
Randomness and Quantumness in
Space-Bounded Computation

Wei Zhan

a dissertation
presented to the faculty
of princeton university

in candidacy for the degree
of Doctor of Philosophy

recommended for acceptance
by the Department of
Computer Science

Adviser: Ran Raz

September 2023

© Copyright byWei Zhan, 2023. All rights reserved.

Abstract

In the field of computational complexity theory, we study the power and limits of dif-
ferent computational resources and the interplay between them. The constraints on space
complexity provide a natural and interesting setting, that is often more tractable than the
time-restricted counterparts. In this dissertation, we specifically study how randomness and
quantumness interact with space complexity.

Our results consist of two parts. In the first part, we present our algorithmic results. We
show that randomness used for BPL algorithms can be reduced to logarithmic with the
access to untrusted random bits. Consequentially, every BPL algorithm can be certifiably
derandomized using presumably hard functions. For quantum computing, we show how
to eliminate intermediate measurement in logspace quantum circuits, and simulate general
quantum algorithms in BQLwith only unitaries.
In the second part, we present our lower bound results. For decision problems, we pro-

pose the coupon-collector model where one receives random coordinates of the input, and
prove a quadratic time-space tradeoff lower bound in the model. For computing multi-
output functions, we prove the first polynomial separation between randomized and de-
terministic oblivious computation for total functions. And for learning, we prove an ex-
ponential time lower bound against classical-quantum hybrid learners with sub-quadratic
classical memory and sublinear quantummemory.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Randomness with Bounded Space . 3
1.2 Quantum computation with Bounded Space 8
1.3 Learning with Bounded Space . 10
1.4 Dissertation Organization and Bibliographic Details 14

2 Preliminaries 16
2.1 Vectors andMatrices . 17
2.2 Quantum Information . 19
2.3 Some Useful Inequalities . 23
2.4 Computational Models and Complexity Classes 28

I Algorithmic Results 33

3 Overview of Part I 34

4 Robustly Randomized Algorithms 41
4.1 Simple Relations with Other Classes . 42
4.2 Streaming Proof for BPL . 48
4.3 Query-Complexity Separations . 56

5 Certified Hardness vs. Randomness for Logspace 60
5.1 Logspace Verifier for PRG . 61
5.2 Efficiently Reconstructive Derandomization 66
5.3 Universal Derandomization of BPL . 87

6 Unitary Quantum Simulation 93
6.1 Unitary Quantum Logspace Algorithms 94
6.2 Error Reduction in BQUL . 100
6.3 Equivalence of Learning and Deciding 106
6.4 Bonus: Streaming Proof for BQL . 112

iv

II Lower Bound Results 117

7 Overview of Part II 118

8 Decision Problems: The Coupon-CollectorModel 128
8.1 Zero-Error Coupon Collector . 129
8.2 Relation with Oblivious Branching Programs 136

9 Multi-Output Functions: A Polynomial Separation 140
9.1 The Borodin-CookMethod . 141
9.2 Polynomial Separation for Oblivious Computation 144
9.3 Separations that Imply Decision Lower Bounds 150

10 Learningwith Classical-QuantumHybridMemory 161
10.1 Classical-QuantumHybrid Model . 162
10.2 Linear Quantum Lower Bound . 167
10.3 Truncation of Classical-Quantum Branching Programs 173
10.4 Target Distribution and Badness . 188

References 203

v

To the light of my life.

vi

Acknowledgments

First and foremost, I want to express my gratitude to my PhD adviser, Ran Raz, who pa-
tiently walked me through the basics in my junior years when I was weak in the fundamen-
tals, who always encouraged me on my unorthodox research ideas while being very careful
about the correctness, and who was extremely forgiving of my chaotic sleep schedules and
my poor memory for not appearing in meetings. His extensive knowledge, rigorous atti-
tude and easygoing personality has positively influenced me throughout the years. I am so
indebted, yet so honored to have Ran as my mentor.

I was fortunate to collaborate with some of the most brilliant researchers during my
PhD, including Sumegha Garg, Uma Girish, Justin Holmgren, Qipeng Liu, Kunal Mit-
tal, Edward Pyne, Ran Raz and Huacheng Yu. I want to thank Jian Li and Seth Pettie for
introducing me to the theory world in my undergraduate years, and also Zeev Dvir and
Emmanuel Abbe for guiding me in my first year when I was unclear about what type of
research I want to do. I cannot overstate howmuch I learned from discussing with them,
which not only led to the results presented in this dissertation, but overall helped me find
the direction I like. Besides my collaborators and advisors, there are countless other people
who generously shared their knowledge with me via in-person discussions, emails or online
forums. I could not list all of you here, but I am sincerely grateful for your inputs.

I want to thank the computer science department and the theory group, including the
staff, the faculty and the students, for creating such a wonderful working environment. In
particular, I am thankful to Nicki Mahler andMitra Kelly for their prompt support on ad-
ministrative issues; to Mark Braverman, Gillat Kol, Ran Raz, Zeev Dvir and Huacheng Yu
for taking their time being my committee members; and to Fermi Ma and Clayton Thomas
for helping me when I was in need.

I am grateful to Princeton University for offering me the Francis Robbins Upton Fel-
lowship. My research was also funded by Ran’s grants from Simons foundation and NSF.

The journey would not be so fun without the help and supports frommy friends. As a
partial list, let me share my thanks to Zhiyuan Li and Yuping Luo, who tried out the dishes
I made; to Jiaxin Guan, who shared with me the dishes he made; and to Runzhe Yang, who
collaborated dishes with me. As well as thanks to Dingli Yu for letting me petting his dog,
and to Xiaoqi Chen for his constant Chanel shipments. Special thanks to the friends I met
in the Werewolf board games, where I spent some of the most enjoyable Saturday nights.

Finally, I want to give my heartfelt thanks to two of my lifelong friends: KodyWang and
Zui Tao, along with my parents and my cousin, for their continued company and support.

vii

1
Introduction

Howmuch computational resources do we need for a computation task? This is

the fundamental problem in computational complexity theory, where the resources of in-

terest vary frommodel to model, including but not limited to time, space, randomness,

communication with other parties, etc. Usually we could utilize multiple dimensions of

resources which demonstrate interesting interplay: sometimes there is a smooth tradeoff

between two resources, and other times one overshadows another. Studying these phenom-

ena not only provides insights on how to optimize resource allocation for different tasks

in practice, but also has great theoretical value for understanding the roles played by these

resources in computation.

Ever since the introduction of computational complexity [HS65], a majority of the

efforts from theorists have been made in exploring the interactions between different re-

sources and time complexity. Indeed, the most influential open problems in classical com-

plexity theory, derandomization and quantum computing respectively, P versusNP, BPP

1

and BQP, can be viewed as the questions of whether nondeterminism, randomness and

quantummechanics enhance the power of time-bounded computation. Decades of re-

search lead to significant advancements in our knowledge on these questions (some of

which we will mention in the corresponding parts of this dissertation), yet it is still widely

open whether any ofNP, BPP or BQP could be equal to P or much larger classes, say,

EXP.

In comparison, despite it receiving relatively less attention, we still saw plenty of results

proved exclusively for space-bounded computation, especially the algorithmic ones show-

ing that certain resources can efficiently simulate others. Generally speaking, the space con-

straint provides extra structures that are useful in designing simulation algorithms. And

specifically for logspace computations, operations like going over all possible configurations

(which in general would take exponential time) are enabled. For instance, many computa-

tional resources can be replaced by a quadratic increase in space, and as a result the space-

counterpart of the aforementioned classes,NL, BPL and BQL, are all easily shown to be

contained in L2. In fact, much more are known about these space-bounded classes, and

people are quite optimistic about the resolution of some fundamental problems such as L

vs BPL. We will review the developments on related topics later in this chapter.

On the other hand, to show that certain resources are essential and cannot be replaced

at a small cost, we need to prove corresponding lower bounds. Lower bounds results seems

easier to prove with the additional space constraint, but in reality this is mostly not the case.

Most of the lower bounds in space complexity we know today are proved via communica-

tion complexity, which applies only to the streaming model. For more general computation

models, the same method leads to resorting to multi-party communication complexity,

2

where we do not know any non-trivial result for a large number of parties. Even worse, Bar-

rington’s Theorem implies that without huge breakthroughs in circuit complexity, even

with extreme space constraints, we cannot expect to prove any lower bound better than

some small polynomial for decision problems. Fortunately, it turns out that we can cir-

cumvent the obstacles and prove meaningful lower bounds by modifying the computation

model, or by considering non-decision problems. But even then, there are still plentiful

challenging open problems that await to be resolved.

This dissertation is devoted to the study of the above problems, in particular to under-

stand more about the power of randomness and quantumness when interacting with space

complexity. Below we briefly motivate and summarize the results included in this disserta-

tion.

1.1 Randomness with Bounded Space

To what extend could randomness help reducing other computational resources? When

the resource of interest refers to time, it is widely believed that randomness could not pro-

vide exponential speed up in general sequential computation models, and algorithms us-

ing randomness can be efficiently derandomized, yielding deterministic algorithms with

the same functionality. Indeed, by the hardness-vs-randomness paradigm [Sha81, Yao82,

BM84, NW94, IW97, STV01], BPP = P under plausible cryptographic or hardness as-

sumptions. As noted in [KvM02], the framework also works in the space-bounded regime,

that BPL = L assuming the existence of space-efficient hard functions.

Unlike the polynomial-time counterpart, there are also considerable progress towards

proving unconditional efficient derandomization of BPL, and one can refer to [Sak96] and

3

[Hoz22] respectively for earlier and more recent developments in the area. Most notably,

it was proved that BPL ⊆ L3/2 by Saks and Zhou [SZ99], and the result was slightly im-

proved to BPL ⊆ DSPACE(log3/2 n/
√

log log n) by Hoza [Hoz21].

Their results are based on simpler derandomization objects such as pseudorandom gen-

erators (PRGs). Improving the constructions of these objects is the most direct approach

to achieve the final goal of proving BPL = L: If we can construct a PRGwith seed length

O(log n) that fools BPLmachines, then by going over all possible seeds we can fully de-

randomize BPL. Actually, it turns out that PRG is not even necessary and a hitting-set

generator with seed lengthO(log n) suffices to imply that BPL = L [CH22]. However,

currently the best known seed length for all these objects areO(log2 n) [Nis90, INW94,

BCG18, Hoz21], which only yield the trivial BPL ⊆ L2 when applied naively. The results

in [SZ99] and [Hoz21] applied these objects in much more sophisticated ways.

In this dissertation we present several results that supplement this line of work, and prac-

tically derandomize all problems in BPL. To start with, we show thatO(log n) trusted ran-

domness suffices for computation in BPL. In contrast to true randomness, we allow the

algorithm to use untrusted randomness which is supposed to be randomness but could

have arbitrary distribution.

Theorem 1.1. For every problem in BPL, there is a randomized logspace algorithm that uses

O(log n) truly random bits and an unlimited number of untrusted random bits, such that:

1. If the untrusted random bits are perfectly random, then the algorithmmust output the

correct answer with high probability.

2. For every possibility of the untrusted random bits, even adversarially chosen after seeing

4

the input, the algorithmmust with high probability either output the correct answer or

abort the computation.

