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Abstract— Synthesizing planning and control policies in

robotics is a fundamental task, further complicated by factors

such as complex logic specifications and high-dimensional robot

dynamics. This paper presents a novel reinforcement learning

approach to solving high-dimensional robot navigation tasks

with complex logic specifications by co-learning planning and

control policies. Notably, this approach significantly reduces the

sample complexity in training, allowing us to train high-quality

policies with much fewer samples compared to existing rein-

forcement learning algorithms. In addition, our methodology

streamlines complex specification extraction from map images

and enables the efficient generation of long-horizon robot mo-

tion paths across different map layouts. Moreover, our approach

also demonstrates capabilities for high-dimensional control and

avoiding suboptimal policies via policy alignment. The efficacy

of our approach is demonstrated through experiments involving

simulated high-dimensional quadruped robot dynamics and a

real-world differential drive robot (TurtleBot3) under different

types of task specifications.

I. INTRODUCTION

Synthesizing planning and control policies is among the
core tasks of robotics. The planning policy determines a
path comprising a sequence of robot configurations between
the given start and goal. In contrast, the control policy
helps robots interact with the physical environment allowing
them to follow the given plan to reach a goal. However,
synthesizing planning and control policies is challenging
since the high-dimensional robot dynamics introduce a vast
space of possible movements and reactions, making it dif-
ficult to predict and control every potential outcome. In
addition, the planning policy may be subject to complex
logic specifications, which dictate how a robot should behave
under certain conditions or constraints. These specifications
can range from simple commands like “reaching A”, and
“avoiding B” to intricate sets of rules like “surveilling crucial
spots and stopping after a certain condition is triggered”.
Merging planning and control while adhering to these logic
rules and managing the inherent complexities of robot dy-
namics presents a significant challenge, even for state-of-the-
art approaches.

We leverage Reinforcement Learning (RL) for high-
dimensional robot planning and control under complex dy-
namics and sensor observation. To ensure that robots adhere
to behavioral rules, temporal logic can be incorporated
into RL [1]–[5]. This offers a structured way to define
and check a robot’s behavior over time, ensuring tasks are
completed in order. However, incorporating temporal logic
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into RL presents its own challenges. For example, previous
approaches [1]–[10] that have used temporal logic for reward
shaping, involves the construction of complicated reward
functions that require large amounts of samples [11]. Further-
more, handcrafting these temporal logic specifications can
be challenging. For instance, situations where map layouts
are represented as images or have irregular obstacle shapes
present numerous challenges in defining precise, actionable
logical rules. Although existing solvers [12] can find robot
paths under a given logical specification, they lack scalability
and can only handle linear and, to some extent, quadratic
constraints, which is not ideal for practical scenarios, as
highlighted in our experiments. Furthermore, these methods
only account for path planning without considering errors
from the underlying controller or vice versa, which often
leads to failure in executions.

Therefore, we propose a novel approach, called Differ-
entiable Specifications Constrained Reinforcement Learning
(DSCRL), to address the above challenges using the follow-
ing key features:
Lower Sample Complexity: We introduce a new method-
ology that integrates differentiable specifications into con-
strained RL, which significantly lowers the sample complex-
ity of training.
Control and Planning Alignment: Learning both planning
and control policies separately faces the challenges of sub-
optimal policies due to lack of alignment. We analyze this
issue and demonstrate that our approach allows for better
alignment between planning and control policies.
Efficient Planning: Our approach generates long horizon
plans in cluttered environments, which is typically hard for
other RL algorithms as well as existing Signal Temporal
Logic (STL) solvers to handle.
Specifications from Image: Our approach can extract ir-
regular obstacle specifications directly from different map
images, and solve them efficiently with a novel neural
planning policy built upon pre-trained backbones.
High-dimensional Policy: Our approach has been effectively
tested on simulated high-dimensional quadruped robot dy-
namics and a real-world differential drive robot (TurtleBot3)
with LiDAR observation.

II. RELATED WORK

Temporal Logic and RL: This work considers symbolic
specifications written in temporal logic [13], [14], which
are widely used in specifying various planning and control
tasks[15]–[18]. Along with the advances of RL in stochastic,
model-free settings, a line of work [1]–[10] have considered
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