CS59200-PRS: Pseudorandomness Oct 8th, 2025
Lecture 13: Nisan-Zuckerman Generator

Lecturer: Wei Zhan Scribe: Xiuyu Ye

1 More Constructions of Extractors

1.1 Extractor from expanders

Recall the stronger form of the expander mixing lemma.

Theorem 1 (Expander Mixing Lemma). If a d-regular graph H = (V, E) with |V| =n has
(1 — \) spectral expansion, then for all S,S" C V,

/
N D
n n

e(5,5) _ IS1|5]
2

dn n

Theorem 2. If H: {0,1}"x{0,1}% — {0,1}", as a 2*-regular graph on 2" vertices, is (1—\)
spectral expanding, then H is also a (k,e)-extractor fore = X - o(n=h)/2

Proof. Let H = (V, E) be the corresponding 2%-regular graph where V = {0,1}".

Given a flat k-source X on {0, 1}", we think of it as the uniform distribution over S C V'
where |S| = 2", And given a distinguisher A: {0,1}" — {0,1}, let the subset S' C V be
S"={v eV | Al) = 1}. This way, A(H(x,r)) = 1 if and only if the edge from z € S
labeled with r € {0,1}" lands in S". Therefore

e(s,8) |5
E A(H(z,r))] — E [A(v)]| = - —
a:NX,rN{O,l}d[(H(z,r))] = E [A()]‘ 527 2
<A % : % (Theorem 1)
_). g(n=k)/2 0

If we take extractor to be a power of Ramanujan graph, we have A\ = O(Z_d/ 2). Hence the
output length m = n, which is too good, at the cost of the seed length d = n—k+2log(1/¢)
which is exponentially worse than optimal.

1.2 Extractor from expander random walks

Let H: {0,1}" x {0,1}% — {0,1}" be a 2%regular graph H = (V, E). Instead of using
the function directly as a extractor, we construct an extractor with random walks on H as
follows.

Let (vg,71,-..,7) be a t-step random walk on H starting from a random vertex vy ~ V,
where 7, € {0,1}%. In each step of the random walk, we let v; = H(v;_;,r;). Consider an
extractor Ext: {0, 1}"7% x [t] — {0,1}" that outputs the i-th step vertex in the random
walk,

Ext((vg,r1,.--,7¢),1) = ;.

Theorem 3. If H is y-spectral expanding for some constant d and -y, then Ext is a (k =
d(n + dt),e)-extractor for some constant 6 < 1 and € > 0.

Proof. For distinguisher A: {0,1}" — {0, 1}, by expander Chernoff bound,

IR AL)

v~V
=1

That means the number of such random walks (where |1 Y A(v;) — E[A(v)]| > €/2) is at
2n+dt'

—#vtsz
>e/2] <2-e 167,

_ 1 t82
most 2e” 167 .
instead, then

If the random walk (vg,7q,...,7,) is sampled from a k-source X

t

L3 Aw) — E [AW)]

Pr [
(UO sT1yeees Tt)NX t .
=1

Therefore we can bound the total variation distance as

_(’Uoﬁ ~~~~~ Tt [

< e + 2€—T6’Yt€ . 27’L+dt . 2—k
-2

> 5/2] < Qe gntdt ook

E [A(v)] = E [A@v)]| <

(o)~ Xsinlt] eV

E [A(v)]

’UNV

When k = §(n + dt) for some § close enough to 1, it suffices to have t = O(n/e®) to bound
it by /24 27", which is at most € as long as n > log(1/e) + 1. O

The above extractor has output length m = n, but the actual input length is n’ = n + dt.
Since t = O(n/e), for constant € we have m = O(n’), which is asymptotically optimal. And
the amount of extra randomness is logt = logn + 2log(1/¢) + O(1), which is also close to
optimal.

The drawback is that the input source has to be good: the min-entropy must be at least
dn’ for some & close to 1. The following extractor, which we are not going to describe in
details, allows freer choices of the parameters while achieving the same asymptotics:

Theorem 4 (Guruswami-Umans-Vadhan). For every constant § < 1 and e > 0, there exists
an explicit (k,e)-extractor Ext : {0,1}" x {0,1}* = {0,1}™ with output length m = 6k and
seed length d = O(logn + log(1/¢)).

2 Nisan-Zuckerman Generator

Back to the initial intuition that extractors are another abstraction of the notion of recycling
random bits, we now think of how to construct PRGs from extractors. An immediate idea is
to do something similar to the INW generator: We recursively construct, from a given PRG

G, :{0,1}" — {0,1}", a new PRG
G'(5,7) = (G,(5), G (Ext(s, 7))

using the extractor Ext : {0,1}" x {0,1}* — {0,1}™. However, for good extractors with
small seed length, the output length m will be much smaller than the input length n. As
a result, the output length of the PRG will increase by merely an o(1) factor instead of
doubling in each recursion, making the number of recursion steps and thus the amount of
total extra randomness much larger than desired.

