Persistence and Beyond

Tamal K. Dey Purdue University

April 16, 2025

Persistent Homology

Standard Persistence Homology Pipeline

Topological data analysis (TDA) • Computational topology

Persistence

Input:
$$\mathcal{F}: \emptyset = K_0 \xrightarrow{\sigma_1} K_1 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{m-1}} K_{m-1} \xrightarrow{\sigma_m} K_m$$

An interval [b, d]: starts and ends with **indices in the filtration**

Input:
$$\mathcal{F}: \emptyset = K_0 \xrightarrow{\sigma_1} K_1 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{m-1}} K_{m-1} \xrightarrow{\sigma_m} K_m$$

An interval [b, d]: starts and ends with indices in the filtration

Standard persistence

Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71-103, 1972.

Bar Codes

• birth-death and bar codes

Zigzag filtration

Gunnar Carlsson and Vin de Silva. **Zigzag persistence**. Foundations of Computational Mathematics, 10(4):367–405, 2010.

Zigzag persistence

Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71-103, 1972.

Zigzag persistence

- · In time varying setting: functions, point cloud, network, vector field
 - · G. Carlsson, V. de Silva, and Dmitriy Morozov. Zigzag persistent homology and real-valued functions. 2009.
 - W. Kim and F. Me'moli. Spaiotemporal persistent homology of dynamic metric spaces, Discrete & Comput. Geom. 2020, pages 1—45.
 - A. Myers, D. Munoz, F. Khasawneh, E. Munch. Temporal network analysis using zigzag persistence. Springer Nature, 2023.
 - T. Dey, M. Lipinsky, M. Mrozek, R. Slechta. Tracking dynamical features via continuation and persistence. 38th Annu. Symposium on Comput. Geometry, 2022.
- In multiparameter persistence (computing generalized rank, [DKM22])

2-parameter Persistence

2-parameter Persistence

• In the previous setting, we had a 1-parameter filtration. What if we have a 2-parameter filtration?

X_{α_0,β_n}	\subseteq	X_{α_1,β_n}	\subseteq	 \subseteq	X_{α_n,β_n}
UI		UI			UI
:		:			:
UI		UI			UI
X_{lpha_0,eta_1}	\subseteq	X_{α_1,β_1}	\subseteq	 \subseteq	X_{α_n,β_1}
UI		UI			UI
X_{lpha_0,eta_0}	\subseteq	X_{lpha_1,eta_0}	\subseteq	 \subseteq	X_{α_n,β_0}

2-parameter Filtration

K_{α_0,β_n}	\subseteq	K_{α_1,β_n}	\subseteq	 \subseteq	K_{α_n,β_n}
UI		\bigcup			\bigcup
÷		÷			÷
\cup		\cup I			UI
K_{lpha_0,eta_1}	\subseteq	K_{α_1,β_1}	\subseteq	 \subseteq	K_{α_n,β_1}
\bigcup		\cup I			UI
K_{lpha_0,eta_0}	\subseteq	K_{lpha_1,eta_0}	\subseteq	 \subseteq	K_{α_n,β_0}

Bi-filtration and induced 2-parameter persistence module.

Vectorization of 2-parameter persistence

- Multiparameter persistence landscapes, (Vipond, 2020)
- Multiparameter persistence images, (Corbet et al. 2019)
- Multiparameter persistence kernel, (Carriére et al. 2020)
- Vectorization of signed barcodes (Loiseaux et al. 2023)

GRIL: Generalized Rank Invariant Landscapes

[Xin,Mukherjee,Samaga,D. 23] GRIL, TAG-ML 2023: 313-333

Definition

Let $M: P \rightarrow \mathbf{vec}$ be a persistence module, P be finite and connected poset. Then, the generalized rank of M over a subposet $I \subseteq P$ is:

$$\mathsf{rk}^{M}(I) \coloneqq \mathsf{rank}\left(\varprojlim M|_{I} \to \varinjlim M|_{I}\right).$$

This definition is due to (Kim and Mémoli, 2021).

Definition

Let $M: P \rightarrow \mathbf{vec}$ be a persistence module, P be finite and connected poset. Then, the generalized rank of M over a subposet $I \subseteq P$ is:

$$\mathsf{rk}^{M}(I) \coloneqq \mathsf{rank}\left(\varprojlim M|_{I} \to \varinjlim M|_{I}\right).$$

This definition is due to (Kim and Mémoli, 2021). If I is a rectangle, $rk^{M}(I)$ is the usual rank of the map on the diagonal.

[Kim,Mémoli 21]: Generalized persistence diagrams for persistence modules over posets. Journal of Applied and Computational Topology, 5(4):533–581.

