
Subtyping Week 9

CS 456

Programming Languages
Fall 2024

Week 8
Monads and Effects

Type Amplifiers
- Values are often specialized or encapsulated:
‣ An option type specializes a value to Some or None
‣ A ref type encapsulates a value within a memory container
‣ An exception type wraps a value around a computational effect
‣ A list type specializes a set of values around a choice action defined

by a list index
‣ An I/O operation consumes and returns a value in the context of

actions that modify a input/output stream
‣ ….

- Would like to reason about these types in the same way we reason
about types that are not container-ized

2

Maybe
A “safe” division operation:

let div x y = if y = 0 then None else Some (x / y)

But, can’t use this in the following:

let r = 1 + (4 div 2)

- The signature for “+” expects an int not an option
- Could change all arithmetic operations to accept an option type as
input.

3

Maybe
let plus_opt (x:int option) (y:int option) : int option =

 match x,y with

 | None, _ | _, None -> None

 | Some a, Some b -> Some (Stdlib.(+) a b)

let (+) = plus_opt

let minus_opt (x:int option) (y:int option) : int option =

 match x,y with

 | None, _ | _, None -> None

 | Some a, Some b -> Some (Stdlib.(-) a b)

let (-) = minus_opt

…

4

Better Approach
- Can we define an abstraction that refactors patterns common to
these definitions?

let propagate_none (op : int -> int -> int) (x : int option)

 (y : int option) =

 match x, y with

 | None, _ | _, None -> None

 | Some a, Some b -> Some (op a b)

let (+) = propagate_none Stdlib.(+)

let (-) = propagate_none Stdlib.(-)

let (*) = propagate_none Stdlib.(*)

val (+) : int option -> int option -> int option = <fun>

val (-) : int option -> int option -> int option = <fun>

5

A Better Approach
- Not quite right: abstraction doesn’t account for division which must
check the value of its second argument before applying the “unsafe”
division operator
let propagate_none

 (op : int -> int -> int option) (x : int option) (y : int option)

=

 match x, y with

 | None, _ | _, None -> None

 | Some a, Some b -> op a b

let wrap_output (op : int -> int -> int) (x : int) (y : int) : int option
= Some (op x y)

let div (x : int) (y : int) : int option =

 if y = 0 then None else wrap_output Stdlib.(/) x y

let (/) = propagate_none div

6

Intuition

- Transformed operations on “unboxed” integer values to operate over
“boxed” Maybe objects
- Employed two basic transforms:
‣ Taking a regular unboxed integer and turning it into a Maybe

(wrapped with Some) - this is what wrapped_output does

‣ Factoring code to handle pattern-matching against None. This
involved upgrading/specializing functions that operate over integers
to instead accept inputs of type int option.

7

Monad
- Conversion from ordinary to/from option types is tedious
- Would like to wrap (i.e, amplify) computed values with the option
they are associated with
- Build a type constructor for this purpose:
 module type Monad = sig
 type ‘a t

 val return : ‘a -> ‘a t

 val bind : ‘a t -> (‘a -> ‘b t) -> ‘b t

 end

 let (>>=) m f = bind m f

- A monad defines a container
- return puts a value in that container
- bind takes a container that contains a value of type ‘a, a function
that takes a value of type ‘a and returns a container containing values
of type ‘b and returns that container

8

The Maybe Monad
9

module Maybe : Monad =
struct
 let return (x : int) : int option = Some x
 val return : int -> int option

 val bind : int option -> (int -> int option) -> int option

 let bind (x : int option) (op : int -> int option) : int option =

 match x with

 | None -> None

 | Some a -> op a

 let (>>=) = bind

end

Maybe Monad
let (+) (x : int option) (y : int option) : int option =

 x >>= fun a -> y >>= fun b -> return (Stdlib.(+) a b)

let (-) (x : int option) (y : int option) : int option =

 x >>= fun a -> y >>= fun b -> return (Stdlib.(-) a b)

let (*) (x : int option) (y : int option) : int option =

 x >>= fun a -> y >>= fun b -> return (Stdlib.(*) a b)

let (/) (x : int option) (y : int option) : int option =

 x >>= fun a -> y >>= fun b ->

 if b = 0 then None else return (Stdlib.(/) a b)

10

Maybe Monad
- Further simplification:
let upgrade_binary op x y =

 x >>= fun a ->

 y >>= fun b ->

 op a b

let return_binary op x y = return (op x y)

let (+) = upgrade_binary (return_binary Stdlib.(+))

let (-) = upgrade_binary (return_binary Stdlib.(-))

let (*) = upgrade_binary (return_binary Stdlib.(*))

let (/) = upgrade_binary div

val upgrade_binary :

 (int -> int -> int option) -> int option -> int option -> int option = <fun>

val return_binary : ('a -> 'b -> int) -> 'a -> 'b -> int option = <fun>

11

Maybe Monad
module Maybe : Monad = struct
 type 'a t = 'a option

 let return x = Some x

 let (>>=) m f =
 match m with
 | None -> None
 | Some x -> f x
end

12

The State Monad
Consider the function:
 let f v s = let (b, x) = g v s in
 let (c, y) = h (b + 1) x in

 let (d, z) = i (c + 1) y

 in (d, z)

 Suppose we model a state as a record: { s1 : int; s2 : int } and

 - g1 = fun v s -> let {s1 = s1; s2 } = s in (s1, {s1 = s1 + v, s2})

 - h1 = fun v s -> let {s1; s2 = s2} = s in (s2, {s1; s2 = s2 + v})

 - i1 = fun v s -> let {s1 = s1; s2 = s2} = s in
 (s1 + s2, {s1 = s1 + v; s2 = s2 + v})

Then f1 0 { s1 = 0; s2 = 0} yields (2, {s1 = 2; s2 = 2})

g1, h1, and i1 given a value and a state, returns a new value, and a
new state. In other words, they encapsulate a state transformer.

