
CS 565

Week 2
 Induction

Programming Languages (graduate)
Spring 2025

Today
2

- Generate the induction principle
for inductive data types

- Prove properties of inductive data
types using induction.

Proof By Case Analysis
3

P Q R Formula
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

b1 && (b2 && b3) = (b1 && b2) && b3

How would you justify the following claim?

b1 && (b2 && b3) = (b1 && b2) && b3
Construct a truth table that enumerates all cases:

Proof By Case Analysis
How would you justify the following fact:

Infinite number of cases here!

4

For any three numbers n, m and p,
 n + (m + p) = (n + m) + p.

Proof By Induction
How would you justify the following fact:

Proof: By induction on n.
First, suppose n = 0.
We must show: 0 + (m + p) = (0 + m) + p.
This follows directly from the definition of addition.

Next, suppose n = 1 + n', where n' + (m + p) = (n' + m) + p.
We must show: (1 + n') + (m + p) = ((1 + n') + m) + p.
By the definition of +, this follows from 1 + (n' + (m + p)) = 1 + ((n' + m) + p),
which is immediate from the induction hypothesis. QED.

5

For any three numbers n, m and p,
 n + (m + p) = (n + m) + p.

Induction Hypothesis

Nat Induction
6

Mathematical Induction for Natural Numbers:
For any predicate P on natural numbers, if:

1. P(0)
2. P(n) implies P(n+1)

Then:
 for all n, P(n) holds.

Induction
7

Inductive tree : Type :=
| leaf
| node (x : nat) (lt rt : tree).

Fixpoint insert (cmp : nat -> nat -> bool)
 (t: tree) (x : nat) : tree :=
 match t with
 | leaf => node x leaf leaf
 | node y lt rt => if (cmp x y) then node y (insert cmp lt x) rt
 else node y lt (insert cmp rt y)
 end.
Fixpoint element (t : tree) (n : nat) : bool :=
 match t with
 | leaf => false
 | node y lt rt =>
 orb (eqb x y) (orb (element eqb lt x) (element eqb rt x))
 end.

Tree Induction
Works for trees too:

 For any number n, and tree t
 element (insert t n) n = true.
Proof: By induction on t.

First, suppose t = leaf.
We must show: element (insert leaf n) n = true.
This follows directly from the definition of element.

8

Tree Induction
Works for trees too:

 For any number n, and tree t
 element (insert t n) n = true.
Proof: By induction on t.

Next, suppose t = node n' lt rt, where
 element (insert lt n) n = true and element (insert rt n) n = true.
We must show: element (insert (node n' lt rt) n) n = true.
By definition, this is equivalent to:
 element (if (cmp n n') then node n' (insert cmp lt n) rt
 else node y lt (insert cmp rt n)
★ Consider the case when cmp n n’ = true.
 We must show: element (node n' (insert cmp lt n) rt) n = true.
 This follows from the IH.
★ Consider the case when cmp n n’ = false.
 We must show: element (node n' lt (insert cmp rt n)) n = true.
 This follows from the IH.

9

Induction Hypothesis

Tree Induction

Mathematical Induction for Binary Trees:
For any predicate Q on binary trees, if:

1. Q(leaf)
2. Q(t1) and Q(t2) implies Q(node n t1 t2)

Then:
 for all t, Q(t) holds.

Works for trees too:
10

ADT Induction
11

Principle of Mathematical Induction:
For any algebraic datatype T with constructors c1…cn,
For any predicate Q on T, if:

1. Q(v1) and Q(v2) and … Q(vj) implies Q(c1 v1…vj)
2. Q(v1) and Q(v2) and … Q(vj) implies Q(c2 v1…vj)
 …
n. Q(v1) and Q(v2) and … Q(vj) implies Q(cn v1…vj)

Then:
 for all t, Q(t) holds.

Lists
12

Inductive list {X : Type} : Type :=
| nil
| cons (x : X) (l : list).

Mathematical Induction for Lists:
For any predicate Q on lists, if:

1. Q(nil)
2. Q(l) implies Q(cons x l)

Then:
 for all l, Q(l) holds.

a list constructed by adding x
to the head of l

Induction on syntax trees
13

Inductive aexp : Type :=
 | ANum (a : nat)
 | APlus (a1 a2 : aexp)
 | AMinus (a1 a2 : aexp)
 | AMult (a1 a2 : aexp).
Fixpoint aexp_opt_zero (a : aexp) : aexp :=
 match a with
 | ANum n => ANum n
 | APlus (ANum 0) e2 => aexp_opt_plus e2
 | APlus e1 e2 => APlus (aexp_opt_plus e1) (aexp_opt_plus e2)
 | AMinus e1 e2 => AMinus (aexp_opt_plus e1) (aexp_opt_plus e2)
 | AMult e1 e2 => AMult (aexp_opt_plus e1) (aexp_opt_plus e2)
 end.

Induction on syntax trees
14

Theorem aexp_opt_zero_sound
 : forall a, aeval (aexp_opt_zero a) = aeval a.
Proof.
 induction a.
 - …
 - …
Qed.

- Works for abstract syntax trees too!

- Using ADT induction, we can prove in Coq:

