CS59200-PRS: Pseudorandomness

Aug 18, 2025

Lecture 4: δ -biased distributions

Lecturer: Wei Zhan Scribe: Abhigyan Dutta

1 δ -biased distribution:

Definition 1. A probability distribution $p: \{\pm 1\}^n \to \mathbb{R}$ is δ -biased if $|\widehat{p}(S)| \leq 2^{-n} \delta, \forall S \neq \emptyset$. Equivalently,

Definition 2. A probability distribution $p: \{\pm 1\}^n \to \mathbb{R}$ is δ -biased if p δ -fools all characteristic function χ_S , i.e.

$$\left| \mathbb{E}_{x \sim p} \left[\chi_S(x) \right] - \mathbb{E}_{x \sim \left\{ \pm 1 \right\}^n} \left[\chi_S(x) \right] \right| \le \delta.$$

To prove the equivalence, it suffices to note that $\mathbb{E}_{x \sim p}[\chi_S(x)] = 2^n \widehat{p}(S)$, while $\mathbb{E}_{x \sim \{\pm 1\}^n}[\chi_S(x)] = 0$ whenever $S \neq \emptyset$.

1.1 Construction by Alon-Goldreich-Hastad-Peralta

We will use the following property of \mathbb{F}_{2^l} : There exists an isomorphism between the additive groups $\pi \colon \mathbb{F}_{2^l} \to \mathbb{F}_2^l$, that is $\pi(a+b) = \pi(a) + \pi(b), \pi(0) = (0, \dots, 0)$.

Construction: We uniformly draw the seeds $s \in \mathbb{F}_{2^l}$ and $s' \in \mathbb{F}_2^l$, and consider the distribution of $(X_1, \ldots, X_n) \in \mathbb{F}_2^n$ where

$$X_i = \langle \pi(s^i), s' \rangle.$$

Then for every parity function over $T \subseteq [n]$ we have,

$$\sum_{i \in T} X_i = \left\langle \pi \left(\sum_{i \in T} s^i \right), s' \right\rangle.$$

Since s' is uniform in \mathbb{F}_2^l , the inner product is uniform over $\{0,1\}$ unless the $\pi\left(\sum_{i\in T}s^i\right)=0$, so we have

$$\Pr\left[\sum_{i\in T}X_i=0\right] = \frac{1}{2} + \frac{1}{2}\Pr\left[\pi\left(\sum_{i\in T}s^i\right) = 0\right] = \frac{1}{2} + \frac{1}{2}\Pr\left[\sum_{i\in T}s^i = 0\right] \leq \frac{1}{2}\left(1 + \frac{n}{2^l}\right),$$

where the last inequality is due to $i \leq n-1$ and hence the polynomial $\sum_{i \in T} s^i$ having at most n roots and s being uniformly sampled from a field of size 2^l . Since the distribution is δ -biased when $\left|\Pr\left[\sum_{i \in T} X_i = 0\right] - \Pr\left[\sum_{i \in T} X_i = 1\right]\right| \leq \delta$, we need $\frac{n}{2^l} \leq \delta$, or the seed length $2l = O(\log(n/\delta))$.

What functions are fooled by δ -biased distribution? Recall that p ε -fools f if $\left|\sum_{S\neq\varnothing}\widehat{p}(S)\widehat{f}(S)\right|\leq 2^{-n}\varepsilon$. Since $|\widehat{p}(S)|\leq 2^{-n}\delta$, we immediately have:

Lemma 1. If $\left|\sum_{S\neq\phi}\widehat{f}(S)\right|\leq c$, f is $c\delta$ -fooled by every δ -biased distribution.

