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Lecture 4: δ-biased distributions

Lecturer: Wei Zhan Scribe: Abhigyan Dutta

1 δ-biased distribution:

Definition 1. A probability distribution p : {±1}n → R is δ-biased if |p̂(S)| ≤ 2−nδ, ∀S 6= ∅.

Equivalently,

Definition 2. A probability distribution p : {±1}n → R is δ-biased if p δ-fools all charac-
teristic function χS, i.e. ∣∣∣∣ Ex∼p [χS(x)]− E

x∼{±1}n
[χS(x)]

∣∣∣∣ ≤ δ.

To prove the equivalence, it suffices to note that E
x∼p

[χS(x)] = 2np̂(S), while E
x∼{±1}n

[χS(x)] =

0 whenever S 6= ∅.

1.1 Construction by Alon-Goldreich-Hastad-Peralta

We will use the following property of F
2
l : There exists an isomorphism between the additive

groups π : F
2
l → Fl2, that is π(a+ b) = π(a) + π(b), π(0) = (0, . . . , 0).

Construction: We uniformly draw the seeds s ∈ F
2
l and s′ ∈ Fl2, and consider the

distribution of (X1, . . . , Xn) ∈ Fn2 where

Xi = 〈π(si), s′〉.

Then for every parity function over T ⊆ [n] we have,

∑
i∈T

Xi =

〈
π

(∑
i∈T

si
)
, s′
〉
.

Since s′ is uniform in Fl2, the inner product is uniform over {0, 1} unless the π
(∑

i∈T s
i
)

= 0,
so we have

Pr

[∑
i∈T

Xi = 0

]
=

1

2
+

1

2
Pr

[
π

(∑
i∈T

si
)

= 0

]
=

1

2
+

1

2
Pr

[∑
i∈T

si = 0

]
≤ 1

2

(
1 +

n

2l

)
,
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where the last inequality is due to i ≤ n − 1 and hence the polynomial
∑

i∈T s
i having at

most n roots and s being uniformly sampled from a field of size 2l. Since the distribution
is δ-biased when

∣∣Pr
[∑

i∈T Xi = 0
]
− Pr

[∑
i∈T Xi = 1

]∣∣ ≤ δ, we need n

2
l ≤ δ, or the seed

length 2l = O(log(n/δ)).

What functions are fooled by δ-biased distribution? Recall that p ε-fools f if∣∣∣∑S 6=∅ p̂(S)f̂(S)
∣∣∣ ≤ 2−nε. Since |p̂(S)| ≤ 2−nδ, we immediately have:

Lemma 1. If
∣∣∣∑S 6=φ f̂(S)

∣∣∣ ≤ c, f is cδ-fooled by every δ-biased distribution.

2 Total Variation Distance:

For two distributions on the same ground set p, q : S → R we define the total variation
distance to be the best amount that an {0, 1}-function on S can distinguish between them:

dTV (p, q) = max
A : S→{0,1}

∣∣∣∣ Ex∼p[A(x)]− E
x∼q

[A(x)]

∣∣∣∣ .
We also define the l1 distance between two distributions p, q as,

|p− q|1 =
∑
x∈S

|p(x)− q(x)|.

Theorem 2.

dTV (p, q) =
1

2
|p− q|1.

Proof. By optimizing the function A : S → {0, 1}, we have

dTV (p, q) = max
A : S→{0,1}

∣∣∣∣ Ex∼p[A(x)]− E
x∼q

[A(x)]

∣∣∣∣
= max

A : S→{0,1}

∣∣∣∣∣∑
x∈S

A(x)(p(x)− q(x))

∣∣∣∣∣
= max

 ∑
x∈S

p(x)≥q(x)

(p(x)− q(x)),
∑
x∈S

p(x)<q(x)

(q(x)− p(x))

 .

The two sums in the last line are actually equal, since∑
x∈S

p(x)≥q(x)

(p(x)− q(x)) =
∑
x∈S

p(x)≥q(x)

p(x) +
∑
x∈S

p(x)<q(x)

q(x)− 1 =
∑
x∈S

p(x)<q(x)

(q(x)− p(x)).

And their sum is exactly |p− q|1. Therefore dTV (p, q) = 1
2
|p− q|1.
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The range of the distinguishing function can also vary. For instance, when A is allowed
to take value in the interval [0, 1], from the proof above we see that A id still optimized when
taking {0, 1} values. Therefore,

max
A : S→[0,1]

∣∣∣∣ Ex∼p[A(x)]− E
x∼q

[A(x)]

∣∣∣∣ = dTV (p, q).

If instead, A is allowed to take value in the interval [−1, 1], we can think of A(x) = 2A′(x)−1
for A′ : S → [0, 1], and thus

max
A : S→[−1,1]

∣∣∣∣ Ex∼p[A(x)]− E
x∼q

[A(x)]

∣∣∣∣ = max
A

′
: S→[0,1]

∣∣∣∣ Ex∼p[2A′(x)− 1]− E
x∼q

[2A′(x)− 1]

∣∣∣∣ = 2dTV (p, q).

