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Lecture 3: k-wise Independence and Fourier Analysis

Lecturer: Wei Zhan Scribe: Arvind Ramaswami

1 Error Reduction by k-wise Independence

Suppose we have a randomized algorithm A(x, r) ∈ {0, 1} (r is a random m-bit string)
that is correct w.p. ≥ 1/2 + ε. We want to reduce the error by repetition: We run
A(x, r1), . . . , A(x, rt) with different randomness and take the majority vote of the outputs.

If r1, r2, . . . , rt are mutually independent, we can use Chebyshev’s inequality

Pr[|X − E[X]| ≥ α] ≤ Var[X]

α2

to bound the error rate. Let Xi = A(x, ri) ∈ [0, 1], and X = 1
t

∑
iXi, then

Var[X] =
1

t2

∑
i

Var[Xi] ≤
1

t

(
1

4
− ε2

)
and the majority vote is only wrong when |X − E[X]| ≥ ε, so the error probability is

Pr[|X − E[X]| ≥ ε] ≤ 1/4− ε2

tε2
≤ 1

4tε2
.

If we want constant error with independent randomness, we need:

- O(1/ε2) repetitions;

- O(m/ε2) random bits.

And if we want 1/poly(n) error, we need

- O(poly(n)/ε2) repetitions;

- O(m · poly(n)/ε2) random bits.

Note that by Chernoff bound, we can actually get better bounds for 1/poly(n) error:

- O(log(n)/ε2) repetitions;

- O(m · log(n)/ε2) random bits.
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1.1 k-wise Independent Chebyshev

Theorem 1. If X1, . . . , Xt ∈ [0, 1] are 2k-wise independent, for X = 1
t

∑t
i=1Xi,

Pr[|X − E[X]| ≥ ε] ≤
(
k2

tε2

)k
.

Proof. Consider (X − E[X])2k. Markov gives: Pr[(X − E[X])2k ≥ αE[(X − E[X])2k]] ≤ 1
α

.

We can bound E[(X − E[X])2k] by

E[(X − E[X])2k] = E

[
1

t2k

t∑
i1,...,i2k=1

(Xi1
− E[Xi1

]) · · · (Xi2k
− E[Xi2k

])

]

=
1

t2k

t∑
i1,...,i2k=1

E[(Xi1
− E[Xi1

]) · · · (Xi2k
− E[Xi2k

])]

≤ 1

t2k
#{(i1, i2, . . . , i2k) ∈ [t]2k : each i ∈ [t] appears 0 or ≥ 2 times}

≤ 1

t2k
· tk · k2k =

(
k2

t

)k
.

The third line is because when there exists some i ∈ [t] that appears in (i1, i2, . . . , i2k) exactly
once, say i = i1, by 2k-wise independence we have

E[(Xi1
− E[Xi1

]) · · · (Xi2k
− E[Xi2k

])] = E[Xi1
− E[Xi1

]]E[(Xi2
− E[Xi2

]) · · · (Xi2k
− E[Xi2k

])]

which is 0 since E[Xi1
− E[Xi1

]] = 0. Each of the rest of the terms in the sum is at most 1.
The fourth line is because within such a 2k-tuple, there are at most k distinct elements.

So we can enumerate such tuples by first choose k elements from [t], and then choose each
one of i1, . . . , i2k from these k elements. Thus we have

Pr[|X − E[X]| ≥ ε] = Pr[|X − E[X]|2k ≥ ε2k]

≤ 1

ε2k
E[(X − E[X])2k] ≤

(
k2

tε2

)k
.

By taking r1, . . . , rt to be 2k-wise independent (via a 2k-wise uniform hash function with
input length log t and output length m), we can significantly reduce the number of random
bits, especially on the dependence with ε. Notice that now the results Xi = A(x, ri) are also
2k-wise uniform, so we can use Theorem 1.

For constant error, by using pairwise independence (k=1), we need:

- O(1/ε2) repetitions;

- O(m+ log(1/ε)) random bits, which is much less than independent repetitions.
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For 1/poly(n) error, using k = O(log n)-wise independence, we need:

- t = O(k2/ε2) = O(log2 n/ε2) repetitions;

- O(log n · (m + log(1/ε) + log log n)) random bits (This is because in the k-wise inde-
pendent hash function, m is the output length, while log t = O(log(1/ε) + log log n) is
the input length).

2 What does k-wise independence fool?

• degree-k monomials, by definition.

• degree-k polynomials, by linearity. For instance, the polynomial for MAX-CUT:∑
(i,j)∈E

Xi(1−Xj) +Xj(1−Xi)

• In order to get the most general answer, we will use Fourier analysis.

3 Discrete (Boolean) Fourier Analysis.

Given g : {0, 1}n → {0, 1}, we want the multilinear (polynomial) expansion of g

g(x1, . . . , xn) =
∑
S⊆[n]

αS
∏
i∈S

xi, αS ∈ R.

To prove such an expansion uniquely exists, we can think of the space of all functions
{0, 1}n → R as a linear space on R of dimension 2n, and prove linear independence of all
monomials

∏
i∈S xi.

It is easier with a change of domain, where we look at functions f : {±1}n → {±1} by
defining

f(x1, . . . , xn) = 2g(1/2 + 1/2x1, . . . , 1/2 + 1/2xn)− 1.