Theorem 1.1 is formally stated as Theorem 4.1.11 and proved in Section 4.2.2. The sec-

ond guarantee in Theorem 1.1 makes our algorithm literally error-free: we can use anything

as the untrusted randomness, such as the digits of π, and in the worst case the computation

just gets aborted with high probability. In addition, in most cases the digits of π should be

irrelevant to the computation that we execute and thus look indistinguishable from per-

fectly random numbers, and we could hope to receive the correct answer with high proba-

bility.

After all, the digits of π are not designed to fool randomized computation, but there are

things designed to do so, namely the pseudorandom generators. In particular, when we use

the outputs of the PRGs based on hard functions [BM84, NW94, IW97] as the untrusted

randomness, we either obtain the correct answer and successfully derandomize, or know for

a fact that the PRG is distinguishable from perfect randomness when the algorithm aborts.

The latter case further implies that the hard function, which the PRG is based on, is not

really hard.

Theorem 1.2. For every family of functions f decidable in linear space, with the hardness

assumption that it cannot be computed by circuits of size 2εn for some ε > 0, there is a deter-

ministic logspace process that, given a BPL algorithm, outputs either

1. The correct derandomized answer of the algorithm; Or

2. A small circuit computing f that refutes the hardness assumption.

5

Theorem 1.2 is formally stated as Theorem 5.1.1. We can view it as a practical deran-

domization of BPL: For instance, we can use SAT as the hard function fwhose hardness

is based on the non-uniform version of Exponential Time Hypothesis (ETH) [IP99],

and choose a scale of diminishing ε. Previously we believe this works because we believe

in ETH, but the derandomized result cannot be fully trusted as there is no guarantee on

the result in a world where ETH is false. In comparison, no matter ETH is true or not, the

derandomized result in Theorem 1.2, if outputted, is always correct.

Another way to think of using PRG as untrusted randomness is that, Theorem 1.1 ef-

fectively provides an efficient way to check whether a PRG is working (for the specific de-

randomization instance) or not. Suppose now that an optimal PRG exists, in the form of a

Turing machine which can be described by a constant number. Therefore, to derandomize

a BPL algorithm, we can enumerate all Turing machines and plug in each one of them un-

til a derandomized answer is outputted, which is guaranteed to be correct. In other words,

without knowing the actual PRG, we have a explicit algorithm that universally derandom-

ize all computation.

In fact, we can prove something even stronger: We only need to assume that BPL = L,

and then such universal derandomization exists. This is formally stated as Theorem 5.3.1,

and here we give a informal description.

Theorem 1.3. There exists a explicitly described deterministic Turing machine that deran-

domizes every BPL algorithm, and runs in space O(S) if and only if BPL ⊆ DSPACE(S).

Now let us consider a more fine-grained problem: Assuming BPL = L, how large would

the derandomization overhead be? For the space usage, it is recently shown by Doron and

Tell [DT23] that under proper assumptions, we can manage to blow up the space only by a

6

very small constant factor. What about time usage? By definition the overhead in time is at

most polynomial, whereas in practice we would like the polynomial to be as small as possi-

ble. For derandomizing BPP, Chen and Tell [CT21] showed that anO(n) overhead factor

in time is both possible and necessary under plausible assumptions, and one could expect a

similar conditional result holds for derandomizing BPL. Proving it unconditionally would

be hard as we will explain in Chapter 7, and instead we can show an unconditional poly-

nomial lower bound for derandomizing logspace computation formulti-output functions

rather than decision problems:

Theorem 1.4. There is a total function on n inputs and O(n) outputs, such that:

• There exists a randomized oblivious algorithm with space O(log n), time O(n log n)

and one-way access to randomness, that computes the function with high probability.

• Any deterministic oblivious algorithm with space S and time T that computes the func-

tion must satisfy T2S ≥ Ω̃(n2.5).

Theorem 1.4 will be formally stated as Theorem 9.2.2. Its implies that black-box de-

randomization, which keeps the oblivious query pattern for any randomized oblivious

algorithm, of logspace computation requires at least an Ω̃(n1/4) overhead in time. An in-

teresting open problem is that if we can prove a stronger lower bound to push the overhead

to Ω̃(n) to match the lower bound in [Wil16, CT21]. A matching linear overhead upper

bound is also not completely out of scope: [Hoz19] even showed that, if we just want to

reduce the number of random bits toO(log n) (for decision problems and in average-case),

it can be done even with only constant overhead.

7

1.2 Quantum computationwith Bounded Space

Unlike the case of randomness, it is widely believed that quantummechanics provides

super-polynomial speed-ups against classical computation, i.e. BQP 6= P, with candidate

separating problems such as Factoring [Sho94]. The space constraints emerges naturally

in quantum computing, since at the time of writing the largest-scale circuit-based quantum

processor consists of only hundreds of qubits, and the number is not expected to drastically

increase in the near future without theoretical breakthroughs. Therefore, near-term quan-

tum devices by themselves have limited space, at least for the quantum part of the memory.

However, quantum computational complexity with bounded space was relatively under-

studied, mostly due to the confusion and complication in definition. The space-bounded

quantum complexity classes, such as BQL, were first formally defined byWatrous [Wat99]

via quantum Turing machines, similar to the way BQP and related time-bounded classes

were defined by Bernstein and Vazirani [BV97]. There is a huge caveat in this definition

though: the time-evolution of the states of the machine must be unitary, which rules out

operations like intermediate measurements (measuring some qubits during the computa-

tion) or classical erasure (in general, physically feasible operations on quantum states are

characterized by quantum channels). For BQP this is not a problem, since we have the

principle of deferred measurements (see e.g. [NC10, Section 4.4]) and in general every

quantum channel can be perceived as a unitary in a larger Hilbert space by Stinespring’s

dilation theorem [Sti55].

But with limited space, this becomes a severe problem. It is highly non-trivial to even

simulate classical deterministic machines and show the containment L ⊆ BQL, without

8

using the classical reversible computation result by Lange, McKenzie and Tapp [LMT00].

Even worse, it was entirely not clear whether BPL is contained in BQL (which was raised

as an open problem in [Wat99]), as the trick of simulating random bits with qubits and

Hadamard gates does not work in logspace without the ability to reset qubits. Conse-

quently, a lot of later works on space-bounded quantum computation, such as [vMW12,

Ta-13, FL18], use the more general notion of BQLwhich allows the usage of any quan-

tum channel, and the previous one that allows only unitaries are changed to be denoted as

BQUL [FL18]. The discrepancy in notation is often confusing, and one may hope to unify

these notations by showing that they are actually the same class. As a starting point, Vidick

[Vid18] explicitly asked whether intermediate measurements could be eliminated without

increasing the space too much.

Vidick’s question was answered positively in [GRZ21b], which showed that in general

all unital quantum channels can be simulated with unitary quantum computers with only

constant blow-up in space. These channels include intermediate measurements but not

the classical operations like erasure. The full equality BQL = BQULwas finally proved

by Fefferman and Remscrim [FR21], and here we presented the strongest statement of

simulating general quantum channels with unitaries, using the conclusion of [FR21] and

the techniques of [GRZ21b]:

Theorem 1.5. Given a general quantum algorithmA with time T and space S, represented

by the quantum channels applied in each step, we can compute in time poly(2ST) and space

O(S + logT) a unitary quantum circuit U with the same time and space, such that the final

state ofA and U are polynomially close when measured under the computational basis.

Theorem 1.5 will be formally stated as Theorem 6.2.6. Note that in [FR21] the result

9

was stated for approximating a single coordinate, and the corresponding result in [FL18]

that it relies on has constant error probability. As the simulation result with constant error

in [GRZ21b] is entirely subsumed by that of [FR21], we will focus on the error reduction

part with techniques developed in [GRZ21b].

As a by-product, the series of work [FL18, GRZ21b, FR21] also provides multiple com-

plete problems for BQL, which works as candidate problems separating BQL and BPL.

Examples of such problems include approximating powers of unitary matrices (with addi-

tive error), or determinants of well-conditioned matrices (with multiplicative error). The

best classical upper bound for these problems isNC2, hence no classical polynomial-time

algorithm withO(log2−ε n) space is known. The equality BQL = BQUL also helped char-

acterizing quantum space complexity using span programs [Jef22].

Finally, we would like to mention that in the large space regime, a highly-efficient inter-

mediate measurement elimination scheme was proposed by Girish and Raz [GR22]. When

the original quantum algorithm consists of only unitaries and measurements, the inter-

mediate measurements can be removed in time T · poly(S) and spaceO(S · logT). Thus

multiple extensions of Theorem 1.5 remains open: To show a unitary simulation of gen-

eral quantum algorithms matching the bounds of [GR22], simulation with one-sided error

(RQL = RQUL) [FR21], and similar simulation result for state synthesis [RY22].

1.3 Learningwith Bounded Space

Even with the oracle separation BQPO 6⊆ PHO by Raz and Tal [RT22] and numerous

reports on experimental quantum supremacy, proving unconditional, unrelativized super-

polynomial quantum advantage still has a long way to go. The closest result, by Yamakawa

10

and Zhandry [YZ22], is still relative to a random oracle. This is most due to the fact that we

do not know how to prove unconditional super-polynomial classical lower bounds in gen-

eral computation models, and the situation is not bettered when adding space constraints

(see Chapter 7 for a discussion).

It turns out that our current best hope in proving such advantage is on learning prob-

lems, for which we do have exponential classical lower bounds. Indeed, in [Raz18] Raz

showed that parity learning, the problem of learning an unknown parity function on n

bits, requires 2Ω(n) samples when the space usage is sub-quadratic. A long line of follow-up

works [KRT17, Raz17, MM18, BGY18, GRT18, GRT19, GKR20, GKLR21] extend this

result to many different learning problems and settings. In particular, [GRT18] showed

that a similar exponential sample lower bound with bounded space holds whenever the

learning problem exhibits the extractor property, which includes problems such as learning

low-degree polynomials and learning error correcting codes.

With these strong classical lower bounds, it seems that proving an exponential separation

between quantum and classical learning in the space-bounded setting is not out of reach.

However, we show that in certain regime, this task as hard as proving separations for deci-

sion problems:

Theorem 1.6. Every quantum learning algorithm with time T and space S = O(logT) can

be simulated classically with time poly(T) and space O(logT), if and only if BQL = BPL.

Theorem 1.6 will be proved in Section 6.3. It indicates that if we want to prove super

polynomial separations, we need to look for candidate problems where the quantum learn-

ing algorithm uses more than logarithmic number of qubits. In fact, such a result has been

given by Chen, Cotler, Huang and Li [CCHL21]. They showed that for tasks like shadow

11

tomography [Aar20] on an n-qubit state, classical learning algorithms need to measure

2Ω(n) copies of the state, whileO(n) copies suffices when there are n qubits of quantum

memory. Moreover, when the shadow tomography is on Pauli observables, they proved a

smooth tradeoff that with k qubits of quantummemory, 2Ω(n−k) samples are required.

Yet, the result in [CCHL21] is not a desired proof of quantum advantage, because the

learning problems there are inherently quantum, and a classical learning algorithm does not

have full access to a sample which is a copy of the quantum state. Therefore, the question

of demonstrating exponential quantum vs. classical separation for classical learning prob-

lems is still open. Given the results of [GRT18], the natural candidates for this separation

are the learning problems with the extractor property. We study the plausibility of these

candidate problems and show that their classical lower bounds could not be improved with

a small amount of quantummemory. Using the parity learning as an example, our result

states as follows.

