CS 565

Programming Languages (graduate)
Spring 2025

Week |
Introduction, Functional Programming, Datatypes

Administrivia
2)]

Who:

Instructor: Suresh Jagannathan
Office Hours: MW, 11am - 12pm (LWSN 3154)J)

TA: Songlin Jia
Office Hours: Tuesday 11 am - 12 pm (remote)

VWhere: LWSN BI5|

When- January 13 - May 2, 2025
MWF 12:30pm - 1:20pm

Discussion Board: Piazza
Homeworks and Quizzes: Brightspace and Gradescope

https://piazza.com/class/lqva01t0ish656/

Structure and Grading
e
“LeCtureS

* In-person lectures

Homeworks (35%)

* Approximately 7 over the course of the semester
* Typically 2 weeks to complete
* Involves programming and proving in Coq and Dafny

Quizzes (10%)

* Once a week
* Short answer, multiple-choice on Gradescope
 Covers material covered in lecture

Midterm (25%)
* Evening exam (paper)
* March 13,8 - 9:30 PM, HAMP 1 144

Final (30%)

* Paper

Textbooks

a e
Ty U= e) S iH
&& r -)

< >
(Rep ements == (Elements

Program Proofs

ront:

‘ront:

_
K. Rustan M. Leino

illustrated by Kaleb Leino

PROGRAM PROOFS

Additional Resources

- Types and Programming Languages
(Pierce, 2002 MIT Press)

- Certified Programming with Dependent Types
(Chlipala, eBook)

http://softwarefoundations.cis.upenn.edu
https://mitpress.mit.edu/9780262546232/program-proofs/

How

Should be familiar with: ‘?:Ge
> Programming in a high-level language
(Python, Java, Rust, Haskell, OCaml, ...)
> Basic logic and proofs techniques
sets, relations, functions, ...
> Basic data structures and algorithms
Participate!
Think before you prove!

What

The focus in this class

O
O)
O
-
c
Describe | 8 | Implement
O TS 2% @
> E >
A :
/N =
You S The Machine
ol

What

Proof Assistant:

* (Generate and Check Proofs

* Web Page: coq.inria.fr

(Now known as Rocq)

Verifier-Aware
Programming Language

* Write programs along with specifications that are
automatically verified

* Web Page: dafny.org

Learning Outcome: Formalize and rigorously reason about
programming languages, abstractions, and programs using
these tools

Why?

Other Compilers: 325

CompCert: <10 (in unverified front-end)

: The striking thing about our CompCert results is that the middle-end bugs we found in all other
i compilers are absent. As of early 2011, the under-development version of CompCert is the only:
: compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of
: trying: we have devoted about six CPU-years to the task.
: The apparent unbreakability of CompCert supports a strong argument that developing compiler :
: optimizations within a proof framework, where safety checks are explicit and machine-checked, has:

: tangible benefits for compiler users.

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

SOSP’15

IronFleet: Proving Practical Distributed Systems Correct

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill

Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs a priori,
but verification has historically been difficult to apply at full-
program scale, much less distributed-system scale.

We describe a methodology for building practical and
provably correct distributed systems based on a unique blend
of TLA-style state-machine refinement and Hoare-logic ver-
ification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification, as well as de-
sirable liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

Microsoft Research

In many cases, Dafny’s automated reasoning allows the
developer to write little or no proof annotation. For instance,
Dafny excels at automatically proving statements about linear
arithmetic. Also, its heuristics for dealing with quantifiers,
while imperfect, often produce proofs automatically.

Dafny can also prove more complex statements auto-
matically. For instance, the lemma proving that [ronRSL’s
ImplNext always meets the reduction-enabling obligation
consists of only two lines: one for the precondition and one
for the postcondition. Dafny automatically enumerates all ten
possible actions and all of their subcases, and observes that
all of them produce I/0 sequences satisfying the property.

