Text and class material | Introduction to Algorithms- T.H. Cormen,
C. E. Leiserson, R. L. Rivest, C. Stein |
Class presentations on transparencies posted on this page may be useful | |
Topics 1. Network Flow |
|
a. Flow networks [transparencies] |
|
b.Augmenting paths, Ford-Fulkerson Algorithm,
[transparencies] |
|
c. Edmonds-Karp algorithm [transparencies] |
|
d. Push-relabel algorithm [transparencies]
(this is O(V^2E) algorithm, not O(VE^2) as the first transparency says) |
|
e. Maximum bipartite matching [transparencies], Hopcroft-Karp algorithm [WWW] |
|
2. Numerical Algorithms |
a. Matrix multiplication [transparencies] b. Operations on polynomials [transparencies] b. DFT and FFT algorithm [transparencies] |
3. Linear Programming |
a. Framework [transparencies] c. Simplex algorithm [transparencies] d. Duality [transparencies] e. LP rounding and vertex cover [transparencies] f. Randomized LP rounding [transparencies] |
4. String Algorithms |
a. Rabin-Karp and finite automaton
algorithm [transparencies] b. Knuth-Moris-Pratt algorithm [transparencies] |
5. Approximation Algorithms |
a. Vertex-cover and TSP [transparencies] b. TSP with 1.5-approximation [transparencies] c. Set-cover [transparencies] d. Subset-sum [transparencies] |
6. Randomized Algorithms |
a. Approx weighted vertex cover [transparencies] b. Randomized max 3-SAT [transparencies] [transparencies] c. Probabilistic Maxcut [transparencies] d. Derandomization of Maxcut [transparencies] e. Radomized MST [transparencies] c. Randomized median finding [pdf] |
7. Geometric Algorithms |
a. Some preliminaries [transparencies] b. Convex Hull c. Segment intersection [transparencies] d. Closest-pair [transparencies] e. Voronoi-Delaunay diagrams, Flip algorithm [Delaunay Mesh Generation book] |
Homeworks |
15% |
Presentation on survey topic |
35% |
Final |
40% |
Attendance | 10% |