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Lecture 6,7: Nisan’s RPG

Lecturer: Wei Zhan Scribe: Arvind Ramaswami

1 Nisan’s PRG

The starting point of Nisan’s PRG is the idea of recursive construction. Suppose that we
already have a PRG G : {0, 1}` → {0, 1}n/2 that ε-fools all length-n/2, width-w ROBPs.
How can we double the output length to obtain a new PRG that fools all length-n, width-w
ROBPs?

The natural idea is to use the PRG G twice, so that the new PRG is (G(s), G(s′)) for
some s, s′ ∈ {0, 1}`. If s is uniformly random so that the first half of the ROBP is fooled,
what should s′ be?

• If s′ is uniform and independent from s, we can indeed show that (G(s), G(s′)) is
pseudorandom by a hybrid argument:

(G(s), G(s′)) ≈ (G(s), x2) ≈ (x1, x2)

for x1, x2 ∼ {0, 1}n/2. However, while the output length of the PRG is doubled, the
seed length also doubles, so in the end we cannot really save any randomness.

• If we went to the other extreme and let s′ = s, then G(s′) = G(s) and they do not look
like random even to a width-2 ROBP (which for instance could check the first bits of
G(s) and G(s′) being the same).

• Therefore, although we want s′ to be deterministically computed from s so that we
don’t have to introduce extra randomness, we want the function h : s 7→ s′ be as
complicated as possible, so that an ROBP with bounded width cannot tell the relation
between s and s′. A (pseudo)random function is with high probability complicated,
and thus is perfectly suitable for the job.

Lemma 1. If h : {0, 1}` → {0, 1}l is drawn from a pairwise uniform hash function family,
then for all A : {0, 1}2` → [0, 1], w.p. at least 1− 1

2
`
ε
2 over h, we have∣∣∣∣∣ E

s,s
′∼{0,1}`

[A(s, s′)]− E
s∼{0,1}`

[A(s, h(s))]

∣∣∣∣∣ ≤ ε.

Proof. This is a direct implied by the pairwise independent Chebyshev’s inequality, since
the random variables A(s, h(s)) for s ∈ {0, 1}` (with randomness from h) are pairwise inde-
pendent and each has expectation E

h
[A(s, h(s))] = E

s
′
[A(s, s′)].
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Now for the branching programB : {0, 1}n → {0, 1}, we can takeA(s, s′) = B(G(s), G(s′))
and use the hybrid argument to easily show that:

Corollary 2. If G : {0, 1}` → {0, 1}n/2 ε-fools all length-n
2
, width w ROBPs, then for every

length-n, width-w ROBP B, w.p. at least 1 − 1

2
`
δ
2 over h from a pairwise uniform hash

family, the PRG Gh : {0, 1}` → {0, 1}n defined as

Gh(s) = (G(s), G(h(s)))

(2ε+ δ)-fools B.

This motivates us to recursively construct Nisan’s PRG, doubly the output length in each
step. Initially let G : {0, 1}` → {0, 1}` be G(s) = s, so that G is truly random. And in the
i-th step, let

Gh1,...,hk
(s) = (Gh1,...,hk−1

(s), Gh1,...,hk−1
(hk(s)))

for a new hash function hk drawn from the pairwise uniform family. For instance

• Gh1
(s) = (s, h1(s)),

• Gh1,h2
(s) = (s, h1(s), h2(s), h1(h2(s))),

• Gh1,...,hk
(s) = (s, h1(s), h2(s), h1(h2(s)), h3(s), . . . , h1(h2(. . . hk(s) . . .))).

Notice that the i-th block of Gh1,...,hk
can be easily computed from the binary representation

of i.
We should be able to argue that with high probability over the choices of h1, . . . , hk,

Gh1,...,hk
fools all length-2k`, width-w ROBPs. However, Corollary 2 is not sufficient, as its

assumption too strong for its conclusion to match (the assumption is that the PRG from
the previous step universally fools all ROBP, but we could only conclude the PRG after
the current step fools a single ROBP). We need some weaker assumption, that instead of G
fooling all ROBPs, it only needs to fool every ROBP with the same transition functions as
the half of B (but the initial states and final states could vary).

