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We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact

with effectful, opaque libraries. Our procedure allows specifications of libraries and abstract data type (ADT)

methods that are expressed in Linear Temporal Logic over Finite Traces (LTL𝑓 ), interpreting them as symbolic
finite automata (SFAs) to enable intelligent specification-guided path exploration in this setting. We apply

our technique to facilitate the falsification of complex data structure safety properties in terms of effectful

operations made by ADT methods on underlying opaque representation type(s). Specifications naturally

characterize admissible traces of temporally-ordered events that ADT methods (and the library methods

they depend upon) are allowed to perform. We show how to use these specifications to construct feasible

symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of

this formalism. More importantly, we incorporate the notion of symbolic derivatives, a mechanism that allows

the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on

the automata structures latent in the provided specifications and the safety property that is to be falsified.

Intuitively, derivatives enable symbolic execution to exploit temporal constraints defined by trace-based

specifications to quickly prune unproductive paths and discover feasible error states. Experimental results on

a wide-range of challenging ADT implementations demonstrate the effectiveness of our approach.
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Additional Key Words and Phrases: symbolic execution, regular expression derivatives

ACM Reference Format:
Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan. 2025. Derivative-Guided Symbolic Execu-

tion. Proc. ACM Program. Lang. 9, POPL, Article 50 (January 2025), 31 pages. https://doi.org/10.1145/3704886

1 Introduction
Symbolic execution [Baldoni et al. 2018; Cadar and Sen 2013] (SE) is a well-studied program analysis

technique whose goal is to statically explore a bounded set of (symbolic) program executions in

search of one that yields a symbolic state inconsistent with a given safety property. The states

generated during the course of these executions consist of a set of path constraints; a violation is

identified if the conjunction of these constraints with the negation of the safety property is logically

satisfiable. By knowing the prestate under which a method may be invoked, SE can be performed on

individual methods in a compositional fashion. Oftentimes, however, the program being analyzed

interacts with libraries whose implementations are unavailable for analysis. In this case, we can
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augment the SE procedure to interpret models [Chipounov et al. 2011] or specifications [Tobin-

Hochstadt and Van Horn 2012; Xu et al. 2009] attached to library methods that describe the intended

behavior of their implementation in a form suitable for symbolic reasoning.

In this paper, we consider the design of an SE procedure for functional programs that interface

with effectful, opaque libraries. Since we cannot express the behavior of library methods directly

in terms of how they manipulate their hidden state (since their implementations are opaque), we

instead reason about the interaction of clients with these methods in terms of traces, sequences of
method invocations and return values that constrain the shape of allowed symbolic states that the

symbolic interpreter needs to consider. Our primary contribution is a formalization of symbolic

execution in this setting that directly leverages the temporal ordering constraints latent in these

traces to intelligently guide path exploration.

A particular useful setting in which this style of symbolic reasoning is likely to be effective are

abstract data type (ADT) implementations whose specifications and safety properties are often

couched in terms of temporal modalities that constrain how datatype instances can be constructed

and used. For example, to establish that an implementation of a functional Set datatype, imple-

mented using an effectful list representation, correctly respects the semantics of a mathematical set

(e.g., |𝑆 ∪ {𝑥}| = |𝑆 | if 𝑥 ∈ 𝑆) necessitates showing that any element added to its list representation

is different from any previously added element. Because the list implementation is potentially

effectful, but does not expose the state it manages to its clients, we can only reason about the Set
ADT methods that use it behaviorally, in terms of how inputs to the list type’s setters affect the

values returned by its getters that are subsequently consumed.

In our running example, the representation type List, defined as a library, may provide a number

of operations on a list instance, some of which are pure like mem that checks for list membership,

and others of which are effectful, such as append! that destructively appends its argument to its

instance. The Set ADT might provide methods like in that simply uses the mem method from List
to check if an element is included in a set instance, or insert that adds a new element to the

set using append!. Suppose insert’s implementation incorrectly adds a new element by simply

invoking append!, without first checking if the element is already present. Constructing a set using

this implementation would violate our desired safety property, namely that every element in the

set is unique. Our goal is to use symbolic execution to identify such errors.

Given the availability of specifications on ADT and representation-type methods, symbolic

execution of an ADT then involves: (1) the generation of feasible (aka constructible) precondition

states for an ADT method being analyzed in the form of symbolic traces of method calls (and return

values) on the representation type that is nonetheless consistent with the ADT’s specification, and

(2) devising an effective search procedure from this precondition state that identifies a feasible

execution path, again expressed as a symbolic trace over symbolic invocations of methods on the

representation type, whose final state violates the safety property.

In this work, we develop an SE procedure for a class of behavioral specifications that can be

concisely expressed in linear temporal logic (LTL𝑓 [Bansal et al. 2023; De Giacomo and Vardi 2013,

2015]); these specifications correspond to symbolic finite automata (SFA [D’Antoni and Veanes 2014,

2017; Veanes 2013]), in which automata transitions represent effectful and opaque operations made

by the ADT on its representation type(s). Our SE procedure exploits the latent SFA structure through

symbolic derivatives. By computing the residual language after consuming a prefix, Brzozowski

derivatives simplify membership checking of regular and context-free languages [Might et al. 2011].

In our setting, symbolic derivatives compute the residual specification after observing a sequence

of ADT operations, enabling both the extraction of admissible temporally ordered symbolic events

(i.e., method invocations and returns expressed in terms of symbolic variants of program variables)
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of the ADT’s representation type and the prediction of future admissible events by progressively

refining the space of safe behaviors.

When equipped with such derivatives, our SE procedure is capable of (1) generating precondition

traces whose interpretation yields a prestate consistent with method specifications, (2) correlating

pre- and post-invocation events with the safety property, and (3) guiding exploration along paths

likely to lead to a falsification of the safety property. By viewing the set of traces prior to and

after method invocations from the lens of the safety property we wish to falsify, our SE procedure

intelligently performs path exploration. In the case of Set ADT, our SE procedure may, in the

presence of a past append! event, actively look for another append! of the identical element, in an

attempt to accelerate the falsification of the unique-element property. As a result, we oftentimes

observe many orders-of-magnitude improvement in path enumeration times, enabling it to scale

favorably with specification complexity.

In summary, this paper makes the following contributions:

(1) We formalize an SE framework suitable for falsifying safety properties of effectful ADT

implementations that manage hidden states. Specifications are expressed as LTL𝑓 formulae

and capture temporal dependencies over a history of interactions between an ADT imple-

mentation and its underlying representation type(s).

(2) We identify the latent SFA structures within these specifications and treat them as executable

representations that enable the formalization of an SE procedure in terms of the traces

characterized by these automata.

(3) We propose to integrate a notion of symbolic derivatives as part of our SE procedure that

intelligently underapproximates trace-based symbolic states and accelerates the search for a

falsification witness.

(4) We describe an implementation of these ideas in OCaml and show its effectiveness on a

challenging set of data structure programs.

The remainder of the paper is organized as follows. Motivation and informal explanation of our

ideas is provided in the next section. Section 3 provides preliminaries and details about LTL𝑓 ,

SFAs, and derivatives. The syntax of a core language and a naïve (derivative-free) semantics is

given in Section 4. The semantics of deriviative-based execution is provided in Section 5. We

show how to translate the declarative semantics of derivatives into an efficient algorithm in

Section 6. Implementation details and evaluation results are provided in Section 7. Related work

and conclusions are given in Section 8 and 9, resp.

2 Motivation
To motivate our ideas, consider the program shown in Fig. 1. The function remove is a method in a

linked-list ADT that uses two effectful key-value stores as its representation type, one to maintain

an ordering relation among nodes in the list (named Nxt), and the other to record the elements

associated with these nodes (named Val). The implementation of the store is opaque to the ADT.

Given a node curr in a linked-list instance containing argument value v, remove removes curr

from the list by first initializing its successor field to null (given as the shaded statement at Line

18), and then adjusting the link from its predecessor prev to point to its successor next .

2.1 Specifications
The specification associated with remove is expressed as LTL𝑓 [De Giacomo and Vardi 2013]

1

formulae given in the comment above its definition. Informally, we can think of such formulae as

characterizing a set of admissible traces, event sequences defined in terms of method invocations

1
Linear temporal logic over finite sequences.
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module type KVStore
(K: Key) (V: Value) : T =

sig
(** (k: K.t) → (v: V.t)

ghost (v': V.t)
context stored(T, 𝑘, 𝑣′ )
effect ⟨get 𝑘 𝑣⟩
ensure 𝑣 = 𝑣′ *)

val get : K.t → V.t

(** (k:K.t) → (v:V.t) → unit
effect ⟨put 𝑘 𝑣⟩ *)

val put : K.t → V.t → unit
end
module type Node = sig

type t
val null : t . . .

end
module type Elem = sig

type t . . .

end

1 module Nxt = KVStore (Node) (Node)
2 module Val = KVStore (Node) (Elem)
3

4 (** (hd:Node.t) → (v:Elem.t) → Node.t
5 ghost (a: Node.t), (b: Node.t)
6 context stored(Nxt, 𝑎,𝑏 )
7 effect ∽⟨Nxt.put �𝑎 𝑏 ⟩W⟨Nxt.put 𝑎 �𝑏 ⟩ *)
8 let remove (hd: Node.t) (elem: Elem.t) =
9 if hd = null then hd
10 else if Val.get hd = elem then
11 Nxt.get hd
12 else
13 let rec loop prev =
14 let curr = Nxt.get prev in
15 if curr = null then ()
16 else if Val.get curr = elem then
17 let next = Nxt.get curr in
18 Nxt.put curr null;
19 Nxt.put prev next
20 else loop curr
21 in loop hd; hd

Fig. 1. An implementation of a node remove operation in a linked-list ADT using two key-value stores.

and results. The specification has several elements. In the case of remove , it introduces ghost

variables 𝑎 and 𝑏; these variables represent an arbitrary pair of nodes in the list, constrained by the

method’s precondition (identified by the keyword context) and postcondition (identified by the

keyword effect). The precondition characterizes all traces that construct a linked-list in terms of

the underlying key-value store representation type, identifying an arbitrary consecutive pair of

nodes using the introduced ghost variables 𝑎 and 𝑏; it uses the following definition:

stored(Store, 𝑘, 𝑣) � F(⟨Store.put 𝑘 𝑣⟩ ∧ XG∽⟨Store.put 𝑘 _⟩)
The postcondition reflects the actions performed by the method: it specifies that node 𝑏 can be

linked to a predecessor other than 𝑎 (as denoted by �𝑎) only after 𝑎 is linked to a successor other

than 𝑏 (as denoted by �𝑏). Both the pre- and post-condition use LTL modalities. The precondition

uses the finally modality (F) to represent the eventual establishment of a link between 𝑎 and 𝑏 in

a trace, and next (X) and global (G) modalities to prevent subsequent actions in the trace from

modifying that link; similarly, the postcondition uses the weak-until (W) modality to specify a

conditional action, namely that 𝑏 can be linked to a predecessor other than 𝑎 only after 𝑎 is no

longer 𝑏’s predecessor.

The specification for the key-value stores used by the linked-list ADT is given in the left of

Fig. 1. As before, we capture the effectful behavior of these methods using LTL𝑓 specifications.

The precondition for get requires that it be invoked in a state constructed from a sequence of

actions that include a put operation which associates key 𝑘 to value 𝑣 ′; it leverages the definition of

stored defined above, except using the key-value store instance in which the get is performed. The

method’s postcondition ensures that this property holds upon return. Additionally, the specification

establishes an equality constraint, using the ensure annotation, between the value returned (𝑣)

and the value previously put on key 𝑘 (𝑣 ′). Note that specifications used in this way constrain

the set of precondition states that a symbolic execution engine should consider; in particular, the

specification ignores any state that does not contain a binding for 𝑘 . The specification for put

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.



Derivative-Guided Symbolic Execution 50:5

𝑞0start

𝑞1

⟨Nxt.put 𝑎 𝑏 ⟩

∽⟨Nxt.put 𝑎 𝑏 ⟩

⟨Nxt.put 𝑎 �𝑏 ⟩

∽⟨Nxt.put 𝑎 �𝑏 ⟩

(a) Admissible traces prior to remove.

𝑞2start 𝑞3

∅

⟨Nxt.put 𝑎 �𝑏 ⟩

⟨Nxt.put �𝑎 𝑏 ⟩
⟨Nxt.put 𝑎 𝑏 ⟩
∨⟨Nxt.put �𝑎 �𝑏 ⟩
∨∽⟨Nxt.put⟩

•

•

(b) New actions allowed from remove.

Fig. 2. The SFA representation of remove’s trace-based specification.

imposes no structure on the store that must hold before it can execute, and only guarantees that

the put action is performed upon return.

Trace Specification as Safety Property. To reiterate, specifications written in this way characterize

admissible execution traces whose effects determine the context in which a function can execute as

well as the behavior manifested by the function upon return from a call, allowing us to reason about

the behavior of the ADT without having to expose implementation details about its underlying

representation type. Together, a pair of such pre- and post-condition traces captures a safety

property against which the function must be checked. In the case of remove, an execution under

the specified context (precondition trace) that does not satisfy the post-condition trace serves as a

witness of a violation of the predecessor uniqueness safety property.

