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Lecture 12: Randomness Extractor

Lecturer: Wei Zhan Scribe: Xiuyu Ye

1 Randomness Extractor

Recall the definition of e-recycling.

Definition 1 (s-recycling). Fiz d € N*. A function H: {0,1}" x [d] — {0,1}" is e-recycling
if for every w € N* and every function F: {0, 1}13 — [w],

dpy ((F(s), s/) , (F(s), H(s,r))) < we,
where 5,5 ~ {0,1}" and r ~ [d].

In the definition of e-recycling, the function H recycles the randomness seed s to generate
a new seed H (s,r) that looks independently random, even when some information about s
is known.

We have shown how to construct e-recycling functions from e-mixing and thereby ex-
panders are naturally introduced. Here we take another look from a different perspective.
We can rewrite

vy ((F(). ) (F(s). H(s.) = 3 PrlF(s) = o] - dyy (5. H(s. 1) F(5) = ).

vE[w]
where (H(s,r)|F(s) = v) is the distribution of H(s,r) conditioned on F(s) = v. Given
F(s) = v € [w], we know at most log(w) bits of information about the seed s € {0,1}",
the leftover entropy of s is at least ¢ — log(w). Therefore s is now an imperfect source of
randomness, and we want to extract randomness that is close to perfect using the function
H, with the help of a tiny amount of extra randomness r.

1.1 Definition of Extractors

To extract perfect randomness from an imperfect source, we introduce the following notion
of randomness extractor.

Definition 2 (Attempted definition of extractor). A function Ext: {0,1}" x {0,1}% —
{0,1}™ is a (k, e)-extractor if for every distribution X over {0,1}" with entropy H(X) > k,
we have

dry (Ext (X,r),U,,) <e

where r is chosen randomly from {0,1}" and U, is the uniform distribution over {0,1}™.
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The Shannon entropy of a distribution X is defined as

H(X) := =) Pr[X =z]-log(Pr[X =z]).

Ezxample. Consider the following distribution over {0, 1}":

¥ 00...0 with probability 0.99
U, with probability 0.01

The Shannon entropy of X satisfy that H(X) > Q(n), but it is generally impossible to
extract perfect randomness from X, since the output distribution of H(X,r) will be heavily
supported on the set

{H(oo. L0,7) | e {0,1}d}.

Therefore for any € < 0.49 it is impossible to have an (k, ¢)-extractor with m > d. In other
words, the randomness of such “extractor” would come entirely from the extra randomness
r, and hence is trivial and useless.

The reason behind the above example is that when using Shannon entropy as measure-
ment, a small fraction of random instances contribute significantly to the total entropy. To
avoid this, we use a new notion of entropy, min-entropy.

Definition 3 (Min-entropy). For a distribution X, the min-entropy of X is defined as

H(X)=—log (maXPr[X = x]) :

T

Definition 4 ((k,e)-Extractor). A function Ext: {0,1}" x {0,1}* — {0,1}" is a (k,)-
extractor if for every distribution X over {0,1}" with min-entropy H. (X) > k, we have

dTV (EXt (Xa T) ) Um) S g,
where 1 is chosen randomly from {0, 1}d and U, is the uniform distribution over {0,1}™.

Using min-entropy in the definition of extractors has several benefits. First, min-entropy
is the smallest entropy measure among the Rényi p-entropy family, defined as

H,(X) = —log <Z Pr[X = gj}p) = |

which has a monotonic trend
H (X)<...< Hp(X) <...<H|(X)=H(X) < Hy(X).

Therefore a lower bound on the min-entropy H.,(X) > k is the strongest assumption on the
distribution, as it implies that all Rényi p-entropies are at least k.
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The second benefit is that min-entropy has good geometric properties. Note that the
condition that H_ (X) > k is equivalent to that Pr[X = z] < 2% for all z, which is a linear
constrain. Thus all distributions satisfying H.(X) > k form a convex polytope, in contrast
to the case of Shannon entropy where the set of distributions with H(X) > k is a convex
set with smooth surface that is hard to describe. Even better, we can actually identify the
vertices of the polytope.

Definition 5 (flat k-source). We call a distribution X with min-entropy Ho(X) > k a
k-source. A flat k-source is a uniform distribution over a support of size 2".

Theorem 1. For a distribution X, the min-entropy H..(X) > k if and only if X is a convex
combination of flat k-source.