1.1 Matrix Formulation

Recall the in the lecture from last week we showed that the transition functions of the ROBP
B have a succinct matrix formulation. Assuming each layer of B has the same transition
function, we let M0,M1 ∈ {0, 1}w×w be that M0[i, j] = 1 (resp. M1[i, j] = 1) if and only
if state j goes to state i in the next layer with an edge labeled with 0 (resp. 1). Then
the execution of B on input x ∈ {0, 1}n can be represented by Mx = Mxn

· · ·Mx1
, and for

M = (M0 +M1)/2,
E

x∼{0,1}n
[Mx] = Mn.

The matrix M is a stochastic matrix in the sense that every column of M is a distribution.
To fool B, we want to approximately compute the n-th power of the stochastic matrix M ,
and for convenience we give the following definition.

2



Definition 1. The PRG G : {0, 1}` → {0, 1}n ε-fools Mn, for M = (M0 + M1)/2 corre-
sponding to a width-w ROBP, if∥∥∥∥∥ E

s∼{0,1}`
[MG(s)]−Mn

∥∥∥∥∥
1

≤ ε.

Remark. Here ‖·‖1 is the operator norm induced by the `1-norm on vectors. In other words,
for M ∈ Rn×n,

‖M‖1 = max
|v|1=1

|Mv|1 = max
i

∑
j

|M [j, i]| .

We will use two properties of the norm: First, ‖M‖1 = 1 for every stochastic matrix M .
Second, the norm is submultiplcaitive, i.e.

∥∥MM ′∥∥
1
≤ ‖M‖1

∥∥M ′∥∥
1
.

Lemma 3. If h : {0, 1}` → {0, 1}` is drawn from a pairwise uniform hash function fam-
ily, then for every M ∈ Rw×w corresponding to a width-w ROBP, and every function

G : {0, 1}` → {0, 1}n/2, w.p. at least 1− w
4

2
`
ε
2 over h we have∥∥∥∥∥ E

s,s
′∼{0,1}`

[MG(s),G(s
′
)]− E

s∼{0,1}`
[MG(s),G(h(s))]

∥∥∥∥∥
1

≤ ε.

Proof. In Lemma 1, taking A(s, s′) = MG(s),G(s
′
)[i, j], we have that the difference in each

entry of the matrix ∣∣∣∣ E
s,s
′
[MG(s),G(s

′
)[i, j]]− E

s
[MG(s),G(h(s))[i, j]]

∣∣∣∣ ≤ ε

w

w.p. at least 1− w
2

2
`
ε
2 over h. The claim of the theorem is implied by using the union bound

over i, j ∈ [w], and the fact that the difference in matrix 1-norm is at most the sum of w
differences in a single column.

We can now apply the hybrid argument to prove a more useful version of Corollary 2 as
follows.

Corollary 4. Let M ∈ Rw×w correspond to a width-w ROBP. If G : {0, 1}` → {0, 1}n/2

ε-fools Mn/2, then w.p. ≥ 1− w
4

2
`
δ
2 over h from a pairwise uniform hash function family,

Gh(s) = (G(s), G(h(s)))

(2ε+ δ)-fools Mn.
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Proof. By triangle inequality we have∥∥∥∥∥ E
s∼{0,1}`

[MGh(s)
]−Mn

∥∥∥∥∥
1

≤

∥∥∥∥∥ E
s∼{0,1}`

[MG(s),G(h(s))]− E
s,s
′∼{0,1}`

[MG(s),G(s
′
)]

∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥ E
s,s
′∼{0,1}`

[MG(s),G(s
′
)]− E

s∼{0,1}`

x2∼{0,1}
n/2

[MG(s),x2
]

∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥ E
s∼{0,1}`

x2∼{0,1}
n/2

[MG(s),x2
]− E

x1,x2∼{0,1}
n/2

[Mx1,x2
]

∥∥∥∥∥∥∥∥
1

The first term is at most δ w.p. at least 1− w
4

2
`
δ
2 over h, by Lemma 3. The second term can

be bounded using submultiplicativity since∥∥∥∥ E
s,s
′
[MG(s),G(s

′
)]− E

s,x2
[MG(s),x2

]

∥∥∥∥
1

=

∥∥∥∥Es [MG(s)]

(
E
s
′
[MG(s

′
)]− E

x2
[Mx2

]

)∥∥∥∥
1

≤
∥∥∥E
s
[MG(s)]

∥∥∥
1

∥∥∥∥E
s
′
[MG(s

′
)]− E

x2
[Mx2

]

∥∥∥∥
1

=
∥∥∥E
s
[MG(s)]

∥∥∥
1

∥∥∥∥E
s
′
[MG(s

′
)]−M

n/2

∥∥∥∥
1

≤ ε.

