
Week 4
 Propositions and Inductive Evidence

Programming Languages (graduate) 
Spring 2025 

CS 565 



Propositions 
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A proposition is a factual claim.
Have seen a couple of propositions (in Coq) so far:
equalities:   0 + n = n 
implications:  P -> Q  
universally quantified propositions:  forall x, P 

A proof is some evidence for the truth of a proposition 
A proof system is a formalization of particular kinds of 
evidence.



Propositions

★ We’ve already seen a number of propositions in Coq:

★
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Theorem ProofExample
  : forall n m : nat, n = 0 -> m = 0 -> n + m = 0. 
Proof.
  intros n m Hn Hm.
  rewrite Hn. rewrite Hm.
  reflexivity.
Qed.

Proposition

Evidence



Propositions
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Check (2 = 2).                (* : Prop *)
Check (3 = 2).                (* : Prop *)
Check (3 = 2 -> 2 = 3).       (* : Prop *)
Check (forall n: nat, n = 2). (* : Prop *)



Propositions
Propositions are first-class entities in Coq. Can name them:  

We can also write parameterized propositions 
(predicates) 
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Definition plus_claim : Prop := 2 + 2 = 4.
Theorem ProofExample : plus_claim.
Proof.
… (* unfold plus_claim*)

Definition is_three (n : nat) : Prop := n = 3.
Theorem ProofExample2 : is_three 3.
Proof.
… (* unfold is_three *)



Propositions
Can have polymorphic predicates: 

Equality is a polymorphic binary predicate:
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Definition injective {A B} (f : A -> B) : Prop :=
  forall x y : A, f x = f y -> x = y. 
Theorem plus1_inj : injective (plus 1).
Proof.
… (* unfold injective *)

Check @eq. (* : ∀ A : Type, A → A → Prop *)



Concept Check
What is the type of the following expression? 

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable 
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pred (S O) = O



Concept Check
What is the type of the following expression? 

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable 

8

∀ n:nat, pred (S n) = n 



Concept Check
What is the type of the following expression? 

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable 
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∀ n:nat, S (pred n) = n 



Concept Check
What is the type of the following expression? 

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable 
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∀ n:nat, S (pred n)



Concept Check
What is the type of the following expression? 

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable 
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fun n:nat => S (pred n)



Concept Check
What is the type of the following expression? 

A. Prop
B. nat→Prop
C. ∀ n:nat, Prop
D. nat→nat
E. Not typeable 
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fun n:nat => S (pred n) = n



Proofs

Haven’t we already seen a bunch of proofs too?

What is a   proof?
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Theorem ProofExample
  : forall n m : nat, n = 0 -> m = 0 -> n + m = 0. 
Proof.
  intros n m Hn Hm.
  rewrite Hn. rewrite Hm.
  reflexivity.
Qed.

proof script

formal
^



Judgement
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A judgement is a claim of a proof system

The judgement                  is read as:  
“assuming the propositions in Γ are true, A is true”.

We’ll see other judgements over the course of the 
semester:

Γ ⊢A



Γ, A ⊢ B
Γ ⊢A → B

I→
                     

Γ⊢A → B   Γ⊢A
Γ ⊢B

E→

Inference Rules
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Inference Rules

Proof systems construct evidence of judgements via 
inference rules:

Γ⊢T

Axioms

Γ ⊢A
A ∈ Γ 



Example Proof
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A →(B → C) ∈ Γ      A ∈ Γ                   A →B ∈ Γ      A ∈ Γ 
Γ ⊢ A →(B → C)      Γ ⊢ A                   Γ ⊢ A →B      Γ ⊢ A 

Γ ⊢ B → C                  Γ ⊢ B
A → (B → C), A → B, A ⊢ C

A → (B → C), A → B ⊢A →C              
A → (B → C)⊢(A → B) →(A →C)

⊢(A → (B → C)) → ((A → B) →(A →C))

Want a proof of:
⊢(A → (B → C)) → ((A → B) →(A →C))

Γ= 



  
 Γ ⊢A   Γ ⊢B
Γ ⊢A ⋀ B

I ⋀

Symbol Pushing
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Γ⊢A ⋀ B 
Γ⊢A

EL⋀

Γ⊢A ⋀ B 
Γ⊢B

ER⋀

Inference Rules for ⋀ 



 
 Γ, A ⊢C       Γ, B ⊢ C 

Γ, A ∨ B ⊢C

E ∨

Example
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Γ⊢A  
Γ⊢A ∨B

IL⋀

Γ⊢B  
Γ⊢A ∨ B

IR∨

Inference Rules for ∨ 

Introduction
Rules for Or?



