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1 Mixed States and Density Operators

Last week we introduced quantum states which are unit complex vectors. In many scenarios
we need to work with distributions of quantum states, which are captured by the notion of
mixed states.

Definition 1 (Mixed State). A mized state is a quantum state that represents a statistical
ensemble of different pure states. In other words, the quantum system in pure state |1);) with
probability p;.

The mixed state can be represented as an operator defined below:
P = Z]%W%)@M (1)

The operator is called the density operator.

Definition 2 (Density Operator). The matriz p € CVN s a density operator and can
represent a mixed state if:

e p= pJf (Hermitian)
e p = 0 (semi-positive-definite),
o Tr(p) =1.

Remark 1. If rank(p) = 1, i.e., p = |[¢)(¢)], then p is a pure state.
Ezxample. After measuring |+) in the computational basis, the state collapses to |0) or |1)
with probability % each. Thus, the mixed post-measurement state is given by

1 1 1
- S| = =1.
S10)(0]+ 5 1)1 = 5

Such a state is called mazimally mized state on a single qubit. In general, for n qubits, the

maximally mixed state is:
LA™ 1
=1 = —1Ipm.
2 2

The maximally mixed state can be viewed as the uniform distribution over the basis {|z) |
x € {0,1}"}. In fact, every classical distribution can also be represented by a density
operator which is a diagonal matrix.



Remark 2. Mixed states can be non-uniquely decomposed into mixtures of pure states. For
example, for the single-qubit maximally mixed state, we also have

1 1 1
51 = §’+><+| + 5\—><—|,

or in general,
1 1 1
I = —|b)(b

for every pair of orthogonal states (a|b) = 0.

1.1 Operations on Mixed States

As mixed states are distributions over pure states, the operations we can apply on mixed
states are the same as the ones on pure states. These include unitaries and measurements.

Unitary Operators on Mixed States: Recall that for any pure state |¢), the unitary
U acts on [¢) as:

U ) = Uly)

As a result, the unitary operator U acts on p as:

U:p > pURb)(|UT = UpU™,

Measurement on Mixed States: When we apply the projective measurement {IL;} on
the pure state |1), the probability that the measurement outcome is j is given by (|IL;]¢),
and the state collapses to

1)
VUML)

As a result, if we apply the measurement on the mixed state p, the probability that the
measurement outcome is j is given by

ZPi<¢i’HjWi> = ZpiTr[Hj‘¢i><wiH = Tr[ij]a

and the state collapses to

HiPH;r

Tr([ILp]



Remark 3. If we discard the measurement outcome, the resulting state will again be a mixture
over the collapsed states with different measurement outcomes, and therefore represented by
the mixed state

Z tr[I1 lpH Z 1L, pI

Notice that this is not necessarily the same state as p, which means that even if you just
perform the measurement without reading the outcome, the quantum state will still be
changed.

2 Partial Trace

In classical probability theory, given a joint distribution, the marginal distribution is obtained
by summing over parts of the joint distribution corresponding to the variables being ignored.
In quantum computing, the partial trace plays an analogous role: it produces the reduced
state of a subsystem by tracing out the degrees of freedom of the other. Consider a composite
quantum system consisting of two subsystems—A with n qubits and B with m qubits—so
that the total system contains n 4+ m qubits. How can we describe the reduced state on the
first n qubits?

Definition 3 (Trace and Partial Trace). Let p4p be a mized state on the composite quantum
system of n+ m qubits. The trace of pap is given by

Trlpag] = Z (z|paplT),

ze{0,1}" ™

and the partial trace over the system B is given by

Trplpas] = Z Iy @ (z|) p(In ® |2)),

zc{0,1}™

where Iy is the identity on A with N = 2",
Example. 1f p is a product state, i.e. p = py ® pg, then

Trg [pAB] = pPa-

If p=73",0;p4;® pp,, then

TrB pAB Z Q;PA, zTr PB i Z QiPAG-

Using partial trace, we can show the following two important properties of quantum
systems: That any local operation on a subsystem does not affect the others.
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Figure 1: In the density operator representation, the state p,p can be viewed as a block
matrix of size 2" x 2", where each block is itself a 2" x 2™ matrix corresponding to subsystem
B. The partial trace over B can then be interpreted as taking the trace of each 2™ x 2™
sub-block, as illustrated in the diagram.