SFA Representation of Trace Specifications. The set of traces characterized by LTL𝑓 specifica-

tions can be naturally represented by (symbolic) finite automata [Veanes 2013] (SFA) structures

whose labels are events representing ADT method invocations and their return values, and whose

transitions reflect control dependencies over these actions, defined by modalities used in the speci-

fication. Fig. 2 shows how the LTL𝑓 specifications given in Fig. 1 can be represented as SFAs. The

automaton in Fig. 2a captures the precondition for remove . The start state 𝑞0 admits traces which

contain an arbitrary number of get or put operations, not involving put operations with key

𝑎 or value 𝑏; it allows such traces to be augmented with put operations that store a binding of

𝑎 to 𝑏, thus establishing the required shape of lists to which remove can be applied. The store

can be subsequently updated with the effects of other put operations on key 𝑎 that bind the key

to nodes other than 𝑏, leading to a transition that exits the accepting state 𝑞1. Traces accepted

by the precondition automaton encapsulate program states that can be used as the basis for a

successful symbolic execution run of remove. The postcondition for remove can be represented

as the automaton shown in Fig. 2b. Here, the initial state of the postcondition 𝑞2 presumes the

precondition, namely ghost nodes 𝑎 and 𝑏 such that 𝑎 is the predecessor of 𝑏 in the list. A safe

implementation of remove is allowed to repeatedly (re)link 𝑎 to 𝑏 (⟨Nxt.put 𝑎 𝑏⟩), link other nodes

besides 𝑎 to 𝑏 (⟨Nxt.put �𝑎 𝑏⟩), or perform get operations (∽⟨Nxt.put⟩). An event that links another

node to 𝑏 without first removing the link from 𝑎 results in a violation of the safety property, however,

depicted by the error state with a red circle containing ∅. State 𝑞3 represents another accepting state
corresponding to a linked-list in which node 𝑎 no longer points to 𝑏. The traces admitted by these

automata correspond to the hidden states constructible by method invocations to the underlying

Nxt and Val store instances.
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Symbolic Derivatives and SFAs. To reveal the latent SFA representations of trace specifications

that qualify over symbolic variables, we propose to compute a variant of Brzozowski derivatives

[Brzozowski 1964], dubbed a symbolic derivative. Let’s revisit the postcondition for remove in

connection with its SFA representations in Fig. 2b: its LTL𝑓 formula ∽⟨Nxt.put �𝑎 𝑏⟩W⟨Nxt.put 𝑎 �𝑏⟩
admits (1) action ⟨Nxt.put 𝑎 𝑏⟩, ⟨Nxt.put �𝑎 �𝑏⟩, or ∽⟨Nxt.put⟩, followed by traces admissible by the

formula itself (𝑞2 → 𝑞2), or (2) action ⟨Nxt.put 𝑎 �𝑏⟩ followed by any trace of actions (𝑞2 → 𝑞3). Addi-

tionally, it does not admit ⟨Nxt.put �𝑎 𝑏⟩ regardless of the following actions (𝑞2 → ∅). The symbolic

derivatives of the postcondition over ⟨Nxt.put 𝑎 𝑏⟩ ∨ ⟨Nxt.put �𝑎 �𝑏⟩ ∨ ∽⟨Nxt.put⟩, ⟨Nxt.put 𝑎 �𝑏⟩,
and ⟨Nxt.put �𝑎 𝑏⟩ corresponds to states 𝑞2, 𝑞3, and ∅ respectively. Such derivatives allow symbolic

execution to, as we will discuss in Section 2.3, “execute” trace specifications following their latent

SFA representations and make the put operation at Line 19 a witness of the action ⟨Nxt.put �𝑎 𝑏⟩
that leads to the dead state ∅.

2.2 Trace-Based Symbolic Execution
Expressing Hidden States as Traces. While our specification language can express a rich set of

behaviors that can be exhibited by the ADT, it is not immediately obvious how to incorporate such

specifications as part of an efficient symbolic execution procedure. Yet, it is clear that remove’s

specification naturally entails the uniqueness property that we wish to check, albeit in terms of

traces over the representation type’s operations, rather than directly in terms of the method’s

implementation.

Conventionally, symbolic execution explores symbolic states along a program’s CFG to find a

reachable path that ends at an erroneous state; however, in our setting, the linked list maintained by

the key-value stores Nxt and Val does not have an explicit state representation that can be trivially

constructed from the program; it is instead manifested by traces extracted from SFAs associated

with the ADT’s specification. We will show shortly in Section 2.3 how to precisely relate the trace

structure described by the specification with the execution paths explored by symbolic execution

to manifest these hidden states. Establishing this relation via the use of symbolic derivatives, which

will also be described shortly, enables a novel form of property-directed exploration that can be

exploited by a symbolic execution procedure to avoid searching over unproductive execution paths.

A relatively straightforward approach is to encapsulate symbolic states into a set of traces that

records the temporally ordered events produced along the current execution path being explored.

Such a set of traces, like our specifications, has a natural representation in SFA. Take the precondition

of remove as an example; stored(Nxt, 𝑎, 𝑏) encapsulates a symbolic state 𝑆0 as follows:

?

𝑎

? ?

𝑏
S0

Since 𝑎 and 𝑏 are two symbolic variables denoting two arbitrary nodes as long as the former

is the predecessor of the latter, the path condition is ⊤ initially. Before symbolically executing

remove , we introduce two additional symbolic variables 𝑛0 and 𝑢 as the arguments passed to

remove , respectively denoting the first node in the input linked-list, and the element that the node

to be removed stores. Since the precondition of remove places no constraint on these variables,

the path condition is ⊤ initially. Substituting 𝑛0 for hd (and 𝑢 for elem) in the body of remove,
symbolic execution may choose to enter the first branch at Line 9, augment the path condition

with 𝑛0 = null, and return 𝑛0. An empty symbolic trace (of length zero) is produced from this

execution and ghost nodes 𝑎 and node 𝑏 are left untouched in the symbolic state. Therefore, the

execution complies with the predecessor uniqueness safety property as specified by the method’s

postcondition.
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Conventionally, symbolic states are constrained by path conditions whose satisfiability directly
manifests the reachability of the respective state. In this setting, however, events executed along the

path may also quantify over symbolic variables like path conditions and thus may impose additional

constraints on the associated symbolic state. Take 𝑆0 as an example: the SFA representation of

stored(Nxt, 𝑎, 𝑏), as shown in Fig. 2a, admits the traces of executed events allowed upon entering

remove. Transitions labeled by ⟨Nxt.put 𝑎 �𝑏⟩ admit event Nxt.put 𝑘𝑒𝑦 𝑣𝑎𝑙 only if 𝑘𝑒𝑦 = 𝑎 ∧ 𝑣𝑎𝑙 ≠ 𝑏

holds. As a result, path condition ⊤ and the SFA synergistically encapsulate the symbolic state 𝑆0,

reflecting the conditions necessary for the execution paths that lead to remove to be feasible.

Refinement of Trace-Based Symbolic States. We further illustrate this synergy by considering

other feasible execution paths in remove along which symbolic states are refined. A symbolic

execution procedure may also assume that the linked list is not empty, i.e., 𝑛0 ≠ null, and can

thus take the branch at Line 10 where a symbolic method invocation Val.get takes place with 𝑛0
as its argument. Just as path conditions are refined by branching conditions, SFAs are refined by

the effectful operations performed along execution paths, consistent with the constraints given

by the preconditions of executed operations. Here, the precondition of Val.get, when applied

to 𝑛0, is stored(Val, 𝑛0, 𝑢0), where 𝑢0 is a fresh symbolic variable representing the result of the

invocation. That is, 𝑢0 is the element stored at 𝑛0. Noticing that 𝑛0 is not even mentioned in 𝑆0, 𝑛0
may be 𝑎, 𝑏, or some other node not explicitly specified in 𝑆0. The refined SFA representation, as

denoted by stored(Nxt, 𝑎, 𝑏)∧stored(Val, 𝑛0, 𝑢0), encapsulates the prestate of the method invocation

⟨𝑢0←Val.get 𝑛0⟩, which can be cleanly dissected into the following three states:

𝑢0

𝑎=𝑛0

? ?

𝑏
S1

?

𝑎
𝑢0 ?

𝑏=𝑛0
S2

𝑢0 ?

𝑛0

?

𝑎

? ?

𝑏
S3

Augmenting the path condition with 𝑢0 = 𝑢 as we enter Line 11, symbolically executing the invoca-

tion of Nxt.getwith 𝑛0 first introduces a new symbolic variable 𝑛1 denoting the successor of 𝑛0, and

then further refines the traces of executed events to be ((stored(Nxt, 𝑎, 𝑏) ∧ stored(Val, 𝑛0, 𝑢0)) ·
⟨𝑢0←Val.get 𝑛0⟩) ∧ stored(Nxt, 𝑛0, 𝑛1), where ·⟨𝑢0←Val.get 𝑛0⟩ records the previous method invo-

cation. Within the refined state, similarly, node 𝑛1 could be 𝑎, 𝑏, some other node, or even 𝑛0. Three

ordinary cases are depicted below:

𝑢0

𝑎=𝑛0

? ?

𝑏=𝑛1
S4

?

𝑎
𝑢0

𝑏=𝑛0

? ?

𝑛1
S5

𝑢0

𝑛0

?

𝑎=𝑛1

? ?

𝑏
S6

. . .

where 𝑆4, 𝑆5 and 𝑆6 refines the above dissected states 𝑆1, 𝑆2, and 𝑆3 respectively. Then, node 𝑛1 is

returned at (Line 11). Although the symbolic state is refined, node 𝑎 and node 𝑏 are still left intact

to comply with the constraints defined by the method’s specification. Since the safety property

holds over all these possible symbolic states, this execution path is also deemed to satisfy the

postcondition.

The violation of the postcondition may happen within the loop (Line 13) if we do not execute the

shaded operation at (Line 18). Substituting 𝑛0 for prev in the loop body, the invocation of Nxt.get
with 𝑛0 then takes us to the same symbolic states, 𝑆4, 𝑆5, and 𝑆6, generated in the earlier explored

branch. If we continue the execution from 𝑆6 up until Line 17, one possible symbolic state that

holds after the invocation of Val.get and Nxt.get with 𝑛1 would be:

. . .

𝑢0

𝑛0
𝑢1

𝑎=𝑛1
? ?

𝑏=𝑛2
S7

. . .
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where𝑢1 and 𝑛2 are fresh symbolic variables that denotes the element stored in 𝑛1 and the successor

of 𝑛1 respectively. Without executing Line 18, the invocation of Nxt.put at Line 19 makes node 𝑏

(i.e., 𝑛2) the successor of both 𝑛0 and 𝑎 (i.e., 𝑛1):

. . .

𝑢0

𝑛0
𝑢1

𝑎=𝑛1
? ?

𝑏=𝑛2
S8

. . .

This symbolic state (𝑆8), among other possible states that we omit here, happens to manifest a

violation of the method’s safety property because 𝑆8 with path condition 𝑛0 ≠ null∧𝑢0 ≠ 𝑢 ∧𝑛1 ≠
null ∧ 𝑢1 = 𝑢 is obviously reachable and it is obvious from the above illustration that any trace of

events encapsulated in 𝑆8 is rejected by the method’s postcondition.

2.3 Symbolic Execution with Symbolic Derivatives
Efficiency is a serious problem that must be considered by any symbolic execution procedure.

Conventional techniques can prune infeasible paths [Baldoni et al. 2018] by leveraging the control

structure in programs along with provided preconditions to consider an underapproximation of

program behavior that follows a single execution path at a time. For example, if a precondition

requires the input list to be not empty, path exploration can ignore paths that contradict this

constraint (e.g., Line 9 in Fig. 1). A trace-aware symbolic execution procedure can additionally

discover the shape of linked-lists automatically from the SFA structures latent in specifications

that induce these traces, and thus can introduce new opportunities for pruning unproductive paths.

For example, as currently described, although the precondition of ⟨𝑢0←Val.get 𝑛0⟩ refines 𝑆0, the
refined symbolic state does not specify whether 𝑛0 is equal to 𝑎, 𝑏, or some other node. More

notably, when the symbolic method invocation ⟨𝑛1←Nxt.get 𝑛0⟩ is made, the SFA encapsulating

the symbolic state after the invocation includes contradicting paths not depicted among 𝑆4, 𝑆5, and

𝑆6, in which 𝑛0 can be both equal to and not equal to 𝑎. Explicitly leveraging the control structure

latent in SFAs would enable us to correlate traces (and the hidden states they induce) to specific

program paths, exposing new pruning opportunities that would otherwise not be possible. We

propose to compute symbolic derivatives over the specifications to explore and exploit the latent

SFA structures within the trace-based specifications.

Derivative-Guided Path Exploration. Our symbolic execution procedure employs symbolic deriva-

tives to explore the SFA structures latent in the specifications and intelligently enumerate admissible

traces that encapsulate prestates along execution paths, lowering the cost of path feasibility check

and enabling effective path pruning. In our running example, the initial symbolic state 𝑆0 of remove
requires that some node 𝑎 is the predecessor of some node 𝑏 but does not specify when 𝑏 is made

the successor of 𝑎 via Nxt.put. Recall the precondition automaton (Fig. 2), which denotes the traces

encapsulating 𝑆0: the relevant Nxt.put operation may be performed (𝑞0 → 𝑞1) after some indefinite

number of irrelevant actions (𝑞0 → 𝑞0), or after a previously executed ⟨Nxt.put 𝑎 𝑏⟩ is invalidated
(𝑞1 → 𝑞0). A symbolic derivative computation helps explore this automaton structure by sampling

paths from the start state 𝑞0 to the accepting state 𝑞1. In the case of remove, its behavior happens to
be invariant to when the call ⟨Nxt.put 𝑎 𝑏⟩ is performed. Therefore, in order to reach the erroneous

symbolic state 𝑆8, it is sufficient to begin the symbolic execution of remove with a precondition

trace that consists of ⟨Nxt.put 𝑎 𝑏⟩ followed by actions that do not invalidate this operation.

Our symbolic execution procedure further exploits the latent SFA structures to make informed

decisions in choosing the precondition trace that favors the efficient exploration of feasible execu-

tion paths. To minimize the complexity of reasoning about the behavior of method invocations

performed, one straightforward strategy is to choose the “simplest” symbolic state based on the

length of the corresponding trace induced from the precondition automaton. For example, remove
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L9: 𝑛0 = null

𝑆0 𝑞2 L9: return 𝑛0

Y

𝑆0 𝑞2 L10: 𝑢0 ← Val.get 𝑛0

N

L10: 𝑢0 = 𝑢

𝑆3
𝑆6

𝑞2
𝑞2

L11: 𝑛1 ← Nxt.get 𝑛0
L11: return 𝑛1

Y

𝑆3 𝑞2 L14: 𝑛1 ← Nxt.get 𝑛0

N

L15: 𝑛1 = null

𝑆6 𝑞2 L21: return 𝑛0

Y

𝑆6 𝑞2 L16: 𝑢1 ← Val.get 𝑛1

N

L16: 𝑢1 = 𝑢

··
𝑆7
𝑆8

𝑞2
𝑞2
∅

L17: 𝑛2 ← Nxt.get 𝑛1
L19: Nxt.put 𝑛0 𝑛2
L21: return 𝑛0

Y

. . .

N

Fig. 3. Derivative-guided symbolic execution of remove.

may be invoked under a state encapsulated by the singleton trace ⟨Nxt.put 𝑎 𝑏⟩. This trace, however,
cannot be refined to admit a Val.put event, which is required by the invocation of Val.get at Line 10
in Fig. 1, thus failing to reach the error state 𝑆8. As we proceed to consider longer precondition

traces, the simplicity criteria soon becomes insufficient to distinguish between precondition traces.

