CS 456

Programming Languages

Fall 2024

Week 7
Subtyping

Inclusion Polymorphism

- Polymorphism = allowing a single definition to be used with different types in
different contexts.

- Parametric polymorphism: behavior is the same for all instantiations (System F)

- Ad-hoc polymorphism: behavior is based on the type of its arguments
(overloading)

- One of the defining characteristics of Object-Oriented languages is their support
for inclusion polymorphism

- Inclusion polymorphism allows for code that needs at least a T in a context

A Calculus for Subtyping

sl
* Begin with a simple language for studying subtyping
* Key extension is Records (labeled products)

ti= xXIAXTtlIttlneNIlieRIt+1tl1...

| 1=t1, ..., In =1tn) & Records
| t.I < Projection

vi= AXTtlneNlieRId1=vl, ..., In=vn)
can be empty < >
T:=T—->TIRIN
| 1:T1, ..., In : Tn) < Record Types
| Top

A Calculus for Subtyping
2l
- Begin with a simple language for studying subtyping

- Key extension is Records (labeled products)

to=xIAXTHItt]L ... 1 A1=t1, ..., In =tn) & Records

|t.I < Projection
T:=T->TIRI...IN1:T1, ..., In:Tn) & Record Types

. Point = <x R, y R)

Dist =)\p:Point.\/p.x2 + p.y2
- Dist (x:2,y:2) —.'2.82...
. ColorPoint = (x R, y R, RN, G:N, B:\)

Subsumption

sy
*Would like this to typecheck:

Dist {x=2, y=2, R=0, G=140, B=255)

*Let’s extend existing type system!
*Key |ldea: the subsumption rule:

— Dist : Point 2@ R

[—t1:T1 Ti1< To
[—t1:T>

TSuUB

[(x=2, y=2, R=0, G=140, B=255) : ColorPoint

ColorPoint <: Point
[+~ (x=2, y=2, R=0, G=140, B=255) : Point

TSuUB

~ Dist : Point = R

— Dist (x=2, y=2, R=0, G=140, B=255) : R

Subsumption

Would like this to typecheck:
Dist (x=2, y=2, R=0, G=140, B=255)

[t :T1 Ti< To
[—t1:T>

TSuUB

How to define T | <:T2?

Substitutability: If T| <:T2,then any value of type T| must be usable in
every way a T2 is.

The difficulty is ensuring this is safe (i.e. doesn’t break type safety)!

Subtype Relation
S22

What key properties should a substitutability relation satisfy?
- Should be transitive:

S<T T<U
S<: U

STRANS

- And reflexive (not strictly necessary, but makes theory nicer)
SREFL

S<:S

- How to relate concrete types!?

SNUM

N <: R

Subtyping Records

What sorts of pairs of record types satisfy substitutability?
- A subtype should be able to add fields at the end:
X R, yvR RN) < xR,y R)

SBWIDTH
<|1:T1, “eny In:Tn, “eny |n+k:Tn+k> < <|1:T1, “euy |n:Tn>
- A subtype should be able to reorder fields:
y Rx:R) <:(xR,y R)
(k1:T4, ..., Kn:Tn) is a permutation of <I1:T1, ..., In:Th) S —

<|1:T1, "y In:Tn> <: <k1 :T1, "y kn:Tn>

Subtyping Records
o q

What sorts of pairs of record types satisfy substitutability?
A subtype should be able to add fields at the end:

: SBWIDTH
<|1:T1, " ey In:Tn, “euy |n+k:Tn+k> <. <|1:T1, “euy In:Tn>
A subtype should be able to reorder fields:
k1:T4, ..., Kn:Tn) is a permutation of <I1:T1, ..., In:Th)
SBPERM
A:Tq, oo, i Ty <o KeiTo, ..., Kt Th)
A subtype should be able to specialize field types:
xRy RRR) <:(x:Ry:R RN)
Tics SBDEPTH

<|1:T1, Ceay In:Tn> <: <|1:S1, “euy In:Sn>

Subtyping Functions

* Subtyping helps with our function application problem!