What

Foundations:

* Functional Programming

* Polymorphism and Higher-Order Programming

* Propositions, Evidence, and Relations
Programming Language Semantics:

* Operational Semantics
* Denotational Semantics
Types:

* Type Soundness
* Simply-Typed Lambda Calculus, Subtyping
* System F

Program Logics:

* Hoare Logic (Axiomatic Semantics)
* Separation Logic

Automated Program Verification
* Verification-Aware Languages

Functional Programming

We'll start our investigation by considering a small functional language
- These languages tend to have a small core set of features
- Datatypes, functions, and their application

- Written in Gallina, the specification and programming language for
Cogq

(n :nat) : nat :=n +n.

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

double (n : nat) : nat :=n + n.

(double 1). (*

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

double (n : nat) : nat :=
plus n n.

(double 1).

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

concat (s1 : string) (s2 : string)
(s3 : string) :=
append s1 (append s2 s3).

(concat "Hello" " " "World").

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects
- Functions are applied to arguments

- Functions are pure: consume value, produce value

concat (: string) : string =
append s1 (append s2 s3).

(concat "Hello" " " "World").

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects
- Functions are applied to arguments

- Functions are pure: consume value, produce value
- Coq can automatically infer many type annotations

concat =
append s1 (append s2 s3).

(concat "Hello" " " "World").

Building Blocks

Given the following ingredients:
- bool: a datatype for booleans
- andb: logical and
- orb: logical or
- negb: logical negation
Define a boolean equality function

eqb (: bool) : bool =

orb (andb b1 b2) (andb (negb b1) (negb b2)).

Algebraic Data Types

Enumerated types introduce nullary constructors:

bool : Type =
| true : bool

| false : bool.

Algebraic Data Types

- Enumerated types are the simplest data types in Coq
- Type annotations can be inferred here as well

| true

| false.

Algebraic Data Types

- Enumerated types are the simplest data types in Coqg
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

| true
| false.

weekdays =
| monday | tuesday | wednesday | thursday | friday
. weekdays.

Pattern Matching

- Pattern matching lets a program use values of a type
- Coq only permits total functions
- A total function is defined on all values in its domain

negb (b : bool) : bool :=
b
| true => false
| false => true

(negb true).

Pattern Matching

- Pattern matching lets a program use values of a type
- Coq only permits total functions
- A total function is defined on all values in its domain

eqb (: bool) : bool :=
b1, b2
| true, true => true
| false, false => true

| false, true => false
| true, false => false

Pattern Matching

- Pattern matching lets a program use values of a type
- Coq only permits total functions

- A total function is defined on all values in its domain
- Underscores are the wildcard pattern (don’t care)

eqgb (: bool) : bool :=
b1, b2
| true, true => true

| false, false => true
| |, =>false

Compound ADTs

- Can build new ADTs from existing ones:
- A color is either black, white, or a primary color
- Need to apply primary to something of type rgb

- ADTs are algebraic because they are built from a small set of
operators (sums of product).

rgb : Type :=1red | green | blue.

color ;=1 black | white

| primary (p : rgb).

(primary red).

Pattern Matching?

- Patterns on compound types need to mention arguments
- Can be a variable

monochrome (c : color) : bool :=
C
| black => true
| white => true

| primary p => false

Pattern Matching?

- Patterns on compound types need to mention arguments
- Can be a variable
= Can be a pattern for the type of the argument

isred (c : color) : bool =
C
| black => false
| white => false

| primary red => true
| primary _ => false

Concept Check

- How many colors are there!

- In general, each ADT defines an algebra whose operations are the
constructors

rgb : Type :=1red | green | blue.

color :=1 black | white
| primary (p : rgb).

(primary red).

Concept Check?

- Define a type for the ‘basic’ (h, a, and p) html tags:
- A header should include a nat indicating its importance

- The anchor tag should include a string for its destination

- The paragraph doesn’t need anything extra

tag : Type =
| h (importance : nat)
| a (href : string)

| p.

Concept Check?

- Define a pretty printer for opening a tag
(* pp (h 1) ="<h1>"%) %)
- Assume we have a natToString function

tag : Type =
| h (importance : nat)
| a (href : string)

| p.

Concept Check?

