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Lecture 10: Spectral Expansion

Lecturer: Wei Zhan Scribe: Abhigyan Dutta

1 Spectral Expansion of Graphs

For undirected d-regular graph H = (V,E) with |V | = n, let A be the adjacency matrix
of H. The spectrum of 1

d
A consists of its eigenvalues: λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral

expansion of H is defined as γ = 1−max{|λ2|, |λn|}.
Here we list some of the properties of the normalized adjacency matrix 1

d
A and its spec-

trum:

1. 1
d
A is symmetric and doubly stochastic.

2. If x ∈ Rn is a distribution over V , then 1
d
Ax is also a distribution over V . This

represents a random step on H: starting from the vertices distributed as x, and take
a random neighboring vertex, the resulting distribution is 1

d
Ax

3. If u =
(
1
n
, 1
n
, . . . , 1

n

)ᵀ
, i.e. the uniform distribution over V , then 1

d
Au = u. This

can be reduced from the fact that 1
d
A is doubly stochastic; intuitively, starting from a

uniformly random vertex and take a random step will still result in a uniformly random
vertex, because of the d-regularity.

4. The spectral radius of 1
d
A, which coincides with its operator `2-norm

∥∥1
d
A
∥∥
2

because of

symmetry, is the same as its operator `1-norm
∥∥1
d
A
∥∥
1

= 1, since λ1 = 1 with eigenvector
u. As a result, γ ∈ [0, 1].

As a result, we can obtain several different formulae that computes γ:

Theorem 1. We have the following equivalent ways of writing 1− γ:

1− γ = max
x⊥u

∥∥1
d
Ax
∥∥
2

‖x‖2
= max∑

i xi=0

∥∥1
d
Ax
∥∥
2

‖x‖2

= max∑
i xi=1

∥∥1
d
Ax− u

∥∥
2

‖x− u‖2
= max

distribution x

∥∥1
d
Ax− u

∥∥
2

‖x− u‖2
Proof. The first equality is by the spectral theorem of symmetric matrices, that the eigenspaces
of 1

d
A are orthogonal to each other. The second equality is by the fact x ⊥ u, or 〈x, u〉 = 0,

if and only if
∑n

i=1 xi = 0. The third equality is due to the fact that every x ∈ Rn that∑n
i=1 xi = 1 corresponds to x′ = x − u that

∑n
i=1 x

′
i = 0. The final equality is because the

set of (x− u) where x is a distribution linearly spans the subspace
∑n

i=1 xi = 0.
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The last expression, that γ = 1−max
‖ 1

d
Ax−u‖

2

‖x−u‖2
over distributions x, intuitively suggests

how fast you get close to the uniform distribution u starting from an arbitrary distribution x
over the vertices and taking one random step in the graph, relative to the distance ‖x− u‖2.

1.1 Examples

Example 1 (Complete graph with self loops). We have A = J , the matrix with all 1’s. Here
J is rank-1, so γ = 1 −max{|λ2|, |λn|} = 1. Intuitively, taking one step in A will result in
equal probability of landing on any vertex, irrespective of where we start.

Example 2 (Complete graph without self loops). We have A = J − I, with d = n − 1.
Again, it is easy to check that the spectrum of 1

d
A is

{
1,− 1

n−1 ,−
1

n−1 , . . . ,−
1

n−1

}
giving us

γ = n−2
n−1 ≈ 1.

Example 3 (Graph is disconnected). Let S be one of the connected components and w.l.o.g
assume it to be associated to the first |S| rows and columns of A. Let

x =

(
1

|S|
,

1

|S|
, . . . ,

1

|S|
, 0, 0, . . . , 0

)ᵀ

then 1
d
Ax = x, implying that γ = 0 as λ2 = 1.

Example 4 (Graph is bipartite). Let H be bipartite over S, S ′ and w.l.o.g assume S to be
associated to the first |S| rows and columns of A. Let

x =

(
1

|S|
,

1

|S|
, · · · , 1

|S|
,
−1

|S ′|
,
−1

|S ′|
, · · · , −1

|S ′|

)ᵀ

then 1
d
Ax = −x giving us λn = −1, implying γ = 0.

2 Spectral Expansion Implies Vertex Expansion

Recall a graph H is α-vertex expanding if,

|N(S) \ S| ≥ α|S|, ∀S ⊂ V, |S| ≤ n

2

Theorem 2. If a graph H has γ spectral expansion then it also has γ vertex expansion.