Theorem 1.7. Any learning algorithm for parity learning on n bits requires either:

• Ω(n2) bits of classical memory; or,

• Ω(n) qubits of quantummemory; or,

• 2Ω(n) samples.

Theorem 1.7 will be formally stated as Theorem 10.3.1. It implies that if any such prob-

lems works in demonstrating the separation, the usage of quantummemory in the quan-

tum upper bound will not be small. It is in sharp contrast with the situation of problems

like Sorting, whereO(log n) qubits of quantummemory suffices to defy the classical

12

lower bound [Kla03]. The result also gives a direct lift on the bounded-storage cryptog-

raphy [Mau92] based on parity learning [Raz18, GZ19, LV21, DQW22]. For a crypto-

graphic protocol using parity learning on n bits (which is treated as a security parameter),

Theorem 1.7 shows that the security holds even in the presence of a quantum adversary

with at mostO(n2) bits of classical memory andO(n) qubits of quantummemory.

We also note that the lower bound in [GRT18] is not always tight for all parameters.

For instance, when the task is to learn x ∈ {0, 1}n with samples being parity equations

on xwith sparsity ℓ, they gave lower bound 2Ω(ℓ log ℓ) on the number of samples, which is

sublinear in nwhen ℓ is small and clearly not optimal. At an extreme, consider the case

when ℓ = 1, that is every sample provides a random coordinate in x. This is the standard

coupon-collector scenario and we know thatO(n log n) samples suffices to recover the full

information about x. But when the memory is much less than n, we cannot store all the

samples, and the situation becomes much more interesting if the goal is to answer some

question about x, e.g. computing its parity, instead of outputting x as a whole which is

impossible.

Theorem 1.8. Any algorithm that computes x1 ⊕ · · · ⊕ xn in the above coupon-collector

scenario with T samples and S space with zero-error must satisfy TS ≥ Ω̃(n2).

Theorem 1.8 will be formally stated and generalized to other computation problems in

Theorem 8.1.1. We conjecture that the same bound holds for bounded-error computa-

tion (as this dissertation is finishing, we are glad to know that Dinur [Din23] affirmatively

proved our conjecture), which will serve as the first step to tighten up the time-space trade-

offs of learning in the polynomial regime. This result is also closely related to strong lower

bounds on deterministic branching programs, which is a major open problem that will be

13

discussed in Chapter 7.

1.4 Dissertation Organization and Bibliographic Details

In Chapter 2 we provide some background knowledge, definitions of notations and useful

inequalities required for the reading. The rest of this dissertation will be divided into two

parts: Part I on algorithmic results and Part II on lower bound results. At the beginning of

each part, we will give an overview (Chapter 3 and Chapter 7) on related topics and tech-

niques used in proving our results. Note that the two parts are not isolated, and there are

many intersections and interactions between the two parts.

In Chapter 4, we study the robust notion of randomness and prove Theorem 1.1, based

on [GRZ23]:

Uma Girish, Ran Raz, andWei Zhan. Is untrusted randomness helpful? In

14th Innovations in Theoretical Computer Science Conference, ITCS 2023.

In Chapter 5, we revise the hardness vs. randomness paradigm in logspace and prove Theo-

rem 1.2, base on [PRZ23]:

Edward Pyne, Ran Raz, andWei Zhan. Certified hardness vs. randomness for

log-space. Electronic Colloquium on Computational Complexity: ECCC, 2023.

In Chapter 6, we show the power of unitary quantum logspace, proving Theorem 1.5 and

Theorem 1.6, based on [GRZ21b]:

Uma Girish, Ran Raz, andWei Zhan. Quantum logspace algorithm for pow-

ering matrices with bounded norm. In 48th International Colloquium on

Automata, Languages, and Programming, ICALP 2021.

14

In Chapter 8, we propose the coupon-collector model and prove Theorem 1.8 based on

[RZ20]:

Ran Raz andWei Zhan. The random-query model and the memory-bounded

coupon collector. In 11th Innovations in Theoretical Computer Science Confer-

ence, ITCS 2020.

In Chapter 9, we examine randomized vs. deterministic separations in time-space tradeoffs

and prove Theorem 1.4 based on [YZ23]:

Huacheng Yu andWei Zhan. Randomized vs. deterministic separation in

timespace tradeoffs of multi-output functions. In Preparation, 2023.

And finally, in Chapter 10, we give time-space lower bound for learning with classical-

quantum hybrid memory, proving Theorem 1.7 based on [LRZ23]:

Qipeng Liu, Ran Raz, andWei Zhan. Memory-sample lower bounds for

learning with classical-quantum hybrid memory. In 55th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2023.

Other works the author completed during the doctoral study, that are not included in

this dissertation because of thematic relevance, are the series of works on parallel repetition

[GHM+21, GHM+22, GMRZ22], and the work on the Forrelation function [GRZ21a].

15

2
Preliminaries

Let us begin with some general notations. LetN,N+,R,R+,C be the set of natural num-

bers, positive integers, real numbers, positive numbers and complex numbers. For n ∈ N+,

let [n] be the set {0, 1, . . . , n}. The logarithm in base 2 is simply denoted as log, and e is the

base of natural logarithm ln.

We use x ∼ D to denote drawing x from a distributionD. Let the support supp(D) be

the elements d such that Prx∼D[x = d] > 0. WhenD is a uniform distribution over its

supportD, we abuse the notation and use x ∼ D to stand for x ∼ D. Denote the uniform

distribution over {0, 1}n byUn.

For a random variable X, the expectation is denoted as E[X], and the variance is VarX =

E[X2] − E[X]2. The covariance of two random variables X and Y is Cov(X,Y) = E[XY] −

E[X]E[Y]. Note that we have Var(X+ Y) = VarX+ VarY+ 2Cov(X,Y).

The asymptotic notationsO(·) and Ω(·) are used to bound the growth of functions.

For any two quantities f, g ≥ 0 that varies depending on other variables, we say f = O(g) if

f ≤ c · g always holds for some absolute constant c, and similarly f = Ω(g) if f ≥ c · g always

16

holds. We use asymptotic notations Õ and Ω̃ to hide poly-logarithmic factors inO(·) and

Ω(·). When the input size n is clear from context, the poly-logarithmic factors are always

on n, e.g. Õ(1) always stands forO(polylog(n)).

2.1 Vectors andMatrices

We claim the following notations for complex vectors and matrices, but they are defined the

same way on all other base sets whenever applicable. Let v ∈ Cn be a vector, we use vi to

denote the i-th coordinate of v. For every p ∈ [1,∞], let the ℓp norm of v be

‖v‖p =

(
d∑
i=1

|vi|p
)1/p

.

In particular, when p =∞, ‖v‖∞ = maxi∈[n] |vi|. Whenever p ≥ p′, we have

‖v‖p ≤ ‖v‖p′ ≤ n · ‖v‖p .

For two vectors u, v ∈ Cd, define their inner product as

〈u, v〉 = u†v =
d∑
i=1

uivi.

Hence ‖v‖22 = 〈v, v〉. We also abuse the notation to identify every distributionD over

[n] as a non-negative real vector inRn with ‖D‖1 = 1. For every i ∈ [n], let ei be the

special vector whose i-th coordinate is 1 and all other coordinates are 0. The all-zero vector

is denoted as 0⃗.

For anm by nmatrixM ∈ Cm×n, letMi,j be the entry ofM at row i and column j.

17

We sometimes also useM[i, j] for the same meaning. We useMi to denote the vector in

Cn corresponding to the i-th row ofM. Let vec(M) be the vectorization ofM, which is a

vector of dimensionmn formed by stacking the columns ofM on top of each other, that is

vec(M)i+(j−1)m = Mi,j, ∀i ∈ [m], j ∈ [n].

For every vector v ∈ Cn, let Diag v ∈ Cn×n be the diagonal matrix whose diagonal entries

represent v. Conversely, for every square matrixM ∈ Cn×n, let diagM be the vector con-

sisting of the diagonal entries ofM. The trace ofM is the sum of elements in diagM, that

is,

Tr[M] =
n∑
i=1

Mi,i.

We use In ∈ Cn×n to denote the identity matrix, and a matrix with only entries 0 is simply

denoted as 0. LetM† be the conjugate transpose ofM. Whenm = n, we sayM is unitary

ifM†M = In, and Hermitian ifM = M†. A HermitianM is further positive semi-definite

(PSD) if for every v ∈ Cn, v†Mv ≥ 0, and is a projection ifM2 = M. We sayM ≤ N for

two Hermitian matrices ifN−M is PSD.

Matrix Norms

We will encounter a lot of different matrix norms. Let us start with the operator norms,

which for every p ∈ [1,∞] is defined as

‖M‖p = max
v∈Cn,v ̸=0⃗

‖Mv‖p
‖v‖p

.

18

This norm is sub-multiplicative, i.e. for any two matricesM,Nwe have

‖MN‖p ≤ ‖M‖p ‖N‖p .

In particular, when p = 2, we usually omit the subscript and use ‖M‖ directly, which

is called the spectral norm ofM. Other matrix norms we consider include the Frobenius

norm ‖M‖F = ‖vec(M)‖2, and the trace norm ‖M‖Tr = Tr
[√

M†M
]
. We have the

following inequalities: For everyM ∈ Cm×n,

‖M‖ ≤ ‖M‖F ≤ ‖M‖Tr .

Finally, we say a matrixM ∈ {−1, 1}m×n is a (k, ℓ)-extractor with error 2−r, if for every

distribution P over [n]with ‖P‖2 ≤ 2ℓ/
√
n, there are at most 2−km rows i ∈ [m] such that

|〈Mi,P〉| ≥ 2−r.

This definition will specifically be used in Chapter 10.

2.2 Quantum Information

We use the Dirac notation to denote a pure quantum state |v〉, which is a vector in theCn

with ‖|v〉‖2 = 1, and 〈v| = |v〉†. The state evolves by unitaries |v〉 7→ Ut|v〉 = e−iHt|v〉

whereH is a Hermitian matrix called Hamiltonian. For a non-zero vector u ∈ Cn, we use

|v〉 ∼ u to denote a quantum state in the same direction as u, that is, |v〉 = u/‖u‖2.

A mixed state is a probability distribution of pure states, which can be described as a

19

density operator

ρ =
∑
i

pi|vi〉〈vi|,

where
∑

i pi = 1. The maximally-mixed state is 1
nIn. Another way to formulate the density

operator is a PSDmatrix ρ ∈ Cn×n with Tr[ρ] = 1. By comparison, a partial density

operator is a PSDmatrix τ ∈ Cn×n with Tr[τ] ≤ 1. All the notions below on density

operators also works on partial density operators.

The magnitude of ρ on a pure state |v〉 is given by

〈v|ρ|v〉 = Tr[ρ|v〉〈v|].

More generally, a measurement on quantum states is represented by a PSDmatrixM ∈

Cn×n such thatM ≤ In, and the probability of getting this measurement outcome on ρ is

Tr[ρM]. A positive operator-valued measure (POVM) is a set of measurements {Mi} such

that
∑

i Mi = In.

We use the notation ρV to stress the case when ρ describes the quantum state of a system

V. IfV consists of two parts X and Y, that is, the space of classical base states is a tensor

product V = X ⊗ Y , then the quantum state describing the sub-system on X is given by

the partial trace:

ρX = TrY[ρXY], where 〈x|TrY[ρXY]|x〉 =
∑
y∈Y

〈x, y|ρXY|x, y〉, ∀x ∈ X .

20

For every y ∈ Y , let the conditional system on X given Y = |y〉 be

ρX|y = (IX ⊗ 〈y|)ρXY(IX ⊗ |y〉),

which is a partial density operator on X. Here IX =
∑

x |x〉〈x| is the identity operator on X,

which is an identity matrix in the matrix form. We can show the equality

ρX =
∑
x∈X

∑
y∈Y

|x〉〈x, y|ρXY|x, y〉〈x| =
∑
y∈Y

ρX|y.

The fidelity between two quantum states ρ and σ in the same underlying space is

F(ρ, σ) = Tr[√ρσ]2.

The von Neumann entropy of state ρ is defined as

S(ρ) = −Tr[ρ ln ρ],

and the quantummutual information between two states is defined as

S(ρ ‖ σ) = Tr[ρ ln ρ− ρ ln σ].

We can then write the quantummutual information between the two parts X and Y of the

system ρXY as

Iρ (X;Y) = S(ρX) + S(ρY)− S(ρXY) = S
(
ρXY ‖ ρX ⊗ ρY

)
.

21

QuantumChannels

LetL(Cn) be the space of linear operators onCn. A quantum channel Φ is a completely-

positive trace-preserving (CPTP) linear map Φ : L(Cm) → L(Cn), which maps every

density operator ρ ∈ L(Cm) to a density operator Φ(ρ) ∈ L(Cn).

There are several ways to represent a quantum channel. The Kraus representation of the

quantum channel Φ is a set of matrices E1, . . . ,Ek ∈ Cn×m such that

k∑
i=1

E†
iEi = Im and Φ(ρ) =

k∑
i=1

EiρE†
i .

The natural representation of Φ, denoted asK(Φ), is a matrix inCn2×m2 such that

vec(Φ(ρ)) = K(Φ) vec(ρ)

for any density operator ρ ∈ L(Cm). Given the Kraus representation E1, . . . ,Ek of Φ, one

can easily compute the natural representation

K(Φ) =
k∑

i=1

Ei ⊗ Ei.

We focus on quantum channels fromL(Cn) to itself. An important property of quan-

tum channels is the contractivity under trace norms, that is, ‖Φ(π)‖Tr ≤ ‖π‖Tr for any

π ∈ L(Cn). A channel Φ is unital if it is also contractive under Frobenius norms, i.e.

‖Φ(π)‖F ≤ ‖π‖F, or equivalently, ‖K(Φ)‖ ≤ 1. Another equivalent definition of uni-

tal channels is the channels that map the maximally-mixed state to the maximally-mixed

22

state:

Φ
(
1
n
In
)

=
1
n
In.

The Kraus representation of a unital channel additionally satisfies
∑k

i=1 EiE†
i = In.

Quantum channels represents all the physically feasible operations on quantum states.

Every unitary operatorU : |v〉 7→ U|v〉 is a quantum channel Φ(ρ) = UρU†. A distribu-

tion over unitary operators is a mixed-unitary channel

Φ(ρ) =
∑
i

piUiρU†
i .

A POVM {Mi} is also a quantum channel after specifying the post-measurement states. In

particular, if the post-measurement state of ρ with outcomeMi is
√
Miρ
√
Mi/Tr[ρMi], it

corresponds to the channel

Φ(ρ) =
∑
i

√
Miρ

√
Mi.

Unitary channels, mixed-unitary channels and POVM specified this way are all unital. An

example of non-unital channels is resetting, that is, Φ(ρ) = |0n〉〈0n|.

2.3 Some Useful Inequalities

2.3.1 Concentration Bounds

The Chernoff Bound will be used countless number of times. Here we state a general com-

plex version of it.

Lemma 2.3.1 (Chernoff-Hoeffding). Let X be a random complex number with |X| ≤ 1,

23

and X1, . . . ,Xn are n independent copies of X. Then

Pr
[∣∣∣∣ 1n(X1 + · · ·+ Xn)− E[X]

∣∣∣∣ ≥ ε

]
≤ 4e−2nε2 .

Besides, we will use the following concentration and anti-concentration bounds.

Lemma 2.3.2 (Chebyshev). Let X be a real random variable with varianceVarX = σ2. For

every k > 0,

Pr [|X− E[X]| ≥ kσ] ≤ 1
k
.

Lemma 2.3.3 (Paley–Zygmund [PZ32]). Let X ≥ 0 be a real random variable, and θ ∈

[0, 1]. Then

Pr[X ≥ θE[X]] ≥ (1− θ)2
E[X]2

E[X2]
.

Lemma 2.3.4 (Laurent-Massart [LM00]). Let g ∼ N (0, 1)n be the n-dimensional standard

Gaussian. Then X = ‖g‖22 ∼ χ2n follows the chi-square distribution, and for every x > 0,

Pr
[
X ≥ n+ 2x+ 2

√
nx
]
≤ e−x.

Lemma 2.3.5 (Carbery–Wright [CW01]). There is a absolute constant c > 0, such that for

every n ∈ N+, ε > 0, Hermitian H ∈ Cn×n and the standard Gaussian g ∼ N (0, 1)n,

Pr
[
|g†Hg|2 ≤ εVar[g†Hg]

]
≤ cε.

2.3.2 Quantum Inequalities

We first present two bounds on the norm of quantum operators.

24

Proposition 2.3.6. Every quantum channelΦ : L(Cn)→ L(Cn) satisfies ‖K(Φ)‖ ≤
√
n.

The proof for Proposition 2.3.6 can be found in [RPRŻ13].

Proposition 2.3.7. Every measurementM ∈ Cn×n satisfies ‖vec(M)‖2 = ‖M‖F ≤
√
n.

Proof. SinceM is PSD andM ≤ In, we haveM2 ≤ In, and thus

‖M‖2F = Tr[M†M] = Tr[M2] ≤ Tr[In] = n.

The Fuchs-van de Graaf inequality [FvdG99] states that for two density operators ρ and

σ, we have
1
2
‖ρ− σ‖Tr ≤

√
1− F(ρ, σ).

Here we prove a variant of this inequality on general PSD operators.

Lemma 2.3.8. Let ρ, σ be two PSD operators. AssumeTr[ρ] ≥ Tr[σ]. Then

1
2
∥∥ρ− σ

∥∥
Tr ≤

√
1
4
(Tr[ρ] + Tr[σ])2 − F(ρ, σ) ≤

√
Tr[ρ]2 − F(ρ, σ).

Proof. Let u and v be purifications of ρ and σ, that is, u, v ∈ Cn with ρ = TrA[uu†] and σ =

TrA[vv†]where A is some additional system. LetU be a unitary that diagonalizes uu† − vv†,

that is there is a diagonal matrix Λ ∈ Cn×n such that uu† − vv† = UΛU†. Let p =

25

diagU†uu†U and q = diagU†vv†U. Then we have

u†u = Tr[U†uu†U] =
n∑
i=1

pi,

v†v = Tr[U†vv†U] =
n∑
i=1

qi,

∥∥uu† − vv†
∥∥
Tr = ‖Λ‖Tr =

n∑
i=1

|pi − qi|,

|〈u, v〉| = |〈U†u,U†v〉| ≤
n∑
i=1

√
piqi.

Therefore, by Cauchy-Schwarz inequality,

∥∥uu† − vv†
∥∥2
Tr =

(
n∑
i=1

|pi − qi|

)2

=

(
n∑
i=1

∣∣√pi −√qi∣∣ · ∣∣√pi +√qi∣∣)2

≤

(
n∑
i=1

∣∣√pi −√qi∣∣2)(n∑
i=1

∣∣√pi +√qi∣∣2)

=

(
n∑
i=1

pi +
n∑
i=1

qi

)2

− 4

(
n∑
i=1

√
piqi

)2

≤
(
u†u+ v†v

)2 − 4|〈u, v〉|2.

Notice that ‖ρ− σ‖Tr ≤
∥∥uu† − vv†

∥∥
Tr, Tr[ρ] = u†u and Tr[σ] = v†v. By Uhlmann’s

theorem [Uhl76], we can also choose u and v such that F(ρ, σ) = |〈u, v〉|2. Plugging them

into the above inequality concludes the proof.

26

Corollary 2.3.9. For every partial density operator ρ and projection operatorΠ on ρ, we have

‖ρ−ΠρΠ‖2Tr ≤ 4Tr[ρ]2 − 4Tr[Πρ]2.

Proof. By Lemma 2.3.8, it suffices to prove the following bound on fidelity:

F(ρ,ΠρΠ) ≥ Tr[Πρ]2.

Let u be a purification of ρ, that is, ρ = TrA[uu†] for some system A. Then
(
Π ⊗ IA

)
u is a

purification of ΠρΠ. By Uhlmann’s theorem we have

F(ρ,ΠρΠ) ≥
∣∣u†(Π⊗ IA

)
u
∣∣2 = Tr

[(
Π⊗ IA

)
uu†
]2

= Tr
[
Π · TrA[uu†]

]2
= Tr[Πρ]2.

Finally, we prove the anti-concentration bound on uniformly random pure states.

Lemma 2.3.10. There exists an absolute constant c such that following holds. Let |v〉 be a

uniformly random pure state inCn, and let H ∈ Cn×n be a Hermitian. Then for every

ε > 0, we have

Pr
[
|〈v|H|v〉| ≤ εn−1 ‖H‖

]
≤ c
√
ε+ e−n.

Proof. Let g = (g1, . . . , gn) ∼ N (0, 1)n be the standard Gaussian. Notice that |g†σg|/‖g‖22

27

is equidistributed as |〈v|H|v〉|. Therefore by union bound we have

Pr
v

[
|〈v|H|v〉| ≤ εn−1 ‖H‖

]
= Pr

g

[
|g†Hg| ≤ ε ‖H‖ ·

‖g‖22
n

]

≤ Pr
g

[
|g†Hg| ≤ 5ε ‖H‖

]
+ Pr

g

[
‖g‖22 ≥ 5n

]
.

For the first term, notice that Var[g†Hg] = 2Tr[H2] (see e.g. [RS08, Chapter 5]) which

is no smaller than 2 ‖H‖2. Therefore, by Carbery–Wright inequality Lemma 2.3.5, there

exists an absolute constant c such that

Pr
[
|g†Hg| ≤ 5ε ‖H‖

]
≤ Pr

[
|g†Hg| ≤ 4εVar[g†Hg]1/2

]
≤ c
√
ε.

And the second term is bounded by Lemma 2.3.4 with x = n:

Pr
[
‖g‖22 ≥ 5n

]
≤ e−n.

2.4 ComputationalModels and Complexity Classes

2.4.1 Branching Programs

Universally in this dissertation, the computational models we consider are branching pro-

grams. These are the most general sequential models when considering both time and space

complexity, and our results can all be easily translated to more restrictive models such as

Turing machines or RAMs.