Here are two traces of four symbolic events that can be induced from the precondition automaton

and thus equally encapsulate a valid prestate of remove:

⟨Nxt.put 𝑎 𝑏⟩(∽⟨Nxt.put 𝑎 �𝑏⟩)3 (repeated 3 times)

⟨Nxt.put 𝑎 𝑏⟩⟨Nxt.put 𝑎 �𝑏⟩⟨Nxt.put 𝑎 𝑏⟩(∽⟨Nxt.put 𝑎 �𝑏⟩)
We know from before that the erroneous execution path leading to 𝑆8 requires at least two Val.put
events but the later trace can only admit one Val.put event. In this case, symbolic derivatives

guide SE to first consider the former trace when executing remove. This behavior arises from
symbolic derivatives’ tendency to maximize “progress” when inducing traces from the precondition

automaton. As symbolic derivatives facilitate the exploration within the latent SFA structures of

precondition automata, this tendency manifests in several ways: (1) consistently select the states

closer to the accepting state; (2) avoid unnecessarily transiting back to non-accepting states, and;

(3) steer clear of generating the stagnation pattern of "setting", "unsetting", and "resetting". In the

case of the precondition automaton shown in Fig. 2a, the execution tends to move from 𝑞0 to 𝑞1
via ⟨Nxt.put 𝑎 𝑏⟩ and stays at 𝑞1. Intuitively, the former trace induced in the described fashion

encapsulates a relatively more permissive state that potentially leads to more interesting feasible

paths being explored, including the one that leads to the error state 𝑆8.

Derivative-Guided Falsification. In addition to intelligently enumerating precondition traces,

symbolic derivatives can guide the symbolic execution of remove itself, by again exploiting the

latent SFA structure of the specification. Specifically, they allow our symbolic execution to relate

method invocations in remove to the transitions in the postcondition automaton (Fig. 2b). Consider

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 50. Publication date: January 2025.



50:10 Yongwei Yuan, Zhe Zhou, Julia Belyakova, and Suresh Jagannathan

the symbolic execution tree of remove in terms of operations over symbolic variables, as depicted in

Fig. 3. Each program point is associated with a state in the postcondition automaton that effectively

determines the set of future traces (i.e., sequences of future actions) that are (un)safe to explore.

The symbolic execution of remove begins with the initial state 𝑞2 of the postcondition automaton

because it admits all traces of actions that remove is safe to perform. As remove traverses the input

linked list via repetitive get invocations before unsafely invoking Nxt.put, symbolic derivatives

intelligently determine that the future safe traces after those get invocations are also represented

by 𝑞2. This is because 𝑞2 → 𝑞2 is the only outgoing transition from 𝑞2 that is compatible with

get actions. Recall the frontier state 𝑆7 before the unsafe invocation of Nxt.put from before: the

past traces of actions already determine 𝑛0 ≠ 𝑎 and 𝑛2 = 𝑏. Then our SE procedure can indeed

determine that ⟨Nxt.put 𝑛0 𝑛2⟩ is unsafe because it is compatible with the transition 𝑞2 → ∅, which
happens to be the only compatible outgoing transition from 𝑞2. Note that even if remove continues

traversing the linked list after removing the first found element via a recursive call to loop, the
symbolic derivatives guide SE to avoid unprofitably unrolling the loop because any future action is

unsafe. In contrast, the naïve trace-based SE described in Section 2.2 would wastefully relate each

explored execution path of remove with traces in the postcondition automaton.

To conclude this section, the main contribution of this paper is a new symbolic execution

procedure that computes such symbolic derivatives as symbolic execution proceeds to maintain a

trace of symbolic events that witness the current execution path and its relationship with the safety

property, in an attempt to accelerate the search for a feasible execution that violates the property.

3 Preliminaries
The SFA representations of specifications expressed in LTL𝑓 [De Giacomo and Vardi 2013] facilitate

the discussion in Section 2. To properly formulate the relationship between traces admissible by

LTL𝑓 formulae and SFAs (see Section 5), however, we need to introduce regular expressions. The

language of regular expressions (RE) is strictly more expressive for representing traces than LTL𝑓

and enjoys an important closure property under the classic derivative computation [Brzozowski

1964]. In this section, we present symbolic regular expressions (SREs) whose atoms are predicates,

show how to express common temporal modalities from LTL𝑓 in terms of RE operations, and relate

classic derivatives with states in finite state automata.

Effective Boolean Algebras. Tuple (Σ,Ψ, J_K,⊥,⊤,∨,∧,¬) defines Effective Boolean Algebra (EBA
[Veanes 2013]) where Σ is a set of domain elements and Ψ is a set of predicates, closed under the

Boolean connectives with ⊥,⊤ ∈ Ψ. The denotation of 𝜙,𝜓 ∈ Ψ are provided by J_K:Ψ→ 2
Σ
where

J⊥K = {} J⊤K = Σ J𝜙 ∨𝜓K = J𝜙K ∪ J𝜓K J𝜙 ∧𝜓K = J𝜙K ∩ J𝜓K J¬𝜙K = Σ/J𝜙K

Traces. Finite sequences of elements 𝛼, 𝛽 from domain Σ are called traces 𝜋 . Let 𝜖 be the empty

trace and 𝜋1 · 𝜋2 be the associative concatenation of 𝜋1 and 𝜋2. We write 𝜋1𝜋2 for 𝜋1 · 𝜋2 when it

is clear from the context that juxtaposition stands for concatenation. Following the convention,

we further denote that Σ(0) = {𝜖}, Σ(𝑘+1) = Σ · Σ(𝑘 ) , for 𝑘 ≥ 0, and Σ∗ =
⋃

𝑘≥0 Σ
(𝑘 )

, where

𝐿1 · 𝐿2 = {𝜋1𝜋2 | 𝜋1 ∈ 𝐿1, 𝜋2 ∈ 𝐿2} for 𝐿1 ⊆ Σ∗ and 𝐿2 ⊆ Σ∗. Lastly, we write 𝐿∗ for the closure of 𝐿
under concatenation when it is clear from the context that 𝐿 ⊆ Σ∗.

Symbolic Regular Expressions. We define Symbolic Regular Expressions (SRE) modulo Boolean

Algebra (Σ,Ψ, J_K,⊥, •,⊔,⊓,∽) such that SREs use literals ℓ from Ψ as predicates over these char-

acters, i.e., JℓK ⊆ Σ, and accept traces of characters from alphabet Σ. The top literal is denoted by •
following the convention of regular expressions. Note that, to avoid later confusion with boolean

predicates, we adopt a different set of notations for the boolean connectives. The syntax of SREs

is then defined by the following operations: empty set (∅), null (𝜀), literals (ℓ), Kleene Star (R∗),
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concatenation (R1 · R2), negation (¬R), conjunction (R1 ∧ R2), and disjunction (R1 ∨ R2).

R ::= ∅ | 𝜀 | ℓ | R∗ | R1 · R2 | ¬R | R1 ∧ R2 | R1 ∨ R2

Abusing the notation J_K, the denotation of SREs, JRK ⊆ Σ∗, is recursively defined as:

J∅K = {} J𝜀K = {𝜖} JR∗K = JRK∗ JR1 · R2K = JR1K · JR2K
J¬RK = Σ∗ \ JRK JR1 ∧ R2K = JR1K ∩ JR2K JR1 ∨ R2K = JR1K ∪ JR2K

Following the denotation of SREs, we write R1 Ď R2 for JR1K ⊆ JR2K and R1 ≡ R2 for JR1K = JR2K.

Conversion from LTL𝑓 to SRE. Interestingly, common temporal modalities from LTL𝑓 can be

expressed in SRE. As the leaf nodes in LTL𝑓 formulae are literals ℓ , which is expressible in SRE,

we provide the translation semantics of common temporal operators, assuming that the operands

have already been converted to SREs, as follows:

XR � • · R ℓUR � ℓ∗ · R FR � •∗ · R GR � ¬(•∗ · ¬R) ℓWR � ¬(•∗ · R) ∨ (ℓ∗ · R)
That is, XR (next) holds if R accepts the trace starting from the next position; ℓUR (until) holds

if there exists such a position that R accepts the following trace and ℓ holds until that position;

FR (finally) holds if there exists such a position that R accepts the following trace; GR holds if

there does not exist such a position that R rejects the following trace, and; ℓWR (weak until) holds

if either there does not exist such a position that R accepts the following trace, or ℓ holds until

such a position. For simplicity, we limit the first operand of U and W to be a single literal ℓ , which

suffices for common cases found in the ADT specifications we consider, including the modalities

used in our evaluation (Section 7). We directly use SRE in the rest of the paper.

Derivatives of SRE. A derivative is a notion from language theory. Given a language, say defined

by an SRE R, and a string 𝜋 , the derivative operation returns a new language accepting all strings

that are accepted by R when appended to 𝜋 , which can be thought of as a prefix to those strings.

Jd𝜋RK = {𝜋 ′ | 𝜋 · 𝜋 ′ ∈ JRK}
Following the literature on derivatives of regular expressions [Antimirov 1995; Berry and Sethi

1986; Brzozowski 1964], we first inductively define a nullable predicate 𝜈 (R) that determines if R
accepts the empty string. That is, 𝜈 (R) iff 𝜖 ∈ JRK.

𝜈 (𝜀) = 𝜈 (R∗) = ⊤ 𝜈 (∅) = 𝜈 (ℓ) = ⊥ 𝜈 (¬R) = ¬𝜈 (R)
𝜈 (R1 · R2) = 𝜈 (R1 ∧ R2) = 𝜈 (R1) ∧ 𝜈 (R2) 𝜈 (R1 ∨ R2) = 𝜈 (R1) ∨ 𝜈 (R2)

Then the derivatives of SREs follow and can be computed recursively via the following rules:

d𝜀R = R d𝛼𝜋R = d𝜋d𝛼R d𝛼∅ = d𝛼𝜀 = ∅ d𝛼 (R∗) = d𝛼R · R∗

d𝛼 ℓ =

{
𝜀 if 𝛼 ∈ JℓK
∅ if 𝛼 ∉ JℓK

d𝛼 (R1 · R2) =
{
(d𝛼R1 · R2) ∨ d𝛼R2 if 𝜈 (R1)
d𝛼R1 · R2 if ¬𝜈 (R1)

d𝛼 (¬R) = ¬d𝛼R d𝛼 (R1 ∧ R2) = d𝛼R1 ∧ d𝛼R2 d𝛼 (R1 ∨ R2) = d𝛼R1 ∨ d𝛼R2

Computing the derivative of a regular expression is a well-known technique for constructing

an automaton that accepts the same language as the given regular expression. The construction

closely follows a property of regular expressions — every SRE R can be written in the form of a

disjunction as follows:

Rnullable ∨
∨
𝛼∈Σ

𝛼d𝛼R where Rnullable is 𝜀 if 𝜈 (R),∅ otherwise.

Informally, starting with the initial state, each disjunct 𝛼d𝛼R denotes a transition to a new state

with label 𝛼 . If 𝜈 (R), then we mark the current state as an accepting state. Iteratively, we repeat the

same procedure on the new states with the corresponding derivative d𝛼R until no new state can

be added. Intuitively, each state 𝑞𝑖 in the constructed automaton is denoted by a derivative (also in

SRE) of the original R– the derivative accepts the same language as the constructed automaton
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with its initial state set to 𝑞𝑖 . This can be manifested by a different disjunctive form

∨
𝜋∈Σ∗ 𝜋d𝜋R.

For each disjunct 𝜋d𝜋R, if d𝜋R is not empty, then 𝜋 denotes a path from the accepting state to the

state denoted by d𝜋R. Hence, whether d𝜋R denotes an accepting state determines if R accepts 𝜋 :

𝜋 ∈ JRK iff 𝜈 (d𝜋R)
However, Σ often contains a large if not infinite number of symbols and thus enumerating over all

symbols to build an automata is inefficient at best, and impossible in the general case.Mintermization
solves this problem by constructing a finite set of equivalence classes over the infinite domain Σ
such that all literals ℓ can be mapped to elements in this finite set ([D’Antoni and Veanes 2014;

Veanes et al. 2010]). Then, following a similar procedure of constructing automata from regular

expressions, one may construct an equivalent SFA where transtitions between states are labeled

by equivalence classes. We will present the characterization of symbolic derivatives in Section 5

as a device to exploit SREs’ latent SFA structures without upfront mintermization and later its

computation in Section 6.

4 Trace-Based Symbolic Execution

Variable 𝑥,𝑦, . . . Symbolic Variable 𝑥𝜏 , 𝑦𝜏 , . . . Data Constructor 𝑑

Primitive Operator 𝑜𝑝 Effectful API of Representation Type f, g ∈ Δ
Simple Type 𝜏 ::= 𝑢𝑛𝑖𝑡 | 𝑏𝑜𝑜𝑙 | 𝑖𝑛𝑡 | . . . | × 𝜏 | + 𝑑 𝜏

Constant 𝑐 ::= () | B | Z | . . . | (𝑐) | 𝑑 𝑐

Symbolic First-Order Value 𝑞 ::= 𝑐 | 𝑥 | 𝑥𝜏 | (𝑞) | 𝑑 𝑞 | op 𝑞
Boolean Formula 𝜙,Φ ::= 𝑞 | ⊥ | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙
Symbolic Event ℓ ::= ⟨𝑥ret ← f 𝑥arg | 𝜙⟩ | ∽ℓ | ℓ ⊓ ℓ | ℓ ⊔ ℓ
Symbolic Value 𝑣 ::= 𝑥 | 𝑞 | (𝑣) | fun 𝑥 . 𝑒 | fix 𝑓 . fun 𝑥 . 𝑒
Symbolic Expression 𝑒 ::= 𝑣 | ?𝜏 | abort | assume 𝜙 | admit R | append R

| let 𝑥 = 𝑣 𝑣 in 𝑒 | let 𝑥 = 𝑒 in 𝑒 | 𝑒 ⊗ 𝑒
𝑒1; 𝑒2 � let 𝑥 = 𝑒1 in 𝑒2 for fresh 𝑥

assert 𝜙 � (assume ¬𝜙 ; abort) ⊗ assume 𝜙
affirm R � (admit ¬R; abort) ⊗ admit R

Fig. 4. Syntax of the core language.