Lemma 4. Local unitaries on the subsystem one traces out do not affect the reduced state
of the other subsystem. In other words, if one applies any unitary transformation U to the
subsystem B, the reduced state on A remains unchanged.

Proof. Let us consider the unitary U and apply it to the sub-system B only. Then, the
reduced state on A is given by

Trg [(Iy ® U)pas(ly @ U]
=Y Iy @ (@|U)pap(Iy @ U'lz))

—Z In @ (W) pap(Iy ® |2) <Z UwyUJm>

Y,z

=Y Un @ {yhpasy ®12)) -5,

y)z

= Uy ® WDpany ® 1)) = Trplpas]. -

Lemma 5. Local measurement on the subsystem one traces out do not affect the reduced state
of the other subsystem. In other words, if one measures the subsystem B and measurement
outcome is unknown, the reduced state on A remains unchanged.



Proof. Let {II,} be a set of measurement projectors on the subsystem B. After measuring
B, which is equivalent to measuring the entire system with projectors {I/y ®1II;}, the reduced
state on A becomes

Trp Z(IN @ 1) pa(ly ® II)

—Z Zﬂz el (Iy ® (y)pally © |2))

—Z (In ® (yl)pally @ |2) (any x)
— Z(IN ® (y))pap(In ©|y) = Trplpag)- 0

Lemma 5 could be used to explain that in the deferred measurement principle, we can
ignore the measurement on the ancilla qubits as the operation of measurements does not
affect the actual system that we care about.

Theorem 6 (Purification). Fvery mized state is a partial trace of a pure state.

Proof. Given the mixed state p, let p =Y. p;|1;) (¢;| be the eigen-decomposition. Consider
the pure state V) ap = >, \/Pi|)i) al7) p- Then,

Trg[|¢) (V]
:Z VDD Trp[vi) al7) 5 (¥ 4 (i 5]

=2 VP (ZUN & (al) (93) aliY s (1) (I @ |x>>>

T

:ZP¢|¢1‘><@/}¢| = p- U

3 Haar Measure

Definition 4. The Haar measure on n-qubit quantum states is the unique measure on

{lo) e )l =1}

such that it is invariant under unitaries, i.e., |1) ~ Haar(N) and Ul) are equidistributed
for every unitary U € U(N).

What is the density matrix p for a Haar random state? By definition, we know p must
satisfy p = UpU' for all U € U(N). It follows that p = +Iy. Notice that this is the same

5



density matrix as a uniformly random base state (i.e., 3 ;¢ v +1i)(i|) can also be but a Haar
random state is much more random. In fact, we can show that a Haar random state is almost
always hard to prepare, while a random base state can be easily prepared using one layer of
NOT gates from the initial state |0").

Theorem 7. Given any finite universal gate set, the circuit complexity of preparing an
n-qubit Haar random state (up to 0.1 error in ly-norm) is 2% with high probability.

Proof. First, we note that the number of circuits of size S is at most 90(Slog ") since there

are poly(n) many choices for each gate. On the other hand, the probability that a Haar
random state is £,-close to the state C'|0%") prepared by the circuit C' is

() = €0 < 0
— [HC’TW C’TC’|0®">||2 < 0.1} (Property of the Norm)
|¢)~Haar(N
- ) H () [H ) — O®n o < 0. 1} (Haar Measure is Invariant Under Unitary)
< > 0.9
= WNHW Wo| ]

Here 1)y is the first coordinate of [¢p) € CV, and |ty is concentrated around 1/v/N. A
concentration bound can show that the above probability is at most 9 N ), and thus by a
union bound we have

Pr 3 circuit of size S : —Cl0®Ml, < 0.1] < 205 lem)—QUN)
T L ) — Clo=™)l, < 0.1] <

which is negligible for some S = Q(N/logn) > 24", O
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