CS59200-PRS: Pseudorandomness

Aug 25, 2025

Lecture 1: Introduction to Pseudorandomness

Lecturer: Wei Zhan Scribe: Xiuyu Ye

In this class, we are interested in the following three questions.

1. **What** is pseudorandomness?

- 2. **How** to achieve pseudorandomness?
- 3. Why are we interested in studying pseudorandomness?
 - Cryptographic applications.
 - Derandomization.

1 Definitions

We begin with a "dictionary" definition of pseudorandomness.

Pseudorandomness describes <u>an object</u> that <u>looks random</u> but uses <u>less randomness</u> to <u>construct</u>.

The questions are what all the underlining phrases mean. To give it a more formal treatment, we have the following generic definition.

Definition 1 (Pseudorandomness and PRG). Let \mathcal{D} be a target distribution and \mathcal{S} be a source distribution. We say G is pseudorandom against a set \mathcal{A} consisting of functions A: supp $(\mathcal{D}) \to [0,1]$, if there exists small $\varepsilon > 0$ such that for all $A \in \mathcal{A}$,

$$\left| \underset{s \sim \mathcal{S}}{\mathbb{E}} [A(G(s))] - \underset{r \sim \mathcal{D}}{\mathbb{E}} [A(r)] \right| \leq \varepsilon.$$

By specifying $\mathcal{D}, \mathcal{S}, \mathcal{A}$ and ε we get a class of pseudorandom objects. In particular, when \mathcal{D} is uniform over $\{0,1\}^n$ and \mathcal{S} is uniform over $\{0,1\}^\ell$ for some $\ell = \ell(n)$ depending on n, we say G is a pseudorandom generator (PRG) against \mathcal{A} .

Here are some terminologies. In the above definition, we call each $A \in \mathcal{A}$ a distinguisher, and we say that $G \in fools$ the distinguisher A. We call $s \sim \mathcal{S}$ a seed, and in the PRG case $\ell(n)$ is the seed length. When we later talk about asymptotics, we should always think of $n \to \infty$ and G is actually a family of PRGs $\{G_n\}$.

2 Examples

2.1 Question 1

Given the PRG $G: \{0,1\}^{\ell(n)} \to \{0,1\}^n$, construct a binary distinguisher $A: \{0,1\}^n \to \{0,1\}$ as simple as possible that is **not** "fooled" by G, i.e. $\left| \underset{s \sim S}{\mathbb{E}} [A(G(s))] - \underset{r \sim D}{\mathbb{E}} [A(r)] \right| > \varepsilon$.

We define the distinguisher as follows.

$$A(x) := \begin{cases} 1 & \text{if } x \in \text{range}(G) \\ 0 & \text{otherwise} \end{cases}$$
.

Then,

$$\mathbb{E}_{r \sim \mathcal{D}}[A(r)] = \frac{|\text{range}(G)|}{2^n} = 2^{\ell - n},$$

$$\mathbb{E}_{s \sim \mathcal{S}}[A(G(s))] = 1,$$

the distinguishing advantage is large.

The above distinguisher A runs in $O(2^{\ell(n)} \cdot n)$ time with oracle access to a PRG G (denote as $A \in \mathsf{TIME}^G(2^{\ell(n)} \cdot n)$). If $\ell(n) = O(\log n)$ and $G \in \mathsf{TIME}(n^{O(1)})$ (G is a polynomial time computable function), then G cannot "fool" P (the set of all languages computable in deterministic polynomial time). In other words, polynomial-time PRGs with logarithmic seed length cannot fool all polynomial-time distinguishers. The contrapositive states that if $G \in \mathsf{TIME}(n^{O(1)})$ ε -fools P with any constant $\varepsilon < 1$, then $\ell(n) = \omega(\log n)$.

2.2 Question 2

Consider the reverse direction, where we are given the set of distinguishers \mathcal{A} and we want to construct the PRG G as simple as possible. What is the smallest seed length $\ell(n)$ that fools every distinguisher in \mathcal{A} ?

