
CS 565

Programming Languages (graduate)
Spring 2025

Week 1
Introduction, Functional Programming, Datatypes

Administrivia
2

Instructor: Suresh Jagannathan
Office Hours: MW, 11am - 12pm (LWSN 3154J)
TA: Songlin Jia
Office Hours: Tuesday 11 am - 12 pm (remote)

Who:

LWSN B151Where:
January 13 - May 2, 2025
MWF 12:30pm - 1:20pm When:

Discussion Board: Piazza
Homeworks and Quizzes: Brightspace and Gradescope

https://piazza.com/class/lqva01t0ish656/

Structure and Grading
3

Lectures
• In-person lectures

Homeworks (35%)
• Approximately 7 over the course of the semester
• Typically 2 weeks to complete
• Involves programming and proving in Coq and Dafny

Quizzes (10%)
• Once a week
• Short answer, multiple-choice on Gradescope
• Covers material covered in lecture

• Evening exam (paper)
• March 13, 8 - 9:30 PM, HAMP 1144

• Paper

Midterm (25%)

Final (30%)

Textbooks
4

Software Foundations

Additional Resources
• Types and Programming Languages

(Pierce, 2002 MIT Press)
• Certified Programming with Dependent Types

(Chlipala, eBook)

 Program Proofs

http://softwarefoundations.cis.upenn.edu
https://mitpress.mit.edu/9780262546232/program-proofs/

How
Should be familiar with:
‣ Programming in a high-level language

(Python, Java, Rust, Haskell, OCaml, …)
‣ Basic logic and proofs techniques
 sets, relations, functions, …
‣ Basic data structures and algorithms
Participate!
Think before you prove!

5

to succeed

in CS 565

What
6

You The Machine

}Describe

Pr
og

ra
m

m
in

g
La

ng
ua

ge

}Implement

The focus in this class

What
7

COQ Proof Assistant:
★ Generate and Check Proofs
★ Web Page: coq.inria.fr

Verifier-Aware
Programming Language

★ Write programs along with specifications that are
automatically verified

★ Web Page: dafny.org

Learning Outcome: Formalize and rigorously reason about
programming languages, abstractions, and programs using
these tools

(Now known as Rocq)

Why?
8

The striking thing about our CompCert results is that the middle-end bugs we found in all other
compilers are absent. As of early 2011, the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task.
The apparent unbreakability of CompCert supports a strong argument that developing compiler
optimizations within a proof framework, where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

Other Compilers: 325
CompCert: <10 (in unverified front-end)

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

IronFleet: Proving Practical Distributed Systems Correct
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,

Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research

Abstract
Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs a priori,
but verification has historically been difficult to apply at full-
program scale, much less distributed-system scale.

We describe a methodology for building practical and
provably correct distributed systems based on a unique blend
of TLA-style state-machine refinement and Hoare-logic ver-
ification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification, as well as de-
sirable liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. Introduction
Distributed systems are notoriously hard to get right. Protocol
designers struggle to reason about concurrent execution on
multiple machines, which leads to subtle errors. Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract proto-
col descriptions and practical constraints, e.g., that real logs
cannot grow without bound. Thorough testing is considered
best practice, but its efficacy is limited by distributed systems’
combinatorially large state spaces.

In theory, formal verification can categorically eliminate
errors from distributed systems. However, due to the com-
plexity of these systems, previous work has primarily fo-
cused on formally specifying [4, 13, 27, 41, 48, 64], verify-
ing [3, 52, 53, 59, 61], or at least bug-checking [20, 31, 69]
distributed protocols, often in a simplified form, without
extending such formal reasoning to the implementations.
In principle, one can use model checking to reason about
the correctness of both protocols [42, 59] and implemen-
tations [46, 47, 69]. In practice, however, model checking
is incomplete—the accuracy of the results depends on the
accuracy of the model—and does not scale [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815428

