
CS59200-PRS: Pseudorandomness Aug 25, 2025

Lecture 1: Introduction to Pseudorandomness

Lecturer: Wei Zhan Scribe: Xiuyu Ye

In this class, we are interested in the following three questions.

1. What is pseudorandomness?

2. How to achieve pseudorandomness?

3. Why are we interested in studying pseudorandomness?

• Cryptographic applications.

• Derandomization.

1 Definitions

We begin with a “dictionary” definition of pseudorandomness.

Pseudorandomness describes an object that looks random but uses less randomness to
construct.

The questions are what all the underlining phrases mean. To give it a more formal
treatment, we have the following generic definition.

Definition 1 (Pseudorandomness and PRG). Let D be a target distribution and S be a
source distribution. We say G is pseudorandom against a set A consisting of functions
A : supp(D)→ [0, 1], if there exists small ε > 0 such that for all A ∈ A,∣∣∣ E

s∼S
[A(G(s))]− E

r∼D
[A(r)]

∣∣∣ ≤ ε.

By specifying D,S,A and ε we get a class of pseudorandom objects. In particular, when D
is uniform over {0, 1}n and S is uniform over {0, 1}` for some ` = `(n) depending on n, we
say G is a pseudorandom generator (PRG) against A.

Here are some terminologies. In the above definition, we call each A ∈ A a distinguisher,
and we say that G ε-fools the distinguisher A. We call s ∼ S a seed, and in the PRG case
`(n) is the seed length. When we later talk about asymptotics, we should always think of
n→∞ and G is actually a family of PRGs {Gn}.

1

2 Examples

2.1 Question 1

Given the PRG G : {0, 1}`(n) → {0, 1}n, construct a binary distinguisher A : {0, 1}n → {0, 1}
as simple as possible that is not “fooled” by G, i.e.

∣∣∣ E
s∼S

[A(G(s))]− E
r∼D

[A(r)]
∣∣∣ > ε.

We define the distinguisher as follows.

A(x) :=

{
1 if x ∈ range(G)

0 otherwise
.

Then,

E
r∼D

[A(r)] =
|range(G)|

2n = 2`−n,

E
s∼S

[A(G(s))] = 1,

the distinguishing advantage is large.
The above distinguisher A runs in O(2`(n) ·n) time with oracle access to a PRG G (denote

as A ∈ TIMEG(2`(n) · n)). If `(n) = O(log n) and G ∈ TIME(nO(1)) (G is a polynomial
time computable function), then G cannot “fool” P (the set of all languages computable
in deterministic polynomial time). In other words,polynomial-time PRGs with logarithmic
seed length cannot fool all polynomial-time distinguishers. The contrapositive states that if
G ∈ TIME(nO(1)) ε-fools P with any constant ε < 1, then `(n) = ω(log n).

2.2 Question 2

Consider the reverse direction, where we are given the set of distinguishers A and we want
to construct the PRG G as simple as possible. What is the smallest seed length `(n) that
fools every distinguisher in A?

1. |A| = 1. Say A = {A}.
For example, consider a binary distinguisher A : {0, 1}n → {0, 1} that outputs 1 for
m out of the 2n bit-strings, that is, E

r∼D
[A(r)] = m/2n. To achieve E

s∼S
[A(G(s))] ≈

E
r∼D

[A(r)], we want G to map k out of the 2` bit-strings to something in A−1(1).

Therefore we need ∀m ∈ {1, 2, . . . , 2n},∃k ∈ {1, 2, . . . , 2`} such that
∣∣∣m
2
n − k

2
`

∣∣∣ ≤ ε. The

smallest seed length to fool this class of distinguisher is

` ≥ dlog(1/ε)e − 1.

2. A = {all boolean functions {0, 1}n → {0, 1}}.

`(n) = n.

This is because for any `(n) < n, the distinguisher in Section 2.1 serves as a counterex-
ample.

2

3. Generic A.
Consider a random function G : {0, 1}`(n) → {0, 1}n where each output is uniformly

and independently drawn. Then for any s ∈ {0, 1}`(n), G(s) also looks random and
E
G

[A(G(s))] = E
r

[A(r)] . Hence, through Hoeffding bound and union bound, we get

PrG

[
∀A ∈ A,

∣∣∣ E
s∼S

[A(G(s))]− E
r∼D

[A(r)]
∣∣∣ ≤ ε

]
≥ 1− 2 · exp

(
−2` · ε2

)
· |A| .

That meanings, when

` = log log (|A|) + 2 log (1/ε) + O(1)

there exists a function G : {0, 1}`(n) → {0, 1}n that ε-fools every A ∈ A. However, this
PRG is not explicit as we do not know how it is actually constructed.

4. A = {all size K Boolean fan-in-2 circuits}, K is the number of gates in the circuit.

Note that |A| = 2O(K log(K)). Take any K = 2ω(logn), we know that for every A ∈ P
there exists N ∈ N, such that the computation of A with input length n is captured
by circuits in A for all n ≥ N . By the probabilistic bound above, there exists a PRG
against A (and thus against P) with ε = 1/K and seed length O(logK).

We call a PRG that ε-fools P with some ε = negl(n) (smaller than every inverse-
polynomial) a cryptographic PRG. It means that for every `(n) = ω(log n), there
exists a cryptographic PRG with seed length ω(log n) (which is also necessary from
Section 2.1). However, the construction is again not explicit, and the to construct
an explicit (polynomial-time computable) cryptographic PRG, even with seed length
n− 1, is an open question.

3 Next Time: MAX-CUT

Given a graph G = (V,E), find labeling r(v) ∈ {0, 1} of vertices V that maximizes the size
of the cut according this labeling, that is

maximize
∑

(i,j)∈E

1r(i)6=r(j).

We will look at a randomized approximation algorithm and derandomize the construction.

3

	Definitions
	Examples
	Question 1
	Question 2

	Next Time: MAX-CUT

