
CS59200-PRS: Pseudorandomness Sept 24, 2025

Lecture 9: INW Generator and Exapander Graphs

Lecturer: Wei Zhan Scribe: Xiuyu Ye

1 INW Generator

In Nisan’s PRG, we showed that after fixing the distinguisher A : {0, 1}2` → [0, 1], with high
probability over pairwise independent hash functions h we have E[A(s, s′)] ≈ E[A(s, h(s))].
This is in contrast to the total variation distance, and indeed it is impossible to have a small
dTV

(
(s, s′), (s, h(s))

)
for any fixed hash function h. However, we still have

dTV

(
(s, s′), (s, h(s))

)
= 0

when we consider h as random, and it turns out that this suffices for the fooling argument.
In fact, we only need a weaker guarantee on the total variant distance, as the branching
program will only store logw bits of information about s in the first half.

Definition 1 (ε-recycling). Let d ∈ N+. A function H : {0, 1}`× [d]→ {0, 1}` is ε-recycling
if for every w ∈ N+ and every function F : {0, 1}` → [w],

dTV

((
F (s), s′

)
, (F (s), H(s, r))

)
≤ wε

where s, s′ are chosen randomly from {0, 1}` and r is chosen randomly from [d].

Intuitively, F (s) represents the node at the middle layer of the ROBP, reached by fol-
lowing the PRG output with seed s in the first half. Meanwhile H represents the family of
hash functions, and r is the randomness for sampling such a hash function from this family.
H effectively recycles the seed s to generate a new seed H(s, r) for the second half of the

ROBP. So in the case of Nisan’s PRG, H is a pairwise independent family with d = 2O(`),
and it is 0-recycling.

1.1 The construction

The Impagliazzo-Nisan-Wigderson (INW) generator is build directly upon ε-recycling func-
tions, using the same idea of recursive construction that double the PRG output length as
in Nisan’s generator. Consider a family of ε-recycling functions with varying inputs lengths

H =
{
Hk : {0, 1}`+(k−1) log d × [d]→ {0, 1}`+(k−1) log d}

k∈N.

1

Initially, let G0 : {0, 1}` → {0, 1}` be G0(s) = s such that when s is chosen randomly from
{0, 1}`, G outputs a random `-bit string. At the k-th step, define

Gk(sk) := (Gk−1(sk−1), Gk−1(Hk(sk−1, rk)))

where sk stands for the combined seed sk = (sk−1, rk) = (s, r1, . . . , rk). Each of the extra
randomness r1, r2, . . . , rk is chosen randomly from [d]. For instance,

• G1(s, r1) = (G0(s), G0(H1(s, r1))) .

• G2(s, r1, r2) = (G1(s, r1), G1(H2(s, r1, r2))) .

• Gk(s, r1, . . . , rk) = (Gk−1(s, r1, . . . , rk−1), Gk−1(Hk((s, r1, . . . , rk−1), rk))) .

Remark. Unlike Nisan’s PRG, here the seed length is increasing in each step for including the
extra randomness (and hence they are part of the PRG parameters instead of subscripts).
Why can’t we just use the same H1 to recycle only s? For instance, if we instead let

G2(s, r1, r2) = (G1(s, r1), G1(H1(s, r2), r1)) ,

The reused r1 might introduce some unwanted correlations between the first and the second
half. In Nisan’s PRG we can fix r1 since with high probability r1 is a good choice, but we
don’t have that privilege here.

Theorem 1. The INW generator Gk with ε-recycling functions (2k−1)wε-fools all width-w,
length-2k` ROBPs.

Proof. We use induction on k, and assume this is true for k−1. Consider an arbitrary width-
w, length-2k` ROBP B. With the same hybrid argument as in Nisan’s PRG, by triangle
inequality,∣∣∣∣∣∣ E

sk∼{0,1}
`×[d]k

[B(Gk(sk))]− E
x∼{0,1}2

k
`

[B(x)]

∣∣∣∣∣∣
≤

∣∣∣∣∣ E
sk∼{0,1}

`×[d]k
[B(Gk(sk))]− E

sk−1,s
′
k−1∼{0,1}

`×[d]k−1

[
B(Gk−1(sk−1), Gk−1(s

′
k−1))

]∣∣∣∣∣
+

∣∣∣∣∣∣∣ E
sk−1,s

′
k−1

[
B(Gk−1(sk−1), Gk−1(s

′
k−1))

]
− E

sk−1

x2∼{0,1}
2
k−1

`

[B(Gk−1(sk−1), x2]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ E
sk−1,x2

[B(Gk−1(s, r1, . . . , rk−1), x2]− E
x1,x2∼{0,1}

2
k−1

`

[B(x1, x2)]

∣∣∣∣∣∣ .
The first term in the right hand side is at most wε because of the ε-recycling property, and
the rest two terms are both bounded by (2k−1 − 1)wε by induction hypothesis. Therefore
the total error is bounded by wε+ 2(2k−1 + 1)wε = (2k − 1)wε.

2

To fooling length-n ROBPs, we can take ` = O(1), k = O(log n) and the seed length of
the INW generator is O(` + k log d) = O(log n · log d), while we need ε = O(1/(nw)). How
small could d be? We have the following simple argument.

Theorem 2. If H : {0, 1}` × [d]→ {0, 1}` is ε-recycling, then d ≥ Ω(min(ε−1, 2`)).

Proof. Let F : {0, 1}` → [w] be a function with output as uniform as possible, so that for
each v ∈ [w], |F−1(v)| ≤ d2`/we. Notice that

dTV

((
F (s), s′

)
, (F (s), H(s, r))

)
= E

v

[
dTV

(
s′, H(s, r)|F (s) = v

)]
where v follows the same distribution as F (s), and H(s, r)|F (s) = v is the distribution of
H(s, r) conditioned on F (s) = v, which has a support of size of |F−1(v)| · d.

On the other hand, when we take w = 1/2ε, the total variation distance above is at most
1/2, and that means for at least one v, the support size of H(s, r)|F (s) = v is at least 2`/2.
Therefore we have

2`/2 ≤ d2`/we · d ≤ (2ε · 2` + 1) · d
which implies that d ≥ Ω(min(ε−1, 2`)).

Since in the INW construction we will take ε-recycling functions with input length up to
log n · log d, in the above statement 2` will dominate d and thus we get d = Ω(ε−1). That
means the seed length is O(log n · log(1/ε)) = O(log n · log(nw)), which is as good as Nisan’s
PRG.

1.2 Find ε-recycling functions

One way to construction an ε-recycling function, as we mentioned, is by pairwise independent
hash functions. In fact, even random constant functions are 0-cycling since we only used
the fact that the marginal distribution of h(s) for each s is uniform. However, we cannot
use them in the INW generator, because they require d ≥ 2` and thus in every step of the
recursion we need to take a larger d, which grows double-exponentially. Instead, we want a
family of ε-recycling function where d is a constant.

To understand more about the requirement of ε-recycling, let us examine an arbitrary
distinguisher function A : [w]× {0, 1}` → 0, 1. We can write

A(F (s), s′) =
∑
v∈[w]

1F (s)=v(s) · 1A(v,s′)=1(s
′).

Here each term in the sum is a combinatorial rectangle, i.e. a function on s and s′ of form
1S(s) · 1S′(s

′), which is a product of two indicator functions on s and s′ respectively. If H
fools all combinatorial rectangles, then H surely fools all distinguishers A that are sums of
w combinatorial rectangles and is thus ε-recycling.

Definition 2 (ε-mixing). A function H : {0, 1}` × [d] → {0, 1}` is ε-mixing if (s,H(s, r))
(with uniformly random s ∼ {0, 1}`, r ∼ [d]) ε-fools every combinatorial rectangle.

Lemma 3. ε-mixing implies ε-recycling.

Hence our next goal is to find ε-mixing functions such that d is small.

3

2 Expander Graphs

The property of ε-mixing has a nice graph-theoretic interpretation. Recall that a d-regular
graph is a graph where each vertex has d neighbors. We think of H as a d-regular graph
over vertex set {0, 1}`, and H(s, r) denotes the r-th neighbor of s.

Equivalent as Definition 2, a d-regular graph H is ε-mixing if it is indistinguishable from
a complete graph (including self loops) when considering any subset of vertices.

Definition 3 (ε-mixing). A d-regular graph H = (V,E) is ε-mixing if for all subsets S, S ′ ⊆
V, ∣∣∣∣∣e(S, S ′)nd

−
|S|
∣∣S ′∣∣
n2

∣∣∣∣∣ ≤ ε

where |V | = n and e(S, S ′) counts the number of directed edges between set S and S ′, i.e.
e(S, S ′) =

∣∣{(i, j) ∈ E | i ∈ S, j ∈ S ′}∣∣ .
For a proof of the equivalence, notice that the expectations of 1S(s)·1S′(s

′) where (s, s′) is

uniformly drawn from the edges of H or the complete graph are e(S,S
′
)

nd
and

|S||S′|
n
2 respectively.

In other words, we are comparing the fraction of edges from S to S ′ in both graphs.
As a special case of Definition 3, take S ′ to be S = V \ S. The ε-mixing property means

that the number of edges going from S to S cannot be too small; it has to be at least
proportional to the size of S. In fact, we have a specific notion as follows.

Definition 4 (α-edge expanding). A d-regular graph H = (V,E) is α-edge expanding if for
all S ⊆ V , |S| ≤ n/2,

e(S, S) ≥ α · d · |S| .

Remark. ε-mixing is close, but not exactly enough to imply edge expanding, because we
could only get

e(S, S) ≥ d

n
|S||S| − εnd ≥ 1

2
d|S| − εnd.

Another closely related notion is vertex expansion, regarding the number of neighbors
for a subset of vertices.

Definition 5 (α-vertex expanding). A d-regular graph H = (V,E) is α-vertex expanding if
for all S ⊆ V, |S| ≤ n/2,

|N(S) \ S| ≥ α · |S|

where N(S) denotes the neighboring vertices of S.

The expander graphs, which are graphs with either of the three properties above, are
given the name because of the fact that no subset of vertices is badly connected with the
rest of graph, and thus the set of reachable vertices is always expanding while taking more
and more steps.

4

Remark. α-edge expanding implies α-vertex expanding, because each vertex in N(S) \ S
provides at most d edges for e(S, S). However, the best edge expansion is 1/2 while the
best vertex expansion is 1 (both can be seen by taking a random subset of vertices S with
|S| = n).

How do we construct expander graphs? We will learn the actual explicit construction in
later lectures, but for now let us explore some random construction.

Theorem 4. Let G(n, d/n) be an Erdös-Rényi graph with n vertices and each edge is sampled
independently with probability d/n. Then, G(n, d/n) is ε-mixing with probability 1 − 22n ·
2e−

1
6
ε
2
dn.

Note that the Erdös-Rényi graph will almost surely not be d-regular, and only the ex-
pected degree for each vertex is d.

Lemma 5 (Multiplicative Chernoff Bound). Let X =
∑n

i=1Xi, where Xi ∈ [0, 1] are inde-
pendent. Let µ = E[X]. Then, for ε > 0,

Pr[|X − µ| ≥ ε] ≤ 2e−
1
3
ε
2
µ
−1

.

Proof of Theorem 4. Notice that e(S, S ′) in G(n, d/n) is a sum of at most |S||S ′| independent
random variables (the edges between vertices in S ∩ S ′ will be counted twice). Thus

Pr

[∣∣∣∣e(S, S ′)− d

n
· |S|

∣∣S ′∣∣∣∣∣∣ ≥ εdn

]
≤ 2 exp

(
−1

6
· (εdn)2

d
n
|S|
∣∣S ′∣∣

)
(Each edge contribute at most 2 to e(S, S ′), Lemma 5)

≤ 2 exp

(
−1

6
· ε2dn

)
(|S| ,

∣∣S ′∣∣ < n)

Then,

Pr[G(n, d/n) is not ε-mixing] = Pr
[
∀S, S ′ ⊆ V,

∣∣e(S, S ′)− E[e(S, S ′)]
∣∣ ≥ εdn

]
≤

n∑
i=0

(
n

i

)
·

n∑
j=0

(
n

j

)
· 2 exp

(
−1

6
· ε2dn

)
(Union bound)

= 22n · 2 exp

(
−1

6
· ε2dn

)
This means that G(n, d/n) is ε-mixing with high probability when d = O(1/ε2). However,

to show edge and vertex expansion, we need an actual model for random regular graph. A
uniformly random regular simple graph is hard to sample, and there are two common ways
to sample d-regular graphs which are not guaranteed to be simple.

Example (Permutation Model). Let d be even. Draw d/2 permutations σ1, σ2, . . . , σd/2 from
permutation group Sn. Let the edge set E = {(i, σj(i)), (σj(i), i) | i ∈ V, j = 1, 2, . . . , d/2}.

5

Example (Matching Model). Let n be even. Draw d perfect matchings M1,M2, . . . ,Md on
V , and let the edge set E be the union of these matchings.

It can be shown that either random graph will have close to optimal edge and vertex
expansion with high probability. We are not going to do that here, and instead in the next
lecture we will introduce yet another notion of graph expansion which subsumes all the three
above, and construct expander graphs using the new notion.

6

	INW Generator
	The construction
	Find -recycling functions

	Expander Graphs