This paper presents IronFleet, the first methodology for
automated machine-checked verification of the safety and
liveness of non-trivial distributed system implementations.
The IronFleet methodology is practical: it supports complex,
feature-rich implementations with reasonable performance
and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementation
of a distributed system meets a high-level, centralized spec-
ification. For example, a sharded key-value store acts like
a key-value store, and a replicated state machine acts like
a state machine. This guarantee categorically rules out race
conditions, violations of global invariants, integer overflow,
disagreements between packet encoding and decoding, and
bugs in rarely exercised code paths such as failure recov-
ery [70]. Moreover, it not only rules out bad behavior, it tells
us exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform
incorrect actions; e.g., replicated-state-machine linearizabil-
ity says that clients never see inconsistent results. A liveness
property says that the system eventually performs a useful
action, e.g., that it eventually responds to each client request.
In large-scale deployments, ensuring liveness is critical, since
a liveness bug may render the entire system unavailable.

IronFleet takes the verification of safety properties further
than prior work (§9), mechanically verifying two full-featured
systems. The verification applies not just to their protocols
but to actual imperative implementations that achieve good
performance. Our proofs reason all the way down to the
bytes of the UDP packets sent on the network, guaranteeing
correctness despite packet drops, reorderings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our
knowledge, IronFleet is the first system to mechanically
verify liveness properties of a practical protocol, let alone an
implementation.

IronFleet achieves comprehensive verification of complex
distributed systems via a methodology for structuring and
writing proofs about them, as well as a collection of generic
verified libraries useful for implementing such systems. Struc-
turally, IronFleet’s methodology uses a concurrency contain-
ment strategy (§3) that blends two distinct verification styles
within the same automated theorem-proving framework, pre-
venting any semantic gaps between them. We use TLA-style
state-machine refinement [36] to reason about protocol-level
concurrency, ignoring implementation complexities, then use
Floyd-Hoare-style imperative verification [17, 22] to reason

IronFleet: Proving Practical Distributed Systems Correct
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,

Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill
Microsoft Research

Abstract
Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs a priori,
but verification has historically been difficult to apply at full-
program scale, much less distributed-system scale.

We describe a methodology for building practical and
provably correct distributed systems based on a unique blend
of TLA-style state-machine refinement and Hoare-logic ver-
ification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification, as well as de-
sirable liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. Introduction
Distributed systems are notoriously hard to get right. Protocol
designers struggle to reason about concurrent execution on
multiple machines, which leads to subtle errors. Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract proto-
col descriptions and practical constraints, e.g., that real logs
cannot grow without bound. Thorough testing is considered
best practice, but its efficacy is limited by distributed systems’
combinatorially large state spaces.

In theory, formal verification can categorically eliminate
errors from distributed systems. However, due to the com-
plexity of these systems, previous work has primarily fo-
cused on formally specifying [4, 13, 27, 41, 48, 64], verify-
ing [3, 52, 53, 59, 61], or at least bug-checking [20, 31, 69]
distributed protocols, often in a simplified form, without
extending such formal reasoning to the implementations.
In principle, one can use model checking to reason about
the correctness of both protocols [42, 59] and implemen-
tations [46, 47, 69]. In practice, however, model checking
is incomplete—the accuracy of the results depends on the
accuracy of the model—and does not scale [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815428

This paper presents IronFleet, the first methodology for
automated machine-checked verification of the safety and
liveness of non-trivial distributed system implementations.
The IronFleet methodology is practical: it supports complex,
feature-rich implementations with reasonable performance
and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementation
of a distributed system meets a high-level, centralized spec-
ification. For example, a sharded key-value store acts like
a key-value store, and a replicated state machine acts like
a state machine. This guarantee categorically rules out race
conditions, violations of global invariants, integer overflow,
disagreements between packet encoding and decoding, and
bugs in rarely exercised code paths such as failure recov-
ery [70]. Moreover, it not only rules out bad behavior, it tells
us exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform
incorrect actions; e.g., replicated-state-machine linearizabil-
ity says that clients never see inconsistent results. A liveness
property says that the system eventually performs a useful
action, e.g., that it eventually responds to each client request.
In large-scale deployments, ensuring liveness is critical, since
a liveness bug may render the entire system unavailable.