2 Total Variation Distance:

For two distributions on the same ground set $p, q: S \to \mathbb{R}$ we define the total variation distance to be the best amount that an $\{0, 1\}$ -function on S can distinguish between them:

$$d_{TV}(p,q) = \max_{A \colon S \to \{0,1\}} \left| \underset{x \sim p}{\mathbb{E}} [A(x)] - \underset{x \sim q}{\mathbb{E}} [A(x)] \right|.$$

We also define the l_1 distance between two distributions p, q as,

$$|p - q|_1 = \sum_{x \in S} |p(x) - q(x)|.$$

Theorem 2.

$$d_{TV}(p,q) = \frac{1}{2}|p-q|_1.$$

Proof. By optimizing the function $A: S \to \{0, 1\}$, we have

$$\begin{split} d_{TV}(p,q) &= \max_{A: \ S \to \{0,1\}} \left| \underset{x \sim p}{\mathbb{E}} [A(x)] - \underset{x \sim q}{\mathbb{E}} [A(x)] \right| \\ &= \max_{A: \ S \to \{0,1\}} \left| \sum_{x \in S} A(x) (p(x) - q(x)) \right| \\ &= \max \left(\sum_{\substack{x \in S \\ p(x) \geq q(x)}} (p(x) - q(x)), \sum_{\substack{x \in S \\ p(x) < q(x)}} (q(x) - p(x)) \right). \end{split}$$

The two sums in the last line are actually equal, since

$$\sum_{\substack{x \in S \\ p(x) \geq q(x)}} (p(x) - q(x)) = \sum_{\substack{x \in S \\ p(x) \geq q(x)}} p(x) + \sum_{\substack{x \in S \\ p(x) < q(x)}} q(x) - 1 = \sum_{\substack{x \in S \\ p(x) < q(x)}} (q(x) - p(x)).$$

And their sum is exactly $|p-q|_1$. Therefore $d_{TV}(p,q) = \frac{1}{2}|p-q|_1$.

The range of the distinguishing function can also vary. For instance, when A is allowed to take value in the interval [0,1], from the proof above we see that A id still optimized when taking $\{0,1\}$ values. Therefore,

$$\max_{A: S \to [0,1]} \left| \underset{x \sim p}{\mathbb{E}} [A(x)] - \underset{x \sim q}{\mathbb{E}} [A(x)] \right| = d_{TV}(p,q).$$

If instead, A is allowed to take value in the interval [-1,1], we can think of A(x) = 2A'(x) - 1 for $A' : S \to [0,1]$, and thus

$$\max_{A:\ S \to [-1,1]} \left| \underset{x \sim p}{\mathbb{E}} [A(x)] - \underset{x \sim q}{\mathbb{E}} [A(x)] \right| = \max_{A':\ S \to [0,1]} \left| \underset{x \sim p}{\mathbb{E}} [2A'(x) - 1] - \underset{x \sim q}{\mathbb{E}} [2A'(x) - 1] \right| = 2d_{TV}(p,q).$$

Theorem 3. If $p: \{\pm 1\}^n \to \mathbb{R}$ is δ -biased, then $d_{TV}(p, u) \leq 2^{n/2} \delta$, where u represents the uniform distribution.

Proof. By definition, $d_{TV}(p,u) \leq 2^{n/2}\delta$ iff p could $2^{n/2}\delta$ -fool every $A: \{\pm 1\}^n \to \{0,1\}$. We now show $\left|\sum_{S\neq\varnothing} \widehat{A}(S)\right| \leq 2^{n/2}$ and the theorem immediately follows from Lemma 1.

We have, by Parseval's identity,

$$\left|\sum_{S\neq\varnothing}\widehat{A}(S)\right| \leq \sqrt{2^n-1}\sqrt{\sum_{S\neq\varnothing}\widehat{A}^2(S)} \leq \sqrt{2^n}\sqrt{\sum_{S\subseteq[n]}\widehat{A}^2(S)} = \sqrt{2^n}\sqrt{\mathop{\mathbb{E}}_{x\sim\{\pm 1\}^n}A^2(x)} \leq 2^{n/2},$$

as desired. \Box

3 ε -almost k-wise uniformity

Definition 3. Random variables $X_1, \ldots, X_n \in S$ are ε -almost k-wise uniform if

$$d_{TV}\left((X_{i_1},\ldots,X_{i_k}),u^k\right)\leq \varepsilon$$

for all distinct $i_1, \ldots, i_k \in [n]$, where u^k is the uniform distribution over S^k .

