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1 o-biased distribution:
Definition 1. A probability distribution p : {£1}" — R is §-biased if [p(S)| < 27"6,VS # @.
Equivalently,

Definition 2. A probability distribution p : {£1}" — R is d-biased if p d-fools all charac-
teristic function xg, i.e.

E [xs(@)]— E  [xs@)]| <o

zT~p o~ {1}

To prove the equivalence, it suffices to note that E [yg(x)] = 2"p(S), while E [yg(x)] =
zTr~p z~{E1}"

0 whenever S # &.

1.1 Construction by Alon-Goldreich-Hastad-Peralta

We will use the following property of F..: There exists an isomorphism between the additive
groups 7: Fp — F,, that is w(a + b) = 7(a) + 7 (b), 7(0) = (0, ...,0).

Construction: We uniformly draw the seeds s € F, and s € IFZQ, and consider the
distribution of (X,,...,X,,) € F5 where

X, = (n(s"), ).

Then for every parity function over T' C [n] we have,

Srelr(E) )

Since s’ is uniform in Fs, the inner product is uniform over {0, 1} unless the (Xiers’) =0,

so we have
1 1 4 1 1 4 1 n
P X.=0l==4+=P | =0l ==-+-=-P =0 <=1+ —




where the last inequality is due to ¢ < n — 1 and hence the polynomial }, ;. s' having at
most n roots and s being uniformly sampled from a field of size 2. Since the distribution
is d-biased when |Pr [}, 7 X; = 0] — Pr[3,cp X; = 1]| < 4, we need o < 0, or the seed
length 21 = O(log(n/¢)).

What functions are fooled by J-biased distribution? Recall that p e-fools f if
Y540 ﬁ(S)f(S)‘ < 27"e. Since |p(S)| < 27"9, we immediately have:

Lemma 1. If )ZS#) f(S)’ <, f is co-fooled by every d-biased distribution.

2 Total Variation Distance:

For two distributions on the same ground set p,q : S — R we define the total variation
distance to be the best amount that an {0, 1}-function on S can distinguish between them:

E [A(2)] = E [A(2)]|.

drv(p.q) = max

We also define the [; distance between two distributions p, q as,
p—aql =) Ip(x) — q(x)|-
x€S
Theorem 2.

1
drv(p,q) = §Ip —ql;-

Proof. By optimizing the function A: .S — {0, 1}, we have

drv(p,q) =  max | E [A(x)] - E [A(z)]

A: S—{0,1} |z~p zrq
= max meZSA(ﬂf)(p(:v) —Q<I>>‘

Cmax | Y ) —a@). Y (ale) - ple)
pa)Sa(a) p(a)<a(a)

The two sums in the last line are actually equal, since

Yo @) —qx)= > pa)+ Y qx)-1= > (q(z)—p(x)).

z€eSs €S eSS €S
p(z)>q(z) p(z)>q(x) p(z)<q(x) p(z)<q(z)
And their sum is exactly |p — ¢|;. Therefore drv(p,q) = %|p —ql;. ]
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The range of the distinguishing function can also vary. For instance, when A is allowed
to take value in the interval [0, 1], from the proof above we see that A id still optimized when
taking {0, 1} values. Therefore,

E [A(z)] = E [A(z)]

T~p Tr~q

max = dTV(pa Q)-

A: S§—[0,1]

If instead, A is allowed to take value in the interval [—1, 1], we can think of A(z) = 2A'(x)—1
for A': S — [0, 1], and thus

E 2A4'(x) — 1] = E [2A4'(2) — 1]| = 2drv(p, 9)-

max

A: S—[-1,1] > [A(:L’)] - E [A(CL’)

|l = max
A’ 500,

Theorem 3. If p: {£1}" — R is 0-biased, then dpy(p,u) < 22§, where u represents the
uniform distribution.

Proof. By definition, dpy (p,u) < 228 iff p could 2"/?5-fool every A: {£1}" — {0,1}. We
now show ’Z S4o A(S )’ < 22 and the theorem immediately follows from Lemma 1.
We have, by Parseval’s identity,

d Al < V2 - S) < V2" A2S)=V2" | E  Az) < 2",
S#@ SCn] e

S4o
as desired. ]

3 c-almost k-wise uniformity
Definition 3. Random variables Xy, ..., X, € S are e-almost k-wise uniform if
dTV ((Xi17 s JXik)vuk) S €

for all distinct iy, ...,1, € [n], where u® is the uniform distribution over S*.

Example: Consider the randomized approximate MAX-CUT algorithm, where we want to
derandomize the algorithm by fooling the function A(G,z) = ﬁ > (ijyer Lu#a,- We showed
how to do it with pairwise uniformity, and the function was fooled exactly (without any error
in expectation). But since an 1/ n? error is allowed, almost pairwise uniformity also suffices.

If xq,---x, are e-almost pairwise uniform then,
IE:[A(GV%)] _r~{H§1}n[A( Z dTV z;, ] ( T4, ])) S g,

(i,J)eE

and ¢ = 1/n” suffices to find a cut of size |E|/2.
We can also define e-almost k-wise independence:
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Definition 4. Random variables X,...,X,, € S are e-almost k-wise independent, for all
distinct iy, .. .1y, there exists a mutually independent distribution (Y ,...,Y; ) on S* such
that dpy (Xi ..., X, ), (Y, ..., Y, ) <e.

17 Pt 78 i)

3.1 Fourier Analysis

There is no simple Fourier characterization of almost k-wise uniformity, but we have a
necessary condition in terms of Fourier coefficients:

Theorem 4. Ifp: {£1}" — R is e-almost k-wise uniform then |p(S)| < 2' "¢, V1 < |S| < k.
Proof.

27" =|E[xs(2)] = E [xs(@)]|-27" <2277,

xr~p z~{0,1}"

7(5)] = | E xs(o)

where the last inequality follows from the dpy definition of e-almost k-wise uniform distri-
bution and the fact that xg(z) € {£1}. O

3.2 Construction from J-biased distributions

Theorem 5 (Vazirani’s XOR Lemma). If p : {£1}" — R is d-biased, then p is also 2"/%5-
almost k-wise uniform for every k < n.

Proof. 1t suffices to prove that, for all A: {£1}" — {0, 1} that depends only on k coordinates
{iy,....ix} of the input z, p 2"/%§ fools A. We only need to bound | > 520 AWS)]-

Claim 6. If S ¢ {iy,....i,} then A(S)=0.

To prove the claim, notice that on the coordinates {ii,...,4,} we can already perform
Fourier expansion of A and write A as a polynomial in ; ,...,; . Since Fourier expansion
is unique, it would the same polynomial when we perform Fourier expansion of A on the
entire n coordinates.

Thus we have, again by Parseval’s identity

> A(S)

S#Ao

<V2' [N RS <Vt | B A) < 2v2

~{E1"
SC{iy,vig} (L)

Now we can use Lemma 1 to conclude our theorem. O

Since e = 2¥/25 , the construction of the d-biased distribution gives a construction of e-
almost k-wise uniform distribution with seed length O(log(n/d)) = O(k + logn + log(1/¢)).
There are several better constructions, most notably by Naor-Naor, that has seed length
O(k +loglogn + log(1/¢)):

e Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications.
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