A simple example

Worms

- $\mathbf{p}_{\delta} \coloneqq {\mathbf{w} : \|\mathbf{p} \mathbf{w}\|_{\infty} \le \delta}$ be the *p*-centered δ -square.
- a worm $[\mathbf{p}]_{\delta}^{2}$ is the union of $[\mathbf{p}]_{\delta}$ with two δ -squares $[\mathbf{q}]_{\delta}$ with $\mathbf{q} = \mathbf{p} \pm \delta \cdot (1, -1)$.

Generalized Rank Invariant Landscapes

Definition

For a 2-parameter persistence module M, Generalized Rank Invariant Landscape (GRIL) is a function $\lambda^M : \mathbb{Z}^2 \times \mathbb{N} \to \mathbb{N}$ given by

$$\lambda^{M}(\mathbf{p}, k) \coloneqq \sup \left\{ \delta \geq 0 : rk^{M} \left(\left[\mathbf{p} \right]_{\delta}^{2} \right) \geq k \right\}$$

Generalized Rank Invariant Landscapes

Proposition

GRIL is stable with respect to the input bi-filtration functions, i.e., given $f, g: X \to \mathbb{R}^2$, then

$$||\lambda^{M_f} - \lambda^{M_g}||_{\infty} \le ||f - g||_{\infty}$$

Proposition

GRIL is differentiable almost everywhere.

GRIL as a topological discriminator

Computing Generalized Rank using Zigzag

- Generalized Rank for a worm *I* = # full bars in zigzag module along its boundary cap ∂*I* (Dey et al., 2024).
- Recent work on fast computation of zigzag persistence (Dey and Hou, 2022):

https://github.com/TDA-Jyamiti/fzz

[D. Kim Mémoli 24] Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications. Discret. Comput. Geom. 71(1): 67-94 (2024)

[D. Hou 22] Fast Computation of Zigzag Persistence. ESA 2022: 43:1-43:15

Experimental Results

- GRIL on PROTEINS, DHFR, IMDB-BINARY, COX2, MUTAG, which are benchmark graph datasets.
- The aim is graph classification. Above datasets have two classes, thus it is a binary classification task.
- Heat-Kernel Signature and Ricci Curvature are chosen as the two functions to form a bi-filtration on the graphs.
- Computed the GRIL values for $k \in \{1, 2, 3, 4, 5\}$.
- Sample **p** from different uniform sub-grids.

Dataset	MP-I	MP-K	MP-L	Р	Gril
Proteins	67.3 ± 3.5	67.5 ± 3.1	65.8 ± 3.3	65.4 ± 2.7	70.9 ± 3.1
Dhfr	80.2 ± 2.3	81.7 ± 1.9	79.5 ± 2.3	70.9 ± 3.1	77.6 ± 2.5
Cox2	77.9 ± 2.7	79.9 ± 1.8	79.0 ± 3.3	76.0 ± 4.1	79.8 ± 2.9
Mutag	85.6 ± 7.3	86.2 ± 2.6	85.7 ± 2.5	79.2 ± 7.7	87.8 ± 4.2
IMDB-BINARY	71.1 ± 2.1	68.2 ± 1.2	71.2 ± 2.0	54.0 ± 1.9	65.2 ± 2.6

- We used a 50×50 grid.
- We used XGBoost classifier.
- The accuracies are averaged over 5 train/test splits of the datasets obtained with 5 stratified folds.

Model	Proteins	Dhfr	Cox2	Mutag	IMDB-BINARY
GCN	71.15 ± 2.31	78.70 ± 2.35	78.80 ± 2.13	88.26 ± 3.70	73.1 ± 2.20
GCN + GRIL	74.21 ± 2.08	75.66 ± 3.08	80.30 ± 1.57	88.80 ± 3.60	72.6 ± 1.46
GAT	67.66 ± 3.92	77.78 ± 4.50	79.45 ± 3.68	86.69 ± 6.36	74.90 ± 2.98
GAT + GRIL	71.60 ± 3.92	79.64 ± 6.29	80.52 ± 3.30	84.03 ± 7.85	71.60 ± 3.04
GIN	69.09 ± 3.77	79.77 ± 6.72	78.80 ± 4.88	83.97 ± 6.04	73.7 ± 3.34
GIN + GRIL	71.87 ± 3.22	78.46 ± 5.80	79.22 ± 4.89	89.32 ± 4.81	74.2 ± 2.82

- We used a 50 \times 50 grid.
- GRIL features are augmented with standard GNNs.