We first introduce a naïve variant of our symbolic execution framework for falsifying functional

ADT implementations that interact with an underlying effectful representation type. Symbolic

execution is defined on a core functional language with explicit constructs for generating symbolic

values and expressing specifications of two kinds: formulae Φ from decidable theories amenable to

SMT solving, which are standard for symbolic execution techniques, and trace-based specifications

R expressed as symbolic regular expressions, which is the novelty of our framework. Fig. 4 presents

the syntax of our core language, where the expression 𝑒 is expressed in monadic normal form

(MNF) [Hatcliff and Danvy 1994], a variant of A-normal form (ANF) [Flanagan et al. 1993] that

permits nested let-bindings. Recursive functions take the form of fix 𝑓 . fun 𝑥 . 𝑒 using an explicit

fixpoint construction, and control flow is modeled by nondeterministic choice ⊗ together with an

assume construct. The symbolic constructs in this language, including assume, will be discussed
throughout the rest of the section. Fig. 5 formalizes the naive symbolic execution of the core

language as a small-step, substitution-based operational semantics over symbolic states (Φ,R, 𝑒).
In this section, we first introduce symbolic execution of pure functional programs and then extend

it with the capability to reason over traces that interact with an ADT’s underlying representation

type.
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Symbolic State 𝑆 ::= (Φ,R, 𝑒)
fresh 𝑥𝜏

(Φ, R, ?𝜏 ) ã→ (Φ, R, 𝑥𝜏 )
GenSym

(Φ, R, abort;𝑒 ) ã→ (Φ, R, abort)
AbortProp

(Φ, R, assume 𝜙 ) ã→ (Φ ∧ 𝜙, R, ( ) )
Assume (

Φ, R, admit R′
)

ã→
(
Φ, R ∧ R′, ( )

) Admit

(Φ, R, append Reff ) ã→ (Φ, R · Reff, ( ) )
Append

(Φ, R, let 𝑥 = 𝑣 in 𝑒 ) ã→ (Φ, R, 𝑒 [𝑥 ↦→ 𝑣 ] )
LetVal

(Φ, R, 𝑒1 ) ã→
(
Φ′, R′, 𝑒′

1

)
(Φ, R, let 𝑥 = 𝑒1 in 𝑒2 ) ã→

(
Φ′, R′, let 𝑥 = 𝑒′

1
in 𝑒2

) LetExp

𝑖 = 1, 2

(Φ, R, 𝑒1 ⊗ 𝑒2 ) ã→ (Φ, R, 𝑒𝑖 )
Choice

𝑣𝑓 = fun 𝑥. 𝑒1(
Φ, R, let 𝑦 = 𝑣𝑓 𝑣 in 𝑒2

)
ã→ (Φ, R, let 𝑦 = 𝑒1 [𝑥 ↦→ 𝑣 ] in 𝑒2 )

LetAppFun

𝑣𝑓 = fix 𝑓 . fun 𝑥. 𝑒1 𝑣′
𝑓
= fun 𝑓 . 𝑒1 [𝑥 ↦→ 𝑣 ](

Φ, R, let 𝑦 = 𝑣𝑓 𝑣 in 𝑒2
)

ã→
(
Φ, R, let 𝑦 = 𝑣′

𝑓
𝑣𝑓 in 𝑒2

) LetAppFix

Fig. 5. Naive trace-augmented semantics.

To enable symbolic reasoning, the language supports symbolic variables 𝑥𝜏 , which stand for

constants 𝑐 of type 𝜏 . In contrast to program variables 𝑥 , symbolic variables are internal to symbolic

execution: they are never written by developers but are generated by the ?𝜏 construct during

symbolic execution (Rule GenSym). The 𝜏 subscript can be omitted whenever it is clear from

the context; 𝜏 denotes simple types (primitive types, e.g., 𝑢𝑛𝑖𝑡 and 𝑖𝑛𝑡 , product types × 𝜏 , and

user-defined data types + 𝑑 𝜏) but not function types. Variables, symbolic variables, and constants,

when composed by tuple constructors (. . . ), data constructors 𝑑 , and primitive operators op , build

up to symbolic (first-order) values. Then, Boolean symbolic values, when composed by logical

connectives, build up to Boolean formulae Φ. Since primitive operators are drawn from decidable

first-order theories, e.g., arithmetic operators, or uninterpreted functions with user-provided axioms,

the satisfiability of Boolean formulae can be straightforwardly discharged to SMT queries.

Definition 4.1 (Denotation of Boolean Formulae). Let 𝜎 denote an interpretation of symbolic

variables as constants and𝜎 (Φ) denote the Boolean formulaΦwith its symbolic variables substituted

for constants according to 𝜎 . Then, the denotation of a closed Boolean formula Φ, where all variables
are symbolic, is the set of interpretations 𝜎 such that 𝜎 (Φ) holds, i.e., JΦK = {𝜎 | 𝜎 (Φ)}.

Now, we may introduce the symbolic execution of pure functional programs, in which case

each symbolic state (Φ, 𝑒) consists of a closed Boolean formula Φ representing the current path
condition, and a closed expression 𝑒 — all variables are bound by let, fun, or fix. The path condition
collects all the conditions that need to be satisfied for the symbolic state to be reachable, i.e., have a

corresponding concrete state. The initial path condition is true, denoted by⊤. Let 𝑒 be the expression
to be reduced. Then the initial symbolic state is (⊤, 𝑒). The reduction rules between symbolic states

are described in Fig. 5 if we omit rules related to R. Rule Assume describes the augmentation of the

current path condition with the argument of assume, which is also a Boolean formula 𝜙 . In contrast

to path conditions, we use 𝜙 for Boolean formulae that may involve program variables bound in

expressions, which will be substituted for closed symbolic values via Rule LetVal. Each assume
along an execution path further restricts the state space represented by the path condition. Suppose

a path condition Φ is satisfiable, i.e., there exists 𝜎 ∈ JΦK. Then, a sequence of reductions from (⊤, 𝑒)
to (Φ, abort), where abort represents a failure in execution, witnesses a feasible execution path of

𝑒 that leads to a failure. In practice, abort is rarely written by developers and can be expressed
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using assert, which is defined as syntactic sugar (Fig. 4). Whether a path condition Φ passes an

assertion assert 𝜙 is effectively determined by the satisfiability of Φ ∧ ¬𝜙 .
To reason about an ADT’s interaction with underlying representation types, we equip symbolic

execution with the capability to model such interactions extensionally, by recording the history

of calls to the representation type’s methods, along with their argument and return values. In

particular, interactions are captured in symbolic regular expressions (SRE) R whose literals denote

sets of such API calls to the representation types. Recall in Section 3, such literals are elements

from EBA (Σ,Ψ, J_K,⊥, •,⊔,⊓,∽). Here, Σ stands for the domain of events, denoted by 𝑐ret ← f 𝑐arg,
and Ψ includes all the symbolic events ℓ , each denoting set of events, according to the syntax shown

in Fig. 4. An atomic symbolic event ⟨𝑥ret ← f 𝑥arg | 𝜙⟩ denotes the calls to f such that the arguments

𝑐arg and the return value 𝑐ret satisfy the qualifier 𝜙 :

J⟨𝑥ret ← f 𝑥arg | 𝜙⟩K � {𝑐ret ← f 𝑐arg | [𝑥arg ↦→ 𝑐arg, 𝑥ret ↦→ 𝑐ret]𝜙}
The boolean connectives have standard denotation as shown in Section 3. Notice that the scope

of 𝑥arg and 𝑥ret is limited to the qualifier 𝜙 of the symbolic event. We omit such variables local to
the symbolic event when they are either obvious from or irrelevant to the context. For example,

we always use 𝑘𝑒𝑦 and 𝑣𝑎𝑙 to denote keys and values of the calls to put and get from key-value

stores, with the result of put omitted. And similar to Section 2, we write ⟨put ˆ𝑘 𝑣⟩ for ⟨put 𝑘𝑒𝑦 𝑣𝑎𝑙 |
𝑘𝑒𝑦 = ˆ𝑘 ∧ 𝑣𝑎𝑙 = 𝑣⟩ and ⟨put ��̂𝑘 𝑣⟩ for ⟨put 𝑘𝑒𝑦 𝑣𝑎𝑙 | 𝑘𝑒𝑦 ≠ ˆ𝑘 ∧ 𝑣𝑎𝑙 = 𝑣⟩. An atomic symbolic event

is closed if all variables in its qualifier are either symbolic or local to the event; a symbolic event

ℓ is closed if all its atomic symbolic events are, and; an SRE is closed if all its symbolic events are.

The denotation does not apply to all closed SREs but only those SREs without symbolic variables.

For SREs that reference symbolic variables, we can only interpret them after interpreting these

symbolic variables in a way consistent with the path condition if any.

By augmenting symbolic states with SRE Rcurr to represent the events that have happened, we

define a reduction semantics over (Φ,Rcurr, 𝑒) as shown in Fig. 5. We refer to such an SRE Rcurr
as the current context of the execution from the associated symbolic state. In addition, we refer to

SREs as contexts or effects of a method (ADT’s or representation type’s) depending on whether they

describe admissible traces prior to calling the method or traces the method is supposed to produce.

Similar to path conditions, the SREs that represent the current context of symbolic states are always

closed. Definition 4.2 gives the reachability of a symbolic state 𝑆 based on the satisfiability of its

path condition Φ and its current context Rcurr.

Definition 4.2 (Reachability). isSat (Φ,Rcurr) iff there exists 𝜎 ∈ JΦK such that J𝜎 (Rcurr)K ≠ ∅.

Henceforth, we omit the carat (ˆ ) on symbolic variables 𝑥 and assume all variables are symbolic

except for those variables bound in expressions.

For a symbolic state (Φ,Rcurr, 𝑒), its path condition Φ effectively captures the history of pure

computation up to this state while its current context Rcurr captures the history of effectful compu-

tation. Because the events in Rcurr are qualified with reference to the symbolic variables in Φ, both
structures synergyistically enable the recording of a sufficient condition that allows a computation

to reach the symbolic state.

Example 4.3. The remove method from Fig. 1 can be rewritten in our core language, with the

conditional expression represented by a combination of assume and choice operation ⊗, as follows:
𝑒remove � fun ℎ𝑑. fun 𝑒𝑙𝑒𝑚. (assume ℎ𝑑 = null;ℎ𝑑) ⊗ (assume ℎ𝑑 ≠ null; . . . )

Recall that the specification in Fig. 1 requires remove to be called in a symbolic state where node 𝑎

is linked to node 𝑏 as its successor. Its precondition can be written as an SRE thus:

R𝑎ñ𝑏 � •∗ · ⟨Nxt.put 𝑎 𝑏⟩ · (∽⟨Nxt.put 𝑎 _⟩)∗
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This context admits traces in which a call to Nxt.put is made on key 𝑎 and value 𝑏, followed by

subsequent events that do not include calls to Nxt.put with key 𝑎. Hence, the context encapsulates

the intended requirement on symbolic states prior to calling remove.
The specification in Fig. 1 also requires that remove, when called under the specified context,

can link a new node other than 𝑎 to 𝑏 only when 𝑏 has been unlinked from 𝑎. The postcondition

can be written as an SRE parameterized by 𝑎 and 𝑏 thus:

R𝑎ò𝑏 � ((∽⟨Nxt.put �𝑎 𝑏⟩)∗ · ⟨Nxt.put 𝑎 �𝑏⟩ · •∗) ∨ (∽⟨Nxt.put 𝑎 �𝑏⟩)∗

The effect of remove admits traces where no node other than 𝑎 is linked to 𝑏 (via ∽⟨Nxt.put �𝑎 𝑏⟩)
before 𝑎 is unlinked from 𝑏 (via ⟨Nxt.put 𝑎 �𝑏⟩), or 𝑎 is never unlinked from 𝑏 (via ∽⟨Nxt.put 𝑎 �𝑏⟩). If
an execution of remove produces traces not admissible to R𝑎ò𝑏 , then we conclude that some node,

as witnessed by 𝑏, may unexpectedly have two predecessors at some point during the execution. □

Similar to how path conditions are augmented by assume constructs, the current contexts of

executions are augmented by two constructs, admit Rpast and append Reff . The former, admit,
combines the current context Rcurr and its argument Rpast with conjunction, as described by Rule

Admit; thus, it restricts the traces of past events in Rcurr to only those admissible by Rpast. In

contrast, append concatenates the current context Rcurr with the argument Reff , as described by

Rule Append; thus it records new events produced during symbolic execution. The initial context

before starting the symbolic execution is 𝜀, indicating that no event has happened yet.

Now, we illustrate that a pair of append and affirm constructs the translation of the specification
attached to an ADT method, capturing the safety property. Recall from Fig. 1 that the specification

includes three key components, ghost variables, required context (context), and expected effect

(effect). Intuitively, the specification states that when being executed in a required context (with

possible reference to both ghost variables andmethod parameters), themethodwith the specification

attached should produce events in compliance with the expected effect. The append helps set up
this required context while the affirm is responsible for affirming that the context upon exiting

the method complies with its argument Rpost by conjoining the context Rcurr with ¬Rpost. The

satisfiability of Rcurr ∧ ¬Rpost then witnesses a violation of Rpost in the execution manifested by

Rcurr. To falsify the implementation of the ADT method against its specification, we construct a

harness 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠
2
that wraps a call to the ADT method with such a pair of append and affirm.

Example 4.4. Continuing from Example 4.3, the specification of

remove is converted into a harness 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠 . First, symbolic variables

𝑎 and 𝑏 are generated (by “?” with the same name as the program

variables) to denote two arbitrary nodes. Second, symbolic variables

ℎ𝑑 and 𝑢 are generated (again by “?”) to denote the input to remove.
Third, the required context R𝑎ñ𝑏 of remove is appended to the

initial context 𝜀. Lastly, after calling remove, the postcondition of

𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠 �

let 𝑎, 𝑏 = ?node, ?node in

let ℎ𝑑,𝑢 = ?node, ?elem in

append R𝑎ñ𝑏 ;

remove ℎ𝑑 𝑢;

affirm R𝑎ñ𝑏 · R𝑎ò𝑏

the harness is affirmed to check for any violation during the execution of the harness. Notably, the

postcondition prepends the required context R𝑎ñ𝑏 to the expected effect R𝑎ò𝑏 . □

In contrast, pair(s) of admit and append construct the translation of the specifications attached to

APIs of representation types, providing an extensional and underapproximate model for their be-

havior. And the admit relates the context require by the API with the current context by conjoining

them while the following append records the expected traces of events produced by the API.