IronFleet takes the verification of safety properties further
than prior work (§9), mechanically verifying two full-featured
systems. The verification applies not just to their protocols
but to actual imperative implementations that achieve good
performance. Our proofs reason all the way down to the
bytes of the UDP packets sent on the network, guaranteeing
correctness despite packet drops, reorderings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our
knowledge, IronFleet is the first system to mechanically
verify liveness properties of a practical protocol, let alone an
implementation.

IronFleet achieves comprehensive verification of complex
distributed systems via a methodology for structuring and
writing proofs about them, as well as a collection of generic
verified libraries useful for implementing such systems. Struc-
turally, IronFleet’s methodology uses a concurrency contain-
ment strategy (§3) that blends two distinct verification styles
within the same automated theorem-proving framework, pre-
venting any semantic gaps between them. We use TLA-style
state-machine refinement [36] to reason about protocol-level
concurrency, ignoring implementation complexities, then use
Floyd-Hoare-style imperative verification [17, 22] to reason

SOSP’15

matical integers to abstract node identifiers. In the proof, we
must show that removing an element from the concrete map
has the same effect on the abstract version.

To simplify such tasks, we have built a generic library for
reasoning about refinement between common data structures,
such as sequences and maps. Given basic properties about
the relationship between the concrete types and the abstract
types, e.g., that the function mapping concrete map keys to
abstract maps keys is injective, the library shows that various
concrete map operations, such as element lookup, addition,
and removal, refine the corresponding abstract operations.
Marshalling and parsing. All distributed systems need to
marshal and parse network packets, a tedious task prone to
bugs. Both tasks necessarily involve significant interaction
with the heap, since packets are ultimately represented as ar-
rays of bytes. Unfortunately, even state-of-the-art verification
tools struggle to verify heap operations (§6.2). Hence, we
have written and verified a generic grammar-based parser and
marshaller to hide this pain from developers. For each dis-
tributed system, the developer specifies a high-level grammar
for her messages. To marshal or unmarshal, the developer
simply maps between her high-level structure and a generic
data structure that matches her grammar. The library handles
the conversion to and from a byte array.

As evidence for the library’s utility, we initially wrote
an IronRSL-specific library. This took a person-month, and
relatively little of this code would have been useful in other
contexts. Dissatisfied, we built the generic library. This
required several more weeks, but given the generic library,
adding the IronRSL-specific portions only required two hours;
the IronKV-specific portions required even less.
Collection Properties. Another common task for distributed
systems is reasoning about properties of sequences, sets,
maps, etc. For instance, many IronRSL operations require
reasoning about whether a set of nodes form a quorum.
Thus, we have developed a library proving many useful
relationships about such collections. For example, one lemma
proves that if two sets are related by an injective function,
then their sizes are the same.

6. Lessons Learned
We summarize additional lessons we learned, beyond us-
ing invariant quantifier hiding (§3.3) and always-enabled ac-
tions (§4.2), useful for future developers of verified systems.

6.1 Use the Set of Sent Messages in Invariants
The IronFleet network model is monotonic: once a message
is sent, it is kept in a ghost state variable forever. This is
necessary to prove that the system behaves correctly even
if the network delivers messages arbitrarily late. Since the
set of messages can only grow, it is often easy to prove
invariants about it. In contrast, an invariant that reasons over
mutable host state is harder to prove. Thus, where possible,
it is useful to have invariants be properties only of the set of
messages sent so far, as is often done in proofs of security for

cryptographic protocols [8]. Essentially, the system’s network
model provides this set as a free “history variable” [1].

6.2 Model Imperative Code Functionally
Verifying imperative code is challenging compared with
verifying purely functional code, even when using a state-
of-the-art tool like Dafny that is designed for imperative
programs (§2.2). Thus, we found it profitable to implement
the system in two stages. First, we develop an implementation
using immutable value (functional) types and show that it
refines the protocol layer. Avoiding heap reasoning simplifies
the refinement proof, but, it produces a slow implementation,
since it cannot exploit the performance of heap references.
In the second stage, we replace the value types with mutable
heap types, improving performance while solving only a
narrow verification problem.

