Lecture 10: Spectral Expansion

Lecturer: Wei Zhan Scribe: Abhigyan Dutta

1 Spectral Expansion of Graphs

For undirected d-regular graph H=(V,E) with |V|=n, let A be the adjacency matrix of H. The spectrum of $\frac{1}{d}A$ consists of its eigenvalues: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. The spectral expansion of H is defined as $\gamma = 1 - \max\{|\lambda_2|, |\lambda_n|\}$.

Here we list some of the properties of the normalized adjacency matrix $\frac{1}{d}A$ and its spectrum:

- 1. $\frac{1}{d}A$ is symmetric and doubly stochastic.
- 2. If $x \in \mathbb{R}^n$ is a distribution over V, then $\frac{1}{d}Ax$ is also a distribution over V. This represents a random step on H: starting from the vertices distributed as x, and take a random neighboring vertex, the resulting distribution is $\frac{1}{d}Ax$
- 3. If $u = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)^{\mathsf{T}}$, i.e. the uniform distribution over V, then $\frac{1}{d}Au = u$. This can be reduced from the fact that $\frac{1}{d}A$ is doubly stochastic; intuitively, starting from a uniformly random vertex and take a random step will still result in a uniformly random vertex, because of the d-regularity.
- 4. The spectral radius of $\frac{1}{d}A$, which coincides with its operator ℓ_2 -norm $\left\|\frac{1}{d}A\right\|_2$ because of symmetry, is the same as its operator ℓ_1 -norm $\left\|\frac{1}{d}A\right\|_1 = 1$, since $\lambda_1 = 1$ with eigenvector u. As a result, $\gamma \in [0, 1]$.

As a result, we can obtain several different formulae that computes γ :

Theorem 1. We have the following equivalent ways of writing $1 - \gamma$:

$$\begin{split} 1 - \gamma &= \max_{x \perp u} \frac{\left\| \frac{1}{d} A x \right\|_2}{\left\| x \right\|_2} = \max_{\sum_i x_i = 0} \frac{\left\| \frac{1}{d} A x \right\|_2}{\left\| x \right\|_2} \\ &= \max_{\sum_i x_i = 1} \frac{\left\| \frac{1}{d} A x - u \right\|_2}{\left\| x - u \right\|_2} = \max_{distribution \ x} \frac{\left\| \frac{1}{d} A x - u \right\|_2}{\left\| x - u \right\|_2} \end{split}$$

Proof. The first equality is by the spectral theorem of symmetric matrices, that the eigenspaces of $\frac{1}{d}A$ are orthogonal to each other. The second equality is by the fact $x \perp u$, or $\langle x, u \rangle = 0$, if and only if $\sum_{i=1}^n x_i = 0$. The third equality is due to the fact that every $x \in \mathbb{R}^n$ that $\sum_{i=1}^n x_i = 1$ corresponds to x' = x - u that $\sum_{i=1}^n x_i' = 0$. The final equality is because the set of (x - u) where x is a distribution linearly spans the subspace $\sum_{i=1}^n x_i = 0$.

The last expression, that $\gamma = 1 - \max \frac{\left\|\frac{1}{d}Ax - u\right\|_2}{\|x - u\|_2}$ over distributions x, intuitively suggests how fast you get close to the uniform distribution u starting from an arbitrary distribution x over the vertices and taking one random step in the graph, relative to the distance $\|x - u\|_2$.

1.1 Examples

Example 1 (Complete graph with self loops). We have A = J, the matrix with all 1's. Here J is rank-1, so $\gamma = 1 - \max\{|\lambda_2|, |\lambda_n|\} = 1$. Intuitively, taking one step in A will result in equal probability of landing on any vertex, irrespective of where we start.

Example 2 (Complete graph without self loops). We have A = J - I, with d = n - 1. Again, it is easy to check that the spectrum of $\frac{1}{d}A$ is $\left\{1, -\frac{1}{n-1}, -\frac{1}{n-1}, \dots, -\frac{1}{n-1}\right\}$ giving us $\gamma = \frac{n-2}{n-1} \approx 1$.

Example 3 (Graph is disconnected). Let S be one of the connected components and w.l.o.g assume it to be associated to the first |S| rows and columns of A. Let

$$x = \left(\frac{1}{|S|}, \frac{1}{|S|}, \dots, \frac{1}{|S|}, 0, 0, \dots, 0\right)^{\mathsf{T}}$$

then $\frac{1}{d}Ax = x$, implying that $\gamma = 0$ as $\lambda_2 = 1$.

