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Lecture 10: Spectral Expansion

Lecturer: Wei Zhan Scribe: Abhigyan Dutta

1 Spectral Expansion of Graphs

For undirected d-regular graph H = (V, E) with |V| = n, let A be the adjacency matrix
of H. The spectrum of CllA consists of its eigenvalues: A\; > Ay > -+ > \,,. The spectral
expansion of H is defined as v = 1 — max{|Ay|, |\,|}

Here we list some of the properties of the normalized adjacency matrix éA and its spec-
trum:

1. 2A is symmetric and doubly stochastic.

2. If x € R" is a distribution over V, then éAm is also a distribution over V. This
represents a random step on H: starting from the vertices distributed as x, and take
a random neighboring vertex, the resulting distribution is %le

3. If u = (%,%,...,%)T, i.e. the uniform distribution over V', then éAu = wu. This
can be reduced from the fact that ﬁA is doubly stochastic; intuitively, starting from a
uniformly random vertex and take a random step will still result in a uniformly random

vertex, because of the d-regularity.

4. The spectral radius of éA, which coincides with its operator f5-norm H %AHQ because of
symmetry, is the same as its operator ¢;-norm || %IAHl = 1, since \; = 1 with eigenvector
u. As a result, v € [0, 1].

As a result, we can obtain several different formulae that computes ~:

Theorem 1. We have the following equivalent ways of writing 1 — ~:

|5A<] |5A<]
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zlu HCEHQ 22 %=0 quz
|54z — ] |54z — ]
_ max @Yl a?% = Uil
> xi=1 ||:L‘ —u”2 distribution x ||l‘ — UH2

Proof. The first equality is by the spectral theorem of symmetric matrices, that the eigenspaces
of L—liA are orthogonal to each other. The second equality is by the fact = L u, or (x,u) =0,
if and only if >  ; = 0. The third equality is due to the fact that every z € R" that
> ov,x; = 1 corresponds to 2 = x — u that S z; = 0. The final equality is because the
set of (x — u) where z is a distribution linearly spans the subspace """  x; = 0. O
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The last expression, that v = 1 — max o ~———2 over distributions x, intuitively suggests

how fast you get close to the uniform distrlbutlon u starting from an arbitrary distribution z
over the vertices and taking one random step in the graph, relative to the distance ||z — ul],.

1.1 Examples

Ezample 1 (Complete graph with self loops). We have A = J, the matrix with all 1’s. Here
J is rank-1, so v = 1 — max{| s, |\,|} = 1. Intuitively, taking one step in A will result in
equal probability of landing on any vertex, irrespective of where we start.

Ezample 2 (Complete graph without self loops). We have A = J — I, with d = n — 1.

Again, it is easy to check that the spectrum of 1A is {1, - 15, —-L- ... ——-1 giving us
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Ezample 3 (Graph is disconnected). Let S be one of the connected components and w.l.o.g
assume it to be associated to the first |S| rows and columns of A. Let

_(1 1 1 0.0 O)T
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then Az = x, implying that v = 0 as Ay = 1.

Ezample 4 (Graph is bipartite). Let H be bipartite over S, 8" and w.l.o.g assume S to be
associated to the first |S| rows and columns of A. Let
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then %Am = —x giving us A, = —1, implying v = 0.

2 Spectral Expansion Implies Vertex Expansion

Recall a graph H is a-vertex expanding if,

IN(S)\ S| = alS], VS CV|S| <

|3

Theorem 2. If a graph H has v spectral expansion then it also has v vertex expansion.

Proof. Given a subset of vertices S C V,[S| < § and assume w.l.o.g these are the first |S|

>
vertices in adjacency matrix A. Let x = (ﬁ, |_~19‘|’ . |S| 0,0, - 0) and u be the uniform

distribution vector. Since (z,u) = 1/n for every distribution z, we have
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2 —ully = v/ (w,x) = 2(z, u) + (u,u) = GRS




Since éAx is supported on N (S S)| } Ax }1 S)| So similarly we have

2:\/<dm %N L

By the formulation of spectral expansion in Theorem 1 we have |3 Az — uH2 < (1=7) ||z — ul],,

and thus
1 < ) 1 1
n=v 7 S| n’

NS ! . .
sl 1—(27—72)(1—% T l-y+37
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Solving |N(5)| gives us

since [S|/n < 1/2 and (1 — 7+ 37)(1 +7) = 1 — 3(+* —+®) < 1. Therefore |[N(S)\ S| >
IN(S)| =[S = ~15]. -
3 Spectral Expansion Implies Edge Expansion

Recall a d-regular graph H is a-edge expanding if,

e(S,S) > ad|S|, VScV,|S|<—=, S=V\S

|3

where e(S,5") = #{(i,j) e E|ie€ S,j € S'}.
Theorem 3. If a graph H has 7y spectral expansion then it also has /2 edge expansion.

