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Today
2

- Generate the induction principle 
for inductive data types

- Prove properties of inductive data 
types using induction.



Proof By Case Analysis
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P Q R Formula
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

b1 && (b2 && b3) = (b1 && b2) && b3 

How would you justify the following claim?

b1 && (b2 && b3) = (b1 && b2) && b3 
Construct a truth table that enumerates all cases:



Proof By Case Analysis
How would you justify the following fact: 

Infinite number of cases here!
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For any three numbers n, m and p,  
      n + (m + p) = (n + m) + p. 



Proof By Induction
How would you justify the following fact: 

Proof: By induction on n.  
First, suppose n = 0.  
We must show:      0 + (m + p) = (0 + m) + p.  
This follows directly from the definition of addition.  

Next, suppose n = 1 + n', where n' + (m + p) = (n' + m) + p.  
We must show:     (1 + n') + (m + p) = ((1 + n') + m) + p.  
By the definition of +, this follows from 1 + (n' + (m + p)) = 1 + ((n' + m) + p),  
which is immediate from the induction hypothesis.   QED. 
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For any three numbers n, m and p,  
  n + (m + p) = (n + m) + p. 

Induction Hypothesis



Nat Induction
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Mathematical Induction for Natural Numbers:
For any predicate P on natural numbers, if:

1. P(0)
2. P(n) implies P(n+1)

Then:
   for all n, P(n) holds.



Induction
7

Inductive tree : Type := 
| leaf
| node (x : nat) (lt rt : tree).

Fixpoint insert  (cmp : nat -> nat -> bool) 
                           (t: tree) (x : nat) : tree  :=
  match t with
  | leaf => node x leaf leaf 
  | node y lt rt => if (cmp x y) then node y (insert cmp lt x) rt
                                 else node y lt (insert cmp rt y)
  end.
Fixpoint element (t : tree) (n : nat) : bool :=
  match t with
  | leaf => false
  | node y lt rt => 
        orb (eqb x y) (orb (element eqb lt x) (element eqb rt x))
  end.



Tree Induction
Works for trees too: 

         For any number n, and tree t 
         element (insert t n) n = true. 
Proof: By induction on t.  

First, suppose t = leaf.  
We must show:     element (insert leaf n) n = true.  
This follows directly from the definition of element. 
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Tree Induction
Works for trees too: 

          For any number n, and tree t 
          element (insert t n) n = true. 
Proof: By induction on t.  

Next, suppose t = node n' lt rt, where 
     element (insert lt n) n = true and element (insert rt n) n = true. 
We must show:     element (insert (node n' lt rt) n) n = true.  
By definition, this is equivalent to:  
       element (if (cmp n n') then node n' (insert cmp lt n) rt   
                                       else node y lt (insert cmp rt n) 
★ Consider the case when cmp n n’ = true. 
    We must show: element (node n' (insert cmp lt n) rt) n = true.  
    This follows from the IH. 
★ Consider the case when cmp n n’ = false. 
    We must show: element (node n' lt (insert cmp rt n)) n = true.  
    This follows from the IH.
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Induction Hypothesis



Tree Induction

Mathematical Induction for Binary Trees:
For any predicate Q on binary trees, if:

1. Q(leaf)
2. Q(t1) and Q(t2) implies Q(node n t1 t2)

Then:
   for all t, Q(t) holds.

Works for trees too:
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ADT Induction
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Principle of Mathematical Induction:
For any algebraic datatype T with constructors c1…cn, 
For any predicate Q on T, if:

1.  Q(v1) and Q(v2)  and … Q(vj) implies Q(c1 v1…vj)
2.  Q(v1) and Q(v2)  and … Q(vj) implies Q(c2 v1…vj)
      …
n.  Q(v1) and Q(v2)  and … Q(vj) implies Q(cn v1…vj)

Then:
   for all t, Q(t) holds.



Lists
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Inductive list {X : Type} : Type := 
| nil
| cons (x : X) (l : list).

Mathematical Induction for Lists:
For any predicate Q on lists, if:

1. Q(nil)
2. Q(l) implies Q(cons x l)

Then:
   for all l, Q(l) holds.

a list constructed by adding x 
to the head of l



Induction on syntax trees
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Inductive aexp : Type :=
  | ANum (a : nat) 
  | APlus (a1 a2 : aexp)
  | AMinus (a1 a2 : aexp)
  | AMult  (a1 a2 : aexp).
Fixpoint aexp_opt_zero (a : aexp) : aexp :=
  match a with
   | ANum n => ANum n
   | APlus (ANum 0) e2 => aexp_opt_plus e2
   | APlus e1 e2 => APlus (aexp_opt_plus e1) (aexp_opt_plus e2)
   | AMinus e1 e2 => AMinus (aexp_opt_plus e1) (aexp_opt_plus e2)
   | AMult e1 e2 => AMult (aexp_opt_plus e1) (aexp_opt_plus e2)
  end.



Induction on syntax trees
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Theorem aexp_opt_zero_sound
  : forall a, aeval (aexp_opt_zero a) = aeval a.
Proof.
  induction a.
  - …
  - …
Qed.

- Works for abstract syntax trees too!

- Using ADT induction, we can prove in Coq: 