We start with the definition of classical branching programs. A deterministic branching

program Bwith space S and time T is a layered directed acyclic graph (DAG) that consists of

28

at most T+ 1 layers of vertices (or states)V0, . . . ,VT, each contains at most 2S vertices. The

first layerV0 contains one unique state called the initial state v0, and each state in the last

layerVT represents an output. LetV(B) be the collection of vertices in B. For each vertex

v ∈ V(B), let B→v be the branching program that cuts off all the layers in B after v, and

instead let v output 1 while all other vertices in the same layer of v output 0.

When the inputs (or samples) of the problem are from a domainD, each vertex v /∈ VT

has |D| edges going out towards the next layer labeled with elements inD. If the problem

allows querying specific coordinates of the input fromDn, v is also label with some i ∈

[n] indexing the coordinate that the algorithm queries at the state v. We say the branching

program is oblivious, if the query pattern is independent of the input. Specifically, if T = n

and the branching program always queries coordinates 1, . . . , n in order, then we way it is

an ordered branching program (OBP).

A randomized branching program with space S and time T is a distribution over deter-

ministic branching programs with the same space and time bound. If the deterministic

branching programs in the distribution are all oblivious, the randomized branching pro-

gram is also oblivious. We say that a randomized branching program has one-way access to

random bits, if in each layer the labels on the vertices and outgoing edges are independent

of the rest of the branching program.

For both deterministic and randomized branching programs, the computation path is the

path that starts from the initial vertex v0, at each vertex following the edges labeled by the

query answers or samples it receives until reaching the last layer. The computation path is

subject to the randomness of the branching program, and samples in the learning case, but

for learning we can actually without loss of generality assume that the branching program is

29

deterministic because of linearity of expectation.

For quantum branching programs, we can use a similar definition by replacing edges

with transitions on superpositions of states. Here we present a simpler but equivalent def-

inition. A unitary quantum algorithm with space S and time T starts from the initial state

|v0〉 = |0S〉, and applies the unitary operatorUt ∈ L(C2S) controlled by either the input

query or the sample in each time step t ∈ [T]. After T steps the final state becomes

|vT〉 = UT · · · · · U1|v0〉

which is measured in the computational basis, and outputs the answer according to the

measurement result.

In general, a quantum algorithm could allow non-unitary quantum channels, and thus

we instead describe the state using density operators. Starting from the initial state ρ0 =

|0S〉〈0S|, in each step t a channel Φ : L(C2S)→ L(C2S) is applied, and hence the final state

is

ρT = ΦT ◦ · · · ◦ Φ1(ρ0).

In addition, for decision problems we can assume that the final measurement is some two-

outcome measurement {M, I − M}, so that the probability of the branching program

outputting 0 is Tr[ρTM].

For all branching programmodels presented above, we say the branching program with

space S and time T is uniform, if the branching program itself can be printed by a determin-

istic Turing machine within the same space and time bound for every input size.

30

2.4.2 Space-Bounded Complexity Classes

For the sake of succinctness, we only define the complexity classes that will appear sub-

stantially in subsequent chapters, and we only define their space bounded versions. These

include:

DSPACE(S) The set of decision problems solvable by uniform deterministic branching

programs with spaceO(S) and timeO(2S). In particular, L = DSPACE(log n) and

L2 = DSPACE(log2 n).

BPTISP(T, S) The set of decision problems solvable by uniform randomized branching

programs with spaceO(S) and timeO(T), with one way access to random bits. On

every input, the output is in {0, 1} and must be correct with probability at least 2/3

(which is called bounded error).

BPL The union of BPTISP(nc, log n) for all c > 0. Equivalently, It is the set of decision

problems solvable with bounded error by OBPs on the random bits, that uniformly

depends on the input, with spaceO(log n) and time poly(n).

ZPL The same as BPL, but on every input, the output is in {0, 1,⊥}where⊥ stands for

giving up. The correct answer must be outputted with probability at least 1/2, and

the wrong answer is never outputted (this is called zero error).

BQL The set of decision problems solvable with bounded error by uniform quantum

branching programs with spaceO(log n) and time poly(n).

BQUL The same as BQL, but the quantum branching programs are unitary.

31

All the above classes are usually defined for languages, which are total functions on {0, 1}∗.

In this dissertation we instead use these notations to denote the more general promised

versions, which are defined for all partial boolean functions on {0, 1}∗. Most of our results

still holds for languages, and the exceptions are clearly identifiable from context. Finally, we

note that all these classes can be naturally extended to their non-uniform versions.

32

Part I

Algorithmic Results

33

3
Overview of Part I

In Part I, we present our results that could be classified as algorithmic. A shared theme for

all these results is that certain classes of space-bounded computation can be simulated by

some other classes with less resources while the space usage increases by at most a constant

factor. For instance, we partially derandomized BPL, and eliminate intermediate measure-

ments for BQL, while keeping the space logarithmic.

Space-Bounded Computation andMatrix Powering

A particularly interesting perspective of space-bounded computation is that all the classes

with space constraint can be characterized as powering (or iteratively multiplying) matri-

ces with bounded dimensions. This is because when the space is limited toO(S) (qu)bits,

the computation model contains at most 2O(S) base states, and the actual state could be

a probability distribution or a superposition on the base states, depending on which re-

source the model possesses. Then the transition between the states naturally corresponds to

2O(S)× 2O(S) matrices. Specifically we have the following correspondences:

34

• Classical deterministic computation↔Deterministic Transition matrices (0, 1-

matrices that has exactly one entry 1 in each column)

• Classical reversible computation↔ Permutation matrices

• Classical randomized computation↔ Stochastic matrices

• Quantum computation↔Unitary matrices

The actual computation is just applying these transition matrices, which are determined

by the input x (and uniformly determined if the model is uniform), for the time limit num-

ber of times. Therefore, the computation corresponds to repeatedly multiplying such ma-

trices, or even powering the matrices where we integrate the time stamps if the time limit

T ≤ 2O(S). Since matrix powering is a problem inNC2, this fact alone is powerful enough

to put almost all logspace complexity classes (L,NL, BPL, BQL,#L and GapL, etc.) in

NC2. This also provides a very simple characterization of these complexity classes via the

complete problems of powering corresponding matrices, for instance:

Theorem 3.1. The Stochastic Matrix Powering problem is BPL-complete. The input includes

an n× n stochastic matrixM and a parameter T such that T ≤ poly(n). The promise is that

MT[n, 1] ≥ 4/5 orMT[n, 1] ≤ 1/5, and the output is 1 in the former case and 0 in the latter.

Theorem 3.2. The UnitaryMatrix Powering problem is BQL-complete. The input include

a unitary matrixM ∈ Cn×n, a parameter T ≤ poly(n) and a projective measurement

Π ∈ Cn×n. The promise on the input is that ‖ΠMTe1‖22 ≥ 4/5 or ‖ΠMTe1‖22 ≤ 1/5, and

the output is 1 in the former case and 0 in the latter.

35

Albeit being simple observations, characterizations like Theorem 3.1 and Theorem 3.2

turn out to be very fundamental and have found numerous applications, such as designing

new complete problems for space-bounded complexity classes [DST17, FL18], and devel-

oping new derandomization algorithms [CDST22]. In the rest of Part I we will see more

applications, which we give a brief overview below.

Robust Algorithms with Untrusted Randomness

One benefit of the matrix powering characterization is that linear algebra is efficiently veri-

fiable. To verify thatM · x = y, where the matrixM is easily accessible but the vectors x and

y are costly to access, one could sample a random vector a and check whether (a ·M) · x

equals a · y. This way, each entry of x and y is accessed only once. Even better, it suffices to

use a pseudorandom vector a (specifically k-wise independent when the field isR), so that

the randomness usage and space usage are both only logarithmic in the dimension.

This implies an efficient way to verify space-bounded computation: Since all we care

about isMTe1 for some easily computable transition matrixM and initial vector e1, the

proof could just beMe1,M2e1, . . . ,MTe1, and we check whether each vector after multi-

plied byM equals the next. The proof could be generated by simply repeatedly simulating

the original computation, and therefore the proof protocol could be realized by a pair of

efficient prover and verifier where the prover has unlimited randomness but the verifier has

only logarithmic randomness.

As we show in Chapter 4, this protocol is closely related to the notion of robust ran-

domness. We consider algorithms that uses two parts of randomness, one is trusted and is

guaranteed to be perfectly random, while the other is untrusted and could be adversarially

36

chosen. In particular, if we run the prover’s algorithm from the above protocol but feed it

with untrusted random bits, the generated proof either passes the verification and yields the

correct answer or gets rejected, and the verification uses onlyO(log n) trusted random bits.

In order words, we reduce the trusted random bit usage to logarithmic while keeping the

small space usage. This gives rise to the result of Theorem 4.1.11, which in the language of

complexity classes is translated to BPL = RPL(log n).

Certified Hardness vs. Randomness

Assume that we have a function that is supposed to be a PRG, for instance the Nisan-

Wigderson PRG [NW94] constructed from a presumably hard function f. We use its out-

puts as the untrusted random bits fed to the prover above. This provides an efficient way

to utilize the pseudorandomness that is in some sense certified: Either the algorithm gives

an output that is certified to be correct, or rejects the proof and aborts so that the function

f is certified to be not hard, and a certification of the latter fact, which is a small circuit that

average-case computes f, could be easily generated.

What we do in Chapter 5 is even stronger. Instead of using the average case hardness

assumption in [NW94], we can start with the worse-case assumption in [IW97] and im-

plement the hardness amplification process. In details, starting with a boolean function f

that we assume no small circuit could compute correctly on all inputs, [IW97] shows that

how to construct another boolean function f′ that no small circuit could compute correctly

even on a little bit more than half of the inputs, which is the hard function we want in the

Nisan-Wigderson PRG. It was further checked in [KvM02] that the construction from f to

f′ is realizable in logspace, which gives rise to a RPG for BPL assuming f is computable in

37

small (actually linear) space.

In their proof for the hardness amplification process, [IW97] showed that if there ex-

ists a small circuit B that computes f′ in the average case, then there exists a small circuit C

computing f in the worst case (i.e. on all inputs). For our purpose, we want the result to be

certifiable so we need to explicitly reconstruct the circuit C from B, deterministically in small

space. However, even though [IW97] did provide the reconstruction somewhat explicitly,

certain steps in the process is not clearly implementable within small space. Moreover, the

reconstruction heavily depends on taking the majority vote over repeated random proce-

dures, in the form that if B(x, r) equals f(x)with high probability over random r, then tak-

ing polynomially many independent ri we have that MAJi(B(x, ri)) equals f(x)with error

probability exponentially small. By the union bound over all possible inputs x, there must

exists a selection of ri which makes the majority equals f(x) on all x. This is basically the

same way that BPP = P/poly is proved [Adl78], but we cannot assort to non-uniformity,

nor could we store that many random bits and test all possibilities.

