
CS59200-PRS: Pseudorandomness Sept 10, 2025

Lecture 5: PRG for Derandomization and Branching Programs

Lecturer: Wei Zhan Scribe: Hongao Wang

1 PRG for Derandomization

1.1 Derandomizing BPP

We have already seen several construction of pseudorandom generators (PRGs) in the pre-
vious lectures that fools very specific classes of functions, and several useful tools to analyze
them. In this and the following many lectures, we will focus on the application of pseudo-
random generators for derandomization.

First, we will discuss the goal of derandomization. Vaguely speaking, we want to show
that every randomized algorithm can be converted to a deterministic one with only a small
overhead in time complexity. More precisely, we want to show that BPP = P. Here BPP is
the class of languages that can be decided by a randomized polynomial-time algorithm with
error probability at most 1/3 for all inputs. Formally, we have the following definition of
BPP.

Definition 1. A language L ⊆ {0, 1}∗ is in BPP if there exists m(n) = poly(n), where n is
the length of the input, and a deterministic polynomial-time algorithm A such that for every
input x,

• If x ∈ L, then E
r∼{0,1}m(n)

[A(x, r)] ≥ 2/3.

• If x /∈ L, then E
r∼{0,1}m(n)

[A(x, r)] ≤ 1/3.

Therefore, to derandomize BPP, it suffices to find a family of pseudorandom generator
G : {0, 1}`(n) → {0, 1}m(n) such that:

• G ε-fools every polynomial-time algorithm A(x, r) with every input x, for some small
constant ε, say ε = 0.1;

• `(n) = O(log n);

• G can be deterministically computed within polynomial time in n, or exponential time
in its input length.

1



In this case, we can go through all possible 2`(n) seeds s to simulate the behavior of A(x,G(s))
in polynomial time. However, this goal is impossible to achieve, as we showed in the first
lecture that such PRG must have seed length ω(log n) (otherwise there exists a polynomial
time algorithm that computes

A(x, r) =

{
1 if r ∈ range(G)

0 otherwise

which is not fooled by G).
This is fine because we don’t really need a universe PRG that fools every polynomial-

time algorithm. It would be enough if for every polynomial-time algorithm A, we can find a
pseudorandom generator GA that specifically fools A, with seed length `(n) = O(log n) and
that GA can be computed in polynomial time. This is called targeted PRG. We have already
seen some targeted PRGs, for instance, the one for the approximate MAX-CUT algorithm,
which turn out to be pairwise independence.

But we also cannot just enumerate all polynomial-time algorithms and design a PRG
targeted for each one individually. We still want some general construction that works
for a group of polynomial algorithms. Therefore, our actual goal is that for every c, find a
PRG Gc that fools every polynomial-time algorithm A with time complexity at most nc, with
`(n) = O(log n) and Gc can be computed in polynomial time. Notice that the counterexample
above would not prevent this possibility as the running time of the algorithm A there depends
on G.

1.2 Derandomizing BPL

We have some strong evidence that these PRGs Gc exists, by the Nisan-Wigderson hardness
vs. randomness program, but that is left for another day. For now, we will discuss the
analogous problem of derandomizing algorithms with logspace, on which we have even more
progress. We will first define the class BPL.

Definition 2. A language L ⊆ {0, 1}∗ is in BPL if there exists m(n) = poly(n), where n is
the length of the input, and a deterministic logspace algorithm A with one-way access to r,
such that for every input x,

• If x ∈ L, then E
r∼{0,1}m(n)

[A(x, r)] ≥ 2/3.

• If x /∈ L, then E
r∼{0,1}m(n)

[A(x, r)] ≤ 1/3.

Remark. We require A to have only one-way access to r, so that it is consistent with the
actual behavior of a logspace probabilistic Turing machine: The random coins it uses can
be modeled by a stream of random bits, and to access previously used random coins it must
store them. This way we avoid the problem in our definition where the random bits r are
part of the input and does not count towards the space usage of A.

2



Note that if we instead remove this restriction and allow A to have full access to r, the
corresponding class is then called BP · L (Here BP· works as an operator and can be followed
by any complexity class, by just requiring A to be in that class). It is not known to be the
same as BPL; in fact, it is not even known to be in P.

Now to derandomize BPL, it also suffices to find a PRG G : {0, 1}`(n) → {0, 1}m(n) such
that:

• G 0.1-fools every logspace algorithm A(x, r) that has one-way access to r with every
input x;

• `(n) = O(log n);

• G can be deterministically computed within logspace in n, or linear space in its input
length.

However, this is again impossible to achieve. The counterexample at the start does not
exactly work, but we can modify it a bit so that it can be computed with one-way access to
r. For instance, we let A(x, r) = 1 if the first 2` bits of r are the same with the first 2` bits
of any string in range(G), and 0 otherwise. Then A can be computed in logspace by simply
storing the first 2` bits of r, but

E
r∼{0,1}m

[A(x, r)] ≤ 2−`, while E
s∼{0,1}`

[A(x,G(s))] = 1.

Therefore, we need to relax our goal a bit as previously. Similarly, the actual goal is that
for every c, find a PRG Gc that fools every log-space algorithm A with one-way access to
r with space complexity at most c log n, with `(n) = O(log n) and Gc can be computed in
logspace.