Proof. Given a subset of vertices S ⊂ V, |S| ≤ n
2

and assume w.l.o.g these are the first |S|
vertices in adjacency matrix A. Let x =

(
1
|S| ,

1
|S| , · · · ,

1
|S| , 0, 0, · · · , 0

)ᵀ
and u be the uniform

distribution vector. Since 〈x, u〉 = 1/n for every distribution x, we have

‖x− u‖2 =
√
〈x, x〉 − 2〈x, u〉+ 〈u, u〉 =

√
1

|S|
− 1

n
.
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Since 1
d
Ax is supported on N(S),

∥∥1
d
Ax
∥∥2
2
≥ 1
|N(S)|

∣∣1
d
Ax
∣∣2
1

= 1
|N(S)| . So similarly we have

∥∥∥∥1

d
Ax− u

∥∥∥∥
2

=

√〈
1

d
Ax,

1

d
Ax

〉
− 1

n
≥

√
1

|N(S)|
− 1

n
.

By the formulation of spectral expansion in Theorem 1 we have
∥∥1
d
Ax− u

∥∥
2
≤ (1−γ) ‖x− u‖2,

and thus √
1

|N(S)|
− 1

n
≤ (1− γ)

√
1

|S|
− 1

n
.

Solving |N(S)| gives us

|N(S)|
|S|

≥ 1

1− (2γ − γ2)
(

1− |S|
n

) ≥ 1

1− γ + 1
2
γ2
≥ 1 + γ,

since |S|/n ≤ 1/2 and (1 − γ + 1
2
γ2)(1 + γ) = 1 − 1

2
(γ2 − γ3) ≤ 1. Therefore |N(S) \ S| ≥

|N(S)| − |S| ≥ γ|S|.

3 Spectral Expansion Implies Edge Expansion

Recall a d-regular graph H is α-edge expanding if,

e(S, S) ≥ αd|S|, ∀S ⊂ V, |S| ≤ n

2
, S = V \ S

where e(S, S ′) = #{(i, j) ∈ E | i ∈ S, j ∈ S ′}.

Theorem 3. If a graph H has γ spectral expansion then it also has γ/2 edge expansion.

Proof. Given a subset of vertices S ⊂ V, |S| ≤ n
2

and assume w.l.o.g these are the first |S|
vertices of the adjacency matrix A. Let x =

(
1
|S| ,

1
|S| , · · · ,

1
|S| , 0, 0, · · · , 0

)ᵀ
. We can represent

the number edges e(S, S ′) with the adjacency matrix as

e(S, S ′) = 1
ᵀ
SA1S′ (1)

where 1S and 1S
′ are the indicator vectors of sets S and S ′ respectively. Notice that 1S =
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|S|x, while 1S = nu− |S|x. Hence we can write,

e(S, S) = (|S|x)ᵀA (nu− |S|x)

= nd|S|xᵀu− |S|2xᵀAx
= d|S| − |S|2xᵀAx
= d|S| − |S|2(x− u)ᵀA(x− u)− |S|2 (uᵀAx+ xᵀAu− uᵀAu)

= d|S| − |S|2(x− u)ᵀA(x− u)− d

n
|S|2

≥ d|S| − d|S|2 ‖x− u‖2

∥∥∥∥1

d
A(x− u)

∥∥∥∥
2

− d

n
|S|2

≥ d|S| − (1− γ)d|S|2 ‖x− u‖22 −
d

n
|S|2

= d|S| − (1− γ)d|S|2
(

1

|S|
− 1

n

)
− d

n
|S|2

= γ

(
d|S| − d

n
|S|2

)
.

Here we used several times the fact that 1
d
Au = u and 〈x, u〉 = 1

n
. The inequalities are

because of Cauchy-Schwarz, and the formulation of spectral expansion in Theorem 1. Finally,
because |S| ≤ n/2, we conclude that e(S, S) ≥ 1

2
γd|S|.

4 Expander Mixing Lemma

Recall a d-regular graph H = (V,E) on n vertices is ε-mxing if,∣∣∣∣e(S, S ′)dn
− |S||S

′|
n2

∣∣∣∣ ≤ ε, ∀S, S ′ ⊆ V

Theorem 4 (Expander mixing lemma). If a graph H has (1− λ) spectral expansion then it
is λ-mixing.

Proof. Given two subset of vertices S, S ′ ⊆ V and assume w.l.o.g S consists of the first |S|
vertices while S ′ consists of the last |S ′| vertices. Let x =

(
1
|S| ,

1
|S| , · · · ,

1
|S| , 0, 0, · · · , 0

)ᵀ
and

y =
(

0, 0, · · · , 1

|S′| ,
1

|S′| , · · · ,
1

|S′|

)ᵀ
.

