CS59200-PRS: Pseudorandomness Aug 27, 2025

Lecture 2: Pairwise and k-wise Independence

Lecturer: Wei Zhan Scribe: Justin Zhang

1 Recap

Last lecture, we introduced the definition of pseudorandomness.

Definition 1 (e-fooling). Let D be a target distribution and S be the source distribution.
We say function G is pseudorandom against a set A = {A : supp(D) — {0,1}} if there
exists € > 0 such that for all A € A,

E [AG(s)] = E JAGM)]| <e

s~S ~y~D -
Then, we say that function G e-fools the adversaries A.

In particular, when the target distribution D is the uniform distribution over {0,1}"
and the source distribution S is the uniform distribution over {0,1}", for ¢ := ¢(n) < n,
we say function G is a pseudorandom generator (PRG) against functions/adversaries A. To
summarize the bounds found on the minimum seed-length found in last lecture:

e when there is one adversary, i.e., |A| = 1, the seed length is ¢ > [log(1/¢)] — 1;

e when the adversary class is all boolean functions, A = {4 : {0,1}" — {0,1}}, the seed
length is necessarily at least the target length, ¢ = n.

e For a generic, unknown set of adversaries A, there exists a random construction with
seed length ¢ = loglog(|.A|) + 2log(1/¢) + O(1) that e-fools every A € A. No explicit
constructions are known.

e If we consider only poly-time adversaries A = P, with € = negl(n), then ¢ = w(logn).

Remark: the random construction bound for generic adversaries can almost be guesses from
the first two bounds. The intuition is that the unknown set of adversaries ‘falls somewhere
between’ one adversary and all adversaries, so a PRG fooling such a set must have seed length
lower bounded by both cases. Hence, the first bound contributes the log(1/¢e) factor, and

under the observation that there are 22 boolean functions, the second bound contributes a
loglog(].A|) < n factor.

2 MAX-CUT

At the end of last lecture, we introduced the random MAX-CUT algorithm that approxi-
mated to 1/2 of the max cut. Essentially, we take a random labeling ¢ : V" — {0,1}. By
(linearity of) expectation, the cut is at least size |E|/2 > MAX-CUT/2 :

E[|C|] = Z Ellayze)) = |E]/2

(i,9)EF

The problem is that there are 2" possible cuts, so we want a pseudorandom labeling with seed
length O(logn) fooling the algorithm A(G = (V, E),r) defined as the function computing
the fraction of the cut i.e.,

1
A(G,r) = E D Ly

(i,5)€E

which we want to fool with some error €. In particular, for e = 1/ n?, since the number of

edges in the cut is an integer and there are at most (g) edges, this would imply that by

going over the all 9OUlogn) poly(n) possibilities of the pseudorandom labeling, we definitely
would found one cut that has size at least |E|/2.

We can interpret the family of adversaries as a single fixed adversary parameterized for a
particular graph G, and we can immediately use the single-adversary bound. However, recall
that the function was constructed by knowing the truth-table of A (here the value table of
A since A is real-valued), and it is not efficiently computable. If instead, we interpret the
family of adversaries as an adversary per all graphs G, we can similarly use the prior bound

logn

with |A| = 2(2). However, we will run into a similar problem of efficient explicit computation
as the function was randomly constructed.

2.1 Pairwise Independence Gives An Explicit Solution

The crucial intuition is that the function computing the cut essentially only checks edge
relations, so the randomness we use only needs to be ‘local’ to the edges. Specifically, we
reduce the randomness we use by relaxing the use of independently random bits to pairwise
independent random bits.

Definition 2 (Pairwise Independence/Uniform). Random variables X, ..., X,, are pairwise
independent if each distinct pair X; and X; (i # j € [n]), X; and X; are independent.
Furthermore, if each X; is a uniformly random variable, then we say X, ..., X, are pairwise
uniform.

For intuition, we see how pairwise independence helps reduce randomness in a small
example graph.

b C

Figure 1: The complete graph on 3 vertices. A random labeling produces 3 random labels
a,b,c € {0,1}. We can reduce the amount of randomness used to 2 with the labels a, b, a ® b,
whose corresponding random variables are pairwise independent.

Ezample (MAX-CUT on 3 Vertices). Consider the complete graph on 3 vertices pictured in
Figure 1. By the random labeling a, b, c € {0, 1}, the expected number of cut edges is

EIC =) Bl

(i,J)eE
= Prla # b] 4+ Pr[b # ¢| 4+ Pr[c # a]
=3x(1/2).
If instead, we used only drew two bits of randomness a,b and used the labeling a,b,a ® b,

observe that the expected value is still the same! This is because a,b,a @ b is pairwise
independent, so Pr[a # a ® b] = Pr[b # a ® b] = 1/2.

The same idea works for general graphs G, so we turn our attention to constructing
pairwise uniform random variables.