 
 Γ, A ⊢C       Γ, B ⊢ C 

Γ, A ∨ B ⊢C

E ∨

Example
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Γ⊢A 
Γ⊢A ∨B

IL ∨

Γ⊢B 
Γ⊢A ∨ B

IR∨

Inference Rules for ∨ 



Example
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Can you derive:
 ⊢A → B → B ⋀ A

Γ, A ⊢ B
Γ ⊢A → B

I→                      
Γ⊢A → B   Γ⊢A

Γ ⊢B

E→

 
 Γ ⊢A   Γ ⊢B
Γ ⊢A ⋀ B

I ⋀



Proof

Haven’t we already seen a number of proofs?

What is a   proof?
A proof tree in the Calculus of co-Inductive Constructions.
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Theorem ProofExample
  : forall n m : nat, n = 0 -> m = 0 -> n + m = 0. 
Proof.
  intros n m Hn Hm.
  rewrite Hn. rewrite Hm.
  reflexivity.

proofscript

formal
^



Implication
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→
->

Symbol (Math)

Syntax (Coq)

Inference Rules for → 
I: intro
E: apply* 

tactics (Coq)

Γ, A ⊢ B
Γ ⊢A → B

I→

                    
Γ⊢A → B   Γ⊢A

Γ ⊢B

E→



Less Than 
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≤
Symbol (Math)

Inference Rules for ≤ 

Γ⊢n ≤ n len

Γ⊢n ≤ m
Γ⊢n ≤ 1 + m

leS

Definition of ≤ 
n ≤ m ≡ ∃k. n+k = m



Even-ness 
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EvenR
Symbol (Math)

Inference Rules for EvenR 

Γ⊢EvenR 0
ev0

Γ⊢EvenR n 
Γ⊢EvenR (2+n)

ev2

Definition of EvenR 

EvenR n ≡ ∃k. n = k + k



Less Than (Coq)
- Goal: 

Binary relation on natural numbers  
Form of evidence that two numbers belong to that relation 

- Step 0: Name the relation: 
- Step 1: Give the relation a signature: 
- Step 2: Enumerate evidence:
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≤

Inductive le : nat -> nat -> Prop :=
  | le_n : forall n : nat, le n n 
  | le_S : forall n m : nat, n <= m -> n <= S m.

Γ⊢n ≤ n len



Less Than (Coq)
- Goal: 

Binary relation on natural numbers  
Form of evidence that two numbers belong to that relation 

- Step 0: Name the relation: 
- Step 1: Give the relation a signature: 
- Step 2: Enumerate evidence:
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≤

Inductive le : nat -> nat -> Prop :=
  | le_n : forall n : nat, le n n 
  | le_S : forall n m : nat, le n m -> le n (S m).

Γ⊢n ≤ m
Γ⊢n ≤ 1 + m

leS



Inductively Defined Propositions
- Goal: 

N-ary relation on natural numbers  
Form of evidence of membership in that relation 

- Step 0: Name the relation type: 
- Step 1: Give the relation type a signature type: 
- Step 2: Enumerate evidence constructors:
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Inductive even : nat -> Prop :=
  | ev_O : even O
  | even_2 : forall n : nat, even n ->
                             even (S (S n)).



  
 Γ ⊢A   Γ ⊢B 
Γ ⊢EvenL [ ]

Inil EL

EVENL (BOTH)

Inference Rules for a “list only has even numbers” (EvenL)

  
 Γ ⊢Even n    
Γ ⊢EvenL l 

Γ ⊢EvenL (n :: l)

Icons EL

Inductive EvenL : list nat -> Prop :=
    EvenL_nil : Forall P [ ]
  | EvenL_cons : forall (n : nat) (l : list nat), 
                  Even n -> EvenL l -> EvenL (x :: l).



Sorted Lists (Coq)
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Inductive sorted {A : Type} (R : A -> A -> Prop) : list A ->  Prop :=
  | sempty : sorted R nil
  | sone : forall a : A, sorted R (cons a nil)
  | stwo : forall (a b : A) (l : list A), 
              R a b -> sorted R (cons b l) ->
              sorted R (cons a (cons b l)).

⊢sorted []
sempty

⊢sorted (cons n nil)
sone

⊢sorted (cons n (cons m l))
stwo⊢sorted (cons n l)     n≤m



Concept Check
Give an inductively defined proposition capturing 
membership in a tree: 
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Example memEx : mem 2 (Node 1 Leaf  (Node 2 Leaf Leaf)). 

Inductive tree (A : Type) : Type := 
| Leaf : tree A 
| Node : A -> tree A -> tree A -> tree A.

Inductive InTree {A : Type} (x : A) : tree A -> Prop := 
 | InRoot : forall (l r : tree A), InTree x (Node x l r) 
 | InLeft : forall (y : A) (l r : tree A), InTree x l -> InTree x (Node y l r) 
 | InRight : forall (y : A) (l r : tree A), InTree x r -> InTree x (Node y l r).