Example: Consider the randomized approximate MAX-CUT algorithm, where we want to derandomize the algorithm by fooling the function $A(G,x) = \frac{1}{|E|} \sum_{(i,j) \in E} \mathbb{1}_{x_i \neq x_j}$. We showed how to do it with pairwise uniformity, and the function was fooled exactly (without any error in expectation). But since an $1/n^2$ error is allowed, almost pairwise uniformity also suffices. If $x_1, \dots x_n$ are ε -almost pairwise uniform then,

$$\left| \mathbb{E}[A(G,x)] - \mathbb{E}_{r \sim \{0,1\}^n}[A(G,r)] \right| \le \frac{1}{|E|} \sum_{(i,j) \in E} d_{TV}((x_i, x_j), (r_i, r_j)) \le \varepsilon,$$

and $\varepsilon = 1/n^2$ suffices to find a cut of size |E|/2.

We can also define ε -almost k-wise independence:

Definition 4. Random variables $X_1, \ldots, X_n \in S$ are ε -almost k-wise independent, for all distinct i_1, \ldots, i_k , there exists a mutually independent distribution $(Y_{i_1}, \ldots, Y_{i_k})$ on S^k such that $d_{TV}((X_{i_1}, \ldots, X_{i_k}), (Y_{i_1}, \ldots, Y_{i_k})) \leq \varepsilon$.

3.1 Fourier Analysis

There is no simple Fourier characterization of almost k-wise uniformity, but we have a necessary condition in terms of Fourier coefficients:

Theorem 4. If $p: \{\pm 1\}^n \to \mathbb{R}$ is ε -almost k-wise uniform then $|\widehat{p}(S)| \leq 2^{1-n} \varepsilon, \forall 1 \leq |S| \leq k$. Proof.

$$|\widehat{p}(S)| = \left| \underset{x \sim p}{\mathbb{E}} [\chi_S(x)] \right| \cdot 2^{-n} = \left| \underset{x \sim p}{\mathbb{E}} [\chi_S(x)] - \underset{x \sim \{0,1\}^n}{\mathbb{E}} [\chi_S(x)] \right| \cdot 2^{-n} \le 2\varepsilon \cdot 2^{-n},$$

where the last inequality follows from the d_{TV} definition of ε -almost k-wise uniform distribution and the fact that $\chi_S(x) \in \{\pm 1\}$.

3.2 Construction from δ -biased distributions

Theorem 5 (Vazirani's XOR Lemma). If $p: \{\pm 1\}^n \to \mathbb{R}$ is δ -biased, then p is also $2^{k/2}\delta$ -almost k-wise uniform for every $k \leq n$.

Proof. It suffices to prove that, for all $A: \{\pm 1\}^n \to \{0,1\}$ that depends only on k coordinates $\{i_1,\ldots,i_k\}$ of the input $x, p \ 2^{k/2}\delta$ fools A. We only need to bound $|\sum_{S\neq\varnothing} \widehat{A}(S)|$.

Claim 6. If
$$S \nsubseteq \{i_1, \ldots, i_k\}$$
 then $\widehat{A}(S) = 0$.

To prove the claim, notice that on the coordinates $\{i_1, \ldots, i_k\}$ we can already perform Fourier expansion of A and write A as a polynomial in x_{i_1}, \ldots, x_{i_k} . Since Fourier expansion is unique, it would the same polynomial when we perform Fourier expansion of A on the entire n coordinates.

Thus we have, again by Parseval's identity

$$\left|\sum_{S\neq\varnothing}\widehat{A}(S)\right|\leq \sqrt{2^k}\sqrt{\sum_{S\subseteq\{i_1,\cdots,i_k\}}\widehat{A}^2(S)}\leq \sqrt{2^k}\sqrt{\mathop{\mathbb{E}}_{x\sim\{\pm 1\}^n}A^2(x)}\leq 2^{k/2}.$$

Now we can use Lemma 1 to conclude our theorem.

Since $\varepsilon = 2^{k/2}\delta$, the construction of the δ -biased distribution gives a construction of ε -almost k-wise uniform distribution with seed length $O(\log(n/\delta)) = O(k + \log n + \log(1/\varepsilon))$. There are several better constructions, most notably by Naor-Naor, that has seed length $O(k + \log \log n + \log(1/\varepsilon))$:

• Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and applications.