3 Constructing Pairwise Uniform Random Variables

3.1 Pairwise Uniform Bits

To construct n pairwise uniform bits, we use the following procedure: on a random seed
s € {0,1}°8" we think of s as a vector in the vector space Fy2". We also identify the
indices i € [n] = {0,1,...,n — 1} with the vectors in Fy®" by binary expansion. Now we
define the pairwise uniform bits be

X;(s) := (s,4) mod 2

for all i # 0, where (-, -) is the natural inner product. An interpretation of X;(s) is that we
calculate the parity of s at the indices indicated by the binary representation of i.

Claim 1. X,(s),...,X,_1(s) are pairwise uniform.

Proof. By construction, each of X;(s),...,X,_1(s) is uniform over F,. We will show that for

any i # j, Pr[X;(s) = X;(s)] = 1/2, and apply uniformity to imply pairwise independence.

PriX;(s) = X;(s)] = Prl(s, i) = (s, J)]
= Pr[(s,i — j) = 0] (bilinearity)
—1/2.

This, along with Pr[X;(s) = 1] = Pr[X;(s) = 1] = 1/2, is enough to solve the joint distribu-
tion of X;(s) and X;(s), and the unique solution is Pr[X;(s) = b;, X;(s) = b;] = 1/4. That
means X;(s) and X;(s) are also independent. O

3.2 Pairwise Uniform Hash Functions

Now, suppose we want pairwise uniform random variables over a larger set, such as bit
strings X1,..., X, € {0,1}. We can further think about pairwise uniform hash functions
(parameterized by the seed s € {0,1}) hy : {0,1}" — {0,1}™, where for all = # 2/,
hy(x), hy(x") are independent. Note that this is equivalent to a 2" sized set of m-long bit
strings that are pairwise independent.

A trivial construction uses seed length mn, when we just use m independent copies of
pairwise independent bits. We will show how to lower this multiplicative dependence on m
and n to an additive one.

We try to simulate what we did for pairwise independent bits, by working over a larger
finite field Fym, where the corresponding field arithmetic is known to take time poly(m) time.
Our first attempt is to define the hash functions h, : {0,1}" — {0,1}™ as

hy(x) = (s, z),

where s,z € Fim, with k& = [n/m]. While uniformity holds by construction, this is not
pairwise independent. For example, for every non-unit element a € Fym, h (z) and h,(ax)
are no longer independent since h,(azx) = a - hy(x). We resolve this by adding another term,
defining h, . () = (s;,z) + so. Here s, € Fgm while sy € Fym.

Claim 2. h, ¢ (x) is a pairwise uniform hash function with seed length km +m < n 4+ 2m.

50,51

Proof. By construction uniformity holds (specifically because s, is uniformly random in Fym).
We show pairwise independence:

Prlhg, o, (z) =y Ahy, o (2') =]

Pr(sy,) + 5o =y A (s1,2") + 59 = ¢/]
PI‘[817$_$/> = y_y//\ <8171'> +SO = y]
=Pr[(s;,x —a') =y — /] Pr[(s;,2) + 5o =y | 51

= (1/2™) x (1/2™).

The first term is 1/2™ because # — 2’ # 0, and on a chosen non-zero coordinate of x — 2,
there is only one solution for s; after fixing all the other coordinates. The second term is
because of the uniformity of s. m

4 Constructing k-wise Independent Hash Functions

We generalize pairwise independence to k-wise independence.

Definition 3 (k-wise Independence). Random variables X, ..., X,, are k-wise independent
if forall 1 <y <--- <ip <n, X;,..., X, areindependent.

Likewise, we can generalize the pairwise uniform hash function construction to a k-wise
uniform hash function when the input and output has the same length. We replace the
linear function s,z + sy with a degree (k — 1) polynomial, where the seed determines the k

coefficients,
k—1

he(x) = Z st = s 2" 4 s+ s,
i=1
Here x and each s; is in Fyn, so seed length is kn for hash functions A, : {0,1}" — {0,1}".
The proof of k-wise uniformity follows a similar argument to its pairwise uniform coun-
terpart, as we want to uniquely solve the seed given the conditions in a joint distribution.
More specifically, we can think of the equations as a linear system on s, ..., s,_;, and we
want to show

Py [A hola) = y,-] — (12",

i=1,..k

To see this, we writing out the linear system,

Ty Ty So Y1
k—1
1z Lo S1 Yo
. = 5
k—1
1 xk C. :Ck Sk—l Yk

which has a unique solution when z;’s are distinct and thus the £ x k£ Vandermonde matrix
is non-singular.

Remark. Currently, the simplest way we know to construct k-wise independent bit strings is
by taking the first m bits of k-wise independent hash function outputs.

	Recap
	MAX-CUT
	Pairwise Independence Gives An Explicit Solution

	Constructing Pairwise Uniform Random Variables
	Pairwise Uniform Bits
	Pairwise Uniform Hash Functions

	Constructing k-wise Independent Hash Functions
	Application: Error reduction (Next Lecture)