The Nisan-Zuckerman PRG takes the other route by sequentially applying the extractor

instead of recursively. The basic Nisan-Zuckerman construction for a PRG G: {0,1}""% —

{0, 1} is
G(s,11,...,1) = (Ext(s,r)), Ext(s,75), ..., Ext(s,r,))

Lemma 5. IfExt: {0,1}" x {0,1}% = {0,1}™ is a (k,)-eatractor, then generator G §-fools
every width-w, length-tm ROBP for 6 =t- (e + w - ok=my.

Proof. Consider the following hybrid. In each step i, define
Gi(s,11, ... 1) = (Ext(s, 1), ..., ExXt(s,r;), Tipqy .-\ xy)

where z;,1,..., 7, are random bits.

Given a width-w, length-tm ROBP B, let F; (s) € [w] be the state of the ROBP at

LT 150 T

the im-th layer, reached by following the partial input (Ext(s,r),...,Ext(s,r;)). Then

|E[B(G))] — E[B(Giy1)]] < dpy ((Fz’,rl ri(3)7EXt(Svri+1))v (Fz',rl ri(s)>$i+1))
< E [dTv ((Fl’,rl ri(3)7EXt(S7ri+1))7 (Fi,rl ri(3)7$i+1))]

where the last inequality follows from the fact that extractor implies recycling. Hence,
IE[B(G)] —E[B(x)]| < t- (e +w-2""). O

Notice that this PRG does not have very good stretch: it maps a seed of length (n + dt)
to an output of length tm. Since m < n + d, it is easy to see that n + dt > v/tm. So
the stretch is polynomial instead of exponential, which is not desirable for typical logspace
derandomization.

However, there is a scenario where the above PRG excels, that is when the length of
the ROBP is small (or equivalently when the width is large). For instance, if the length of
the ROBP is O(log"® w) (instead of poly(w)), we can get a RPG of seed length O(logw)
which is still none trivial. In fact, this is true every ROBP of polylogw length by recursively
applying the above PRG.

2.1 Full Nisan-Zuckerman generator for short and wide ROBPs

Suppose B is a width-w, length-log® w ROBP for some constant ¢. Recall that both Nisan’s
PRG and INW generator has seed length O(log(nw) - logw) which will be O(log® w) in this
scenario.

Let us fix some parameters in Lemma 5 to construct the initial PRG against B. Let
0 > 0 be a small enough constant, and let

1
ly =log®w, m =logw, t =1log" 'w, n=4logw, k=2logw, €= 5575_1.

Instantiate Lemma 5 with the GUV extractor gives d = O(logn + log(1/¢)), and we get a
PRG G: {0,1}"* = {0,1}" that d-fools B with

gl =N + dt
= O(logw + (loglog w + logt) - log” " w)
= O(logw + log® " wloglog w).

We need another good property of the GUV extractor that it can be computed in space
linear in its input size, i.e. O(n+d) space. As a result, the PRG G can also be computed in
O(n+d) = O(log w) space. We now think of the composite function BoG : {0,1}* — {0, 1},
which simulates the behaviour of B since

E [B(G(s)]— E [Bx)]] <9

s~{0,1}1 z~{0,1}0

while Bo G can be computed by a ROBP of length ¢, and width v’ = w2009 = poly(w).
Applying Lemma 5 on B o G with the parameters

l 1
m' =logw', ' = =+ = O(log* *w'loglogw), n' = 4logw’, k¥ =2logw’, ¢ = 5575/*1
m

gives another PRG G: {0,1}*2 — {0,1}" that d-fools B o G with
ly = O(log w + log® ? wlog log w).

By repeating the above process a constant [c| rounds of recursion, we get a series of
PRG G: {0,1}% — {0,1}% that é-fools Bo G oG o...0 GV with

t; = O(logw + log® " wloglog w).

Notice that during the process the parameters m,n and k will always be O(logw), even
though the width becomes polynomially larger in every round of recursion.

Our final generator will be G o G’ o... 0 G, which has seed length ¢, = O(log w) and
can also be computed in space O(logw). It cd-fools B since

E[B(z)] —E[BoGo...0G9(s)]

4

c—1
<3)E[B 0Go...0GV(s)| —E[BoGo...0 G (s, < o

=0

One immediate implication of the Nisan-Zuckerman generator is that, randomized logspace
algorithms that only uses polylog(n) many random bits can be fully derandomized into de-
terministic logspace algorithms.

	More Constructions of Extractors
	Extractor from expanders
	Extractor from expander random walks

	Nisan-Zuckerman Generator
	Full Nisan-Zuckerman generator for short and wide ROBPs