Notice that f has the same degree as g and keeps the same independence between the input
coordinates.

Theorem 2 (Fourier expansion). For f : {±1}n → R, we can uniquely write f as a multi-
linear polynomial

f(x1, . . . , xn) =
∑
S⊆[n]

f̂(S)χS(x1, . . . , xn).

Here χS(x1, . . . , xn) =
∏

i∈S xi is called the characteristic function on S, and f̂ : 2[n] → R
gives the Fourier coefficients of f .
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To prove the existence and uniqueness, we equip the linear space of all functions {±1}n →
R with an inner product:

〈f, g〉 = E
X∼{±1}n

[f(X) · g(X)].

Then it suffices to note the following facts.

Fact 1. {χS} forms an orthonormal basis.

Fact 2. (Fourier duality)

f̂(S) = 〈f, χS〉 =
1

2n
∑
x

f(x)χS(x)

Fact 3. (Parseval’s identity)

〈f, g〉 =
∑
S

f̂(S)ĝ(S)

Proof of Fact 3.

〈f, g〉 = E
x

∑
S1,S2

f̂(S1)ĝ(S2)χS1
(x)χS2

(x)


=
∑
S1,S2

f̂(S1)ĝ(S2)E
x
[χS1

(x)χS2
(x)]

where E
x
[χS1

(x)χS2
(x)] = 〈χS1

, χS2
〉 is 1 when S1 = S2 and 0 otherwise.

3.1 k-wise Uniformity and Fourier Analysis

We can give a Fourier characterization of k-wise uniformity as follows.

Theorem 3. p : {±1}n → R is a k-wise uniform distribution if and only if p̂(S) = 0 for all
1 ≤ |S| ≤ k (note that p̂(∅) = 2−n).

Proof. ( =⇒ ):

p̂(S) =
1

2n
∑
x

p(x)χS(x)

=
1

2n
E
x∼p

[χS(x)]

=
1

2n
E

x∈{±1}n
[χS(x)] = 0 (since p fools degree k polynomials)

(⇐= ): For (b1, . . . , bn) ∈ {±1}n, write bS =
∏

i∈S bi and we have
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Pr
X∼p

[Xi1
= bi1 , . . . , Xik

= bik ] =
∑
x

p(x)1xi1=bi1
· . . . · 1xik=bik

=
∑
x

p(x)(1 + xi1bi1) · . . . · (1 + xikbik) · 1

2k

=
∑
x

p(x) ·
∑

S⊆{i1,...,ik}

χS(x)bS ·
1

2k

=
1

2k

∑
S⊆{i1,...,ik}

bS
∑
x

p(x)χS(x)

=
1

2k

∑
S⊆{i1,...,ik}

bS · 2n · p̂(S)

=
1

2k
· b∅ · 2n · p̂(∅)

=
1

2k
.

A natural question to ask is: Which functions f : {±1}n → R are ε-fooled by all k-wise
independent distributions, i.e.∣∣∣∣ E

X∼{±1}n
[f(X)]− E

X∼p
[f(X)]

∣∣∣∣ ≤ ε?

Here we give a partial answer with Fourier analysis. Notice that the left term equals

1

2n
∑
x

f(x) = f̂(∅).

while the right term equals∑
x

p(x)f(x) = 2n〈p, f〉

= 2n
∑
S

p̂(S)f̂(S)

= f̂(∅) + 2n
∑
S 6=∅

p̂(S)f̂(S).

Thus, f is ε-fooled by p ⇐⇒
∣∣∣∑S 6=∅ p̂(S)f̂(S)

∣∣∣ ≤ 2−n · ε. If p is k-wise independent, the

sum is equal to
∣∣∣∑|S|≥k+1 p̂(S)f̂(S)

∣∣∣.
Since p is a distribution, |p̂(S)| ≤ 1

2
n , and thus∣∣∣∣∣∣

∑
|S|≥k+1

p̂(S)f̂(S)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
|S|≥k+1

f̂(S)

∣∣∣∣∣∣ · 1

2n
.
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Therefore, if
∣∣∣∑|S|≥k+1 f̂(S)

∣∣∣ ≤ ε, then f is ε-fooled by all k-wise uniform distributions. The

sum
∣∣∣∑|S|≥k+1 f̂(S)

∣∣∣ is called the `1 Fourier tail.

Proving bounds on the Fourier tail is an active research problem. Most of the time,
bounding the `1 Fourier tail by a small ε is too much to ask for (notice how we simply
relaxed |p̂(S)| to 1

2
n which is often a huge loss), and instead bounding the `2 tail∑

|S|≥k+1

f̂ 2(S)

is more achievable and still suffices. For further reading, see e.g. the following works on
Fourier tails of constant depth circuits

• Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability.

• Mark Braverman. Polylogarithmic independence fools AC0 circuits.

• Avishay Tal. Tight bounds on the Fourier spectrum of AC0.

6


	Error Reduction by k-wise Independence
	k-wise Independent Chebyshev

	What does k-wise independence fool?
	Discrete (Boolean) Fourier Analysis.
	k-wise Uniformity and Fourier Analysis


