rightarrow R_?
```

Concept Check

★ What is a solution to the constraints generated by:

```
(\lambda x: X_?. \lambda y: Y_?. if x then y + 1 else y)
```

Sensibility of Approach

- ★ Let's take a step back and ask when this makes sense.
 - How does this relate to the original type system?
- ★ Theorem: Constraint typing is sound. That is, if Γ ⊢ e: T I C, then any solution S and γ must also be a solution for Γ and e.
- **Theorem**: Constraint typing is complete. That is, if S and γ are a solution for e and Γ and $\Gamma \vdash$ e: T | C, then if γ and the type variables in C do not overlap, there must exist some solution for the original typing derivation, γ_2 and S'.
- **Theorem**: Constraint typing is sane: there is a solution to Γ ⊢ e: T | C if and only if there is a solution to Γ and e.