Example 4.5. Taking the same form as the required context R𝑎ñ𝑏 of remove from Example 4.3,

the required context of Nxt.get is R𝑠ñ𝑡 , admitting traces where node 𝑠 (the argument) is linked to

2
See supplementary material for details on the translation of source language expressions to core language ones.
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node 𝑡 (the return value). And the expected effect of the Nxt.get is a symbolic event ⟨𝑡 ← Nxt.get 𝑠⟩.
And thus, calls to Nxt.get can be replaced by a function 𝑒Nxt.get defined as follows:

𝑒Nxt.get � fun 𝑠 . let 𝑡 = ?node in admit R𝑠ñ𝑡 ; append ⟨𝑡 ← Nxt.get 𝑠⟩; 𝑡
Similarly, let R𝑛:𝑢 � •∗ · ⟨Val.put 𝑛 𝑢⟩ · (∽⟨Val.put 𝑛 _⟩)∗ denote the required context of Val.get,
where node 𝑛 (the argument) stores an element 𝑢 (the return value). Correspondingly, calls to

Val.get are replaced by a function 𝑒Val.get defined as follows:

𝑒Val.get � fun 𝑛. let 𝑢 = ?elem in admit R𝑛:𝑢 ; append ⟨𝑢 ← Val.get 𝑛⟩; 𝑢
Here, the calls to get always succeed because our goal is to falsify the implementation of remove
with respect to the specified safety property. □

By replacing API calls in the direct translation of the ADT method, e.g., 𝑒remove from Example 4.3,

with symbolic expressions that augment the context of execution using admit and append, we now
have an implementation 𝑒𝑟𝑒𝑚𝑜𝑣𝑒 of the ADT method remove that is ready to be plugged in 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠
for symbolic execution.

Example 4.6. By substituting the call to remove for 𝑒remove (Example 4.3) with Val.get and Nxt.get
respectively substituted for 𝑒Val.get and 𝑒Nxt.get (Example 4.5), the harness 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠 (Example 4.4) is

closed and ready for symbolic execution. Initially, the symbolic state is (⊤, 𝜀, 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠 ). The required
context R𝑎ñ𝑏 of remove is first appended to 𝜀. Following the second branch, 𝑛0 ≠ null augments

the path condition. As Val.get is called on 𝑛0, 𝑛0 substitutes 𝑛 in the body of 𝑒Val.get and a fresh

symbolic variable 𝑢0 is generated to represent the element stored in 𝑛0. The symbolic state becomes

(𝑛0 ≠ null,R𝑎ñ𝑏, let 𝑢
′ = admit R𝑛0:𝑢0

; append ⟨𝑢0←Val.get 𝑛0⟩; 𝑢0 in . . . )
As 𝑢0 is returned to the top level and substitutes 𝑢′, the current context becomes R𝑎ñ𝑏 ∧ R𝑛0:𝑢0

·
⟨𝑢0←Val.get 𝑛0⟩ (∧ binds SREs tighter than ·). Following the nested second branch, the path

condition becomes 𝑛0 ≠ null ∧ 𝑢0 ≠ 𝑢. As we enter the loop and follow the execution path

illustrated in Section 2.2, we (1) get the successor of 𝑛0, 𝑛1, (2) get the element stored in 𝑛1, 𝑢1,

(3) assume𝑢1 = 𝑢, (4) get the successor of 𝑛1, 𝑛2, and (5) remove 𝑛1 by linking 𝑛0 to 𝑛2. The symbolic

state becomes (Φbad,Rbad, affirm R𝑎ñ𝑏 · R𝑎ò𝑏), where

Φbad � 𝑛0 ≠ null ∧ 𝑢0 ≠ 𝑢 ∧ 𝑛1 ≠ null ∧ 𝑢1 = 𝑢 and

Rbad � ((((R𝑎ñ𝑏∧R𝑛0:𝑢0
· ⟨𝑢0←Val.get 𝑛0⟩)∧R𝑛0ñ𝑛1

· ⟨𝑛1←Nxt.get 𝑛0⟩)
∧R𝑛1:𝑢1

· ⟨𝑢1←Val.get 𝑛1⟩)∧R𝑛1ñ𝑛2
· ⟨𝑛2←Nxt.get 𝑛1⟩) · ⟨Nxt.put 𝑛0 𝑛2⟩

Rbad denotes the traces that can be produced following the execution path. To show that the

affirmation may fail, it is sufficient to find an interpretation for the symbolic variables such that

the path condition Φbad holds and there exists a trace included in Rbad but excluded from the

postcondition of the harness, i.e., isSat (Φbad,Rbad ∧ ¬(R𝑎ñ𝑏 · R𝑎ò𝑏)). □

As illustrated in Example 4.6, the size of the SRE that represents the current context of the execution

quickly blows up during symbolic execution. This in turn makes the symbolic affirmation check at

the end of each execution path potentially very expensive as we quantify in Section 7.

To conclude this section, we lift the affirm check at the end of the harness progress and regard it
as a falsification query on the harness program without the affirm statement. Then Definition 4.7

describes a falsification problem in terms of this trace-based symbolic execution framework.

Definition 4.7 (Naïve Falsification). Given a safety property Rpost. If (⊤, 𝜀, 𝑒) ã→∗ (Φ,Rcurr, 𝑣) and
isSat

(
Φ,Rcurr ∧ ¬Rpost

)
then this execution of 𝑒 is falsified with respect to Rpost.
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5 Symbolic Execution with Symbolic Derivatives
The inefficiency of the naive semantics stems from its failure to recognize regularity — the capacity

of specifications to be represented as automata structures — during symbolic execution. We can

exploit this regularity by underapproximating the required context or the expected effect of method

calls. This approximation facilitates a derivative computation, effectively emulating state transitions

in the SFAs associated with SREs. Specifically, the underapproximation takes the form of symbolic
traces Π, where only a subset of operations from the SRE (with the same denotation) are allowed:

empty trace (𝜀), symbolic event (ℓ), and concatenation (Π1 · Π2). Then, a derivative-based notion

of symbolic state 𝑆D that underapproximates a symbolic state 𝑆 , besides the expression 𝑒 under

execution, is given by (i) Φ and Π to encapsulate the execution path that leads to 𝑆D ; along with
(ii) Rcont that predicts the traces allowed to be produced in the continuation of the execution in

compliance with the safety property, dubbed continuation effect.
Symbolic Trace Π ::= 𝜀 | ℓ | Π · Π Derivative-Based Symbolic State 𝑆D ::= (Φ,Π,Rcont, 𝑒)
In this section, we present (1) symbolic derivatives that allow us to effectively explore and thus exploit

the automata structures of specifications, without appealing to their calculation (see Section 6), and

(2) a derivative-based semantics that leverages this notion to facilitate symbolic execution over 𝑆D
as well as the falsification of a given safety property that is both sound and complete with respect

to the naïve semantics given in the previous section.

5.1 Symbolic Derivatives
SREs that represent the context of the current execution or the arguments to admit and appendmay

refer to symbolic variables that are also constrained by path conditions, as discussed in Section 4.

In what follows, we first revisit notions on SREs from Section 3 with such symbolic variables

left uninterpreted, i.e., treating symbolic variables as abstract symbols whose interpretation is

unknown. We then define symbolic derivatives of such SREs, which may also refer to symbolic

variables involved in those SREs.

First, the inclusion and equivalence relationship between two SREs R1 and R2 is given by

Definition 5.1 and Definition 5.2 such that the relationship holds under any interpretation of

symbolic variables involved in R1 and R2.

Definition 5.1 (Inclusion). R1 Ď R2 iff J𝜎 (R1)K ⊆ J𝜎 (R2)K for all 𝜎 .

Definition 5.2 (Equivalence). R1 ≡ R2 iff J𝜎 (R1)K = J𝜎 (R2)K for all 𝜎 .

Second, the nullable operation 𝜈 defined over SREs in Section 3, when applied to any symbolic

event ℓ , returns false irrespective of ℓ ’s qualifiers and any symbolic variables involved. Hence, the

nullable operation 𝜈 (R) determines if R accepts the empty trace 𝜖 regardless of the interpretation

of its symbolic variables (Lemma 5.3).

Lemma 5.3. 𝜈 (R) iff 𝜈 (𝜎 (R)) for all 𝜎 . 3

Third, we need to revisit the notion of prefixes of SREs. Recall in Section 3, for an SRE R that

does not involve symbolic variables, any concrete trace 𝜋 can be a prefix of R since the derivative

d𝜋R, which contains all concrete traces that are accepted by R when appended to 𝜋 , is always

well-defined. To account for symbolic variables involved in R, we consider symbolic traces Π, which
may also involve these symbolic variables, as a consolidated form of prefixes of R. Definition 5.4

gives the criteria that a valid prefix Π of R has to meet.

Definition 5.4. Π is a prefix of R iff there exists R′ s.t. d𝜋𝜎 (R)=𝜎 (R′) for all 𝜋∈J𝜎 (Π)K for all 𝜎 .
3
All proofs are deferred to the full version of this paper [Yuan et al. 2024b].
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Intuitively, Π qualifies as a prefix of R if it represents a collection of partial runs of an SFA associated

with R. These partial runs must begin with the SFA’s start state and end at any arbitrary state.

Notably, the ending state does not need to be accepting and may even be a dead state, from which

no accepting state is accessible. For example, recall the postcondition automaton from Fig. 2:

⟨Nxt.put 𝑎 �𝑏⟩ and ⟨Nxt.put �𝑎 𝑏⟩ are both valid prefixes but their disjunction is not because some

runs end at 𝑞3 while the others end at the dead state denoted by ∅. We dub such singleton prefixes

as next events.
Following the definition of prefixes, we introduce symbolic derivatives in Definition 5.5.

Definition 5.5 (Symbolic Derivative). DΠR = R′ iff d𝜋𝜎 (R) = 𝜎 (R′) for all 𝜋 ∈ J𝜎 (Π)K for all 𝜎 .
In contrast to conventional derivatives discussed in Section 3, symbolic derivatives of R are well

defined only over its prefixes (Definition 5.4) but not arbitrary symbolic traces. And the property of

prefixes ensures that symbolic derivatives can still be succinctly expressed as SREs with references

to symbolic variables if any. Notably, R, its prefix Π, and its symbolic derivative R’ over Π shall

interpret any referenced symbolic variables in a consistent way; Definition 5.5 serves as a guard

against inconsistent interpretations.

Since each valid prefix Π of R establishes an equivalence class where all 𝜋 denoted by Π produce

the same derivative, a symbolic derivative DΠR is not only a quotient but also a residual of R
with respect to Π. As noted by [Pratt 1991], the quotient of R contains traces that are accepted

by R when appended to some 𝜋 denoted by prefix Π, while the residual of R contains traces that

are accepted by R when appended to any 𝜋 denoted by prefix Π. This residuality is manisfest by

Corollary 5.6, i.e., the concatenation of prefix Π and DΠR is included in R itself.

Corollary 5.6 (Residuality). Let R′ = DΠR. Then Π · R′ Ď R.
Example 5.7. Consider the expected effect R𝑎ò𝑏 of remove from Example 4.3, admitting traces

where either no node other than 𝑎 may be linked to 𝑏 before 𝑏 is unlinked from 𝑎, or 𝑎 is linked

to 𝑏 during the course of execution. Its next events include ⟨Nxt.put 𝑎 �𝑏⟩, ⟨Nxt.put �𝑎 𝑏⟩, and
⟨Nxt.put 𝑎 𝑏⟩ ⊔ ⟨Nxt.put �𝑎 �𝑏⟩ ⊔∽⟨Nxt.put⟩. Their symbolic derivatives are defined as follows, with

their respective residuality manifested: (1) D⟨Nxt.put 𝑎 �𝑏 ⟩
R𝑎ò𝑏 =•∗ because any event is allowed

once 𝑏 is unlinked from 𝑎; (2) D⟨Nxt.put �𝑎 𝑏 ⟩R𝑎ò𝑏 =∅ because it is unsafe to link node other than

𝑎 to 𝑏 with 𝑎 linked to 𝑏, and; (3) D⟨Nxt.put 𝑎 𝑏 ⟩⊔⟨Nxt.put �𝑎 �𝑏 ⟩⊔∽⟨Nxt.put⟩
R𝑎ò𝑏 =R𝑎ò𝑏 because linking

𝑎 to 𝑏 again, linking nodes other than 𝑎 and 𝑏, or get calls have no effect on subsequent traces

admissible by R𝑎ò𝑏 . □

Recall that the nullablility of derivative d𝜋R determines if a concrete trace 𝜋 is accepted by R.
Given a prefix Π of an SRE R, the nullability of symbolic derivative DΠR determines, as established

by Corollary 5.8, whether the symbolic trace Π is included in R, i.e., all runs of Π in R end at an

accepting state irrespective of the interpretation of symbolic variables.

Corollary 5.8. Let R′ = DΠR. Then (1) Π Ď R iff 𝜈 (R′) and (2) Π Ď ¬R iff ¬𝜈 (R′).
Therefore, by enumerating prefixes of R, we may sample symbolic traces included in R.
Example 5.9. Consider the required context R𝑎ñ𝑏 of remove from Example 4.3, admitting traces

where 𝑎 is linked to 𝑏 and stays pointing to 𝑏. The prefixes of R𝑎ñ𝑏 include ⟨Nxt.put 𝑎 𝑏⟩ ·
(∽⟨Nxt.put 𝑎 �𝑏⟩)𝑛 and ⟨Nxt.put 𝑎 𝑏⟩ · ⟨Nxt.put 𝑎 �𝑏⟩ · ⟨Nxt.put 𝑎 𝑏⟩ · (∽⟨Nxt.put 𝑎 �𝑏⟩)𝑛 for any

number 𝑛 of repetitions, which all lead to the same symbolic derivative:

(∽⟨Nxt.put 𝑎 �𝑏⟩)∗ ∨ (⟨Nxt.put 𝑎 �𝑏⟩ · R𝑎ñ𝑏)
admitting traces where either no subsequent event invalidates the link between 𝑎 and 𝑏, or 𝑎 is

linked to 𝑏 again after being unlinked. The symbolic derivative is nullable because its first disjunct

is a Kleene Star. Therefore, all these prefixes are included in R𝑎ñ𝑏 . □
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Πpast Ď Rpast Π′ ≡ Π ∧ Πpast(
Φ,Π,Rcont, admit Rpast

)
ã→D (Φ,Π′,Rcont, ())

DAdmit

Πeff Ď Reff Πnew ≡ Πeff ∧ Πprefix

(Φ,Π,Rcont, append Reff) ã→D
(
Φ,Π · Πnew,DΠprefixRcont, ()

) DAppend

Fig. 6. Selected rules of derivatve-based semantics.