We apply this pattern in building IronRSL and IronKV;
e.g., the functional implementation manipulates IP addresses
as value types and the performant one uses references to OS
handles. This strategy takes advantage of Dafny’s support for
mixing functional programming and imperative programming
styles: we can first run the functional code and measure its
performance, then optimize the performance-critical sections
into imperative heap-based code as needed. Using a language
without good functional programming support (such as C)
would have made it harder to pursue this strategy.

6.3 Use Automation Judiciously
Automated verification tools reduce the human effort needed
to complete a proof, but they often require additional guid-
ance from the developer in order to find a proof, or, equally
importantly, to find a proof in a reasonable amount of time.

6.3.1 Automation Successes
In many cases, Dafny’s automated reasoning allows the
developer to write little or no proof annotation. For instance,
Dafny excels at automatically proving statements about linear
arithmetic. Also, its heuristics for dealing with quantifiers,
while imperfect, often produce proofs automatically.

Dafny can also prove more complex statements auto-
matically. For instance, the lemma proving that IronRSL’s
ImplNext always meets the reduction-enabling obligation
consists of only two lines: one for the precondition and one
for the postcondition. Dafny automatically enumerates all ten
possible actions and all of their subcases, and observes that
all of them produce I/O sequences satisfying the property.

Similarly, automated reasoning allows many invariant
proofs to be quite brief, by reasoning as follows: If the invari-
ant about a host’s state holds in step i but not i+1, the host
must have taken some action. However, none of the actions
can cause the invariant to stop holding. Typically, this last
part requires no proof annotation as the verifier can internally
enumerate all cases, even for IronRSL with its many compli-
cated actions. Sometimes the verifier cannot handle a tricky
case automatically, in which case the developer must insert

Foundations:
★ Functional Programming
★ Polymorphism and Higher-Order Programming
★ Propositions, Evidence, and Relations

Programming Language Semantics:
★ Operational Semantics
★ Denotational Semantics

Types:
★ Type Soundness
★ Simply-Typed Lambda Calculus, Subtyping
★ System F

Program Logics:
★ Hoare Logic (Axiomatic Semantics)
★ Separation Logic

Automated Program Verification
★ Verification-Aware Languages

What
9

Functional Programming
We’ll start our investigation by considering a small functional language
 - These languages tend to have a small core set of features
 - Datatypes, functions, and their application
 - Written in Gallina, the specification and programming language for
Coq

10

Definition double (n : nat) : nat := n + n.

Functions
- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

11

Definition double (n : nat) : nat := n + n.

Eval compute in (double 1). (* = 2 *)

Functions

Definition double (n : nat) : nat :=
plus n n.

Eval compute in (double 1). (* = 2 *)

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

12

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

Functions

Definition concat (s1 : string) (s2 : string)
 (s3 : string) :=

 append s1 (append s2 s3).
Eval compute in (concat "Hello" " " "World").

(* = "Hello World" *)

13

Functions

Definition concat (s1 s2 s3 : string) : string :=
 append s1 (append s2 s3).

Eval compute in (concat "Hello" " " "World").
(* = "Hello World" *)

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume value, produce value

14

Functions
- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume value, produce value
- Coq can automatically infer many type annotations

15

Definition concat s1 s2 s3 :=
 append s1 (append s2 s3).

Eval compute in (concat "Hello" " " "World").
(* = "Hello World" *)

Building Blocks
Given the following ingredients:
- bool: a datatype for booleans
- andb: logical and
- orb: logical or
- negb: logical negation

Define a boolean equality function

16

Definition eqb (b1 b2 : bool) : bool :=
 orb (andb b1 b2) (andb (negb b1) (negb b2)).

Algebraic Data Types
Enumerated types introduce nullary constructors:

17

Inductive bool : Type :=
| true : bool
| false : bool.

Algebraic Data Types
- Enumerated types are the simplest data types in Coq
- Type annotations can be inferred here as well

18

Inductive bool :=
| true
| false.

Algebraic Data Types
- Enumerated types are the simplest data types in Coq
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

19

Inductive bool :=
| true
| false.