— Dist (x=2, y=2, R=0, G=140, B=255) : R suswioTH

[~ x=2, y=2, R=0, G=140, B=255) : ColorPoint ColorPoint <: Point
[+ (x=2, y=2, R=0, G=140, B=255) : Point

TSuUB

Subtyping Functions

- Subtyping helps with our function application problem™ ...
- What about this expression:

DlstMoved At:Point — Point. p:Point.
' IDist (t p) - Distp |

FI|p Ap:Point. (x = -(p.x), y = -(p.y)»

— DistMoved : (Point = Point) =& Point = R

— DistMoved Flip (x=2, y=2) : R
DistMoved Flip (x=2, y=2) —* 0

Subtyping Functions

- Subtyping helps with our function application problem™ ...
- What about this expression:

DlstMoved At:Point — Point. p:Point.
: IDist (t p) - Distp |

FllpGreen = A\p:Point.
' (X=-(p.X),y=-(p.y), R=0, G=255, B=0)

— DistMoved : (Point = Point) = Point = R
FlipGreen : (Point = ColorPoint)

~ DistMoved FlipGreen (x=2, y=2)

DistMoved FlipGreen (x=2, y=2) —"0

Subtyping Functions

- Subtyping helps with our function application problem™ ...
- What about this expression:

DlstMoved At:Point — Point. p:Point.
: IDist (t p) - Distp |

FllpGreen = Ap:Point.
' (x=-(p.x),y=-(p.y), R=0, G=255, B=0)

So< To
T1 = So<iT1— T

SB-ARROW:>

DistMoved FlipGreen {x=2, y=2)
— DistMoved FlipGreen (x=2, y=2) : R

Subtyping Functions

- Subtyping helps with our function application problem™ ...
- What about this expression:

DlstMoved At:Point — Point. p:Point.
IDist (t p) - Distp |

FllpGreener = \p:ColorPoint.
X=-(p.x),y=-(p.y), R=p.R, G=255, B=p.B)

DistMoved FlipGreener (x=2, y=2)

Subtyping Functions

- Subtyping helps with our function application problem®...
- What about this expression:

DlstMoved At:Point — Point. p:Point.
: IDist (t p) - Distp |

FllpGreener = \p:ColorPoint.
X=-(p.Xx),y=-(p.y), R=p.R, G=255, B=p.B)

T1<'S1 So< T
S12So<T1 = To

SB-ARROW

X DistMoved FlipGreener (x=2, y=2)

Subtyping Functions

- Subtyping helps with our function application problem™!
- What about this expression:

Dlstl\/lovedC At:ColorPoint — Point. p:ColorPoint.
IDist (t p) - Distp |

FllpGreener = Ap:ColorPoint.
X=-(p.Xx),y=-(p.y), R=p.R, G=255, B=p.B)

T1<'S1 So<iTo
S12So<Ti—To

DistMovedC Flip (x=2, y=2,R=0, G=0, B=0)
DistMovedC FlipGreen (x=2, y=2,R=0, G=0, B=0)
DistMovedC FlipGreener (x=2, y=2,R=0, G=0, B=0)

SB-ARROW

Variance
g ...
Variance is a property on the arguments of type constructors like
function types (A —B), tuples (AxB), and record types

F(A) is covariant over A if A<t A" implies that F(A) <t F(A")

F(B) is contravariant over B if B' <! B implies that F(B) < F(B')

F(T) is invariant over T otherwise

S1<T1 So<To
S1xSo<Tix To

SB-TUPLE

T1<'S1 So<iTo
S12So<Ti—=To

SB-ARROW

Classes Vs. Types

- A class provides implementations of an object's behavior
Subclassing inherits behavior and changes it via extension and
overriding

- A class also defines an interface (type) for its object’s type
A subtype is substitutable in terms of its field/method types

Inheritance Vs. Subtyping

- Consider three datatypes:
Queues: FIFO insertion and deletion
Stacks: LIFO insertion and deletion
Dequeues: insert/delete from rear/front
- A dequeue implementation provides both a stack and a queue:
Stack: only expose insert_front and delete front operations
Queue: only expose insert_rear and delete front operations

Neither a Stack nor a Queue is a Dequeue though!

Inheritance Vs. Subtyping

- These are separate concepts!
- Java confuses them by making subclasses be subtypes
- Inheritance is a mechanism for code reuse
- Subtyping is a mechanism for checking substitutability