1.
$$|A| = 1$$
. Say $A = \{A\}$.

For example, consider a binary distinguisher $A: \{0,1\}^n \to \{0,1\}$ that outputs 1 for m out of the 2^n bit-strings, that is, $\underset{r \sim \mathcal{D}}{\mathbb{E}}[A(r)] = m/2^n$. To achieve $\underset{s \sim \mathcal{S}}{\mathbb{E}}[A(G(s))] \approx \underset{r \sim \mathcal{D}}{\mathbb{E}}[A(r)]$, we want G to map k out of the 2^ℓ bit-strings to something in $A^{-1}(1)$.

Therefore we need $\forall m \in \{1, 2, \dots, 2^n\}, \exists k \in \{1, 2, \dots, 2^\ell\}$ such that $\left|\frac{m}{2^n} - \frac{k}{2^\ell}\right| \leq \varepsilon$. The smallest seed length to fool this class of distinguisher is

$$\ell \ge \lceil \log(1/\varepsilon) \rceil - 1.$$

2. $\mathcal{A} = \{\text{all boolean functions } \{0,1\}^n \to \{0,1\}\}.$

$$\ell(n) = n.$$

This is because for any $\ell(n) < n$, the distinguisher in Section 2.1 serves as a counterexample.

3. Generic \mathcal{A} .

Consider a random function $G: \{0,1\}^{\ell(n)} \to \{0,1\}^n$ where each output is uniformly and independently drawn. Then for any $s \in \{0,1\}^{\ell(n)}$, G(s) also looks random and $\mathbb{E}[A(G(s))] = \mathbb{E}[A(r)]$. Hence, through Hoeffding bound and union bound, we get

$$\Pr_{G}\left[\forall A \in \mathcal{A}, \ \left| \underset{s \sim \mathcal{S}}{\mathbb{E}} [A(G(s))] - \underset{r \sim \mathcal{D}}{\mathbb{E}} [A(r)] \right| \leq \varepsilon \right] \geq 1 - 2 \cdot \exp\left(-2^{\ell} \cdot \varepsilon^{2}\right) \cdot |\mathcal{A}|.$$

That meanings, when

$$\ell = \log \log (|\mathcal{A}|) + 2\log (1/\varepsilon) + O(1)$$

there exists a function $G: \{0,1\}^{\ell(n)} \to \{0,1\}^n$ that ε -fools every $A \in \mathcal{A}$. However, this PRG is not explicit as we do not know how it is actually constructed.

4. $\mathcal{A} = \{\text{all size } K \text{ Boolean fan-in-2 circuits}\}, K \text{ is the number of gates in the circuit.}$

Note that $|\mathcal{A}| = 2^{O(K \log(K))}$. Take any $K = 2^{\omega(\log n)}$, we know that for every $A \in \mathsf{P}$ there exists $N \in \mathbb{N}$, such that the computation of A with input length n is captured by circuits in \mathcal{A} for all $n \geq N$. By the probabilistic bound above, there exists a PRG against \mathcal{A} (and thus against P) with $\varepsilon = 1/K$ and seed length $O(\log K)$.

We call a PRG that ε -fools P with some $\varepsilon = \operatorname{negl}(n)$ (smaller than every inverse-polynomial) a cryptographic PRG. It means that for every $\ell(n) = \omega(\log n)$, there exists a cryptographic PRG with seed length $\omega(\log n)$ (which is also necessary from Section 2.1). However, the construction is again not explicit, and the to construct an explicit (polynomial-time computable) cryptographic PRG, even with seed length n-1, is an open question.

3 Next Time: MAX-CUT

Given a graph G = (V, E), find labeling $r(v) \in \{0, 1\}$ of vertices V that maximizes the size of the cut according this labeling, that is

maximize
$$\sum_{(i,j)\in E} \mathbb{1}_{r(i)\neq r(j)}.$$

We will look at a randomized approximation algorithm and derandomize the construction.