CS 565

Programming Languages (graduate)

Spring 2025

Week 4
Propositions and Inductive Evidence



Propositions

A proposition is a factual claim.

Have seen a couple of propositions (in Coq) so far:
equalities: 0+ n=n
implications: P -> Q
universally quantified propositions: forall x, P

A proof is some evidence for the truth of a proposition

A proof system is a formalization of particular kinds of
evidence.



Propositions

We’ve already seen a number of propositions in Coq:

nm:nat.,n=0->m=0->n+m=0.

Intros n m HNn Hm.

rewrite Hn. rewrite Hm.
reflexivity.




Propositions

2).
2).
3=2->2=23).

forall n: nat, n = 2).

2
3




Propositions

Propositions are first-class entities in Coq. Can name them:

plus_claim : Prop :=2 + 2 =4.

We can also write parameterized propositions
(predicates

Is_three (n : nat) : Prop :=n = 3.



Propositions

Can have polymorphic predicates:

injective {AB} (f : A->B) : Prop :=
XYy :A fx=fy->x=y.

Equality is a polymorphic binary predicate:

@eq.



Concept Check

What is the type of the following expression?

A. Prop

B. nat—=Prop
C. Vv n:nat, Prop
D. nat—nat

=. Not typeable

pred (SO)=0



Concept Check

What is the type of the following expression?

A. Prop

B. nat—=Prop

C. Vv n:nat, Prop
D. nat—nat

E. Not typeable

Vv n:nat, pred (S n)=n



Concept Check

What is the type of the following expression?

A. Prop

B. nat—=Prop
C. v n:nat, Prop
D. nat—nat

E. Not typeable

v n:nat, S (pred n) =n



Concept Check

What is the type of the following expression?

A. Prop

B. nat—=Prop
C. V n:nat, Prop
D. nat—nat

E. Not typeable

v n:nat, S (pred n)



Concept Check

What is the type of the following expression?

A. Prop

B. nat—=Prop
C. v n:nat, Prop
D. nat—nat

E. Not typeable

fun n:nat => S (pred n)



Concept Check

What is the type of the following expression?

fun n:nat => S (pred n) = n

A. Prop

B. nat—=Prop
C. V n:nat, Prop
D. nat—nat

=. Not typeable



Proofs

Haven’t we already seen a bunch of proofs too?

nm:nat, n=0->mMm=0->n+m=0.

Intros n m HN Hm.

rewrite Hn. rewrite Hm.
reflexivity.

formal
What is a A proof?



Judgement

A judgement is a claim of a proof system

The judgement || |—£\_| is read as:
“assuming the propositions in [ are true,A is true”.

We'll see other judgements over the course of the
semester:



Inference Rules
15 |

Proof systems construct evidence of judgements via
inference rules:

CAEB 1| |FLA—SB MEAT
[FA—B - T -B

Inference Rules




Example Proof
e ...

—FA2 (B2 Q)= (A= B) »A 20

A—-B—->OCel Ael A-Bel Ael
[FA2B—-2C) [ FHA [FA—2B [ A
[ B —>C [ - B

=A— (B— C),A—>BAFC
A— (B—C,A—>B+-A—-C
A — (B = C)—(A = B) =(A —C)
FA=2> B~ CQ) = (A—B)>A—=Q)



Symbol Pushing

2

Inference Rules for A




Introduction

Sl Rules for Or?
[LA -C [,B - C
[ Av BHFC

Inference Rules for v




[LAFC [,BFH C

[ Av BHFC

Inference Rules for v







Proof

Haven’t we already seen a number of proofs!?

nm:nat, n=0->m=0->n+m=0.

Intros n m Hn Hm.
rewrite Hn. rewrite Hm.
reflexivity.

What ifs,oar,lc?:iaﬂl)of !

A proof tree in the Calculus of co-Inductive Constructions.



Implication

Syntax (Coq)

|: intro
=r-1e]0)\Y,

Inference Rules for —

tactics (Coq)



Less Than

n<mz=3k ntk=m

Definition of <

Inference Rules for <




Even-ness

EvenR 0 €vo

eV,
[ mEvenR n

[ —EvenR (2+n)

Inference Rules for EvenR




Less Than (Coq)
. P

Binary relation on natural numbers - —

Form of evidence that two numbers belong to that relation

Step 0: Name the relation:

Step 1: Give the relation a signature:

Step 2: Enumerate evidence: [-n <n len

le : nat -> nat -> Prop
le n: n:nat, lenn




Less Than (Coq)

Goal: <
Binary relahon on natural numbers o

Step 0: Name the relation:

Step 1: Give the relation a signature: |es

Step 2: Enumerate evidence: [n <
[Fn<| + m

le : nat -> nat -> Prop
n:nat, lenn

nm:nat,lenm->len(Sm)




Inductively Defined Propositions

- Goal:

N-ary relation on natural numbers

Form of evidence of membership in that relation
- Step 0: Name the relation type:

- Step 1: Give the relation type a sighature type:
- Step 2: Enumerate evidenee constructors:

even : nat -> Prop =
lev_O :even O

| even_2 : n:nat, even n ->
even (S (S n)).




I'FbEvenn T.,... 18
I =Evenli}
' FEvenl. (n :: 1)

Inference Rules for a “list only has even numbers” (Evenlj

A T B Init BEL
T FEvenL [ ]

. list nat -> Prop =
EvenL_nil : Forall P[]

| EvenL_cons : (n : nat) (I : list nat),
Evenn -> EvenL | -> EvenL (x :: |).




Sorted Lists (Coq])

sempty sone
—sorted [] —sorted (cons n nil)

—sorted (consnl) n=m StWO
—sorted (cons n (cons m |))

sorted {A : Type} (R: A->A->Prop) : listA-> Prop :=
| sempty : sorted R nil
| sone : a : A, sorted R (cons a nil)

| stwo : (ab:A)(l:listA),
Rab->sorted R (consbl) ->
sorted R (cons a (cons b [)).




Concept Check

Give an inductively defined proposition capturing
membership in a tree:

: mem 2 (Node 1 Leaf (Node 2 Leaf Leaf)).

Inductive tree (A : Type) : Type =
| Leaf : tree A
| Node : A -> tree A -> tree A -> tree A.

Inductive InTree {A : Type} (x : A) : tree A-> Prop =

| InRoot : forall (I r: tree A), InTree x (Node x | r)

| InLeft : forall (y : A) (Ir:tree A), InTree x| -> InTree x (Node y | r)

| InRight : forall (y : A) (Ir:tree A), InTree xr -> InTree x (Node y | r).




