
Week 4
 Propositions and Inductive Evidence

Programming Languages (graduate)
Spring 2025

CS 565

Propositions
2

A proposition is a factual claim.
Have seen a couple of propositions (in Coq) so far:
equalities: 0 + n = n
implications: P -> Q
universally quantified propositions: forall x, P

A proof is some evidence for the truth of a proposition
A proof system is a formalization of particular kinds of
evidence.

Propositions

★ We’ve already seen a number of propositions in Coq:

★

3

Theorem ProofExample
 : forall n m : nat, n = 0 -> m = 0 -> n + m = 0.
Proof.
 intros n m Hn Hm.
 rewrite Hn. rewrite Hm.
 reflexivity.
Qed.

Proposition

Evidence

Propositions
4

Check (2 = 2). (* : Prop *)
Check (3 = 2). (* : Prop *)
Check (3 = 2 -> 2 = 3). (* : Prop *)
Check (forall n: nat, n = 2). (* : Prop *)

Propositions
Propositions are first-class entities in Coq. Can name them:

We can also write parameterized propositions
(predicates)

5

Definition plus_claim : Prop := 2 + 2 = 4.
Theorem ProofExample : plus_claim.
Proof.
… (* unfold plus_claim*)

Definition is_three (n : nat) : Prop := n = 3.
Theorem ProofExample2 : is_three 3.
Proof.
… (* unfold is_three *)

Propositions
Can have polymorphic predicates:

Equality is a polymorphic binary predicate:

6

Definition injective {A B} (f : A -> B) : Prop :=
 forall x y : A, f x = f y -> x = y.
Theorem plus1_inj : injective (plus 1).
Proof.
… (* unfold injective *)

Check @eq. (* : ∀ A : Type, A → A → Prop *)

Concept Check
What is the type of the following expression?

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable

7

pred (S O) = O

Concept Check
What is the type of the following expression?

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable

8

∀ n:nat, pred (S n) = n

Concept Check
What is the type of the following expression?

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable

9

∀ n:nat, S (pred n) = n

Concept Check
What is the type of the following expression?

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable

10

∀ n:nat, S (pred n)

Concept Check
What is the type of the following expression?

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable

11

fun n:nat => S (pred n)

Concept Check
What is the type of the following expression?

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable

12

fun n:nat => S (pred n) = n

Proofs

Haven’t we already seen a bunch of proofs too?

What is a proof?

13

Theorem ProofExample
 : forall n m : nat, n = 0 -> m = 0 -> n + m = 0.
Proof.
 intros n m Hn Hm.
 rewrite Hn. rewrite Hm.
 reflexivity.
Qed.

proof script

formal
^

Judgement
14

A judgement is a claim of a proof system

The judgement is read as:
“assuming the propositions in Γ are true, A is true”.

We’ll see other judgements over the course of the
semester:

Γ ⊢A

Γ, A ⊢ B
Γ ⊢A → B

I→

Γ⊢A → B Γ⊢A
Γ ⊢B

E→

Inference Rules
15

Inference Rules

Proof systems construct evidence of judgements via
inference rules:

Γ⊢T

Axioms

Γ ⊢A
A ∈ Γ

Example Proof
16

A →(B → C) ∈ Γ A ∈ Γ A →B ∈ Γ A ∈ Γ
Γ ⊢ A →(B → C) Γ ⊢ A Γ ⊢ A →B Γ ⊢ A

Γ ⊢ B → C Γ ⊢ B
A → (B → C), A → B, A ⊢ C

A → (B → C), A → B ⊢A →C
A → (B → C)⊢(A → B) →(A →C)

⊢(A → (B → C)) → ((A → B) →(A →C))

Want a proof of:
⊢(A → (B → C)) → ((A → B) →(A →C))

Γ=

 Γ ⊢A Γ ⊢B
Γ ⊢A ⋀ B

I ⋀

Symbol Pushing
17

Γ⊢A ⋀ B
Γ⊢A

EL⋀

Γ⊢A ⋀ B
Γ⊢B

ER⋀

Inference Rules for ⋀

 Γ, A ⊢C Γ, B ⊢ C

Γ, A ∨ B ⊢C

E ∨

Example
18

Γ⊢A
Γ⊢A ∨B

IL⋀

Γ⊢B
Γ⊢A ∨ B

IR∨

Inference Rules for ∨

Introduction
Rules for Or?