ZZ-GRIL

[D.,Samaga 25]: Quasi Zigzag Persistence

Time-varying data

Quasi Zigzag Persistence

[Dey,Samaga 25]: Quasi Zigzag Persistence: A Topological Framework for Analyzing Time-Varying Data. ArXiv: abs/2502.16049 (2025)

K_{0,β_n}	\subseteq	K_{1,β_n}	\supseteq	K_{2,β_n}	\subseteq	 \supseteq	K_{n,β_n}
\bigcup		\cup I		UI			\bigcup
÷		÷		÷			÷
\cup I		UI		UI			\cup
K_{0,β_1}	\subseteq	K_{1,eta_1}	\supseteq	K_{2,β_1}	\subseteq	 \supseteq	K_{n,β_1}
\cup		UI		UI			UI
K_{0,β_0}	\subseteq	K_{1,β_0}	\supseteq	K_{2,β_0}	\subseteq	 \supseteq	K_{n,β_0}

ZZ-GRIL

Definition (Quasi zigzag poset and persistence module)

- QZ poset: subposet of $\mathbb{ZZ}\times\mathbb{Z}$
- A quasi zigzag persistence module M : P → vec, P is a QZ poset.

ZZ-GRIL

Definition (Quasi zigzag poset and persistence module)

- QZ poset: subposet of $\mathbb{ZZ}\times\mathbb{Z}$
- A quasi zigzag persistence module M : P → vec, P is a QZ poset.

Definition (ZZ-GRIL)

- *M* a QZ module.
- ZigZag Generalized Rank Invariant Landscape is a function λ^M: ℤℤ × ℤ × ℕ → ℕ

$$\lambda^{M}(\mathbf{p}, k) \coloneqq \sup \left\{ \delta \geq 0 \colon \mathsf{rk}^{M}\left(\left[\mathbf{p} \right]_{\delta}^{2} \right) \geq k \right\},$$

where $\mathbf{p} \in \mathbb{ZZ} \times \mathbb{Z}$.

Theorem

Let *M* and *N* be two *QZ* modules. Let the ZZ-GRIL of *M* and *N* over \mathbf{p}_{δ}^2 be λ^M and λ^N respectively. Then,

$$|\lambda^{\mathcal{M}}(\mathbf{p},k)-\lambda^{\mathcal{N}}(\mathbf{p},k)|=d_{\mathcal{E}}^{\mathcal{L}}(\mathcal{M},\mathcal{N})\leq d_{\mathcal{I}}(\mathcal{M},\mathcal{N}).$$

Corollary (Stability)

Let M and N be two QZ modules. Then,

$$||\lambda^{M} - \lambda^{N}||_{\infty} \leq d_{\mathcal{I}}(M, N).$$

Algorithm to compute ZZ-GRIL

[DKM24] result cannot be applied to QZ poset.

- Concepts of initial and terminal functors help in extending the result in [DKM24] to QZ modules.
- Proof in a recent preprint to be available on arXiv soon.

Theorem

Let *M* be a quasi zigzag persistence module and *I* be a finite interval in the corresponding quasi zigzag poset. Then, $rk^{M}(I) = rk^{M}(\partial I)$.

Experimental Results

- We perform experiments on Multivariate Time-Series Classification and Sleep-Stage Classification.
- We use the UEA multivariate time-series datasets (Bagnall et al., 2018) for multivariate time-series classification and the ISRUC-S3 dataset (Khalighi et al., 2016) for sleep-stage classification.
- We augment Zz-GRIL features to an existing machine learning architecture and compare the performance.
- For the experiments, we use k = 1, 2, 3 and compute ZZ-GRIL at 36 sampled center points.

Experiments

Here, we report the performance of Zz-GRIL augmented to STDP-GCN (Zhao et al., 2023) on sleep-stage classification, which is a 5-way classification task.

Methods	Accuracy	F-1 Overall	F-1 Wake	F-1 N-1	F-1 N2	F-1 N3	F-1 REM
SVM (Alickovic and Subasi, 2018)	73.3	72.1	86.8	52.3	69.9	78.6	73.1
RF (Memar and Faradji, 2017)	72.9	70.8	85.8	47.3	70.4	80.9	69.9
MLP+LSTM (Dong et al., 2017)	77.9	75.8	86.0	46.9	76.0	87.5	82.8
CNN+BiLSTM (Supratak et al., 2017)	78.8	77.9	88.7	60.2	74.6	85.8	80.2
CNN (Chambon et al., 2018)	78.1	76.8	87.0	55.0	76.0	85.1	80.9
ARNN+RNN (Phan et al., 2019)	78.9	76.3	83.6	43.9	79.3	87.9	86.7
STGCN (Jia et al., 2020)	79.9	78.7	87.8	57.4	77.6	86.4	84.1
MSTGCN (Jia et al., 2021)	82.1	80.8	89.4	59.6	80.6	89.0	85.6
STDP-GCN (Zhao et al., 2023)	82.6	81.0	83.5	62.9	83.1	86.0	90.6
$STDP\text{-}GCN + \mathrm{Zz}\text{-}\mathrm{Gril}$	83.8	81.1	88.6	58.1	85.4	82.7	90.9

Experimental Results

Here, we report the performance of $\rm Zz-GRIL$ augmented to TodyNet (Liu et al., 2024) on various multivariate time-series datasets.