5.2 Derivative-Based Semantics
Now, we facilitate symbolic executionwith symbolic derivatives. As admitRpast and appendReff are

the only two constructs that augment contexts in symbolic states, we only present their reduction

rules in Fig. 6, exhibiting the complete set of rules in the supplementary material. In contrast to the

naïve semantics, a derivative-based semantics begins symbolic execution with the postcondition,

denoted by Rpost. Recall from Section 4, Rpost is the concatenation of the required context and

the expected effect attached to the ADT method to be falsified. Effectively, Rpost predicts that the

context will be set up before calling the method, and the execution of the method complies with its

specified effect. During symbolic execution, we maintain the continuation effect Rcont such that it

precisely predicts the safe traces to be produced as execution continues.

Example 5.10. Consider the harness program 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠 from Example 4.4. Regarding the trailing

affirm as a postcondition to be affirmed upon finishing each execution path, we assume some

symbolic variables 𝑎 and 𝑏 and discharge affirm from 𝑒ℎ𝑎𝑟𝑛𝑒𝑠𝑠 as part of the symbolic state. In a

derivative-based semantics, the initial symbolic state is

(⊤, 𝜀,R𝑎ñ𝑏 · R𝑎ò𝑏, let ℎ𝑑,𝑢 = ?node, ?elem in append R𝑎ñ𝑏 ; remove ℎ𝑑 𝑢)
where ℎ𝑑 and 𝑢 will then immediately be replaced by symbolic variables with the same name for

demonstration’s purposes. □

Rule DAdmit describes the semantics of admit Rpast. Given a symbolic trace Π, a sequence of
symbolic events, as an underapproximation of what has happened so far following the current

execution, admit Rpast imposes constraint on Π, also in an underapproximated fashion. The un-

derapproximation of Rpast can be found by sampling symbolic traces Πpast Ď Rpast via symbolic

derivatives. Then the execution is forked on each Πpast and its conjunction Π′ with Π. Intuitively,
the conjunction Π′ is the pairwise conjunction of events in Π and Πpast (see Section 6 for details).

A straightforward pruning strategy then is to discard Πpast with (1) a different number of events

than Π or (2) an event associated with a different effectful function than the corresponding event

in Π. In both cases, the conjunction Π′ trivially denotes an empty set. We describe such Πpast as

incompatible with Π. Note that we deliberately exclude from the compatibility check the consistency

check between qualifiers of paired symbolic events to avoid generating an excessive number of

SMT queries.

Example 5.11. Consider the naive symbolic state prior to calling Val.get on 𝑛0 from Example 4.6,

(𝑛0 ≠ null,R𝑎ñ𝑏, let 𝑢′ = admit R𝑛0:𝑢0
; append ⟨𝑢0←Val.get 𝑛0⟩; 𝑢0 in . . . ). A derivative-based

symbolic state that underapproximates this naive state is (𝑛0 ≠ null,Π𝑎ñ𝑏,R𝑎ò𝑏, . . . ), where
Π𝑎ñ𝑏 � ⟨Nxt.put 𝑎 𝑏⟩ · (∽⟨Nxt.put 𝑎 �𝑏⟩)3 Ď R𝑎ñ𝑏 as shown in Example 5.9, and R𝑎ò𝑏 is the

continuation effect prior to the call as we will discuss shortly in Example 5.12. The admit R𝑛0:𝑢0

operation enforces the required context of the call to Val.get. A symbolic trace that underap-

proximates R𝑛0:𝑢0
and is compatible with the current context Π𝑎ñ𝑏 is Π𝑛0:𝑢0

� ∽⟨Val.put 𝑛0 𝑢0⟩ ·
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⟨Val.put 𝑛0 𝑢0⟩ · (∽⟨Val.put 𝑛0��𝑢0⟩)2. Augmented by Π𝑛0:𝑢0
, the context in the symbolic state then

becomes ⟨Nxt.put 𝑎 𝑏⟩ · ⟨Val.put 𝑛0 𝑢0⟩ · (∽⟨Val.put 𝑛0��𝑢0⟩ ⊓ ∽⟨Nxt.put 𝑎 �𝑏⟩)2. □

Rule DAppend describes the semantics of append Reff , where new events are to be appended to

the current symbolic trace Π. First, we underapproximate events to be produced by append Reff ,

again by sampling symbolic traces Πeff Ď Reff . Second, we enumerate prefixes Πprefix of Rcont
that are compatible with Πeff , along with the symbolic derivative DΠprefixRcont. The execution can

be forked for each pair of Πeff and Πprefix. Recall that Rcont imposes constraints on the events

produced during symbolic execution, including those produced by append. As long as the behavior
of append, in this case, the underapproximation Πeff , complies with the constraints imposed by

Πprefix, DΠprefixRcont represents the constraint on events to be produced after append and thus can

safely replace Rcont in the next symbolic state. To enforce this compliance, we take the conjunction

of Πeff and Πprefix and append the result Πnew to the current symbolic path Π. Effectively, we relate
an underapproximated behavior of append with the postcondition of the method to be falsified,

from which Rcont is derived, and track this relation in the symbolic state.

Example 5.12. Consider the initial symbolic state from Example 5.10. The append construct re-
quires the traces of past events to be admissible to its argument R𝑎ñ𝑏 before calling remove. Then
remove can be called in a context represented by any symbolic trace Π𝑎ñ𝑏 Ď R𝑎ñ𝑏 . Further-

more, each such Π𝑎ñ𝑏 is also a prefix of the postcondition R𝑎ñ𝑏 · R𝑎ò𝑏 . The symbolic derivative

DΠ𝑎ñ𝑏
(R𝑎ñ𝑏 · R𝑎ò𝑏) = R𝑎ò𝑏 becomes the continuation effect after evaluating the append opera-

tion. The symbolic state prior to calling remove is (⊤, 𝜀,R𝑎ò𝑏, 𝑒remove 𝑛0 𝑢). □

Example 5.13. Continuing from Example 5.11, the symbolic state after reducing the admit is

(𝑛0 ≠ null,Π𝑎ñ𝑏∧Π𝑛0:𝑢0
,R𝑎ò𝑏, append ⟨𝑢0←Val.get𝑛0⟩). The append construct records the call to

Val.get and appends a singleton event ⟨𝑢0←Val.get 𝑛0⟩ to the context. Correspondingly, the continu-
ation effect R𝑎ò𝑏 is updated by its symbolic derivative over the Val.get event, D⟨𝑢0←Val.get 𝑛0 ⟩R𝑎ò𝑏 ,

which is R𝑎ò𝑏 itself as shown in Example 5.7. □

Nowwe leverage derivative-based semantics to falsify program 𝑒 with respect to the postcondition

Rpost on the symbolic trace produced by 𝑒 and show that the falsification is sound. Consider an

execution that is recorded by a reduction from the initial symbolic state to some final symbolic state,

(⊤, 𝜀,Rpost, 𝑒) ã→∗D (Φ,Π,Rcont, 𝑣). This execution is falsified by Rpost if the final state is reachable,

i.e., isSat (Φ,Π), and its continuation effect is not nullable, i.e., ¬𝜈 (Rcont). The soundness of the
falsification relies on two key properties of a derivative-based semantics: 1○ the continuation effect

is properly updated to denote future traces that are safe to produce as the execution continues, as

established by Lemma 5.14.

Lemma 5.14. If Rcont=DΠRpost and (Φ,Π,Rcont, 𝑒)ã→D (Φ′,Π′,R′cont, 𝑒′) then R′cont=DΠ′Rpost.

That is, Rcont in the final symbolic state, given that Π records past events, correctly predicts future

events to be produced in compliance with the postcondition Rpost, i.e., Rcont = DΠRpost. Then

¬𝜈 (Rcont) suggests that without new events being produced, Π fails to comply with Rpost, i.e.,

Π Ď ¬Rpost by Corollary 5.8. Because the execution stops at value 𝑣 and no more events are to

be produced, the execution is indeed falsified by Rpost. 2○ Execution, including a falsified one,

underapproximate those of the non-derivative based naïve semantics, as established by Lemma 5.15.

Lemma 5.15. If Π Ď Rcurr and (Φ,Π,Rcont, 𝑒) ã→D (Φ′,Π′,R′cont, 𝑒′) then there exists R′curr such
that Π′ Ď R′curr and (Φ,Rcurr, 𝑒) ã→ (Φ′,R′curr, 𝑒′).

That is, there exists an execution paths (⊤, 𝜀, 𝑒) ã→∗ (Φ,Rcurr, 𝑣) in the naïve semantics such that

Π Ď Rcurr. As all traces denoted by Π fail to comply with Rpost, there exist some trace in Rcurr
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that fails to comply with Rpost. We conclude with Theorem 5.16, establishing that given a falsified

execution in derivative-based semantics, there exists a corresponding execution in naive semantics

that overapproximates this execution and thus can also be falsified.

Theorem 5.16 (Soundness of ã→∗D ). Assume isSat (Φ,Π). If (⊤, 𝜀,Rpost, 𝑒) ã→∗D (Φ,Π,Rcont, 𝑣)
and ¬𝜈 (Rcont) then 𝑒 is falsified against Rpost.

Proof sketch.

(1) First, the single-step reduction in Lemma 5.14 can be extended to multi-step. Since Rpost =

D𝜀Rpost, we have Rcont = DΠRpost.

(2) Then, by Corollary 5.8 on ¬𝜈 (Rcont), we have Π Ď ¬Rpost.

(3) Additionally, the single-step reduction in Lemma 5.15 can also be extended to multi-step.

Since 𝜀 Ď 𝜀, there exists Rcurr such that Π Ď Rcurr and (⊤, 𝜀, 𝑒) ã→∗ (Φ,Rcurr, 𝑣).
(4) Now that Π Ď Rcurr ∧ ¬Rpost and isSat (Φ,Π), we have isSat

(
Φ,Rcurr ∧ ¬Rpost

)
.

(5) Lastly, by Definition 4.7, 𝑒 is falsified against Rpost. □

Example 5.17. Consider the execution path from Example 4.6. Through calls toNxt.get and Val.get,
the execution iterates over two nodes,𝑛0 and𝑛1, of the given linked list before finding a node storing

element 𝑢, i.e., 𝑛1. Then 𝑛1 is removed by linking 𝑛0 to its successor i.e., 𝑛2. Following Examples 5.11

and 5.13, the execution before the removal can be manifested in a derivative-based symbolic state:

(Φbad,Πprestate,R𝑎ò𝑏,Nxt.put𝑛0 𝑛2; 𝑛0), where the path condition is Φbad from Example 4.6 and

Πprestate � ⟨Nxt.put𝑘𝑒𝑦 𝑣𝑎𝑙 | 𝑘𝑒𝑦=𝑎=𝑛1∧𝑣𝑎𝑙=𝑏=𝑛2⟩·⟨Val.put𝑛0 𝑢0⟩·⟨Nxt.put𝑛0 𝑛1⟩·⟨Val.put𝑛1 𝑢1⟩
·⟨𝑢0←Val.get𝑛0⟩·⟨𝑛1←Nxt.get𝑛0⟩·⟨𝑢1←Val.get𝑛1⟩·⟨𝑢2←Nxt.get𝑛2⟩

To relate the event ⟨Nxt.put𝑛0 𝑛2⟩ with R𝑎ò𝑏 , we consider R𝑎ò𝑏 ’s next event ⟨Nxt.put �𝑎 𝑏⟩, lead-
ing to a symbolic derivative of ∅ as shown in Example 5.7. Hence, the conjunction between

⟨Nxt.put𝑛0 𝑛2⟩ and ⟨Nxt.put �𝑎 𝑏⟩ witnesses this relation and is appended to the context Πprestate.

The symbolic state becomes: (Φbad,Πbad,∅, 𝑛0), where
Πbad � Πprestate · ⟨Nxt.put𝑘𝑒𝑦 𝑣𝑎𝑙 | 𝑘𝑒𝑦 = 𝑛0 ≠ 𝑎 ∧ 𝑣𝑎𝑙 = 𝑛2 = 𝑏⟩

𝑎 = 𝑛1 and 𝑏 = 𝑛2 witnesses the reachability of the final symbolic state. In combination with

¬𝜈 (∅), the execution is falsified. In fact, this execution underapproximates the execution shown in

Example 4.6, i.e., Πbad Ď Rbad, which could have been falsified but proves too costly using naive

semantics. □

Furthermore, this refined semantics guarantees completeness with respect to falsification. Con-

sider an execution in the naïve semantics that is manifested by a reduction from the initial symbolic

state to some final symbolic state, (⊤, 𝜀, 𝑒) ã→∗ (Φ,Rcurr, 𝑣). According to Definition 4.7, the execu-

tion is falsified with respect to the postcondition Rpost as long as isSat
(
Φ,Rcurr ∧ ¬Rpost

)
holds.

Looking backward from the final state, it is sufficient to falsify the execution if there exists some

underapproximation of the execution, encapsulated by a symbolic trace Πcurr Ď Rcurr, and some

prefix Πprefix Ď ¬Rpost such that Πcurr ∧ Πprefix represents a viable execution. Effectively, all com-

patible pairs of symbolic paths Πcurr Ď Rcurr and prefixes Πprefix of Rpost are exhaustively explored

by executions in a derivative-based semantics. Lemma 5.18 establishes this exhaustiveness on each

reduction step.

Lemma 5.18. Given a safety property Rpost. If (Φ,Rcurr, 𝑒) ã→ (Φ′,R′curr, 𝑒′) then for all Π′curr Ď

R′curr, prefix Π′prefix of Rpost, and Π′ ≡ Π′curr ∧ Π′prefix, there exists Πcurr Ď Rcurr, prefix Πprefix of

Rpost, and Π ≡ Πcurr ∧ Πprefix such that (Φ,Π,DΠprefixRpost, 𝑒) ã→D (Φ′,Π′,DΠ′prefix
Rpost, 𝑒

′).
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As a result, Theorem 5.19 establishes that given a falsified execution manifested using the naïve

semantics, there exists an underapproximating execution in a derivative-based semantics that can

also be falsified.