This is because E
s
[MG(s)] is stochastic, and G ε-fools Mn/2. Similarly, the third term is also

at most ε, and thus the total error is bounded by 2ε+ δ.

To examine the pseudorandomness of Nisan’s PRG, notice that initially G(s) = s per-
fectly fools M `, and applying Corollary 4 iteratively gives us

• Gh1
(s) δ-fools M2`;

• Gh1,h2
(s) 3δ-fools M4`;

• ...

• Gh1,...,hk
(s) (2k − 1)δ-fools M2

k
`

with high probability over the choices of h1, . . . , hk by a union bound. We thus conclude the
following theorem.

Theorem 5. Let h1, . . . , hk : {0, 1}` → {0, 1}` be drawn from a pairwise uniform hash family.

For every width-w, length-n ROBP (n = 2k`) B, w.p. at least 1 − w
4
k

2
`
δ
2 over h1, . . . , hk,

Gh1,...,hk
(s) ε-fools B with ε = 2kδ.

4



Looking at the parameters, we can choose k = O(log n) and δ = O(1/n) to achieve a
small constant ε. Therefore we have ` = O(log(w4k/δ2)) = O(log(nw)) for h1, . . . , hk to exist.
However, in this case Gh1,...,hk

is not explicit as we don’t know which choices of h1, . . . , hk
are good. In fact, if we don’t care about explicitness then the probabilistic argument in our
very first lecture already gives a PRG of seed length O(log(nw)), since there are at most
w2nw · 2w many length-n, width-w ROBPs.

Therefore, we need to think of the randomness used to sample h1, . . . , hk as part of the
seed, resulting in the actual seed length O(k`) = O(log n · log(nw)). The good thing is that
now Gh1,...,hk

(s) is explicit and can be efficiently computed from the seed, and the PRG fools

every width-w, length-n ROBP with error ε+ w
4
k

2
`
δ
2 which is still small.

2 BPL ⊆ SC

For logspace computation, Nisan’s PRG has seed length O(log2 n), so if we naively use it to
derandomize BPL we could only get BPL ⊆ L2, which is no better than the simple recursive
matrix powering algorithm. However, Nisan’s PRG has the good property that its seed can
be divided into O(log n) parts and each part “works” with high probability, allowing Nisan
to show that BPL ⊆ SC. Here

SC =
⋃
c>0

TISP(nc, logc n)

consists of all languages decidable by an algorithm running simultaneously in polynomial time
and poly-logarithmic space (we had two matrix powering algorithms that each separately
runs in polynomial time and poly-log space). The name SC means Steve’s Class, as a tribute
to Stephen Cook.

Here we give a very informal proof of the fact. The observation is that, each hi in Nisan’s
PRG is good, if in the corresponding step of the recursive construction, the claim in Lemma 3
holds. If we can compute G = Gh1,...,hi−1

efficiently, then we can check if each hi from the
pairwise uniform family is good by computing every entry of the two matrices

E
s,s
′∼{0,1}`

[MG(s),G(s
′
)], E

s∼{0,1}`
[MG(s),G(h(s))]

in n ·w2 ·2O(`) = poly(n) time. Once we found the good hi we can store the length-O(`) seed
for it, and the bottleneck of space usage is for storing all k good seeds, thus O(log2 n) space.
Finally, Gh1,...,hi−1

can indeed be computed efficiently if we have already stored the seeds for
h1, . . . , hi−1. In particular, we can use the construction h(x) = s1x + s0 for s0, s1 ∈ F

2
` , so

that each part of G, which is just different h iteratively applied on s, can be computed in
poly(`) time and O(`) space.
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