From earlier Equation 1 we have e(S, S ′) = |S||S ′|xᵀAy. We also have

xTAy = (x− u)ᵀA(y − u) + uᵀAy + xᵀAu− uᵀAu = (x− u)ᵀA(y − u) +
d

n
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where the second equality follows by noting that 1
d
xᵀAu = xᵀu = 1

n
. Using the above we get,∣∣∣∣e(S, S ′)dn

− |S||S
′|

n2

∣∣∣∣ =
|S||S ′|
nd

|(x− u)ᵀA(y − u)|

≤ |S||S
′|

n
· ‖x− u‖2 · (1− γ) ‖y − u‖2

= (1− γ)
|S||S ′|
n

√
1

|S|
− 1

n

√
1

|S ′|
− 1

n

= (1− γ)

√
|S|
n
· n− |S|

n
· |S

′|
n
· n− |S

′|
n

≤ (1− γ).

Here the third to last inequality follows from Cauchy-Schwarz and Theorem 1.

Often when we use Theorem 4 we use the bound (1− γ)

√
|S|
n
· n−|S|

n
· |S

′|
n
· n−|S

′|
n

directly,
which is dubbed the strongest form of the expander mixing lemma. Some intermediate

bounds that are easy to use include (1 − γ)

√
|S|
n
· |S

′|
n

; and when S ′ = S or S ′ = S we get

(1− γ) |S|
n
· |S|
n

.

5 Expander Random Walks

One of the most prominent uses of expander graphs is the random walks. A t-step random
walk on a graph H = (V,E) is defined as v0 ∼ U(V ), v1 ∼ U(N(v0)), . . . , vt ∼ U(N(vt−1)),
where U(N(v)) denotes uniform random sampling from the neighbors of vertex v.

When H is a complete graph with self-loops, the sequence (v0, v1, . . . , vt) simply consists
of t uniform and independent elements from V . Using expander graphs, we get a sequence
of vertices that shares a lot of good properties with the independently uniform sequence, but
with significantly less randomness when the degree of the graph is small.

Theorem 5 (Hitting property of expander random walks). Suppose that H has γ spectral
expansion, and (v1, . . . , vt) is a random walk on H. For every S ⊆ V we have

Pr [vi 6∈ S,∀i ∈ [t]] ≤
(

1− γ|S|
n

)t
Proof. Since (v1, . . . , vt) form a Markov chain, we have

Pr [vi 6∈ S,∀i ∈ [t]] =
t∏
i=1

Pr [vi 6∈ S|v1, · · · , vi−1 6∈ S]

=
t∏
i=1

Pr [vi 6∈ S|vi−1 6∈ S] =
t∏
i=1

Pr [vi 6∈ S, vi−1 6∈ S]

Pr [vi−1 6∈ S]
.
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Each vi itself is uniformly distributed, and thus Pr [vi−1 6∈ S] = |S|/n. On the other hand,
(vi−1, vi) is a uniformly random edge in H, and thus

Pr [vi 6∈ S, vi−1 6∈ S] =
e(S, S)

nd
≤
(
|S|
n

)2

+ (1− γ)
|S||S|
n2

by the expander mixing lemma. Plug them in and we have

Pr [vi 6∈ S,∀i ∈ [t]] ≤
t∏
i=1

(
|S|
n

+ (1− γ)
|S|
n

)
=

(
1− γ|S|

n

)t
.

Notice that the above probability is exponentially small in t, similar to the case with
independent sequence v1, . . . , vn (for which the probability of not hitting S is (1− |S|/n)t).

The hitting property can be used for derandomizing algorithms with one-sided error. For
two-sided error, we can use the following version of Chernoff bound on expander random
walks.

Theorem 6 (Expander Chernoff bound). Suppose that H has γ spectral expansion, and
(v1, . . . , vt) is a random walk on H. For every f : V → [0, 1],

Pr
v1,··· ,vt

[∣∣∣∣∣1t
t∑
i=1

f(vi)− E
v∼V

[f(v)]

∣∣∣∣∣ ≥ ε

]
≤ 2e−

1
4
γtε

2

The proof of Theorem 6 can be found in:

• David Gillman. A Chernoff Bound for Random Walks on Expander Graphs.

• Alex Healy. Randomness-Efficient Sampling within NC1.

As an application of the expander Chernoff bound, think of the error reduction task we
examined in Lecture 3. We have an algorithm A(x, r) with m-bit randomness r that is correct
with probability 1

2
+ε. To reduce the error down to 1/poly(n), we can drawn r1, . . . , rt using

a random walk on the expander H with 2m vertices, constant degree d and constant spectral
expansion γ. Theorem 6 implies that t = O(ε−2 log n) steps suffices, and the number of
random bits used to perform the random walk is only m+ t log d = m+O(ε−2 log n).

Compared to the error reduction with k-wise independence, this has worse dependence
on ε but better (in fact, optimal) dependence on m and n.
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