Example 4 (Graph is bipartite). Let H be bipartite over S, S' and w.l.o.g assume S to be associated to the first |S| rows and columns of A. Let

$$x = \left(\frac{1}{|S|}, \frac{1}{|S|}, \dots, \frac{1}{|S|}, \frac{-1}{|S'|}, \frac{-1}{|S'|}, \dots, \frac{-1}{|S'|}\right)^{\mathsf{T}}$$

then $\frac{1}{d}Ax = -x$ giving us $\lambda_n = -1$, implying $\gamma = 0$.

2 Spectral Expansion Implies Vertex Expansion

Recall a graph H is α -vertex expanding if,

$$|N(S) \setminus S| \ge \alpha |S|, \quad \forall S \subset V, |S| \le \frac{n}{2}$$

Theorem 2. If a graph H has γ spectral expansion then it also has γ vertex expansion.

Proof. Given a subset of vertices $S \subset V, |S| \leq \frac{n}{2}$ and assume w.l.o.g these are the first |S| vertices in adjacency matrix A. Let $x = \left(\frac{1}{|S|}, \frac{1}{|S|}, \cdots, \frac{1}{|S|}, 0, 0, \cdots, 0\right)^{\mathsf{T}}$ and u be the uniform distribution vector. Since $\langle x, u \rangle = 1/n$ for every distribution x, we have

$$||x - u||_2 = \sqrt{\langle x, x \rangle - 2\langle x, u \rangle + \langle u, u \rangle} = \sqrt{\frac{1}{|S|} - \frac{1}{n}}.$$

Since $\frac{1}{d}Ax$ is supported on N(S), $\left\|\frac{1}{d}Ax\right\|_2^2 \ge \frac{1}{|N(S)|} \left|\frac{1}{d}Ax\right|_1^2 = \frac{1}{|N(S)|}$. So similarly we have

$$\left\| \frac{1}{d}Ax - u \right\|_2 = \sqrt{\left\langle \frac{1}{d}Ax, \frac{1}{d}Ax \right\rangle - \frac{1}{n}} \ge \sqrt{\frac{1}{|N(S)|} - \frac{1}{n}}.$$

By the formulation of spectral expansion in Theorem 1 we have $\left\| \frac{1}{d}Ax - u \right\|_2 \le (1-\gamma) \|x - u\|_2$, and thus

$$\sqrt{\frac{1}{|N(S)|} - \frac{1}{n}} \le (1 - \gamma)\sqrt{\frac{1}{|S|} - \frac{1}{n}}.$$

Solving |N(S)| gives us

$$\frac{|N(S)|}{|S|} \ge \frac{1}{1 - (2\gamma - \gamma^2) \left(1 - \frac{|S|}{n}\right)} \ge \frac{1}{1 - \gamma + \frac{1}{2}\gamma^2} \ge 1 + \gamma,$$

since $|S|/n \le 1/2$ and $(1 - \gamma + \frac{1}{2}\gamma^2)(1 + \gamma) = 1 - \frac{1}{2}(\gamma^2 - \gamma^3) \le 1$. Therefore $|N(S) \setminus S| \ge |N(S)| - |S| \ge \gamma |S|$.

3 Spectral Expansion Implies Edge Expansion

Recall a d-regular graph H is α -edge expanding if,

$$e(S, \overline{S}) \ge \alpha d|S|, \quad \forall S \subset V, |S| \le \frac{n}{2}, \quad \overline{S} = V \setminus S$$

where $e(S, S') = \#\{(i, j) \in E \mid i \in S, j \in S'\}.$

Theorem 3. If a graph H has γ spectral expansion then it also has $\gamma/2$ edge expansion.

Proof. Given a subset of vertices $S \subset V, |S| \leq \frac{n}{2}$ and assume w.l.o.g these are the first |S| vertices of the adjacency matrix A. Let $x = \left(\frac{1}{|S|}, \frac{1}{|S|}, \cdots, \frac{1}{|S|}, 0, 0, \cdots, 0\right)^{\mathsf{T}}$. We can represent the number edges e(S, S') with the adjacency matrix as

$$e(S, S') = \mathbb{1}_S^{\mathsf{T}} A \mathbb{1}_{S'} \tag{1}$$

where $\mathbb{1}_S$ and $\mathbb{1}_{S'}$ are the indicator vectors of sets S and S' respectively. Notice that $\mathbb{1}_S =$

