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1 PRU and Unitary Design

Similar to the fact that the quantum analog of PRG is pseudorandom quantum states, there
is also a quantum analog of PRF which maps every quantum state to a random quantum
state. In other words, it mimics the behavior of a uniformly random unitary operator.

Definition 1. The Haar measure over U(N), for which we abuse the notation and write
U ∼ U(N), is the unique measure that is invariant under unitaries, i,e. U is equidistributed
with UV and V U for every V ∈ U(N).

Definition 2. The unitary ensemble {Uk} on n qubits is pseudorandom unitaries (PRU),
if:

• Uk can be efficiently prepared: There exists a classical poly-time algorithm that given
k ∈ {0, 1}` with ` ≤ poly(λ) (n), output the quantum circuit that implements Uk;

• Uk is indistinguishable from Haar random unitary: That is, for N = 2n,∣∣∣∣∣ E
k∼{0,1}`

[AUk(|0n〉)]− E
U∼U(N)

[AU(|0n〉)]

∣∣∣∣∣ ≤ negl(λ) (n)

for every poly-time quantum oracle distinguisher AU ‘.

Similar to the case of PRS, we need a notion of statistical indistinguishability as an
intermediate step to show computational indistinguishability. The notion we introduce here
is the unitary design.

Definition 3. The unitary ensemble {Uk} on n qubits is a unitary t-design, if

E
k∼{0,1}`

[U⊗tk ρU †⊗tk ] = E
U∼U(N)

[U⊗tρU †⊗t]

for every density matrix ρ on nt qubits.

Remark. Similar to the state designs, here given the state ρ, the expectation E
U∼U(N)

[U⊗tρU †⊗t]

can be also exactly computed. Notice that we already know it is contained in span(Vσ) due
to the invariance under U⊗t. The coefficients before each Vσ can be computed through
Weingarten calculus, which we will not talk about in details here.
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Remark. For the same reason that state design is incomparable with PRS, unitary design is
also incomparable with PRU. But unitary design has yet another weakness: In the definition
of indistinguishability, the unitaries have to be applied in parallel, while for PRU the oracle
algorithm A can apply the unitary oracles adaptively. As a result, even if we proved {Uk} is
a a unitary t-design for some exponentially large t, it does not imply that {Uk} is PRU.

2 Pauli and Clifford Groups

2.1 Pauli Group

Definition 4. The single-qubit Pauli group P is a subgroup of U(2) generated by the following
Pauli operators:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Notice that the Pauli operators are anticommutative: For instance XY = −Y X = iZ.
As a result, P is in fact a order-16 finite group which can be write as {I,X, Y, Z}⊗{±1,±i}.

Another important property of the Pauli operators is the they span the space of single-
qubit states. Every density matrix of such a state ρ can be written as

ρ =
1

2
(I + xX + yY + zZ), where x, y, z ∈ R and |x|2 + |y|2 + |z|2 ≤ 1.

Therefore the space of single-qubit mixed states correspond exactly to the unit sphere in R3,
which is called the Bloch sphere. The center of the sphere is the maximally mixed state, and
the surface of the sphere contains all pure states.

Example. We have:

|0〉 〈0| = 1

2
(I + Z), |1〉 〈1| = 1

2
(I − Z)

|+〉 〈+| = 1

2
(I +X), |−〉 〈−| = 1

2
(I −X)

|i〉 〈i| = 1

2
(I + Y ), |−i〉 〈−i| = 1

2
(I − Y ).

Here |i〉 = 1√
2
(|0〉+ i |1〉) and |−i〉 = 1√

2
(|0〉 − i |1〉).

On n qubits, the Pauli group is simply the direct products of single qubit Pauli groups:

P⊗n = W1 ⊗ · · · ⊗Wn, Wi ∈ P.

Each element in P⊗n is an n-qubit Pauli operator, which is a length-n word with alphabet
{I,X, Y, Z}, together with a global phase in {±1,±i}. As a result, the order of P⊗n is 4n+1.
The n-qubit Pauli operators also spans the space of n-qubit states, and we can write

ρ =
∑

W∈{I,X,Y,Z}⊗n

ρ̂(W ) ·W, ρ̂(W ) ∈ R
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for every n-qubit state ρ. This is called Pauli analysis, which shares a lot of similarities with
Fourier analysis. In fact, Fourier analysis can be viewed as a special case of Pauli analysis
on the diagonal where only I and Z are involved.

Example. We have:

|00〉 〈00| =
(

1

2
(I + Z)

)⊗2
=

1

4
(I ⊗ I + I ⊗ Z + Z ⊗ I + Z ⊗ Z),

|11〉 〈11| =
(

1

2
(I − Z)

)⊗2
=

1

4
(I ⊗ I − I ⊗ Z − Z ⊗ I + Z ⊗ Z).

As a result, the mixing between the two states gives

1

2
(|00〉 〈00|+ |11〉 〈11|) =

1

4
(I ⊗ I + Z ⊗ Z).

2.2 Clifford Group

Definition 5. The n-qubit Clifford group Cn is defined as the normalizer group of the Pauli
group, i.e.