Inductive weekdays :=
 | monday | tuesday | wednesday | thursday | friday
: weekdays.

Pattern Matching
- Pattern matching lets a program use values of a type
- Coq only permits total functions
 - A total function is defined on all values in its domain

20

Definition negb (b : bool) : bool :=
 match b with
 | true => false
 | false => true
 end.

Eval compute in (negb true). (* = false *)

Pattern Matching
- Pattern matching lets a program use values of a type
- Coq only permits total functions
 - A total function is defined on all values in its domain

21

Definition eqb (b1 b2 : bool) : bool :=
 match b1, b2 with
 | true, true => true
 | false, false => true
 | false, true => false
 | true, false => false
 end.

Pattern Matching
- Pattern matching lets a program use values of a type
- Coq only permits total functions
 - A total function is defined on all values in its domain

- Underscores are the wildcard pattern (don’t care)

22

Definition eqb (b1 b2 : bool) : bool :=
 match b1, b2 with
 | true, true => true
 | false, false => true
 | _, _ => false
 end.

Compound ADTs
- Can build new ADTs from existing ones:
 - A color is either black, white, or a primary color
 - Need to apply primary to something of type rgb
- ADTs are algebraic because they are built from a small set of
operators (sums of product).

23

Inductive rgb : Type := | red | green | blue.

Inductive color := | black | white
 | primary (p : rgb).

Eval compute in (primary red). (* = primary red *)

Pattern Matching2

- Patterns on compound types need to mention arguments
 - Can be a variable

24

Definition monochrome (c : color) : bool :=
 match c with
 | black => true
 | white => true
 | primary p => false
 end.

Pattern Matching2

- Patterns on compound types need to mention arguments
 - Can be a variable
 - Can be a pattern for the type of the argument

25

Definition isred (c : color) : bool :=
 match c with
 | black => false
 | white => false
 | primary red => true
 | primary _ => false
 end.

Concept Check
- How many colors are there?
- In general, each ADT defines an algebra whose operations are the
constructors

26

Inductive rgb : Type := | red | green | blue.

Inductive color := | black | white
 | primary (p : rgb).

Eval compute in (primary red). (* = primary red *)

Concept Check2

- Define a type for the ‘basic’ (h, a, and p) html tags:
 - A header should include a nat indicating its importance
 - The anchor tag should include a string for its destination
 - The paragraph doesn’t need anything extra

27

Inductive tag : Type :=
| h (importance : nat)
| a (href : string)
| p.

Concept Check2

- Define a pretty printer for opening a tag
 (* pp (h 1) = “<h1>” *) *)

- Assume we have a natToString function

28

Inductive tag : Type :=
| h (importance : nat)
| a (href : string)
| p.

Concept Check2

★ Define a pretty printer for opening a tag
★ (* pp (h 1) = “<h1>” *) *)
★ Assume we have a natToString function

29

Definition pp (t : tag) : string :=
 match t with
 | h i => concat "<h" (natToString i) “>”
 | a hr => concat ""
 | _ => “<p>"
 end.

So Far:
30

Inductive rgb : Type := | red | green | blue.

Inductive color := | black | white
 | primary (p : rgb).

rgb

color

Natural Numbers
31

Inductive nat : Type :=
| O
| S (n : nat).

nat

O

S O

O

S O

S (S O)

S (S (S O))

…

…

…

Functions
The interpretation of these constructors comes from how we use
them to compute:

32

Definition pred (n : nat) : nat :=
 match n with
 | O => O
 | S m => m
 end.

Inductive tickNat : Type :=
| stop
| tick (foo : tickNat).

Recursion

Fixpoint iseven (n : nat) : bool :=
???

Recursive functions use themselves in their definition

33

Recursion

Fixpoint iseven (n : nat) : bool :=
 match n with
 | O => true
 | S O => false
 | S (S m) => iseven m
 end.