In our actual proof, we use an amplification and reconstruction process that is a bit

different from the one in [IW97]. In particular, the amplification from a worst-case hard

function to a constant-average-case hard (hard on a constant fraction of inputs) func-

tion in [IW97], which relies on Impagliazzo’s Hardcore-Set Lemma [Imp95] and is not

clearly doable in logspace, is replaced with the low-degree polynomial extension process in

[STV01]. The results in [STV01] actually showed that the entire hardness amplification in

[IW97] could be replaced with low-degree extension, and the reconstruction corresponds

to list-decoding Reed-Muller codes. However, it is also not clear that list-decoding could be

done deterministically in logspace, so we only use low-degree extension up to constant er-

38

ror so that it can be directly decoded with Berlekamp-Welch algorithm [WB86]. The other

technical issue mentioned above of error reduction by repetition, is solved by not repeating

the randomness independently but using pseudorandomness, generated by samplers (Defi-

nition 5.2.2), which has logarithmic seed length and is computable in logspace [RVW01].

Unitary QuantumComputing

Notice that Theorem 3.2 does not hold trivially. In fact, since the problem is only powering

unitary matrices, the corresponding computation should be unitary quantum logspace, i.e.

BQUL. The reason it holds is because we have the results that general quantum computing

can be simulated by unitary quantum computing, with constant error in logspace [FR21].

Without the logspace constraint, it was known how to simulate any quantum channel

with unitary quantum circuits [ICC17, SNA+17], in which intermediate measurements

are allowed and can be deferred at the cost of space. The key idea to perform the simulation

in logspace is that instead of simulating the channels Φ themselves, we simulate their nat-

ural representationsK(Φ). The problem with this approach is thatK(Φ) could have large

spectral norms, and if we force them into unitary matrices we have to scale them down,

and that introduces a exponentially large factor in error after powering. In [FR21], they

found out that we actually do not need to scale each individualK(Φ) down: The problem

of computing the powerK(Φ)T actually reduces to computing the inverse Z−1 for some

matrix Z polynomially related toK(Φ), and we just need to scale Z down which only intro-

duces polynomially large factor in error.

In Chapter 6 we give a detailed review of this approach, and enhance the result of [FR21]

by showing that not only decision problems can be simulated, we can actually use unitary

39

quantum circuits to output the entire final state of any general quantum algorithm up to

polynomial accuracy, and thus could simulate the results of any multi-part measurement.

We also show that any algorithm that simulates quantum computing for decision problem

can also be used to simulate quantum learning with the same efficiency. Both these results

rely heavily on producing consistent {0, 1}-bits so that the results on decision problems

could be used, similar to the concept of pseudo-determinism for randomized computation,

and indeed we adapt the shift and truncatemethod by Saks and Zhou [SZ99] to prove our

results.

40

4
Robustly Randomized Algorithms

The goal of this chapter is to introduce a new type of randomized algorithms called robustly

randomized algorithms, define the related complexity classes and prove its relations with

previously-studied classes.

We first recall the definition of robustly randomized algorithms. Note that for simplic-

ity, we define here robustly randomized algorithms only for total functions, but similar

definitions can be given for partial functions, search problems, etc. Similar definitions can

also be given in essentially all other settings where random strings are used, for example,

query complexity, interactive proofs, etc.

Definition 4.1. Let f = {fn : {0, 1}n → {0, 1}}n∈N be a family of functions. Let

k : N → N be a monotone computable function. LetA be a randomized algorithm that

uses two separate (read-once) random strings R1,R2. We say thatA is a robustly randomized

algorithm for f, with O(k) trusted random bits, if on every input x of length n, the algorithm

A reads at most O(k(n)) bits from R1 and the outputA(x) satisfies the following two require-

ments:

41

1. With the uniform distribution over R1,R2,

Pr
R1,R2

[A(x) = fn(x)] ≥ 3/4

2. For every r (even adversarially chosen after seeing the input x),

Pr
R1
[A(x) ∈ {fn(x),⊥}|R2 = r] ≥ 3/4

(where the probability is over the uniform distribution over R1).

4.1 Simple Relations withOther Classes

In this section we show that many previously-studied complexity classes can be revisited

and redefined in light of our new definition. We first consider polynomial-time algorithms.

Definition 4.1.1. Let k : N → N be a monotone computable function. The class RPP(k)

is the class of all languages computable by a polynomial-time robustly randomized algorithm

with O(k) trusted random bits.

Let ZPP be the class of problems solvable by zero-error probabilistic polynomial-time

algorithms, and BPP(k) be the class of problems solvable by bounded-error probabilistic

polynomial-time algorithms that are limited to readingO(k) random bits. We have the

following relations:

Proposition 4.1.2.

RPP(0) = RPP(log n) = ZPP.

42

Proof. Given a language L in ZPP, consider the zero-error randomized algorithm for L

that outputs the correct answer with probability at least 3
4 . This algorithm can be directly

viewed as a robustly-randomized algorithm where all the random bits are untrusted, and

thus ZPP ⊆ RPP(0).

On the other hand, given a language L in RPP(log n), consider its robustly randomized

algorithm AwithO(log n) trusted random bitsR1 and (polynomially many) untrusted ran-

dom bitsR2. We design a zero-error randomized algorithm for L as follows. After sampling

r ∼ R2 and storing r, it iterates through all 2O(log n) possible values ofR1. In each iteration

it runs A based on the chosen value ofR1 and r, and takes the majority vote (breaking ties

arbitrarily) over all 2O(log n) outputs as the final output.

To see the correctness of the algorithm, first notice that it is zero-error as for every r, any

incorrect answer can be outputted by at most 1
4 fraction ofR1 and thus cannot win the

majority vote. Also notice that the correct answer wins the majority vote if it is outputted

for more than half ofR1. Since the correct answer is outputted with probability at least 3
4

overR1,R2, it must win the majority vote (and be the final output) with probability at least
1
2 overR2.

Therefore we showed RPP(log n) ⊆ ZPP, and together it holds that RPP(0) = ZPP =

RPP(log n).

Proposition 4.1.3. For every k,

BPP(k) ⊆ RPP(k).

Proof. Given a language L in BPP(k), consider the bounded-error randomized algorithm

43

for L that outputs the correct answer with probability at least 3
4 . This algorithm can be

directly viewed as a robustly randomized algorithm where all theO(k) random bits are

trusted, and thus BPP(k) ⊆ RPP(k).

Corollary 4.1.4. For every k,

BPP(k)ZPP ⊆ RPP(k).

Proof. Consider an algorithm in BPP(k)ZPP with error probability 7
8 . By Proposition 4.1.2

and Proposition 4.1.3, we can simulate such an algorithm with a RPP(k) algorithm that

uses only trusted random bits itself, but answers the oracle calls with RPP(0) subrou-

tines which uses only untrusted random bits. The overall number of trusted random bits

isO(k).

Suppose there arem oracle calls. We can assume each RPP(0) subroutine outputs the

correct answer to the oracle call with probability at least 1− 1
8m by repetition. The algorithm

aborts whenever one of the subroutines outputs⊥, so the overall success probability is at

least 3
4 by union bound.

Proposition 4.1.5. ⋃
c

RPP(nc) = BPP.

Proof. For every c, given a language L in RPP(nc) and its robustly randomized algorithm.

We modify it so that whenever it is supposed to output⊥, it simply outputs 0 instead.

Then the algorithm can be viewed as a randomized algorithm for Lwith error bounded

44

by 1
4 , and thus RPP(n

c) ⊆ BPP. Combined with Proposition 4.1.3 we have

BPP =
⋃
c

BPP(nc) =
⋃
c

RPP(nc).

Proposition 4.1.6. For every k, if BPP(k) and ZPP do not contain one another, then

BPP(k) ∪ ZPP 6= RPP(k).

Proof. Take L1 ∈ BPP(k) \ ZPP, and L2 ∈ ZPP \ BPP(k). We claim that L = L1 ⊕ L2

(the symmetric difference of L1 and L2) gives the desired separation.

Since L ∈ BPP(k)ZPP, by Proposition 4.1.2 we have L ∈ RPP(k). On the other hand,

L /∈ BPP(k) since otherwise so does L2 = L ⊕ L1. Similarly L /∈ ZPP. Notice that here

we crucially use the fact that both classes are closed under symmetric difference. Therefore

BPP(k) ∪ ZPP 6= RPP(k).

Next, we show that every efficient robustly randomized algorithms is equivalent to an

interactive proof with efficient prover and verifier, where the prover is allowed an unlimited

number of random bits, but the random bits for the verifier (public or private) are limited.

That is, unlike standard interactive proofs, the prover and the verifier here have the same

computational power and only differ in the number of random bits that they are allowed to

use, and the verifier is allowed to abort. We give the formal definition below.

Definition 4.1.7. A language L is recognized by an interactive proof protocol (P ,V) which

outputs 1, 0 or⊥, if the following requirements are satisfied:

1. With the honest proverP , (P ,V) outputs 1 if x ∈ L and outputs 0 if x /∈ L with

45

probability at least 3
4 .

2. With any (computationally unbounded) proverP ′, (P ,V) outputs 1 or⊥ if x ∈ L

and outputs 0 or⊥ if x /∈ L with probability at least 3
4 .

Such an interactive proof can be viewed as a proof of randomness: The prover sends

a random string to the verifier and tries to convince the verifier that the random string is

sufficiently random to perform the computation on a particular input x (which they both

know). We are now ready to show the equivalence.

Proposition 4.1.8. A language L is in RPP(k) if and only if it is recognizable by an in-

teractive proof (which outputs 1, 0 or⊥) with a probabilistic polynomial-time prover and a

probabilistic polynomial-time verifier, where the verifier is limited to at most O(k) random

bits.

Proof. Given a robustly randomized algorithm, we design an interactive proof where the

verifier simulates the algorithm, but with the untrusted random bits provided by the prover

as proof. The verifier also aborts when the length of the proof does not equal to the num-

ber of untrusted random bits it needs. On the other hand, given a interactive proof proto-

col, we can simulate the protocol with a robustly randomized algorithm where the random

bits used by the verifier are trusted and the random bits used by the prover are untrusted.

The equivalence follows fromDefinition 4.1.1 and Definition 4.1.7.

Finally, we consider robustly randomized algorithms in the logspace regime.

Definition 4.1.9. Let k : N → N be a monotone computable function. The class RPL(k)

is the class of all languages computable by a logarithmic-space and polynomial-time robustly-

randomized algorithm with O(k) trusted random bits.

46

Similar to the polynomial-time cases, both ZPL (the class of problems solvable by zero-

error probabilistic logspace algorithms) and BPL(k) (the class of problems solvable by

bounded-error probabilistic logspace algorithms that are limited to readingO(k) random

bits) are closely related to RPL(k). In fact, we can show the following analog of Proposi-

tion 4.1.2:

Proposition 4.1.10.

RPL(0) = RPL(1) = ZPL.

Proof. The proof is almost the same as the one for Proposition 4.1.2. The proof for ZPL ⊆

RPL(0) goes in exactly the same way. However for the other direction RPL(1) ⊆ ZPL,

there is a caveat: a logarithmic-space algorithm cannot afford to store all the untrusted ran-

dom bits. Therefore, instead of sequential iterations over all possible values of the trusted

bits, we do it in parallel, so that the untrusted random bits are still read-once. As there are

O(1) trusted random bits, this only increases the space by anO(1) factor.

However, rather surprisingly, unlike Proposition 4.1.5, we do not need to characterize

BPL using RPLwith polynomially many trusted random bits. As shown in the next theo-

rem,O(log n) trusted random bits suffice to accomplish all the jobs in BPL.