Dataset/Methods	ED-1NN	DTW-1NN-I	DTW-1NN-D	MLSTM-FCN	ShapeNet	WEASEL+MUSE	TapNet	OS-CNN	MOS-CNN	TodyNet	$TodyNet{+}\operatorname{Zz-GRIL}$
FingerMovements	0.550	0.520	0.530	0.580	0.589	0.490	0.530	0.568	0.568	0.570	0.660
Heartbeat	0.620	0.659	0.717	0.663	0.756	0.727	0.751	0.489	0.604	0.756	0.756
MotorImagery	0.510	0.390	0.500	0.510	0.610	0.500	0.590	0.535	0.515	0.640	0.660
NATOPS	0.860	0.850	0.883	0.889	0.883	0.870	0.939	0.968	0.951	0.972	0.961
${\sf SelfRegulation}{\sf SCP2}$	0.483	0.533	0.539	0.472	0.578	0.460	0.550	0.532	0.510	0.550	0.600

Dataset	TodyNet + Zz-Gril point clouds	TodyNet + Zz-Gril graphs
FingerMovements	0.660	0.680
NATOPS	0.961	0.945
${\sf SelfRegulationSCP2}$	0.600	0.594

CGTDA group at Purdue University

C Links for softwares: https://github.com/TDA-Jyamiti/gril https://github.com/TDA-Jyamiti/zzgril

L-R: S. Mukherjee, S. Samaga, C. Xin, T. Hou

References

- Alickovic, E. and Subasi, A. (2018). Ensemble SVM method for automatic sleep stage classification. *IEEE Transactions* on Instrumentation and Measurement, 67(6):1258–1265.
- Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and Keogh, E. (2018). The UEA multivariate time series classification archive, 2018.
- Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., and Gramfort, A. (2018). A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 26(4):758–769.

- Dey, T. K. and Hou, T. (2022). Fast computation of zigzag persistence. In 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
- Dey, T. K., Kim, W., and Mémoli, F. (2024). Computing generalized rank invariant for 2-parameter persistence modules via zigzag persistence and its applications. *Discret. Comput. Geom.*, 71(1):67–94.

Dong, H., Supratak, A., Pan, W., Wu, C., Matthews, P. M., and Guo, Y. (2017). Mixed neural network approach for temporal sleep stage classification. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 26(2):324–333.

- Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., Zhou, Y., and Li-wei, H. L. (2021). Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 29:1977–1986.
- Jia, Z., Lin, Y., Wang, J., Zhou, R., Ning, X., He, Y., and Zhao, Y. (2020). GraphSleepNet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification. In *Ijcai*, volume 2021, pages 1324–1330.

Khalighi, S., Sousa, T., Santos, J. M., and Nunes, U. (2016). ISRUC-Sleep: A comprehensive public dataset for sleep researchers. *Computer Methods and Programs in Biomedicine*, 124:180–192.

Kim, W. and Mémoli, F. (2021). Generalized persistence diagrams for persistence modules over posets. *Journal of Applied and Computational Topology*, 5(4):533–581.

Liu, H., Yang, D., Liu, X., Chen, X., Liang, Z., Wang, H., Cui, Y., and Gu, J. (2024). TodyNet: Temporal dynamic graph neural network for multivariate time series classification. *Information Sciences*, 677:120914. Memar, P. and Faradji, F. (2017). A novel multi-class EEG-based sleep stage classification system. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 26(1):84–95.

Phan, H., Andreotti, F., Cooray, N., Chén, O. Y., and De Vos, M. (2019). SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 27(3):400–410.

Supratak, A., Dong, H., Wu, C., and Guo, Y. (2017). DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. *IEEE transactions on neural systems and rehabilitation engineering*, 25(11):1998–2008. Zhao, Y., Lin, X., Zhang, Z., Wang, X., He, X., and Yang, L. (2023). STDP-based adaptive graph convolutional networks for automatic sleep staging. *Frontiers in Neuroscience*, 17.