Recursive functions use themselves in their definition

34

Recursion
Recursive functions use themselves in their definition

35

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n’ => S (plus n’ m)
 end.
Eval compute in (plus 2 3). (* = 5 *)

Recursion
Recursive functions use themselves in their definition

36

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n’ => S (plus n’ m)
 end.
Eval compute in (plus 2 3). (* = 5 *)
(* plus 2 5 = plus (S (S O)) (S (S (S O))) *)

Recursion
Recursive functions use themselves in their definition

37

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n’ => S (plus n’ m)
 end.
Eval compute in (plus 2 3). (* = 5 *)
(* plus (S (S O)) (S (S (S O))) =

S (plus (S O) (S (S (S O))))*)

Recursion
Recursive functions use themselves in their definition

38

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n’ => S (plus n’ m)
 end.
Eval compute in (plus 2 3). (* = 5 *)
(* S (plus (S O) (S (S (S O)))) =

S (S (plus O (S (S (S O)))))*)

Recursion
★ Recursive functions use themselves in their definition
★ Recall: functions need to be total

★Coq requires functions be structurally recursive

39

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n’ => S (plus n’ m)
 end.
Eval compute in (plus 2 3). (* = 5 *)
(* S (S (plus O (S (S (S O))))) =

S (S (S (S (S O)))) = 5 *)

Recursion
★ Recursive functions use themselves in their definition
★ Recall: functions need to be total

★Coq requires functions be structurally recursive

40

Fixpoint mult (n m : nat) : nat :=
 match n with
 | O => O
 | S n' => plus m (mult n' m)
 end.

Recursion
★ Recursive functions use themselves in their definition
★ Recall: functions need to be total

★Coq requires functions be structurally recursive

41

Fixpoint plus (n m : nat) : nat :=
 match n with
 | O => m
 | S n' => S (plus m n’)
 end. X

Putting it together: Syntax
42

 A ::= ℕ
 | A + A
 | A - A
 | A * A

 B ::= true
 | false
 | A = A
 | A ≤ A
 | ¬ B
 | B ⋀ B

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions:

Abstract Syntax
43

“1+2*3”
Concrete Syntax +

Abstract Syntax
Tree

1 *
2 3

Lexer
+

Parser

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Syntax in Coq
44

 A ::= ℕ
 | A + A
 | A - A
 | A * A

Inductive aexp : Type :=
 | ANum (a : nat)
 | APlus (a1 a2 : aexp)
 | AMinus (a1 a2 : aexp)
 | AMult (a1 a2 : aexp).

★ One constructor per rule
★ Nonterminal = inductive type being defined

Syntax in Coq
45

 B ::= true
 | false
 | A = A
 | A ≤ A
 | ¬ B
 | B ⋀ B

Inductive bexp : Type :=
 | BTrue
 | BFalse
 | BEq (a1 a2 : aexp)
 | BLe (a1 a2 : aexp)
 | BNot (b : bexp)
 | BAnd (b1 b2 : bexp).

Evaluation
46

+
Abstract Syntax

1 *
2 3

????
Meaning

7

Evaluation
47

Fixpoint aeval (a : aexp) : (* ?? *) :=
 match a with
 | ANum n => n
 | APlus a1 a2 => (aeval a1) + (aeval a2)
 | AMinus a1 a2 => (aeval a1) - (aeval a2)
 | AMult a1 a2 => (aeval a1) * (aeval a2)
 end.

★ The evaluator for axep is simply a recursive
function

Evaluation
48

Fixpoint aeval (a : aexp) : nat :=
 match a with
 | ANum n => n
 | APlus a1 a2 => (aeval a1) + (aeval a2)
 | AMinus a1 a2 => (aeval a1) - (aeval a2)
 | AMult a1 a2 => (aeval a1) * (aeval a2)
 end.

★ The evaluator for axep is simply a recursive
function

★ An evaluator for boolean expressions

Evaluation
49

Fixpoint beval (b : bexp) : bool :=
 match b with
 | BTrue => true
 | BFalse => false
 | BEq a1 a2 => eqb (aeval a1) (aeval a2)
 | BLe a1 a2 => leb (aeval a1) (aeval a2)
 | BNot b => negb (beval b)
 | BAnd b1 b2 => andb (beval b1) (beval b2)
 end.

