CS59200-PRS: Pseudorandomness Aug 25, 2025
Lecture 1: Introduction to Pseudorandomness

Lecturer: Wei Zhan Scribe: Xiuyu Ye

In this class, we are interested in the following three questions.
1. What is pseudorandomness?

2. How to achieve pseudorandomness?

3. Why are we interested in studying pseudorandomness?

e Cryptographic applications.

e Derandomization.

1 Definitions

We begin with a “dictionary” definition of pseudorandomness.

Pseudorandomness describes an object that looks random but uses less randomness to
construct.

The questions are what all the underlining phrases mean. To give it a more formal
treatment, we have the following generic definition.

Definition 1 (Pseudorandomness and PRG). Let D be a target distribution and S be a
source distribution. We say G is pseudorandom against a set A consisting of functions
A: supp(D) — [0, 1], if there exists small € > 0 such that for all A € A,

By specifying D, S, A and € we get a class of pseudorandom objects. In particular, when D
is uniform over {0,1}" and S is uniform over {0, 1}4 for some ¢ = £(n) depending on n, we
say G is a pseudorandom generator (PRG) against A.

Here are some terminologies. In the above definition, we call each A € A a distinguisher,
and we say that G e-fools the distinguisher A. We call s ~ § a seed, and in the PRG case
¢(n) is the seed length. When we later talk about asymptotics, we should always think of
n — oo and G is actually a family of PRGs {G,,}.

2 Examples

2.1 Question 1
Given the PRG G: {0,1}*™ — {0,1}", construct a binary distinguisher A: {0,1}" — {0,1}
as simple as possible that is not “fooled” by G, i.e. ‘ ES[A(G(S))] — IED[A(T)]‘ > €.

We define the distinguisher as follows.

Alx) = 1 ifze r'ange(G) .
0 otherwise

Then,
TiED[A(r)} — ’rangQSL(G)' — 2Z7n’
EJAG(s)] =1,

the distinguishing advantage is large.

The above distinguisher A runs in O(2°™ - n) time with oracle access to a PRG G (denote
as A € TIME® (2™ . n)). If ¢(n) = O(logn) and G € TIME(n°™Y) (G is a polynomial
time computable function), then G cannot “fool” P (the set of all languages computable
in deterministic polynomial time). In other words,polynomial-time PRGs with logarithmic
seed length cannot fool all polynomial-time distinguishers. The contrapositive states that if
G € TIME(n®W) e-fools P with any constant e < 1, then £(n) = w(logn).

2.2 Question 2

Consider the reverse direction, where we are given the set of distinguishers A and we want
to construct the PRG G as simple as possible. What is the smallest seed length ¢(n) that
fools every distinguisher in A?

1. |A] =1. Say A= {A}.

For example, consider a binary distinguisher A: {0,1}" — {0,1} that outputs 1 for
m out of the 2" bit-strings, that is, ED[A(r)] = m/2". To achieve ES[A(G(S))] ~

E [A(r)], we want G to map k out of the 2° bit-strings to something in A~'(1).

r~D
Therefore we need Vm € {1,2,...,2"},3k € {1,2,...,2"} such that
smallest seed length to fool this class of distinguisher is

£> Mog(1/e)] - 1.
2. A = {all boolean functions {0,1}" — {0,1}}.
l(n) =n.

< e. The

m k
2"t

This is because for any ¢(n) < n, the distinguisher in Section 2.1 serves as a counterex-
ample.

3. Generic A.

Consider a random function G: {0,1}™ — {0,1}" where each output is uniformly

and independently drawn. Then for any s € {0,1}*™, G(s) also looks random and
IE[A(G(S))] = E[A(r)]. Hence, through Hoeffding bound and union bound, we get

Prg [VA € A,

EJA(G(s)] — E [A(")]

r~D

gs} > 1—2-exp<—2£-62) 1A
That meanings, when
¢ =loglog (|A]) +2log (1/e) + O(1)

there exists a function G: {0, 1} — {0,1}" that e-fools every A € A. However, this
PRG is not explicit as we do not know how it is actually constructed.

4. A = {all size K Boolean fan-in-2 circuits}, K is the number of gates in the circuit.

Note that [A] = 29F18E) Take any K = 208" we know that for every A € P
there exists N € N, such that the computation of A with input length n is captured
by circuits in A for all n > N. By the probabilistic bound above, there exists a PRG
against A (and thus against P) with ¢ = 1/K and seed length O(log K).

We call a PRG that e-fools P with some ¢ = negl(n) (smaller than every inverse-
polynomial) a cryptographic PRG. It means that for every ¢(n) = w(logn), there
exists a cryptographic PRG with seed length w(logn) (which is also necessary from
Section 2.1). However, the construction is again not explicit, and the to construct
an explicit (polynomial-time computable) cryptographic PRG, even with seed length
n — 1, is an open question.

3 Next Time: MAX-CUT

Given a graph G = (V, E), find labeling r(v) € {0,1} of vertices V' that maximizes the size
of the cut according this labeling, that is

maximize Z ﬂr(z);ﬁr(j) .
(i,J)EE

We will look at a randomized approximation algorithm and derandomize the construction.

	Definitions
	Examples
	Question 1
	Question 2

	Next Time: MAX-CUT