|S|x, while $\mathbb{1}_{\overline{S}} = nu - |S|x$. Hence we can write,

$$e(S, \overline{S}) = (|S|x)^{\mathsf{T}} A (nu - |S|x)$$

$$= nd|S|x^{\mathsf{T}}u - |S|^{2}x^{\mathsf{T}}Ax$$

$$= d|S| - |S|^{2}x^{\mathsf{T}}Ax$$

$$= d|S| - |S|^{2}(x - u)^{\mathsf{T}}A(x - u) - |S|^{2}(u^{\mathsf{T}}Ax + x^{\mathsf{T}}Au - u^{\mathsf{T}}Au)$$

$$= d|S| - |S|^{2}(x - u)^{\mathsf{T}}A(x - u) - \frac{d}{n}|S|^{2}$$

$$\geq d|S| - d|S|^{2} ||x - u||_{2} \left\| \frac{1}{d}A(x - u) \right\|_{2} - \frac{d}{n}|S|^{2}$$

$$\geq d|S| - (1 - \gamma)d|S|^{2} ||x - u||_{2}^{2} - \frac{d}{n}|S|^{2}$$

$$= d|S| - (1 - \gamma)d|S|^{2} \left(\frac{1}{|S|} - \frac{1}{n} \right) - \frac{d}{n}|S|^{2}$$

$$= \gamma \left(d|S| - \frac{d}{n}|S|^{2} \right).$$

Here we used several times the fact that $\frac{1}{d}Au = u$ and $\langle x, u \rangle = \frac{1}{n}$. The inequalities are because of Cauchy-Schwarz, and the formulation of spectral expansion in Theorem 1. Finally, because $|S| \leq n/2$, we conclude that $e(S, \overline{S}) \geq \frac{1}{2} \gamma d|S|$.

4 Expander Mixing Lemma

Recall a d-regular graph H = (V, E) on n vertices is ε -mxing if,

$$\left| \frac{e(S, S')}{dn} - \frac{|S||S'|}{n^2} \right| \le \varepsilon, \quad \forall S, S' \subseteq V$$

Theorem 4 (Expander mixing lemma). If a graph H has $(1 - \lambda)$ spectral expansion then it is λ -mixing.

Proof. Given two subset of vertices $S, S' \subseteq V$ and assume w.l.o.g S consists of the first |S| vertices while S' consists of the last |S'| vertices. Let $x = \left(\frac{1}{|S|}, \frac{1}{|S|}, \cdots, \frac{1}{|S|}, 0, 0, \cdots, 0\right)^{\mathsf{T}}$ and $y = \left(0, 0, \cdots, \frac{1}{|S'|}, \frac{1}{|S'|}, \cdots, \frac{1}{|S'|}\right)^{\mathsf{T}}$.

From earlier Equation 1 we have $e(S, S') = |S||S'|x^{\mathsf{T}}Ay$. We also have

$$x^{T}Ay = (x - u)^{\mathsf{T}}A(y - u) + u^{\mathsf{T}}Ay + x^{\mathsf{T}}Au - u^{\mathsf{T}}Au = (x - u)^{\mathsf{T}}A(y - u) + \frac{d}{n}$$

where the second equality follows by noting that $\frac{1}{d}x^{\mathsf{T}}Au = x^{\mathsf{T}}u = \frac{1}{n}$. Using the above we get,

$$\left| \frac{e(S, S')}{dn} - \frac{|S||S'|}{n^2} \right| = \frac{|S||S'|}{nd} \left| (x - u)^{\mathsf{T}} A(y - u) \right|$$

$$\leq \frac{|S||S'|}{n} \cdot \|x - u\|_2 \cdot (1 - \gamma) \|y - u\|_2$$

$$= (1 - \gamma) \frac{|S||S'|}{n} \sqrt{\frac{1}{|S|} - \frac{1}{n}} \sqrt{\frac{1}{|S'|} - \frac{1}{n}}$$

$$= (1 - \gamma) \sqrt{\frac{|S|}{n} \cdot \frac{n - |S|}{n} \cdot \frac{|S'|}{n} \cdot \frac{n - |S'|}{n}} \leq (1 - \gamma).$$

Here the third to last inequality follows from Cauchy-Schwarz and Theorem 1.

Often when we use Theorem 4 we use the bound $(1-\gamma)\sqrt{\frac{|S|}{n}\cdot\frac{n-|S|}{n}\cdot\frac{|S'|}{n}\cdot\frac{n-|S'|}{n}}$ directly, which is dubbed the strongest form of the expander mixing lemma. Some intermediate bounds that are easy to use include $(1-\gamma)\sqrt{\frac{|S|}{n}\cdot\frac{|S'|}{n}}$; and when S'=S or $S'=\overline{S}$ we get $(1-\gamma)\frac{|S|}{n}\cdot\frac{|\overline{S}|}{n}$.