Theorem 4.1.11.

RPL(log n) = BPL.

Wewill prove Theorem 4.1.11 in the next section.

47

4.2 Streaming Proof for BPL

To prove Theorem 4.1.11, we will first show the equivalence of RPL algorithms with a spe-

cial type of non-interactive proofs called streaming proofs, in a similar way to the equiva-

lence in Proposition 4.1.8.

4.2.1 Streaming Proofs

A streaming proof consists of a pair of randomized Turing machines (a randomized prover

and a randomized verifier) which share a common stream tape. We assume that the verifier

is a logspace machine. The prover doesn’t have a separate output tape, instead, it has write-

once access to the stream tape onto which it writes a proof Π. The verifier has read-once

access to the stream tape from which it can read Π. Both the verifier and the prover have

read-many access to the input x ∈ {0, 1}∗. We allow the prover and verifier to output a

special symbol⊥. Upon outputting this symbol, the algorithm stops all further processing

and we say that the algorithm aborts.

Definition 4.2.1. LetF = {fn : {0, 1}n → {0, 1}}n∈N be a family of functions. Let

P : N → N be a monotone computable function. We say thatF has a streaming proof

of length P if there exists a proverP using a random string R2 and a randomized logspace

verifier V using a random string R1 such that on input x ∈ supp(fn),

1. The honest proverP , with at least 3
4 probability over R2, outputs a (randomized) proof

Π ∈ {0, 1}P(n) such that

Pr
R1
[V(x,Π) = fn(x)] ≥ 3

4

(where the probability is over the uniform distribution over R1,R2).

48

2. For an arbitraryΠ ∈ {0, 1}P(n) (even adversarially chosen after seeing the input x),

Pr
R1
[V(x,Π) ∈ {fn(x),⊥}] ≥ 3

4

(where the probability is over the uniform distribution over R1).

Let k : N → N be a monotone computable function. If the verifier V never reads more than

O(k(n)) random bits from R1, we say that the verifier uses at most O(k(n)) random bits.

We sometimes omit mentioning the length P(n) of the proof and it is understood that it

is always bounded by the running time of the prover, which is polynomial in n.

Lemma 4.2.2. A family of functions is in RPL(k) if it has a streaming proof between a

logspace prover and a logspace verifier where the verifier uses O(k) random bits.

Proof. Given a streaming proof between a logspace verifier and a logspace prover where

the verifier usesO(k) random bits, consider a RPL(k) algorithm that simulates the verifier

using trusted randomness. For each bit of the stream that the verifier wants to read, we have

the algorithm simulate the honest prover using untrusted randomness. The completeness

follows as both the verifier and the honest prover simultaneously succeed with probability

at least (3/4)2 > 1/2, furthermore, the probability that the verifier incorrectly answers

given any proof is at most 1/4. By standard error-reduction techniques, we can amplify the

completeness to be at least 3/4. This completes the proof.

What remains is to show that BPL can be solved by streaming proof protocols with

k = O(log n). This is reflected in the following lemma, which will be proved in the next

subsection. For now, let us see how the two lemmas imply Theorem 4.1.11.

49

Lemma 4.2.3. Every family of functions in BPL has a streaming proof between a logspace

prover and a logspace verifier where the verifier uses O(log n) random bits.

Proof of Theorem 4.1.11 from Lemma 4.2.2 and Lemma 4.2.3. Firstly, it is easy to see the

containment RPL(log n) ⊆ BPL. We consider any RPL(log n) algorithm and modify it so

that whenever it is supposed to output⊥, it outputs 0 instead. This can be viewed as a BPL

algorithm with error at most 1/4 and thus, RPL(log n) ⊆ BPL.

The conclusion that BPL ⊆ RPL(log n) follows immediately from Lemma 4.2.2 and

Lemma 4.2.3.

4.2.2 Proof of Lemma 4.2.3

It suffices to develop a streaming proof for the Stochastic Matrix Powering problem, which

is logspace-complete for BPL. Towards this, we define a notion of a δ-good sequence of

vectors for a stochastic matrixM.

Definition 4.2.4. LetM be any n × n stochastic matrix and T ≤ poly(n) be a natural

number. Let vi = Mi(e1) for all i ≤ T. Let δ ∈ [0, 1]. A sequence of vectors v′0, v′1, . . . , v′T ∈

Rn is said to be δ-good forM if for all i ∈ [T], we have ‖v′i − vi‖1 ≤ δ and v′0 = e1.

Wemake use of the following two claims.

Claim 4.2.5. There is a randomized logspace prover which given an n × n stochastic matrix

M and parameters T ≤ poly(n), δ ≥ 1/poly(n) as input, outputs a δ-good sequence of vectors

forM with probability at least 3/4.

Claim 4.2.6. Let 0 < δ ≤ (104nT3)−1. There is a randomized logspace verifier which given

any n × n stochastic matrixM and parameters T ≤ poly(n), δ ≥ 1/poly(n) as input and

50

read-once access to a stream of vectors v′0, . . . , v′T ∈ Rn (where each vector is specified up to

Θ(log(n)) bits of precision), does the following.

• If the sequence is δ-good forM, then the verifier aborts with probability at most 1/4.

• If ‖v′T − vT‖1 ≥ 1/4, then the verifier aborts with probability at least 3/4.

Furthermore, this verifier only uses O(log(n)) bits of randomness.

We now complete the proof of Lemma 4.2.3 using Claim 4.2.5 and Claim 4.2.6. Con-

sider the Stochastic Matrix Powering Problem. Given an n × n stochastic matrixM as

input and a parameter T ≤ poly(n), set δ = min {(104nT3)−1, 1/10}. Run the prover’s al-

gorithm from Claim 4.2.5 using this value of δ to produce a stream v′0, . . . , v′T. Run the ver-

ifier’s algorithm from Claim 4.2.6 on this stream to verify, and return⊥whenever it aborts.

If the verifier does not abort, we have it return 1 if v′T(n) ≥ 2/3, return 0 if v′T(n) ≤ 1/3

and return⊥ otherwise.

Completeness: Claim 4.2.5 implies that an honest prover outputs a δ-good sequence

with probability at least 3
4 . Claim 4.2.6 implies that a verifier aborts an honest proof with

very small probability. Since ‖v′T − vT‖1 ≤ δ ≤ 1/10 by assumption, if vT(n) ≥ 4/5, then

v′T(n) ≥ 2/3 and if vT(n) ≤ 1/5 then v′T(n) ≤ 1/3. SinceMT[n, 1] = vT(n), the verifier

returns the correct answer whenever the subroutine does not abort.

Soundness: Consider the behavior of this verifier on an arbitrary proof. If the verifier

makes a mistake and returns an incorrect answer, it must be the case that either vT(n) ≥

4/5 and v′T(n) ≤ 1/3 or vT(n) ≤ 1/5 and v′T(n) ≥ 2/3. In either case, we must have

51

‖v′T − vT‖k ≥ |v′T(n) − vT(n)| ≥ 1/4. Claim 4.2.6 implies that such a proof is aborted

with probability at least 3/4.

This completes the proof of Lemma 4.2.3. We now proceed to prove Claim 4.2.5 and

Claim 4.2.6.

Proof of Claim 4.2.5. The prover’s algorithm is formally described in Algorithm 4.1, which

uses multiple samples to estimate the entries ofMi(e1). It is clear that Algorithm 4.1 can be

performed in spaceO(log n).

Algorithm 4.1:Algorithm for Prover in Claim 4.2.5.
1 Output v0 = e1.
2 let C← Θ(n2 log(nT)/δ2).
3 for i← 1, . . . ,T, j← 1, . . . , n do
4 for count← 1, . . . ,C do
5 let estimatei,j ← 0, k← 1.
6 for t← 1, . . . , i do
7 Sample k′ ∈ [n]with probabilityM[k, k′].;
8 let k← k′.
9 let estimatei,k ← estimatei,k + 1.

10 Output vector vi where v′i(j) = estimatei,j/C.

To see the correctness of the algorithm, observe that by evolving the state k from the ini-

tial state 1 for i steps according toM, the algorithm produces a state which is jwith prob-

ability exactlyMi[1, j] = vi(j) for each j ∈ [n]. By repeated sampling and taking the em-

pirical average, the algorithm can estimate each vi(j) up to δ/n accuracy with probability

at least 1 − 1/(4nT) using C = Θ(n2 log(nT)/δ2) samples by Chernoff bound. This,

along with a union bound over i ∈ [T], j ∈ [n] implies that the algorithm with probabil-

ity at least 3/4, estimates each vi(j) up to δ/n precision, and hence produces v′i such that

‖v′i − vi‖1 ≤ δ.

52

Proof of Claim 4.2.6. The verifier’s algorithm is formally described in Algorithm 4.2, which

tries to check thatM·v′i−1 is approximately equal to v′i for all i ∈ [T]. However, to do this in

a streaming fashion, the verifier will instead test that a random linear combination of these

approximate equations holds. To reduce the randomness from T toO(log n), instead of

using a truly random combination of the equations the verifier uses a pseudorandom com-

bination drawn using a 4-wise independent collection of {−1, 1}-random variables. This is

similar to the ℓ2-frequency estimation algorithm in [AMS99].

Algorithm 4.2:Algorithm for Verifier in Claim 4.2.6
1 Abort if v′0 6= e1.
2 for t← 1, . . . , 11 do
3 Sample αi,j ∈ {−1, 1} for i ∈ [T], j ∈ [n] from a collection of 4-wise

independent {−1, 1}-random variables with mean 0;
4 let

Δ←
∑

i∈[T],j∈[n]

αi,j ·
[
(M · v′i−1)(j)− v′i(j)

]
.

5 Abort if |Δ| > 20Tδ.

One can sample from a collection of 4-wise independent {−1, 1}-random variables of

sizeO(nT) in logspace using onlyO(log(nT)) bits of randomness [AMS99]. Note that the

quantity Δ can be expressed as
∑

i∈{0,...,T}
j∈[n]

βi,jv
′
i(j)where βi,j are coefficients that depend

only on the entries ofM and α, and can be computed in logspace. Thus, a logspace algo-

rithm can read the stream of v′i(j) for i = 0, . . . ,T and j ∈ [n] once from left to right and

compute Δ =
∑

i,j βi,jv
′
i(j) in a streaming fashion.

We nowmove on to the completeness and soundness. Let w ∈ RnT be defined at i ∈

[T], j ∈ [n] by wi,j = (M · v′i−1)(j)− v′i(j). Let v0, . . . , vT be defined as before.

53

Completeness of the Algorithm: Suppose v′0, . . . , v′T is a δ-good sequence, then

‖v′i − vi‖1 ≤ δ for all i ∈ [T] and v′0 = e1. SinceM is a contraction map with respect to

‖ · ‖1, for all i ∈ [T]

∥∥M · v′i−1 − v′i
∥∥
1 ≤

∥∥M · v′i−1 −M · vi−1
∥∥
1 +
∥∥M · vi−1 − vi

∥∥
1 + ‖vi − v′i‖1

≤ ‖vi−1 − v′i−1‖1 + ‖vi − v′i‖1 ≤ 2δ.