Proof. Consider the linear program over P, = Pr[X = x| with an arbitrary objective, where
the feasible solutions corresponds to the distributions X with H, (X) > k:

maximize E c, P,

s.t. prf =1,
0< P, <27% v

The maximum is clearly taken when P, = 27" for the largest 2" coefficients c,. m

1.2 Extractor implies recycling

Back to our initial intuition, we show below that randommness extractors indeed implies
recycling, and we can prove a more general statement even when the output length m is not
the same as the input length n:

Theorem 2. If a function H: {0,1}" x{0,1}% = {0,1}™ is a (k, €)-extractor, then for every
w € N* and every function F: {0,1}" — [w],

drv ((F(s), s') , (F(s), H(s, r))) <e4w- 2"
where s ~ {0,1}", s ~ {0,1}™ and r ~ {0,1}*.

Proof. Consider an arbitrary function F': {0,1}" — [w]. If Pr[F(s) = v] > 27" where s is
chosen randomly from {0, 1}", then for every = € {0,1}",

0 if F(x)#wv

PI’[S = I|F<S) = U] = { Pr{s=z] .
W lf F(IL’) = .

Therefore, Pr[s = z|F(s) =v] < 27" and the min-entropy of distribution (s|F(s) = v)
satisfies H (s|F(s) =v) > k.



Now for s ~ {0,1}", ' ~ {0,1}" and r ~ {0, 1}", we have
dTV ((F(S>7 S/) ) (F(S)7 H(87 T)))
= Z Pr[F(s) =v]-dpy (S/,H(S,T)|F<S) = v)

vE[w]
= Z Pr[F(s) = v] - dpy (s, H(s,7)|F(s) =)

vew]: Pr{F(s)=v]>2"""

+ Z Pr[F(s) = v] - dpy (s', H(s,7)|F(s) =)
vew]: Pi{F(s)=v]<2*""

< > Pr[F(s) =v]-dpy (s, H(s,7)|F(s) =v) +w-2""  (dpy < 1)

ve[w]: Pr{F(s)=v]>2"""
<ec4w- 28" (Definition 4)

O

2 Construction of Extractors

2.1 Random Construction

Let Ext: {0,1}" x {0,1}* = {0,1}™ be a random function, and we will show that Ext is a
randomness extractor with high probability, for some properly chosen parameters.

For every distinguisher A: {0,1}" — {0,1} and every flat k-source X, the random
variables A(Ext(z,r)) indexed by = € supp X and r € {0,1}¢ are independent random

variables with values in {0, 1}, and there are exactly 2" - 2% of them. Therefore by Chernoff
bound,

Pr E [A(Ext(z,7))] — E [A(u)]| > 5] < g~ 32"
Ext | 1z X,r~f0,13 unl,,
Taking union bound over all distinguishers and all flat k-sources, we get
Priy [Ext is not a (k, £)-extractor] §22m . <;Z) . 26_%‘2“%2
n 2"
<2 (22’; 6) 20T (Stirling)

1
:exp(1n2-(2m+1+(n—k)-2’“)+2’“—5-2’”‘1-52).

If we let the above probability to be smaller than 1, we can conclude that there exists a
(k,e)-extractor Ext: {0,1}" x {0,1}* — {0,1}™ with the following output and seed length

m=k+d—2log(l/e) —O(1)
d=log(n —k)+2log(1/e)+ O(1)
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and these are the parameters that we will be shooting for, when we construct explicit ex-
tractors later on.

2.2 Construction from Hash Functions
We consider the following construction using pairwise independent hash function.

Theorem 3 (Leftover hash lemma). If H = {h: {0,1}" — {0,1}™} is a pairwise uniform
hash function family, then Ext: {0,1}" x H — {0, 1} x H where Ext (x,h) = (h(z),h) is

a (k,e)-extractor, where e = 2mF/271,

Proof. Let X be a flat k-source. For x ~ X and h ~ H we have

drvy (Ext(x, h), (U, h))
= hr]}%-[ [dTV(h(I)7 Um)]

1 1
o |9 Zm ng([h(x)Zy]—Q—m
ye{0,1}"
2 B || Peih) =y -
D) ot ||y UV = YL gm
ye{0,1}™

] 1N\2]2 )
< —_ g —_ — ’q ] 1 et
<3 E h@NEH < Pr [h(z) = y] ) ] (Jenssen’s inequality on f(x) = x7)

z~X om
ye{0,1}™ |
1 i 2 1 72
yE{O,l} -
1 12 1 1]®
< 9 - — _ s — JR—
-2 m PH |2 ];;I;/X[xl T2, h(xl) y] + 22m gm "~ om + 2m:|
yE{U,l}
(Pry, opx[h(z1) = h(wy) = ylo, # 2o = 22% with pairwise independence)

ye(0a)™ 1,9~ X T1~X
1 T 1 .
§§ ?2—m (| supp X| = 2%)
ye{0,1}™
1
_ 1 smme O
2

If we let d = log |H| to be the seed length, then the above extractor has output length
m+d =k +d—2log(l/e) + 2, which is optimal compared to the random construction.
However, the seed length d = O(n) is exponentially worse than optimal.
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