Then we are going to formally discuss the computation model with bounded space, and
introduce Read-Once Branching Program (ROBP).

2 Log Space Turing Machine and Read-Once Branch-

ing Program (ROBP)

The most common way to define space-bounded computation is via Turing Machines with
bounded work tape. Formmaly speaking, A SPACE(s) Turing Machine is a Turing Machine
with three tapes: a read-only input tape contains the input x, a read-write work tape with
only O(s) cells, and a write-only output tape.

Then we will introduce Read-Once Branching Program (ROBP), which has two param-
eters: width w and length n. A ROBP is a directed acyclic graph with n + 1 layers of
vertices, where each layer has at most w vertices. The first layer is the starting layer with a
specific initial vertex. Each vertex in the first n layers has exactly two outgoing edges, one
labeled by 0 and the other labeled by 1. Each vertex in the last layer has only one outgoing
edge to either 0 or 1, which is the output. See Figure 1 for an example. This is a function

3



B : {0, 1}n → {0, 1}, where for every input x ∈ {0, 1}n, we start from the first layer and
follow the edges according to the bits of x until we reach the last layer. The label of the
outgoing edge of the vertex in the last layer is the output B(x).

·
·
·

·
·
·

·
·
·

·
·
·

. . .

. . .

. . .

. . .

. . .

. . .0

1
1

1
w
nodes

n + 1 layer

0

0

1

0

1

1

1

0

output

Figure 1: An example of ROBP.

Then we want to claim that any SPACE(s) Probabilistic Turing Machine can be simulated

by a ROBP with width w = 2O(s) and length n = 2O(s) that is SPACE(s)-uniform (that a
deterministic SPACE(s) Turing machine can output the description of the ROBP). As the
number of possible configurations of the Turing Machine (excluding the input) is at most

2O(s), we can represent each configuration as a vertex in each layer of the ROBP. Then each
layer of the ROBP represents the configurations after reading one more bit of the random
string. Therefore, there are at most n = 2O(s) layers and each layer has at most w = 2O(s)

vertices. However, we should notice that we need to know the input in advance to construct
the ROBP, as the transition function of the Turing Machine depends on the input.

Therefore, A(x, r) can be represented as Bx(r) with width-poly(n) and length-poly(n),
where Bx is the ROBP constructed according to the input x. Hence, our goal becomes to
fool the ROBP Bx. Formally, we have the following theorem.

Theorem 1. Suppose that for every n,w there exists ` = O(log(nw)) and a PRG Gn,w :

{0, 1}` → {0, 1}n that 0.1-fools every ROBP of width w and length n, and Gn,w can be
computed in space O(`). Then BPL = L.

4



2.1 Simulating ROBP by Matrix Powering

Here we share some common recipes for simulating a ROBP B with width w and length n.
The goal is to (approximately) compute E

r∼{0,1}n
[B(r)].

First, we can in general assume the transition function (edges in the ROBP) is time-
invariant. This is because for every ROBP with transition functions ti : [w] × {0, 1} → [w]
at the i-step, we can construct a equivalent ROBP with width (n+1)w and a new transition
function t : [n]× [w]× {0, 1} → [n]× [w] as

t((i, q), b) = (i + 1, ti(q)).

Then the transition function t is time-invariant.
We can define the transition matrices M0,M1 ∈ {0, 1}w×w of the ROBP as

Mb[q
′, q] = 1t(q,b)=q

′ .

Here Mb[q
′, q] is the entry of the matrix Mb at the row q′ and column q. Then we can write

B(x) = 〈vout,Mxn
Mxn−1

· · ·Mx1
vin〉, where vin is the indicator vector of the start vertex, and

vout is the indicator vector of the accepting states. Therefore, we have:

E
r∼{0,1}n

[B(r)] = E
r∼{0,1}n

[〈vout,Mrn
Mrn−1

· · ·Mr1
vin〉]

= vTout E
r∼{0,1}n

[Mrn
Mrn−1

· · ·Mr1
]vin

= vTout

(
M0 + M1

2

)n

vin.

Thus, derandomizing ROBP is equivalent to computing specific entry of the matrix power
Mn for M = (M0 + M1)/2 by deterministic algorithms. A trivial algorithm is to compute
the matrix power directly and this shows that BPL ⊆ P. However, there is a recursive
algorithm that uses only O(log2 n) space to compute this matrix power, which shows that
BPL ⊆ L2 = SPACE(log2 n). The idea is to use the following recursion: for every i, j <

w, Mn[i, j] =
∑n

k=1 M
n/2[i, k] · Mn/2[k, j]. Then we can recursively compute Mn/2[i, k]

and Mn/2[k, j] for every k. The depth of the recursion is O(log n) and each level of the
recursion uses O(log n) space to store i, j, k < w. Therefore, the total space complexity is
O(log n logw), which is O(log2 n). Thus, we got the space bound as disired.

5


	PRG for Derandomization
	Derandomizing BPP
	Derandomizing BPL

	Log Space Turing Machine and Read-Once Branching Program (ROBP)
	Simulating ROBP by Matrix Powering