Cn = {C ∈ U(N) | CWC† ∈ P⊗n,∀W ∈ P⊗n}.
Here are some examples of elements in the Clifford group:

• The Pauli group P⊗n itself is contained in the Clifford group;

• Every scalar operator, i.e. ωIN for |ω| = 1;

• The Hadamard operator H =
1√
2

(
1 1
1 −1

)
. To check this, notice that Hadamard

sends |0〉 to |+〉 and sends |+〉 to |1〉. Therefore with the Pauli expansion of these pure
states from the examples above, we know that

HZH† = X, HXH† = −Z.

Moreover, H |i〉 = 1+i
2
|0〉+ 1−i

2
|1〉 = 1+i√

2
|−i〉, which means that HYH = −Y .

• The phase operator S =

(
1 0
0 i

)
. We can check that

S |0〉 = |0〉 , S |+〉 = |i〉 , S |i〉 = |−〉 .

• The CNOT gate. We will only check its effect on Z ⊗ Z, by applying it to the state
1
2
(|00〉 〈00| + |11〉 〈11|). With half probability, the state is |00〉 and unchanged under

CNOT, and with another half the state is mapped to CNOT |11〉 = |10〉. The resulting
state is thus

1

2
(|00〉 〈00|+ |10〉 〈10|) =

1

2
I ⊗ |0〉 〈0| = 1

4
(I ⊗ I + I ⊗ Z).

This means that CNOT(Z ⊗ Z)CNOT† = I ⊗ Z.
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Interestingly, the Clifford group can be generated from the above examples. It in fact can be
generated by merely H, S, CNOT and scalars. As a result, the set of gates {H,S, CNOT} is
not a universal gate set. However, it can be made universal by simply adding another gate

T =

(
1 0
0 1+i√

2

)
.

The normalizer property allows us to characterize the states C |0n〉 prepared by Clifford
operators C ∈ Cn. We call W ∈ P⊗n a stabilizer of the state |ψ〉 if W |ψ〉 = |ψ〉, and we
have:

Theorem 1. For every C ∈ Cn, the stabilizers of C |0n〉 is a order-2n+2 subgroup of P⊗n.

Proof. For state |0n〉, the stabilizers are exactly the subgroup

Stab(|0n〉) = {I, Z}⊗n ⊗ {±1,±i}

which has order 4 · 2n. Notice that W ∈ P⊗n is a stabilizer of C |0n〉 if and only if

WC |0n〉 = C |0n〉 ⇐⇒ C†WC |0n〉 = |0n〉 ,

where C†WC ∈ P⊗n because of the normalizer property. Thus the stabilizers of C |0n〉 are
C · Stab(|0n〉) · C†, which is also a subgroup of order 4 · 2n.

Using Theorem 1 we can show that the Clifford group, quotienting the scalar phases, is
also finite. In fact we have

|Cn/{ωIN}| ≤ 2O(n
2
).

Another corollary of Theorem 1 is the Gottesman-Knill theorem:

Theorem 2 ([1, 2]). Clifford circuits can be simulated classically in polynomial time.

This implies that the advantage of quantum computing does not come from the Clifford
group. Since adding the T gate to the Clifford group makes it universal, the “magic” of
quantum computing actually lies in the T gates and states prepared by T gates, and they
are sometimes called magic gates and magic states.

3 PFC construction

The Clifford group is still extremely useful in quantum information, due to the fact that it
is a discrete subgroup that is also a unitary design.

Theorem 3 ([3]). Cn is a unitary 3-design.
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As an immediate corollary, the states C |ψ0〉, prepared by Clifford operators C ∈ Cn on
any fixed initial state |ψ0〉, also form a state 3-design. The fact that they are 3-designs (in fact
2-design suffices) implies that with high probability over a random C ∈ Cn, the state C |ψ0〉
will have small amplitude in each coordinate and thus is a “flattened” out superposition.

Using the 3-design property of the Clifford group, we can construct higher order designs
and PRU through the following PFC construction.

Theorem 4 ([4]). The PFC unitary ensemble is defined as a product of three random uni-
taries P · F · C, where

P : |x〉 7→ |π(x)〉

for a random permutation π over {0, 1}n,

F : |x〉 7→ (−1)f(x) |x〉

for a random function f : {0, 1}n → {0, 1}, and C is a random Clifford operator in Cn.
Then the PFC ensemble is an ε-approximate unitary t-design for ε = O(t/

√
n).

Here the approximate unitary design is defined similarly to the approximate state design,
but more complicated due to the difference between multiplicative error and additive error,
and hence we omit the definition here.

As we remarked earlier, Theorem 4 does not imply PRU property since unitary designs
are applied in parallel. Nevertheless, it was proved later that the construction is indeed
PRU.

Theorem 5 ([5]). When instantiated with PRP π and PRF f , the PFC ensemble is a PRU.

Since post-quantum PRP and PRF are both equivalent to post-quantum OWF, it means
that OWF also implies PRU and therefore PRS. Does the inverse also hold, so that they are
also equivalent to OWF? It seems that the answer is no. Evidences are given by the oracle
separations:

Theorem 6 ([6]). There exists a classical oracle O, such that PO = NPO, but PRUO ex-
ists, that is, an ensemble {Uk} that can be efficiently implemented with access to O, but is
indistinguishable from Haar random against any BQPO distinguisher.

In other words, even in a world without OWF (e.g. Impagliazzo’s Algorithmica), there
likely still exists quantum pseudorandom primitives and therefore cryptography can still be
done with the power of quantum computing.
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