Theorem 3. If p : {±1}n → R is δ-biased, then dTV (p, u) ≤ 2n/2δ, where u represents the
uniform distribution.

Proof. By definition, dTV (p, u) ≤ 2n/2δ iff p could 2n/2δ-fool every A : {±1}n → {0, 1}. We

now show
∣∣∣∑S 6=∅ Â(S)

∣∣∣ ≤ 2n/2 and the theorem immediately follows from Lemma 1.

We have, by Parseval’s identity,∣∣∣∣∣∑
S 6=∅

Â(S)

∣∣∣∣∣ ≤√2n − 1

√∑
S 6=∅

Â2(S) ≤
√

2n
√∑

S⊆[n]

Â2(S) =
√

2n
√

E
x∼{±1}n

A2(x) ≤ 2n/2,

as desired.

3 ε-almost k-wise uniformity

Definition 3. Random variables X1, . . . , Xn ∈ S are ε-almost k-wise uniform if

dTV

(
(Xi1

, . . . , Xik
), uk

)
≤ ε

for all distinct i1, . . . , ik ∈ [n], where uk is the uniform distribution over Sk.

Example: Consider the randomized approximate MAX-CUT algorithm, where we want to
derandomize the algorithm by fooling the function A(G, x) = 1

|E|
∑

(i,j)∈E 1xi 6=xj . We showed

how to do it with pairwise uniformity, and the function was fooled exactly (without any error
in expectation). But since an 1/n2 error is allowed, almost pairwise uniformity also suffices.
If x1, · · · xn are ε-almost pairwise uniform then,∣∣∣∣Ex [A(G, x)]− E

r∼{0,1}n
[A(G, r)]

∣∣∣∣ ≤ 1

|E|
∑

(i,j)∈E

dTV ((xi, xj), (ri, rj)) ≤ ε,

and ε = 1/n2 suffices to find a cut of size |E|/2.
We can also define ε-almost k-wise independence:
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Definition 4. Random variables X1, . . . , Xn ∈ S are ε-almost k-wise independent, for all
distinct i1, . . . ik, there exists a mutually independent distribution (Yi1 , . . . , Yik) on Sk such
that dTV ((Xi1

, . . . , Xik
), (Yi1 , . . . , Yik)) ≤ ε.

3.1 Fourier Analysis

There is no simple Fourier characterization of almost k-wise uniformity, but we have a
necessary condition in terms of Fourier coefficients:

Theorem 4. If p : {±1}n → R is ε-almost k-wise uniform then |p̂(S)| ≤ 21−nε,∀1 ≤ |S| ≤ k.

Proof.

|p̂(S)| =
∣∣∣∣ Ex∼p[χS(x)]

∣∣∣∣ · 2−n =

∣∣∣∣ Ex∼p[χS(x)]− E
x∼{0,1}n

[χS(x)]

∣∣∣∣ · 2−n ≤ 2ε · 2−n,

where the last inequality follows from the dTV definition of ε-almost k-wise uniform distri-
bution and the fact that χS(x) ∈ {±1}.

3.2 Construction from δ-biased distributions

Theorem 5 (Vazirani’s XOR Lemma). If p : {±1}n → R is δ-biased, then p is also 2k/2δ-
almost k-wise uniform for every k ≤ n.

Proof. It suffices to prove that, for all A : {±1}n → {0, 1} that depends only on k coordinates

{i1, . . . , ik} of the input x, p 2k/2δ fools A. We only need to bound |
∑

S 6=∅ Â(S)|.

Claim 6. If S 6⊆ {i1, . . . , ik} then Â(S) = 0.

To prove the claim, notice that on the coordinates {i1, . . . , ik} we can already perform
Fourier expansion of A and write A as a polynomial in xi1 , . . . , xik . Since Fourier expansion
is unique, it would the same polynomial when we perform Fourier expansion of A on the
entire n coordinates.

Thus we have, again by Parseval’s identity∣∣∣∣∣∑
S 6=∅

Â(S)

∣∣∣∣∣ ≤√2k
√ ∑

S⊆{i1,··· ,ik}

Â2(S) ≤
√

2k
√

E
x∼{±1}n

A2(x) ≤ 2k/2.

Now we can use Lemma 1 to conclude our theorem.

Since ε = 2k/2δ, the construction of the δ-biased distribution gives a construction of ε-
almost k-wise uniform distribution with seed length O(log(n/δ)) = O(k + log n+ log(1/ε)).
There are several better constructions, most notably by Naor-Naor, that has seed length
O(k + log log n+ log(1/ε)):

• Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications.
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