Assignment 1 Due: Oct 6

Problem 1 (k-wise uniformity vs almost k-wise uniformity) [5 pts]. In this problem we will derive a general (but often not optimal) method to transfer every result about k-wise uniformity into one about ε -almost k-wise uniformity, by bounding their statistical distance.

In the questions below, let $p: \{\pm 1\}^n \to \mathbb{R}$ be a ε -almost k-wise uniform distribution for some $\varepsilon \leq 1/2$. We will construct another distribution q such that q is k-wise uniform and $d_{\text{TV}}(p,q)$ is small.

1. [1 pt]. Let $S \subseteq [n]$ be a set of indices such that $1 \leq |S| \leq k$. Assume that $\widehat{p}(S) \geq 0$, show that for some properly chosen $\alpha \in [0, 2\varepsilon]$, the following function $p_{\alpha,S} \colon \{\pm 1\}^n \to \mathbb{R}$,

$$p_{\alpha,S}(x) = (1 - \alpha) \cdot p(x) + \alpha \cdot 2^{-n} (1 - \chi_S(x))$$

is a distribution over $\{\pm 1\}^n$ and $\widehat{p_{\alpha,S}}(S) = 0$.

Hint. Use the fact that the Fourier transformation is linear, and $|\widehat{p}(S)| \leq 2^{1-n}\varepsilon$ as we showed in class.

2. [1 pt]. Prove that for the function $p_{\alpha,S}$ that we chose above, it holds that

$$\left|\widehat{p_{\alpha,S}}(T)\right| \le \left|\widehat{p}(T)\right|$$

for all $T \subseteq [n]$.

- 3. [2 pt]. Use the claim in the above two questions to conclude that there exists a k-wise uniform distribution q such that $d_{\text{TV}}(p,q) \leq 2n^k \varepsilon$.
- 4. [1 pt]. In the 2k-wise independent Chebyshev's inequality, if instead we have $X_1, \ldots, X_n \in [0,1]$ being ε -almost 2k-wise independent, show that for $X = \frac{1}{n} \sum_{i=1}^{n} X_i$,

$$\Pr[|X - \mathbb{E}[X]| \ge \delta] \le \left(\frac{k^2}{n\delta^2}\right)^k + \frac{\varepsilon}{\delta^{2k}}.$$

Hint. Try to directly follow the proof for 2k-wise independent Chebyshev from class. In fact, in the regime where the inequality is meaningful $(\delta > 1/\sqrt{n})$, even for 2k-wise uniform random variables, this is strictly better than the bound we would have obtained using the result from question 3.

Problem 2 (the longest distance in the world) [5 pts]. Suppose that Alice and Bob live on the unit sphere of an n-dimensional Euclidean space. Their locations are represented by unit vectors $a, b \in \mathbb{R}^n$ respectively. They want to know if they are really close, say $||a-b||_2 \leq 0.1$, or really far away, say $||a-b||_2 \geq 1$, by using as little communication as possible.

Their plan is as follows: Alice first draws a uniformly random vector $x \in \{\pm 1\}^n$, computes $\langle a, x \rangle = \sum_{i=1}^n a_i x_i$, and send both x and $\langle a, x \rangle$ (ignoring the accuracy issue here) to Bob. Bob then computes $\langle b, x \rangle$ and checks how close it is to $\langle a, x \rangle$.

- 1. [1 pt]. Show that $\mathbb{E}_{x}\left[\left(\langle a, x \rangle \langle b, x \rangle\right)^{2}\right] = \|a b\|_{2}^{2}$.
- 2. [1 pt]. Show that $\operatorname{Var}\left[(\langle a, x \rangle \langle b, x \rangle)^2\right] \leq 2 \|a b\|_2^4$.

 Hint. Write the variance as expectation and expand it. Which summands survive under expectation?
- 3. [1 pt]. Use Chebyshev's inequality to conclude that, by repeating the plan constantly many times (drawing independent x each time), Bob can correctly tell if $||a b||_2 \le 0.1$ or $||a b||_2 \ge 1$ with at least 99% success probability.
- 4. [2 pt]. In the above plan, Alice has to send at least n bits to communicate the random x with Bob. Show how they can modify the plan so that the number of bits communicated is $O(\log n)$ while not changing the success probability.

Hint. What type of pseudorandom $x \in \{\pm 1\}^n$ could make the claims in all previous questions still hold?