5 Expander Random Walks

One of the most prominent uses of expander graphs is the random walks. A t-step random walk on a graph H = (V, E) is defined as $v_0 \sim \mathcal{U}(V), v_1 \sim \mathcal{U}(N(v_0)), \ldots, v_t \sim \mathcal{U}(N(v_{t-1})),$ where $\mathcal{U}(N(v))$ denotes uniform random sampling from the neighbors of vertex v.

When H is a complete graph with self-loops, the sequence (v_0, v_1, \ldots, v_t) simply consists of t uniform and independent elements from V. Using expander graphs, we get a sequence of vertices that shares a lot of good properties with the independently uniform sequence, but with significantly less randomness when the degree of the graph is small.

Theorem 5 (Hitting property of expander random walks). Suppose that H has γ spectral expansion, and (v_1, \ldots, v_t) is a random walk on H. For every $S \subseteq V$ we have

$$\Pr\left[v_i \not\in S, \forall i \in [t]\right] \le \left(1 - \frac{\gamma|S|}{n}\right)^t$$

Proof. Since (v_1, \ldots, v_t) form a Markov chain, we have

$$\Pr\left[v_{i} \notin S, \forall i \in [t]\right] = \prod_{i=1}^{t} \Pr\left[v_{i} \notin S \middle| v_{1}, \cdots, v_{i-1} \notin S\right]$$

$$= \prod_{i=1}^{t} \Pr\left[v_{i} \notin S \middle| v_{i-1} \notin S\right] = \prod_{i=1}^{t} \frac{\Pr\left[v_{i} \notin S, v_{i-1} \notin S\right]}{\Pr\left[v_{i-1} \notin S\right]}.$$

Each v_i itself is uniformly distributed, and thus $\Pr[v_{i-1} \notin S] = |\overline{S}|/n$. On the other hand, (v_{i-1}, v_i) is a uniformly random edge in H, and thus

$$\Pr\left[v_i \not\in S, v_{i-1} \not\in S\right] = \frac{e(\overline{S}, \overline{S})}{nd} \le \left(\frac{|\overline{S}|}{n}\right)^2 + (1 - \gamma)\frac{|S||\overline{S}|}{n^2}$$

by the expander mixing lemma. Plug them in and we have

$$\Pr\left[v_i \not\in S, \forall i \in [t]\right] \le \prod_{i=1}^t \left(\frac{|\overline{S}|}{n} + (1-\gamma)\frac{|S|}{n}\right) = \left(1 - \frac{\gamma|S|}{n}\right)^t.$$

Notice that the above probability is exponentially small in t, similar to the case with independent sequence v_1, \ldots, v_n (for which the probability of not hitting S is $(1 - |S|/n)^t$).

The hitting property can be used for derandomizing algorithms with one-sided error. For two-sided error, we can use the following version of Chernoff bound on expander random walks.

Theorem 6 (Expander Chernoff bound). Suppose that H has γ spectral expansion, and (v_1, \ldots, v_t) is a random walk on H. For every $f: V \to [0, 1]$,

$$\Pr_{v_1, \cdots, v_t} \left[\left| \frac{1}{t} \sum_{i=1}^t f(v_i) - \underset{v \sim V}{\mathbb{E}} [f(v)] \right| \ge \varepsilon \right] \le 2e^{-\frac{1}{4}\gamma t\varepsilon^2}$$

The proof of Theorem 6 can be found in:

- David Gillman. A Chernoff Bound for Random Walks on Expander Graphs.
- Alex Healy. Randomness-Efficient Sampling within NC¹.

As an application of the expander Chernoff bound, think of the error reduction task we examined in Lecture 3. We have an algorithm A(x,r) with m-bit randomness r that is correct with probability $\frac{1}{2} + \varepsilon$. To reduce the error down to 1/poly(n), we can drawn r_1, \ldots, r_t using a random walk on the expander H with 2^m vertices, constant degree d and constant spectral expansion γ . Theorem 6 implies that $t = O(\varepsilon^{-2} \log n)$ steps suffices, and the number of random bits used to perform the random walk is only $m + t \log d = m + O(\varepsilon^{-2} \log n)$.

Compared to the error reduction with k-wise independence, this has worse dependence on ε but better (in fact, optimal) dependence on m and n.