 Γ, A ⊢C Γ, B ⊢ C

Γ, A ∨ B ⊢C

E ∨

Example
19

Γ⊢A
Γ⊢A ∨B

IL ∨

Γ⊢B
Γ⊢A ∨ B

IR∨

Inference Rules for ∨

Example
20

Can you derive:
 ⊢A → B → B ⋀ A

Γ, A ⊢ B
Γ ⊢A → B

I→
Γ⊢A → B Γ⊢A

Γ ⊢B

E→

 Γ ⊢A Γ ⊢B
Γ ⊢A ⋀ B

I ⋀

Proof

Haven’t we already seen a number of proofs?

What is a proof?
A proof tree in the Calculus of co-Inductive Constructions.

21

Theorem ProofExample
 : forall n m : nat, n = 0 -> m = 0 -> n + m = 0.
Proof.
 intros n m Hn Hm.
 rewrite Hn. rewrite Hm.
 reflexivity.

proofscript

formal
^

Implication
22

→
->

Symbol (Math)

Syntax (Coq)

Inference Rules for →
I: intro
E: apply*

tactics (Coq)

Γ, A ⊢ B
Γ ⊢A → B

I→

Γ⊢A → B Γ⊢A

Γ ⊢B

E→

Less Than
23

≤
Symbol (Math)

Inference Rules for ≤

Γ⊢n ≤ n len

Γ⊢n ≤ m
Γ⊢n ≤ 1 + m

leS

Definition of ≤
n ≤ m ≡ ∃k. n+k = m

Even-ness
24

EvenR
Symbol (Math)

Inference Rules for EvenR

Γ⊢EvenR 0
ev0

Γ⊢EvenR n
Γ⊢EvenR (2+n)

ev2

Definition of EvenR

EvenR n ≡ ∃k. n = k + k

Less Than (Coq)
- Goal:

Binary relation on natural numbers
Form of evidence that two numbers belong to that relation

- Step 0: Name the relation:
- Step 1: Give the relation a signature:
- Step 2: Enumerate evidence:

25

≤

Inductive le : nat -> nat -> Prop :=
 | le_n : forall n : nat, le n n
 | le_S : forall n m : nat, n <= m -> n <= S m.

Γ⊢n ≤ n len

Less Than (Coq)
- Goal:

Binary relation on natural numbers
Form of evidence that two numbers belong to that relation

- Step 0: Name the relation:
- Step 1: Give the relation a signature:
- Step 2: Enumerate evidence:

26

≤

Inductive le : nat -> nat -> Prop :=
 | le_n : forall n : nat, le n n
 | le_S : forall n m : nat, le n m -> le n (S m).

Γ⊢n ≤ m
Γ⊢n ≤ 1 + m

leS

Inductively Defined Propositions
- Goal:

N-ary relation on natural numbers
Form of evidence of membership in that relation

- Step 0: Name the relation type:
- Step 1: Give the relation type a signature type:
- Step 2: Enumerate evidence constructors:

27

Inductive even : nat -> Prop :=
 | ev_O : even O
 | even_2 : forall n : nat, even n ->
 even (S (S n)).

 Γ ⊢A Γ ⊢B
Γ ⊢EvenL []

Inil EL

EVENL (BOTH)

Inference Rules for a “list only has even numbers” (EvenL)

 Γ ⊢Even n
Γ ⊢EvenL l

Γ ⊢EvenL (n :: l)

Icons EL

Inductive EvenL : list nat -> Prop :=
 EvenL_nil : Forall P []
 | EvenL_cons : forall (n : nat) (l : list nat),
 Even n -> EvenL l -> EvenL (x :: l).

Sorted Lists (Coq)
29

Inductive sorted {A : Type} (R : A -> A -> Prop) : list A -> Prop :=
 | sempty : sorted R nil
 | sone : forall a : A, sorted R (cons a nil)
 | stwo : forall (a b : A) (l : list A),
 R a b -> sorted R (cons b l) ->
 sorted R (cons a (cons b l)).

⊢sorted []
sempty

⊢sorted (cons n nil)
sone

⊢sorted (cons n (cons m l))
stwo⊢sorted (cons n l) n≤m

Concept Check
Give an inductively defined proposition capturing
membership in a tree:

30

Example memEx : mem 2 (Node 1 Leaf (Node 2 Leaf Leaf)).

Inductive tree (A : Type) : Type :=
| Leaf : tree A
| Node : A -> tree A -> tree A -> tree A.

Inductive InTree {A : Type} (x : A) : tree A -> Prop :=
 | InRoot : forall (l r : tree A), InTree x (Node x l r)
 | InLeft : forall (y : A) (l r : tree A), InTree x l -> InTree x (Node y l r)
 | InRight : forall (y : A) (l r : tree A), InTree x r -> InTree x (Node y l r).