13

The State Monad
So,
let f v s = let (b, x) = g v s in

 let (c, y) = h (b + 1) x in

 let (d, z) = i (c + 1) y

 in (d, z)

following the design pattern we used for the Maybe monad, we can
express this function monadically as:
let f v = (g v) >>= fun b ->

 (h (b + 1)) >>= fun c ->

 (i (c + 1)) >>= fun z -> return z

What does (f 0) return? It returns a computation that when
applied to an initial state, executes the sequence of calls to g, h,
and i, threading the state appropriately.

14

The State Monad
15

module State : Monad = struct

 type state (* the record {s1; s2} *)

 type 'a t = state -> ‘a * state

 (* a state monad is a container over a state transition function *)

 (* in our example, these are the functions g, h, and i after they have

 been applied to an initial value. *)

 val return: ‘a -> ‘a t

 let return x = fun s -> (x, s)

 val bind: ‘a t -> (‘a -> ‘b t) -> ‘b t

 let bind s f =

 fun state ->

 (* apply the supplied state transition function *)

 let (a, s’) = s state in

 (* generate a new state transition function and value *)

 let (b, s’’) = f a s’ in

 (b, s’’)

end

The State Monad

 (g v) >> fun b -> <rest of computation> ==>

 bind (g v) (fun b -> <rest of computation> ==>

 returns a function that when applied to state, applies (g v)
 (i.e, fun s -> let {s1 = s1; s2 } = s in (s1, {s1 = s1 + v, s2}))

to state, and then applies (fun b -> <rest of computation>) to s1 and
the new state {s1 = s1 + v, s2}

16

val bind: ‘a t -> (‘a -> ‘b t) -> ‘b t

 let bind s f =

 fun state ->

 (* apply the supplied state transition function *)

 let (a, s’) = s state in

 (* generate a new state transition function and value *)

 let (b, s’’) = f a s’ in

 (b, s’’)

end

let f v = (g v) >>= fun b ->

 (h (b + 1)) >>= fun c ->

 (i (c + 1)) >>= fun z -> return z

The State Monad
let f v = (g v) >>= fun b ->

 (h (b + 1)) >>= fun c ->

 (i (c + 1)) >>= fun z -> return z

The effect of bind in the state monad is to return a computation that
when supplied an initial state, performs the effects on that state as
defined by g, h, and i. If we define:
 let run comp = comp {s1 = 0; s2 = 0}
then
 run (f 0)
executes the computation. In other words, bind allows us to
compose a sequence of state-manipulating computations and returns
a function that executes these computations when given an initial
state.

17

Functors
- Ordinary computations operate over values (e.g., 2 + 3 = 5)

- Values often reside in containers or boxes (e.g., an option box)

- Cannot directly apply a value that is wrapped in a context

- First step:

‣ An operation that applies a function to values wrapped in a context

 module type Functor = sig
 type ‘a t

 val fmap : (‘a -> ‘b) -> ‘a t -> ‘b t

 end

 An instance of this structure:
 module MaybeFunctor : Functor = struct
 type ‘a t = ‘a option

 let fmap f x = match x with

 | None -> None

 | Some y -> Some (f y)

 end

18

Applicative Functors
- Both functions and values can be wrapped in a context (e.g.,
a state transition function)
- An applicative functor handles the application of a function
wrapped in a context to a value wrapped in a context

 module type Applicative = sig
 include Functor

 val pure : ‘a -> ‘ a t (* wraps a value into a context *)

 val apply : (‘a -> ‘b) t -> ‘a t -> ‘b t

 end

19

Applicative Functors
module OptionApplicative : Applicative =
struct
 type ‘a t = ‘a option
 let pure x = Some x

 let apply fo xo =
 match fo, xo with
 | Some f, Some x -> Some (f x)
 | _ -> None
end

20

Monads
- Apply a function that returns a wrapped value to a wrapped
value.
- The bind operator provides this functionality
Example:
 let half x = if (even x)
 then Some (x / 2)
 else None
Now,
 (Some 10) Maybe.>>= half —-> Some 5
 (Some 10) Maybe.>>
 half Maybe.>>=
 half ——> None

21

References

OCaml Programming:

 https://cs3110.github.io/textbook/chapters/ds/monads.html

Of Course ML Has Monads:
https://existentialtype.wordpress.com/2011/05/01/of-course-ml-has-monads/

Understanding Monads (Haskell)
https://en.wikibooks.org/wiki/Haskell/Understanding_monads

22

https://cs3110.github.io/textbook/chapters/ds/monads.html
https://existentialtype.wordpress.com/2011/05/01/of-course-ml-has-monads/