Theorem 5.19 (Completeness of ã→∗D ). If (⊤, 𝜀, 𝑒)ã→
∗ (Φ,Rcurr, 𝑣) and isSat

(
Φ,Rcurr∧¬Rpost

)
then

there exists ΠĎRcurr and ¬𝜈 (Rcont) such that (⊤, 𝜀,Rpost, 𝑒)ã→∗D (Φ,Π,Rcont, 𝑣) and isSat (Φ,Π).

Proof sketch.

(1) First, by Definition 4.7, there exists Φ and Rcurr such that isSat
(
Φ,Rcurr ∧ ¬Rpost

)
and

(⊤, 𝜀, 𝑒) ã→∗ (Φ,Rcurr, 𝑣).
(2) Then, let Πcurr Ď Rcurr and Πprefix Ď ¬Rpost such that isSat

(
Φ,Πcurr ∧ Πprefix

)
.

(3) Furthermore, the single-step reduction in Lemma 5.18 can be extended to multi-step. As a

result, (⊤, 𝜀,Rpost, 𝑒) ã→∗D (Φ,Πcurr ∧ Πprefix,DΠprefixRpost, 𝑣).
(4) Lastly, we have ¬𝜈 (DΠprefixRpost) from Πprefix Ď ¬Rpost. □

The completeness argument requires the symbolic execution to exhaustively relate the events

produced during execution and the safe events required by the postcondition. In the hope of

finding a falsified execution at the earliest, symbolic derivative enables strategic exploration of this

relationship during the symbolic execution. Consider an unfinished execution (⊤, 𝜀,Rpost, 𝑒0) ã→∗D
(Φ,Π,Rcont, 𝑒). Recall that the continuation effect Rcont predicts future traces that are safe to

produce if we finish the execution from the current symbolic state (Φ,Π,Rcont, 𝑒). Hence, the
concatenation of the current symbolic trace Π and the continuation effect Rcont gives an optimistic

overapproximation of the safe behavior of the execution when finished. Then ¬isSat (Φ,Π · Rcont)
essentially states that all behavior is unsafe following this execution. Therefore, without finishing

the execution, we may determine it is falsified. In theory, we also require that the execution can be

finished in a satisfiable state, as stated in Theorem 5.20.

Theorem 5.20 (Soundness of ∅). Assume (Φ,Π,Rcont, 𝑒) ã→∗D (Φ
′,Π′,R′cont, 𝑣) and isSat (Φ′,Π′).

If (⊤, 𝜀,Rpost, 𝑒0) ã→∗D (Φ,Π,Rcont, 𝑒) and ¬isSat (Φ,Π · Rcont) then 𝑒 is falsified against Rpost.

Proof sketch.

(1) First, by transitivity of ã→∗D , (⊤, 𝜀,Rpost, 𝑒0) ã→∗D (Φ
′,Π′,R′cont, 𝑣).

(2) Then, by Theorem 5.16, it is sufficient to prove ¬𝜈 (R′cont).
(3) By multi-step variant of Lemma 5.14 on Rcont = DΠ (Π · Rcont), R′cont = DΠ′ (Π · Rcont).
(4) ¬isSat (Φ,Π · Rcont) suggests that Π · Rcont is equivalent to ∅ under the path condition Φ or

its refined path condition Φ′. So does its derivative R′cont. We have ¬𝜈 (R′cont). □

However, in practice, as long as the current symbolic state is satisfiable, i.e., isSat (Φ,Π), it is safe
to assume that the execution can be finished in a satisfiable symbolic state, which in turn witnesses

the falsification. Another practical concern is that checking ¬isSat (Φ,Π · Rcont) can be expensive

as discussed in Section 4. Instead, we check whether Rcont is syntactically equal to ∅, which implies

¬isSat (Φ,Π · Rcont). If not, we continue the execution without compromising soundness. With a

standard set of rewriting rules, e.g., ∅ ∨ R ≡ ∅, the syntactic approach is effective in falsifying

unfinished execution for programs considered in Section 7. In fact, Example 5.17 is such a case –

had remove not stopped at the first node found to store the given element, we can still conclude

that the execution is falsified without needing to finish iterating over the remaining linked list.

Intuitively, we exploit the existence of a dead state in the automaton associated with the post-

condition Rpost. As events produced during symbolic execution are related to transitions in the

automaton, it is sufficient to falsify a execution if the events produced can be related to transi-

tions in the automaton that leads to a dead state. This is similar to the recognition of a string
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in a deterministic automaton, where it is sufficient to determine the string cannot be accepted if

a character causes the automata to enter a dead state. However, each event produced may still

nondeterministically be related to transtions from the current state in the postcondition automaton.

We would like to further exploit the structure of the postcondition automaton by actively
looking for a dead state. Again we consider the symbolic state of an unfinished execution, its

continuation symbolic derivative Rcont is a symbolic derivative of the postcondition Rpost and thus

Rcont represents a state in the automaton associated with Rpost. The minimal distance of the state

denoted by Rcont to a dead state gives us a lower bound on the number of events that the current

execution needs to produce in order to be falsified. It is also the minimal length of Rcont’s prefixes

such that the derivative over them denotes a dead state, i.e., DistToDead(Rcont), where

DistToDead(R) � min

DΠR=∅
|Π |

When new events Πeff are produced during the execution as in Rule DAppend, among all Rcont’s

prefixes Πprefix that are compatible with Πeff , we prioritize relating Πeff with prefixes that brings us

closer to a dead state, according to DistToDead(DΠprefixRcont). In practice, we set a cut-off constant

to limit the depth of such exploitation.

Example 5.21. Consider a different execution from what is shown in Example 5.17. ⟨Nxt.put𝑎 �𝑏⟩
is also a next event of R𝑎ò𝑏 but leads to a symbolic derivative of •∗. Correspondingly, the event
⟨Nxt.put𝑘𝑒𝑦 𝑣𝑎𝑙 | 𝑘𝑒𝑦 = 𝑛0 = 𝑎 ∧ 𝑣𝑎𝑙 = 𝑛2 ≠ 𝑏⟩ is appended to the symbolic trace. While the

symbolic state happens to becomes unreachable (𝑛2 ≠ 𝑏 contradicts 𝑛2 = 𝑏 from Πprestate) and thus

can be pruned, it does not have to be the case and nondeterministic time may be spent on this

infeasible execution before it is pruned. □

6 Algorithm
In this section, we substitute the declarative components of derivative-based semantics with their

algorithmic equivalents, thus demonstrating the derivative-based semantics is a sound and relatively

complete procedure for falsification.

First, we show that the reachability check (Definition 4.2) of derivative-based symbolic states,

i.e., isSat (Φ,Π), can be straightforwardly discharged to SMT queries like conventional symbolic

execution techniques. Intuitively, since a symbolic path Π is a sequence of symbolic events, we

would like to collect constraints from each symbolic event. The constraint of an atomic symbolic

event can be built as:

constr(⟨𝑥ret ← f 𝑥arg | 𝜙⟩) = [𝑥arg ↦→ ˆ𝑥arg , 𝑥ret ↦→ ˆ𝑥ret ]𝜙 for fresh ˆ𝑥arg and ˆ𝑥ret

To facilitate constraint collection, we give a stratified representation of symbolic events ℓ as a

disjunction of atomic symbolic events associated with disjoint effectful functions:
ℓ � · · · ∥ ⟨𝑥ret ← f 𝑥arg | 𝜙⟩ ∥ . . . such that JℓK =

⋃
⟨𝑥ret←f 𝑥arg |𝜙 ⟩∈ℓJ⟨𝑥ret ← f 𝑥arg | 𝜙⟩K

Since the effectful functions f associated with the disjuncts in ℓ are different, the constraint of a

symbolic event ℓ is simply the disjunction of constraints from ℓ ’s atomic symbolic events, and the

constraint of a symbolic path Π is the conjunction of constraints from Π’s symbolic events:

constr(𝜀)=⊤ constr(ℓ)=∨
⟨f |𝜙 ⟩∈ℓ constr(⟨f | 𝜙⟩) constr(Π1·Π2)=constr(Π1)∧constr(Π2)

It immediately follows that, as established by Corollary 6.1, the reachability of a symbolic state

can be determined by the satisfiabiliy of the conjunction between its path condition Φ and the

constraints from its current symbolic path Π.

Corollary 6.1. isSat (Φ,Π) iff 𝜎 ∈ JΦ ∧ constr(Π)K.

In response to the stratified representation of symbolic events, we discharge their boolean

connectives using Definition 6.2, which was part of the syntax in Section 4.
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Definition 6.2 (Events Algebra). The boolean operations on symbolic events can be defined as:

∽(∥𝑖 ⟨f𝑖 | 𝜙𝑖⟩) =(∥𝑖 ⟨f𝑖 | ¬𝜙𝑖⟩) ∥ (∥g∈Δ/f𝑖 ⟨g⟩)
(∥𝑖 ⟨f𝑖 | 𝜙𝑖⟩) ⊓ (∥ 𝑗 ⟨g𝑗 | 𝜓 𝑗 ⟩) = ∥f𝑖=g𝑗 ⟨f𝑖 | 𝜙𝑖 ∧𝜓 𝑗 ⟩
(∥𝑖 ⟨f𝑖 | 𝜙𝑖⟩) ⊔ (∥ 𝑗 ⟨g𝑗 | 𝜓 𝑗 ⟩) =(∥f𝑖=g𝑗 ⟨f𝑖 | 𝜙𝑖 ∨𝜓 𝑗 ⟩) ∥ (∥f𝑖∉g𝑗 ⟨f𝑖 | 𝜙𝑖⟩) ∥ (∥g𝑗∉f𝑖 ⟨g𝑗 | 𝜓 𝑗 ⟩)

Again, all atomic symbolic events in ℓ are associated with different effectful functions and thus are

disjoint. The negation of ℓ includes atomic symbolic events from ℓ with their qualifiers negated and

atomic symbolic events out of ℓ with ⊤ qualifier. The conjunction of ℓ1 and ℓ2 includes atomic sym-

bolic events included by both ℓ1 and ℓ2 with the qualifier being their conjunctions. The disjunction

of ℓ1 and ℓ2 includes atomic symbolic events included by both ℓ1 and ℓ2 with the qualifier being their

disjunctions, as well as atomic symbolic events included only in ℓ1 or ℓ2. Definition 6.2 preserves

the disjointness requirement in the result and is consistent with the denotation JℓK above.
Before providing algorithms for computing prefixes and symbolic derivatives, we first demon-

strate a procedure for finding next events of a given SRE R by rediscovering the notion of “next

literals” presented in [Keil and Thiemann 2014]. For ∅ and 𝜀, their next event can only be bottom.

For ℓ , its next event is simply ℓ itself. For R∗, its next events are the same as those of R. For ¬R,
its next events include those of R and the complement of their disjunction. For R1 ∧ R2, its next

events includes the conjunction of events included in both R1 and R2. For R1 ∨ R2, its next events

includes not only the conjunction of events included in both R1 and R2, but also the conjunction of

each event from R1 and the negation of the disjunction of R2’s next events, and vice versa, defined

as a join operation ’ between two sets of events. As a result, the disjunction of R1 ∨ R2’s next

events is equivalent to the disjunction of R1’s and R2’s. For R1 · R2, its next events are determined

by the join of those of R1 and those of R2 if R1 is nullable. Otherwise, its next events includes only

those of R2.

Definition 6.3 (Admissible Next Events). The set 𝔏 of events admissible to R can be computed as:

next(∅) = next(𝜀) = {⊥} next(ℓ) = {ℓ} next(R∗) = next(R)

next(R1 · R2) =
{
next(R1) ’ next(R2) 𝜈 (R1)
next(R1) otherwise

next(¬R) = next(R) ∪
{
next(R)∁

}
next(R1 ∧ R2) = next(R1) ⊓ next(R2) next(R1 ∨ R2) = next(R1) ’ next(R2)

where the dual of an event set 𝔏 is 𝔏∁ � ∽
⊔

ℓ∈𝔏 ℓ and the join of two event sets 𝔏1 and 𝔏2 is

𝔏1 ’ 𝔏2 � {ℓ1 ⊓ ℓ2, ℓ1 ⊓ 𝔏∁
2
,𝔏

∁
1
⊓ ℓ2 | ℓ1 ∈ 𝔏1, ℓ2 ∈ 𝔏2}.

Definition 6.3 provides such a next operation such that each symbolic event ℓ ∈ next(R) is
a singleton prefix of R (Definition 5.4). Due to the negation rule, the disjunction of next(R)
overapproximates the set of events admissible to R. Then the negation of this disjunction, i.e.,

next(R)∁ is also a next event of R, the derivative over which is ∅. next(R) ∪ {next(R)∁} gives
us a set of symbolic events that covers the entire space of possible events and are all amenable to

symbolic derivative computation of R. Now, the symbolic derivative of R over its next events can

be computed inductively in a similar fashion to Section 3 by the following lemma:

Lemma 6.4. Given R and its prefix Π, the symbolic derivative DΠR can be computed via:

D𝜀R = R DΠ1 ·Π2
R = DΠ2

DΠ1
R Dℓ∅ = Dℓ𝜀 = ∅ Dℓ (R∗) = DℓR · R∗

Dℓ ′ℓ =

{
𝜀 ℓ ′ Ď ℓ

∅ ℓ ′ Ď ∽ℓ
Dℓ (R1 · R2) =

{
(DℓR1 · R2) ∨ DℓR2 𝜈 (R1)
DℓR1 · R2 otherwise

Dℓ (¬R) = ¬DℓR Dℓ (R1 ∧ R2) = DℓR1 ∧ DℓR2 Dℓ (R1 ∨ R2) = DℓR1 ∨ DℓR2
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The main difference is, when computing the symbolic derivative of a symbolic event ℓ over another

ℓ ′, we need to perform an inclusion check between them. If all events denoted by ℓ ′ are included
by ℓ , then the symbolic derivative is 𝜀. If all events denoted by ℓ ′ are not included by ℓ , then the

symbolic derivative is ∅. Since ℓ ′ is guaranteed to be a singleton prefix of ℓ , it is impossible that

some events denoted by ℓ ′ are included by ℓ while some are excluded. Thus, checking whether

ℓ ′ Ď ℓ is sufficient. The inclusion check essentially involves checking the validity of constr(∽ℓ ′⊔ ℓ),
which is well-suited for SMT solving.

