CS 565

Programming Languages (graduate)

Spring 2025

Week 2
Induction

- Generate the induction principle
for inductive data types

- Prove properties of inductive data
types using induction.

Proof Bz Case Analzsis
3

How would you justify the following claim?

b1 && (b2 && b3) = (b1 && b2) && b3

Construct a truth table that enumerates all cases:

Formula

T

o

e e B R R N R
M M| d /4 |T |7 A)
M [T | A |7 AT e

A 4 A4

Proof By Case Analysis
4

How would you justify the following fact:

For any three numbers n, m and p,
n+(m+p)=(n+m)+p.

Infinite number of cases here!

Proof By Induction

How would you justify the following fact:
For any three numbers n, m and p,

n+(m+p)=(n+m)+p.

Proof: By induction on n.
First, suppose n = 0.
We must show: [0+ (m+ p)=(0+m)+p.
This follows directly from the definition of addition. /

Next, suppose n =1+ n', where n'+ (m + p) = (n' + m) + p.
We must show: [(1 +n')+ (m+p)=((1+n')+m)+p.
By the definition of +, this follows from 1 + (n'+ (m + p)) =1+ ((n' + m) + p),
which is immediate from the induction hypothesis. QED.

Induction Hypothesis

Nat Induction

Mathematical Induction for Natural Numbers:
For any predicate P on natural numbers, if:

. P(0)

2. P(n) implies P(n+1)
Then:
for all n, P(n) holds.

Induction

tree : Type =
| leaf
| node (x : nat) (It rt : tree).

(: nat -> nat -> bool)
(t: tree) (x : nat) : tree =
t
| leaf => node x leaf leaf
| node y It rt =>if (cmp xy) node y (insert cmp It x) rt
node y It (insert cmp rt y)

(t : tree) (n : nat) : bool =

t
| leaf => false
| node y It rt =>
orb (egb x y) (orb (element egb It x) (element egb rt x))

Tree Induction
...,

Works for trees too:
For any number n, and tree t

element (insert t n) n = true.

Proof: By induction on t.
First, suppose t = leaf.
We must show: ‘ element (insert leaf n) n = true.
This follows directly from the definition of element.

Tree Induction

Works for trees too:

For any number n, and tree t

element (insert t n) n = true.
Proof: IT_y induction on t.

Induction Hypothesis

Next, [suppose t = node n' It rt] where
element (insert It n) n = true and element (insert rt n) n = true.
We must show: ‘element (insert (node n' lt rt) n) n = true.‘

By definition, this is equivalent to:
element (if (cmp n n') then node n' (insert cmp It n) rt
else node y It (insert cmp rt n)
» Consider the case when cmp n n’ = true.

We must show: element (node n' (insert cmp It n) rt) n = true.
This follows from the IH.
» Consider the case when cmp n n’ = false.

We must show: element (node n' It (insert cmp rt n)) n = true.
This follows from the |IH.

Tree Induction
10 |
Works for trees too:

Mathematical Induction for Binary Trees:
For any predicate Q on binary trees, if:

|. Q(leaf)

2. Q(t1) and Q(t2) implies Q(node n t t2)
Then:
for all t, Q(t) holds.

ADT Induction

Principle of Mathematical Induction:
For any algebraic datatype T with constructors c...cn,
For any predicate Q on T, if:
. Q(vi) and Q(v2) and ... Q(v;) implies Q(cj vi...V))
2. Q(vi) and Q(v2) and ... Q(vj) implies Q(c2vi...vj)

n. C.).(.w) and Q(vz2) and ... Q(v;) implies Q(cn vi...vj)
Then:
for all t, Q(t) holds.

Lists

{X : Type} : Type :=
| nil
| cons (x : X) (I : list).

Mathematical Induction for Lists:

For any predicate Q on lists, ifs
|. Q(nil)

2. Q(l) implies Q(cons x |)
Then: T

a list constructed by adding x

for all I, Q(l) holds. to the head of |

Induction on syntax trees

aexp : Type =
| ANum (a : nat)
| APlus (a1 a2 : aexp)
| AMinus (a1 a2 : aexp)
| AMult (a1 a2 : aexp).

(a : aexp) : aexp =
a
| ANum n => ANum n
| APlus (ANum 0) e2 => aexp_opt_plus e2
| APlus e1 e2 => APlus (aexp_opt_plus e1) (aexp_opt_plus e2)
| AMinus e1 e2 => AMinus (aexp_opt_plus e1) (aexp_opt_plus e2)
| AMult e1 e2 => AMult (aexp_opt_plus el) (aexp_opt_plus e2)

Induction on syntax trees

- Works for abstract syntax trees too!

- Using ADT induction, we can prove in Coq:

a, aeval (aexp_opt_zero a) = aeval a.

d.