Proof. Given a subset of vertices S C V,|S| < & and assume w.l.o.g these are the first |S]
T
vertices of the adjacency matrix A. Let x = <|—é|, ﬁ, U TE S| 0,0, - 0) . We can represent

the number edges e(.9, S") with the adjacency matrix as
e(S,8") =1LAly (1)

where 1g and 1 are the indicator vectors of sets S and S’ respectively. Notice that 1g =



|S|x, while 1g = nu — |S|z. Hence we can write,

e(S,S) = (|S]|2)" A (nu — |S|z)
= nd|S|zTu — |S|*2T Az
= d|S| — |S|*xT Ax
=d|S| =[S (x — w)TA(x — u) — |S|* (uT Az + 2T Au — uT Au)

= d|S] ~ SP(z — w)Alr —u) — 2|SP
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Here we used several times the fact that 2Au = w and (z,u) = . The inequalities are
because of Cauchy-Schwarz, and the formulation of spectral expansion in Theorem 1. Finally,
because |S| < n/2, we conclude that e(S,S) > 1~d|S|. O

4 Expander Mixing Lemma

Recall a d-regular graph H = (V, E') on n vertices is e-mxing if,

e(S,8) 18]S

dn n?

<g VS, S CV

Theorem 4 (Expander mixing lemma). If a graph H has (1 — \) spectral expansion then it
1S A-mizing.

Proof. Given two subset of vertices S, S’ C V and assume w.l.o.g S consists of the first |S]

vertices while S’ consists of the last |S'| vertices. Let x = <A 4o 0,0, ,O) and

Rk
.
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From earlier Equation 1 we have e(S, S") = |S||S'|2T Ay. We also have

e Ay = (z —u)TA(y —u) + uT Ay + 2T Au — uTAu = (z — u)TA(y —u) + d
n



T

where the second equality follows by noting that éxTAu =z'u= % Using the above we get,
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Here the third to last inequality follows from Cauchy-Schwarz and Theorem 1. O
Often when we use Theorem 4 we use the bound (1 — ) % . "_T‘Sl . ‘%' . %S/‘ directly,

which is dubbed the strongest form of the expander mixing lemma. Some intermediate
bounds that are easy to use include (1 — 7)1/ |nﬂ . %; and when S = S or §' = S we get
(1—y)2 B

n n

5 Expander Random Walks

One of the most prominent uses of expander graphs is the random walks. A t-step random
walk on a graph H = (V, E) is defined as vy ~ U(V),v; ~ U(N(vg)), ..., v, ~ U(N(ve_1)),
where U(N(v)) denotes uniform random sampling from the neighbors of vertex v.

When H is a complete graph with self-loops, the sequence (vy, vy, ..., v,) simply consists
of ¢ uniform and independent elements from V. Using expander graphs, we get a sequence
of vertices that shares a lot of good properties with the independently uniform sequence, but
with significantly less randomness when the degree of the graph is small.

Theorem 5 (Hitting property of expander random walks). Suppose that H has v spectral
expansion, and (vy,...,v,) is a random walk on H. For every S CV we have

Prlv, & S,Vi € [t] < (1 - MY

n

Proof. Since (vy, ...,v,) form a Markov chain, we have

Priv, & S,Vi € [t] = HPr [v; & S|vy, -+ vy € 9]

. L Pr o Sv,_, €8
= HPr [v; & Slvioy & S = H : [Plri)-71 ;ST ]

i=1




Each v; itself is uniformly distributed, and thus Pr[v;_; ¢ S] = |S|/n. On the other hand,
(v;_1,v;) is a uniformly random edge in H, and thus

Prv, & S,v;_, & 5] = (5,5) < (';ﬂ) + (1 —7)|S||2§|

nd n

by the expander mixing lemma. Plug them in and we have

Pr[vigzs,w'e[t]]gf[(@ﬂl—y)@):(1—M)t. 0

n n

Notice that the above probability is exponentially small in ¢, similar to the case with
independent sequence vy, ..., v, (for which the probability of not hitting S is (1 — |S|/n)").

The hitting property can be used for derandomizing algorithms with one-sided error. For
two-sided error, we can use the following version of Chernoff bound on expander random
walks.

Theorem 6 (Expander Chernoff bound). Suppose that H has ~ spectral expansion, and
(v1,...,v;) s a random walk on H. For every f :V — [0,1],

Pr
V1,0,

The proof of Theorem 6 can be found in:

=3 ) - B, [)

v~V

e David Gillman. A Chernoff Bound for Random Walks on Expander Graphs.
e Alex Healy. Randomness-Efficient Sampling within NC'.

As an application of the expander Chernoff bound, think of the error reduction task we
examined in Lecture 3. We have an algorithm A(x, r) with m-bit randomness 7 that is correct
with probability 2 +&. To reduce the error down to 1/poly(n), we can drawn 7y, ..., 7; using
a random walk on the expander H with 2 vertices, constant degree d and constant spectral
expansion 7. Theorem 6 implies that ¢ = O(s *logn) steps suffices, and the number of
random bits used to perform the random walk is only m + tlogd = m + O(s *logn).

Compared to the error reduction with k-wise independence, this has worse dependence
on ¢ but better (in fact, optimal) dependence on m and n.
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