Using the next operation and the computation of symbolic derivatives over symbolic events,

we may enumerate prefixes of arbitrary length from an SRE R along with their corresponding

symbolic derivatives by following the rules in Fig. 7. Rule Pfx-𝜀 states that 𝜀 is a prefix of R and the

corresponding symbolic derivative is R itself. Rule Pfx-ℓ states that all next events of R is a prefix of

R. Rule Pfx-· states that given any prefix Π1 of R along with the corresponding symbolic derivative

R1, and any prefix Π2 of R1 along with the corresponding symbolic derivative R2, the concatenation

of Π1 and Π2 is still a prefix of R with R2 being the corresponding symbolic derivative. Intuitively,

(𝜀,R) ⊲ R
Pfx-𝜀

ℓ ∈ next(R) ∪
{
next(R)∁

}
(ℓ,DℓR) ⊲ R

Pfx-ℓ
(Π1,R1) ⊲ R (Π2,R2) ⊲ R1

(Π1 · Π2,R2) ⊲ R
Pfx-·

Fig. 7. Enumerate prefixes of a given R and compute their symbolic derivatives.

these rules allow us to construct a deterministic SFA that accepts the same set of traces as R and

all paths in the SFA are enumerated, including those that lead to dead states. As established by

Lemma 6.5, each enumerated prefix is indeed a prefix of R.
Lemma 6.5 (Soundness of Prefix Enumeration). If (Π,R′) ⊲ R then R′ = DΠR.
A completeness result then states that all paths in the SFA can be enumerated. As an SRER may have

different SFA representations, a prefix Π of R may not correspond to a path in the SFA constructed

by our prefix enumeration. However, it is guaranteed that, as established by Lemma 6.6, a set of

prefixes, i.e., a set of paths in the SFA, can be found by enumeration such that their disjunction

includes all traces denoted by such a prefix Π.

Lemma 6.6 (Completeness of Prefix Enumeration). If R′ = DΠR then there exists Π𝑖

𝑖
such that

(Π𝑖 ,R′) ⊲ R for all 𝑖 and Π Ď
∨

𝑖 Π𝑖 .

Sampling symbolic traces Π from a given SRE R is a special case of enumerating prefixes

whose symbolic derivative is nullable, as shown in Corollary 5.8. Intuitively, the sampled symbolic

traces correspond to the paths that lead to an accepting state in the SFA. For the purpose of

sampling symbolic traces, we may ignore paths that lead to a dead state without compromising

the completeness of sampling. That is, when applying Rule PFX-ℓ for trace sampling, we ignore

next(R)∁ , whose corresponding symbolic derivative is always ∅.
Lastly, we show how to relate symbolic traces of the same length by computing their con-

junction. The following rules effectively perform pairwise conjunction between symbolic events

(Definition 6.2) from two symbolic traces Π1 and Π2:

𝜀 ∧ 𝜀 ≡ 𝜀 ℓ1 ∧ ℓ2 ≡ ℓ1 ⊓ ℓ2 (Π11 · Π12) ∧ (Π21 · Π22) ≡ (Π11 ∧ Π21) · (Π12 ∧ Π22)
where |Π11 | = |Π21 | and |Π12 | = |Π22 |. A symbolic trace equivalent to the conjunction of Π1 and Π2

is returned following the rules.

To conclude this section, the prefix enumeration algorithm gives us a sound and relatively

complete equivalent for the premises of Rules DAdmit and DAppend. By enumerating prefixes in

increasing length, minimal traces of events are produced and appended along symbolic execution.
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Table 1. Falsification of a variety of safety property violations in ADT implementations.

.

ADT Repr. Type Safety Property Violation to the Safety Property Time (s) Speedup over
To Falsify Naïve Verifier

Stack
LinkedList Elements are stored at unique locations.

Overwrite an existing node when pushing. 0.51 ×4.9 ×3.2

Make the linked list circular during concatenation. 0.25 O/M ×13.2

KVStore Elements are linked linearly.

Push the new element in the middle of the stack. 1.11 T/O ×4.6

Concatenate elements to the middle of a stack. 0.94 O/M ×6.5

Queue LinkedList Elements are stored at unique locations. Overwrite an existing node when enqueueing. 0.73 ×2.5 ×2.7

Graph Degrees of vertices are at most one. Overwrite an existing vertex when enqueueing. 1.75 T/O ×7.4

Set KVStore Each key is associated with a distinct value. Put a duplicated element. 0.87 T/O ×1.4

Tree The underlying tree is a binary search tree. Insert a smaller element to the right subtree. 1.10 ×40.7 ×11.1

Heap LinkedList Elements are stored at unique locations, sorted. Insert after a node with a larger value. 0.11 ×12.9 ×13.2

Tree Parents are smaller than their children. Insert a smaller element to the right subtree. 1.00 ×2.4 ×2.5

Min Set
Set

The cached element has been inserted and is

no larger than other elements.

Record the minimum without inserting it. 1.14 ×1.3 ×1.3

Insert a new minimum without recording it. 1.32 ×9.0 ×9.9

KVStore

The cached element has been put and is no

larger than other elements.

Record the minimum without putting it. 0.66 T/O ×4.3

Overwrite an existing element when putting. 1.95 ×10.7 ×14.9

Lazy Set

Tree The underlying tree is a binary search tree. Insert a smaller element to the right subtree. 1.09 ×4.8 ×11.5

Set The same element is never inserted twice. Insert a duplicated element. 0.49 ×1.2 ×1.3

KVStore Each key is associated with a distinct value. Put a duplicated element. 0.88 ×49.8 ×1.5

DFA
KVStore

Each state is associated with a non-empty list

of next states via unique labels.

Put an overlapping transtion with the same label. 0.66 ×29.9 ×29.9

A transition is reversed instead of deleted. 1.04 ×15.0 ×15.2

Graph

The outgoing edges of each state are labeled by

different characters.

Connect two connected nodes with the same label. 0.98 ×12.9 ×12.8

Connect two nodes instead of disconnecting them. 0.97 ×16.5 ×16.5

Connected
Graph

LinkedList

Edges (pairs of vertices) are uniquely stored

with connected vertices being valid.

Insert a vertex pair twice during initialization. 0.27 T/O ×16.4

Insert a vertex without ensuring its connectivity. 1.31 O/M ×9.9

Insert a duplicated vertex pair. 1.44 O/M ×11.2

Graph All vertices are connected in the graph.

Create a duplicated edge during initialization. 1.13 ×1.7 ×1.8

Create a vertex without ensuring its connectivity. 2.05 ×6.0 ×6.1

Disconnect a vertex from the rest of the graph. 2.38 ×20.0 ×16.2

Colored
Graph

Graph Vertices are colored before being connected to

vertices with different colors.

Create an edge between two vertices colored the same. 3.68 T/O T/O

KVStore Each vertex is associated with a list of vertices

with different colors.

Put an edge between two vertices with the same color. 7.82 T/O T/O

Linked
List KVStore Each node has at most one predecessor. Put a new predecessor to a node before deleting its

old predecessor.

7.03 O/M T/O

7 Implementation and Evaluation
We have implemented a symbolic execution engine inOCaml based on a derivative-based semantics,

called HATch that targets the falsification of OCaml-like ADT implementations that interact with

their underlying representation types via API calls. HATch takes as input the implementation of

an ADT’s method, its behavioral specification, and the behavioral specifications of the underlying

representation types, and performs symbolic execution against an execution harness as described

in Example 4.4. Symbolic execution is performed in increasing depth of explored execution traces.

HATch performs two additional optimizations that are not discussed in Section 6. First, it not

only tracks the atomic symbolic events that are included in a symbolic event ℓ but also tracks

those that are excluded. This frees us from enumerating all other available APIs when computing

the negation. Second, since the prefixes to be enumerated are combined with a given symbolic

trace, the enumeration of prefixes is interleaved with a compatibility check against the trace. This

interleaving helps avoid enumerating prefixes that are known to be incompatible.
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In our evaluation, we consider the following research questions: Q1. Can HATch’s behavioral

specifications effectively capture interesting safety properties? Q2. Can HATch’s use of symbolic

derivatives improve trace exploration for falsification? Q3. Can HATch enhance assurance through

falsification when verification is challenging?

We evaluate HATch on stateful variants of functional ADTs (see Table 1) drawn from different

sources [Miltner et al. 2020; Okasaki 1999; Zhou et al. 2024]. The ADTs we consider are implemented

using different effectful representation types (i.e., Repr. Type column), including key-value stores,

linked lists, sets, trees, and graphs. We introduce artificial bugs in their methods as summarized in

the Violation column, and evaluate HATch’s capability to falsify these buggy implementations. The

next column reports the time HATch takes to falsify the violation.

To demonstrate the effectiveness of symbolic derivatives, we implement a variant of HATch

following the description given in Section 4, and report HATch’s speedup over this variant. The

satisfiability of a path condition Φ and a SRE A (Definition 4.7) is checked by first replacing

logical formulae with the elements from a finite equivalence class. AnA then becomes an ordinary

regular expression amenable to SMT solving, whose non-emptiness, along with the satisfiability

of the logical formulae, witness its satisfiability. Our results show that without using derivatives,

symbolic execution is unable to falsify (1) 7 violations (out of a possible 20) within 60 seconds,

resulting in timeouts (T/O) due to excessive calls to the SMT solver, and (2) 5 violations under

an 8 GB memory limit, leading to out-of-memory errors (O/M) due to the complexity involved in

constructing equivalence classes.

To demonstrate the effectiveness of HATch against a verification procedure, we compare its

performance with recent work on representation invariant verification [Zhou et al. 2024], and

report its speedup over that verifier in terms of the time taken to identify a violation. Overall,

HATch demonstrates significant improvement in performance, measured in orders of magnitude,

compared to both the non-derivative aware engine and the verifier. It is noteworthy that it is able

to efficiently handle two challenging ADTs, colored graphs and linked lists, falsifying their buggy

implementation in a small (< 8) number of seconds, whereas the other approaches are unable to

provide any result within the given resource bound (60 seconds, 8 GB).

8 Related Work
Symbolic Execution for Functional Languages. While symbolic execution has been typically used

in the context of imperative languages for bug finding [Baldoni et al. 2018], there have been recent

efforts that apply SE in a functional programming setting. [Xu et al. 2009] and [Nguyen et al.

2014] use SE to verify contracts in Haskell and pure Racket, respectively, with [Nguyễn et al. 2017]

extending contract verification to handle Racket programs with mutable state. SE has also been used

for underapproximate reasoning to identify weak library specifications that lead to type-checking

failures of client programs in LiquidHaskell [Hallahan et al. 2019]. Our goals in this paper are

substantially different, focused on falsifying safety properties of functional ADTs that interact with

opaque and effectful libraries.

Temporal Verification. Model checking has been applied for software verification against temporal

specifications, e.g., LTL and CTL. Early work shows how transition systems can be extracted from

programs to abstract their behavior in a form amenable for automata-based inclusion checking to

validate temporal specifications [Clarke et al. 1994]. More recently, type and effect systems have

been proposed to infer a conservative overapproximation of effects produced during execution of

higher-order functional programs [Skalka and Smith 2004]. The granularity of effects inferred has

been improved by regarding past effects as a handle for reasoning about hidden states [Nanjo et al.

2018; Sekiyama and Unno 2023; Song et al. 2022]. The use of SFAs as a basis for specification and
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verification has also been explored in [Zhou et al. 2024] that introduces Hoare Automata Types

(HATs) as a new refinement type abstraction for verifying programs against effectful trace-based

temporal specifications. In contrast to these efforts, HATch considers this style of specification in

the context of underapproximate reasoning, exploiting the structure of SFAs to enable efficient

falsification.

Derivatives of Regular Expressions. The classic notion of derivatives of regular expressions pro-

vides a lazy and algebraic approach for constructing automaton-based recognizers from given

regular expressions, effectively relating automaton states to their regular expression counter-

parts. Brzozowski’s derivative [Brzozowski 1964] initially introduced this concept for constructing

deterministic finite automata, followed by Antimirov’s partial derivative [Antimirov 1995] for

nondeterministic finite automata, later extended to handle complement and intersection operations

[Caron et al. 2011]. While it is known that the classic derivative approach either overapproximates

or underapproximates with predicates in regular expressions, computing “next literals” has been

proposed as a remedy [Keil and Thiemann 2014]. Our formulation of symbolic derivatives, while

largely inspired by this work, accounts for universally quantified variables in regular expressions,

which are ubiquitous in program analysis tasks. However, the “next literal” approach can generate

an exponential number of transitions in worst cases. Recent work on transition regexes [Stanford
et al. 2021] introduces a novel form of symbolic derivatives that embeds potentially exponential

choices within nested conditionals, enabling lazy exploration of transitions and algebraic simplifica-

tion. Incorporating these symbolic derivatives into our symbolic execution engine thus may benefit

the reasoning of specifications with richer control structures, presenting a promising avenue for

future research.

Dynamic Trace-Based Reasoning. Traces as a form of (in)correctness specification have been

widely adopted by dynamic analysis techniques. Various runtime monitoring systems rely on a

language of traces [Avgustinov et al. 2007; Chen and Roşu 2007; Goldsmith et al. 2005; Havelund

and Roşu 2001; Meredith et al. 2008]. Regular properties over traces are also used to guide path

exploration in dynamic symbolic execution [Zhang et al. 2015]. Arbitrary trace predicates are now

supported in Racket contracts [Moy and Felleisen 2023]. We leave for future work the exploration

of non-regular trace languages amenable for derivative computation to enable the falsification of

even richer safety properties.

9 Conclusions
This paper presents a new symbolic execution procedure that integrates trace-based temporal

specifications to reason about ADTs that interact with effectful libraries. We demonstrate how

to leverage these specifications, specifically their latent SFA representations, to manifest the

hidden state maintained by an ADT’s underlying representation. More significantly, we introduce

the concept of a symbolic derivative, a new encoding of symbolic states that relate admissible

specification traces with path exploration decisions, and show how they enable significant efficiency

gains by allowing paths that are irrelevant to the falsification of a given safety property to be quickly

pruned by a symbolic execution engine. Our ideas provide new insight into how trace-guided

specifications can enable effective reachability-based program analyses.
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