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Lecture 3: k-wise Independence and Fourier Analysis

Lecturer: Wei Zhan Scribe: Arvind Ramaswamsi

1 Error Reduction by k-wise Independence

Suppose we have a randomized algorithm A(x,r) € {0,1} (r is a random m-bit string)
that is correct w.p. > 1/2 + . We want to reduce the error by repetition: We run

A(x,ry),..., A(x,r,) with different randomness and take the majority vote of the outputs.
If r,7q,...,r, are mutually independent, we can use Chebyshev’s inequality
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to bound the error rate. Let X; = A(z,r;) € [0,1], and X = 1 3", X, then
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and the majority vote is only wrong when | X — E[X]| > ¢, so the error probability is
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If we want constant error with independent randomness, we need:
- O(1/€®) repetitions;
- O(m/<*) random bits.
And if we want 1/poly(n) error, we need
- O(poly(n)/e?) repetitions;
- O(m - poly(n)/e®) random bits.
Note that by Chernoff bound, we can actually get better bounds for 1/poly(n) error:
- O(log(n)/€?) repetitions;

- O(m -log(n)/e*) random bits.



1.1 k-wise Independent Chebyshev
Theorem 1. If X,,..., X, € [0,1] are 2k-wise independent, for X = 1 Zle X,

PX — E[X] > ¢] < (f—)
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The third line is because when there exists some i € [t] that appears in (iy, iy, . . ., i9;) exactly
once, say ¢ = i;, by 2k-wise independence we have

E[(X;, — E[X;]) - - (X, — BIX, D] = E[X;, — E[X JJE[(X;, — E[X,,])--- (X;
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which is 0 since E[X; — E[X; |] = 0. Each of the rest of the terms in the sum is at most 1.

The fourth line is because within such a 2k-tuple, there are at most k distinct elements.
So we can enumerate such tuples by first choose k elements from [¢], and then choose each
one of 7;,...,19, from these k elements. Thus we have

Pr[|X — E[X]| > ¢] = Pr[|X — E[X]|** > ]
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By taking rq,..., 7, to be 2k-wise independent (via a 2k-wise uniform hash function with

input length logt and output length m), we can significantly reduce the number of random
bits, especially on the dependence with e. Notice that now the results X; = A(z,r;) are also
2k-wise uniform, so we can use Theorem 1.

For constant error, by using pairwise independence (k=1), we need:

- O(1/€°) repetitions;

- O(m +log(1/¢e)) random bits, which is much less than independent repetitions.



For 1/poly(n) error, using k = O(log n)-wise independence, we need:
-t = O(k*/e*) = O(log® n/<?) repetitions;

- O(logn - (m +log(1/e) + loglogn)) random bits (This is because in the k-wise inde-
pendent hash function, m is the output length, while logt = O(log(1/¢) + loglogn) is
the input length).

2 What does k-wise independence fool?

e degree-k monomials, by definition.

e degree-k polynomials, by linearity. For instance, the polynomial for MAX-CUT:

> X(1- X))+ X;(1-X,)

(i,9)EF

e In order to get the most general answer, we will use Fourier analysis.

3 Discrete (Boolean) Fourier Analysis.

Given g: {0,1}" — {0,1}, we want the multilinear (polynomial) expansion of g

g(xTy,... ;) = Z @SH%aOés eR.
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To prove such an expansion uniquely exists, we can think of the space of all functions
{0,1}" — R as a linear space on R of dimension 2", and prove linear independence of all
monomials [], ¢ ;.
It is easier with a change of domain, where we look at functions f: {£1}" — {£1} by
defining
flzy,... x,) =29(1/2+1/2xy,...,1/2+1/2x,) — 1.

Notice that f has the same degree as g and keeps the same independence between the input
coordinates.

Theorem 2 (Fourier expansion). For f: {£1}" — R, we can uniquely write f as a multi-
linear polynomial

f@ ) =Y F(S)xs(@,....z,).
)
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Here xg(71,...,2,) = [[,cq®; is called the characteristic function on S, and f: ol 5 R
gives the Fourier coefficients of f.



To prove the existence and uniqueness, we equip the linear space of all functions {£+1}" —
R with an inner product:

(frg)=_E [f(X)-g(X)].
X~{£1}
Then it suffices to note the following facts.

Fact 1. {xg} forms an orthonormal basis.

Fact 2. (Fourier duality)

J?() (fixs) = Zf z)xs(@

Fact 3. (Parseval’s identity)

9)=>_ F()3(s)

Proof of Fact 3.

Z 9(S2)xs, (2)xs,(2)
1555

Z Xsl( )Xs, ()]
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where E[xg, (7)xs,(7)] = (xs,, Xs,) is 1 when S} = S, and 0 otherwise. O

3.1 k-wise Uniformity and Fourier Analysis

We can give a Fourier characterization of k-wise uniformity as follows.

Theorem 3. p: {£1}" — R is a k-wise uniform distribution if and only if p(S) = 0 for all
1 <|S| <k (note that p(@) =27").

Proof. (= ):

o > pla)xs()

= > E [xs()

1
=— E |[xs(z)] =0 (since p fools degree k polynomials)
2 xe{£1}"

(«<): For (by,...,b,) € {£1}", write bg = [[,.q b; and we have
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A natural question to ask is: Which functions f : {£1}" — R are e-fooled by all k-wise
independent distributions, i.e.

E [/(X)]- E [f(X)]\ <o

X~ {£1}" X~p

Here we give a partial answer with Fourier analysis. Notice that the left term equals

while the right term equals

S pla) fla) = 2(p. f)

T

= 2" " B(S)F(S)
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Thus, f is e-fooled by p <= ’ZS?&@ ﬁ(S)f(S)‘ < 27" .e. If p is k-wise independent, the

sum is equal to ‘Z|S|2k+1 ﬁ(S)J?(S)‘
Since p is a distribution, [p(S)| < 5=, and thus

JUTD ~ 1
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|S|>k+1 [S|>k+1



Therefore, if

Z| S[>k+1 f(S )‘ < g, then f is e-fooled by all k-wise uniform distributions. The

~

DIS|>k41 f(S)‘ is called the ¢; Fourier tail.

Proving bounds on the Fourier tail is an active research problem. Most of the time,
bounding the ¢; Fourier tail by a small ¢ is too much to ask for (notice how we simply
relaxed |p(S)| to 5= which is often a huge loss), and instead bounding the £, tail

> S

|S|>k+1

sum

is more achievable and still suffices. For further reading, see e.g. the following works on
Fourier tails of constant depth circuits

e Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability.

e Mark Braverman. Polylogarithmic independence fools AC® circuits.

e Avishay Tal. Tight bounds on the Fourier spectrum of AC°.
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