Define a pretty printer for opening a tag
(" pp (h 1) ="<h1>"%) %)

Assume we have a natToString function

pp (t : tag) : string :=

t
| hi =>concat "<h" (natToString i) “>”
| a hr => concat ""
| _ =>"<p>"

So Far:

rgb : Type =1 red | green | blue.

color := | black | white

| primary (p : rgb).

asEEEEEN,

s '

L 3 "
.

Natural Numbers

Functions

The interpretation of these constructors comes from how we use
them to compute:

tickNat : Type =
| stop
| tick (foo : tickNat).

pred (n : nat) : nat ;=

n
|O=>0
|Sm=>m

Recursion

Recursive functions use themselves in their definition

(n : nat) : bool :=

Recursion

Recursive functions use themselves in their definition

(n : nat) : bool :=

n
| O => true

| S O => false
| S (S m) =>iseven m

Recursion

Recursive functions use themselves in their definition

. nat) : nat ;=
n
| O =>m

|Sn’"=>S (plus N’ m)

(plus23). (*=57%)

Recursion

Recursive functions use themselves in their definition

. nat) : nat ;=
n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3). (F=57)

(* plus 2 5 = plus (S (S 0)) (S (S (S O))) *)

Recursion

Recursive functions use themselves in their definition

(. nat) : nat ;=

n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3).
(" plus (S (S O)) (S (S (S
S (plus (S O) (S (S (S 0)))))

Recursion

Recursive functions use themselves in their definition

. nat) : nat ;=

n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3). (*

(S (plus (S O) (S (S (S O)))) =
S (S (plus O (S (S (S O)))*)

5 *)

Recursion

Recursive functions use themselves in their definition
Recall: functions need to be total
Coq requires functions be structurally recursive

. nat) : nat ;=

n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3). (* *)
(" S (S (plus O (S (S (S 0)))))
S(S(S(S(50))) =57

Recursion

Recursive functions use themselves in their definition
Recall: functions need to be total
Coq requires functions be structurally recursive

: nat) : nat =
n
|1O=>0

| S n' => plus m (mult n' m)

Recursion

* Recursive functions use themselves in their definition
* Recall: functions need to be total
* Coq requires functions be structurally recursive

: nat) : nat .=
n
| O =>m

| S n'=>S (plus m n’)

Putting it together: Syntax

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions:

B ::=true
A:=N false
A+ A A=A
A-A A<A
A*A - B
... —

Abstract Syntax
43 |

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Abstract Syntax
' Tree -

AN

Concrete Syntax LeJ>r<er
 142*3

1

Syntax in Coqg

LA = N aexp : Type =
| ANum (a : nat)
2 +:\ : | APlus (a1 a2 : aexp)
A . A | AMinus (a1 a2 : aexp)

| AMult (a1 a2 : aexp).

* One constructor per rule
* Nonterminal = inductive type being defined

Syntax in Coqg

: B ::= true bexp : Type =
. | false | BTrue
A=A | BFalse
~ 5 | BEq (a1 a2 : aexp)
A<A a

| BLe (a1 a2 : aexp)
- B | BNot (b : bexp)
B AB | BAnd (b1 b2 : bexp).

Evaluation

- Abstract Syntax :
1/ ™~
7N\

lll

Evaluation

The evaluator for axep is simply a recursive
function

aeval (a : aexp) :
a
| ANUm n =>n
| APlus a1 a2 => (aeval al) + (aeval a2)

| AMinus a1l a2 => (aeval al) - (aeval a2)
| AMult a1 a2 => (aeval al) * (aeval a2)

Evaluation

The evaluator for axep is simply a recursive
function

aeval (a :aexp) : nat =
a
| ANum n=>n
| APlus a1 a2 => (aeval al1) + (aeval a2)

| AMinus a1l a2 => (aeval al) - (aeval a2)
| AMult a1 a2 => (aeval al) * (aeval a2)

Evaluation

An evaluator for boolean expressions

beval (b : bexp) : bool :=
b
| BTrue => true
| BFalse => false
| BEg a1 a2 => eqb (aeval al) (aeval a2)

| BLe a1 a2 => leb (aeval al) (aeval a2)
| BNot b => negb (beval b)
| BAnd b1 b2 => andb (beval b1) (beval b2)