Thus, ‖w‖2 ≤ ‖w‖1 ≤ 2Tδ. Consider the quantity Δ = 〈α,w〉 =
∑

i,j αi,jwi,j that the

algorithm estimates. Note that E〈α,w〉 = 0, and

Var〈α,w〉 = E〈α,w〉2 =
∑
i,j

w2
i,j = ‖w‖22.

Chebyshev’s Inequality implies that with probability at least 0.99, we have |〈α,w〉| ≤

20Tδ. This implies that with probability at least (0.99)11 ≥ 0.8, every iteration in Algo-

rithm 4.2 does not abort.

Soundness of the Algorithm: Suppose a dishonest prover produces a stream of

vectors v′0, . . . , v′T such that ‖v′T − vT‖1 ≥ 1/4. The verifier always returns⊥ if v′0 6= e1, so

we may assume that v′0 = e1. Let ε = 1/(10T). We argue that for some i ∈ [T], we must

have ‖wi‖1 > ε. Assume by contradiction that
∥∥M · v′i−1 − v′i

∥∥
1 ≤ ε for all i ∈ [T]. Then

54

by triangle inequality we have

‖vT − v′T‖1 =
∥∥MT(v′0)− v′T

∥∥
1 ≤

T∑
i=1

∥∥MT−(i−1) · v′i−1 −MT−i · v′i
∥∥
1

≤
T∑
i=1

∥∥MT−i∥∥
1 ·
∥∥M · v′i−1 − v′i

∥∥
1

≤
T∑
i=1

ε = Tε = 1/10.

which contradicts the assumption that ‖v′T − vT‖1 ≥ 1/4. Thus, we must have ‖w‖2 ≥

‖w‖1/(nT) ≥ ε/(nT). Note that E〈α,w〉 = 0 and E〈α,w〉2 = ‖w‖22. Furthermore,

E〈α,w〉4 = E
∑
i,j,k,l

wiwjwkwlαiαjαkαl ≤ 6
∑
i,j

w2
iw2

j ≤ 6‖w‖42.

Here, we used the fact that the random variables are 4-wise independent. By the Paley-

Zygmund Inequality [PZ32], it implies that

Pr
[
〈α,w〉2 ≥ 1

10
· ‖w‖22

]
≥ (1− 1/10)2 · (E〈α,w〉

2)2

E〈α,w〉4
≥ 1

8
.

This, along with the fact that ‖w‖2 ≥ ε/(nT) implies that Pr
[
|〈α,w〉| ≥ ε

10nT

]
≥ 1

8 . By

repeating this experiment 11 times, we can ensure that with probability at least 1 − (1 −

1/8)11 ≥ 3/4, we find at least one instance so that

|〈α,w〉| ≥ ε

10nT
=

1
100nT2 > 20Tδ.

55

The last inequality is because δ ≤ (104nT3)−1. This implies that the algorithm aborts with

probability at least 3/4.

Remark. In our algorithm, the verifier essentially checks if a certain random linear combi-

nation of theM · v′i−1 is close to the same linear combination of the v′i. The verifier could have

instead checked if for every i ∈ [T], M · v′i−1 was close to v′i. This could have been done by test-

ing for each i ∈ [T] whether 〈M · v′i−1,w〉 was close to 〈v′i,w〉 for a certain random vector w.

While the latter test is conceptually simpler, the former test has the additional useful property

that the verifier simply computes a linear function in the variables {vi(j)}.

4.3 Query-Complexity Separations

In this section we consider the query-complexity model, where one can fully prove that the

untrusted random string is helpful.

Proposition 4.3.1. For any n, k ∈ N, there are two disjoint subsets A,B ⊂ {0, 1, 2}2n+k

(where {0, 1, 2}2n+k is viewed as the set of all functions f : {0, 1}n+k → {0, 1, 2}), such

that, given a black box access to a function f : {0, 1}n+k → {0, 1, 2}, the following three are

satisfied:

1. There is a robustly randomized protocol that uses only k trusted random bits and only

one query to f and distinguishes between the cases f ∈ A and f ∈ B with probability at

least 3/4.

2. For any constant ε > 0, any randomized protocol that uses at most (1 − ε)n random

bits and distinguishes between the cases f ∈ A and f ∈ B with probability at least 3/4,

requires at least 2Ω(n) queries to f.

56

3. Any zero-error randomized protocol that distinguishes between the cases f ∈ A and

f ∈ B with probability at least 3/4 (and outputs do not know with probability at most

1/4) requires at least 2Ω(k) queries to f.

Specifically, taking k = log n in Proposition 4.3.1, we observe that there are promise

problems that can be solved by robustly-randomized protocols with only one query and

just a logarithmic number of trusted random bits, whereas any randomized protocol re-

quires either a linear number of random bits or an exponential number of queries, and any

zero-error randomized protocol requires a polynomial number of queries.

Proof. We define the subsets A,B ⊂ {0, 1, 2}2n+k as follows. LetR1 andR2 be uniformly

distributed over {0, 1}k and {0, 1}n respectively. For every function f : {0, 1}n+k →

{0, 1, 2}, we say that

• f ∈ A if and only if Pr[f(R1,R2) = 0] ≥ 3
4 , and for every r ∈ {0, 1}

n,

Pr[f(R1, r) ∈ {0, 2}] ≥
3
4
.

• f ∈ B if and only if Pr[f(R1,R2) = 1] ≥ 3
4 , and for every r ∈ {0, 1}

n,

Pr[f(R1, r) ∈ {1, 2}] ≥
3
4
.

Clearly A and B are disjoint as Pr[f(R1,R2) = 0] + Pr[f(R1,R2) = 1] ≤ 1.

1. A robustly randomized protocol that distinguishes between f ∈ A and f ∈ B uses

k trusted random bitsR1 and n untrusted random bitsR2. It makes a single query

57

for f(R1,R2) and based on the query result being 0, 1 or 2, outputs A,B or⊥ accord-

ingly. The correctness of the protocol is guaranteed by Definition 4.1.

2. For any constant ε > 0, consider a randomized protocol using at most (1 − ε)n

random bits and making at most q queries to f. Fix all the query answers to be 2, and

letQ ⊆ {0, 1}n+k be all the possible positions being queried over all choices of the

random bits. Assuming q ≤ 1
4 · 2

εn, we have |Q| ≤ 2(1−ε)nq ≤ 1
4 · 2

n.

Now pick f, g : {0, 1}n+k → {0, 1, 2} to be:

f(r) =

 0 if r /∈ Q

2 if r ∈ Q
g(r) =

 1 if r /∈ Q

2 if r ∈ Q

It is straightforward to check that f ∈ A and g ∈ B. The protocol behaves exactly

the same on f and g, thus being incorrect with probability at least 1
2 on either one of

them. Therefore, a successful protocol must have q ≥ 2Ω(n).

3. Consider a zero-error randomized protocol making at most q queries to f. Fix f to be

the constant function 0 and clearly f ∈ A. We arbitrarily fix a choice of the random

bits where the protocol outputs f ∈ A, and letQ be the positions queried under the

fixing. Assume that |Q| ≤ q ≤ 1
4 · 2

k.

Now pick g : {0, 1}n+k → {0, 1, 2} to be:

g(r) =

 1 if r /∈ Q

0 if r ∈ Q

It is straightforward to check that g ∈ B. Under the fixed choice of random bits, the

58

protocol behaves exactly the same on f and g , and thus incorrectly decides g ∈ A.

Therefore, a successful protocol must have q ≥ 2Ω(k).

59

5
Certified Hardness vs. Randomness for

Logspace

Given Theorem 4.1.11 from last chapter, that every BPL problem can be solved with ro-

bustly randomized algorithms withO(log n) trusted random bits, the follow-up question is

how to manipulate the untrusted random bits for our benefit. It turns out that the natural

choice is to feed pseudorandom bits to the untrusted part. Say we have an RPL(log n) algo-

rithmA(x,R1,R2) for some BPL problem, where |R1| = O(log n) andR2 is untrusted,

and we are given an alleged pseudorandom generatorG of seed lengthO(log n). In logspace

we can find the majority of outputs, among {0, 1⊥}, overA(x, y,G(z)) for all y and z:

• If the majority is 0 or 1, it must be the correct answer on x by soundness of the ro-

bustly randomized algorithm.

• On the other hand, if the majority is⊥, it means that the pseudorandomness is de-

fective. After all, if we replaceG(z)with truly random bits, by completeness the ma-

jority of outputs cannot be⊥. Therefore in this case we know for a fact thatG is not

60

really pseudorandom, andA(x, y, ·) is a proof for this fact.

The goal of this chapter is to work more effectively with the above intuition, and prove

two main results: Theorem 5.1.1 and Theorem 5.3.1.

5.1 Logspace Verifier for PRG

This and the next section are devoted to prove the following theorem:

Theorem 5.1.1. For every family of boolean functions f ∈ DSPACE[n] and ε > 0, there is

a deterministic algorithm that, given as the input an OBP B of length n and width n, runs in

space O(log n), and either

1. OutputsE[B] with 1/4 error; Or

2. Outputs a circuit C of size 2εm that computes f on {0, 1}m where m = Θ(log n).

Before getting into the proof, let us first compare it to the result of Klivans and van

Melkebeek [KvM02].

Theorem 5.1.2 ([KvM02]). If there is a family of boolean functions f ∈ DSPACE[n] that is

not computable by circuits of size 2εn for some ε > 0, then BPL = L.

Their proof is based on the worst-case hardness vs. randomness results by Imagliazzo

andWigderson [IW97], and shows how every step in the construction of the Imagliazzo-

Wigderson pseudorandom generator can be executed in deterministic logspace. To obtain

our desire result, we need to provide two additional features. First, give an algorithm that

distinguishes between the PRG and real randomness, we need to explicitly construct a next-

bit predictor for the PRG. Second, we need to reconstruct the circuit that computes f from

61

the next-bit predictor in a space-efficient and uniformmanner. In this section, we address

the first feature. In order to do so let us first formally define pseudorandom generators and

next-bit predictors.

Definition 5.1.3. A pseudorandom generator (PRG) is a function G : {0, 1}s → {0, 1}n,

where s is usually referred to as seed length. We say that G ε-fools a function f : {0, 1}n → R

if ∣∣∣E[f]− E
G
[f]
∣∣∣ ≤ ε,

where we useE[f] andEG[f] to denote the expectation of f under uniformly distributed inputs

and pseudorandom inputs generated by G respectively, that is,

E[f] = E
x∼Un

[f(x)], E
G
[f] = E

y∼Us
[f(G(y))].

We use the same convention in all of the rest of this section.

Definition 5.1.4. Given a generator G : {0, 1}s → {0, 1}n, a function T : {0, 1}i → {0, 1}

with i < n is an ε-next-bit predictor for G if

Pr
x∼Us

[T(G(x)1..i) = G(x)i+1] > 1/2+ ε.

Note that a next-bit predictor is naturally not fooled by the pseudorandom generator.

The main lemma in this section is the following, which shows that there is a logspace

verifier for PRGs (with logarithmic seed lengths against logspace OBPs), that detects when

a PRG fails and outputs a next-bit predictor for the PRG.

62

Lemma 5.1.5. For every error function ε(n) computable in space O(log n), there is a deter-

ministic algorithm that, given as input an OBP B of length n and width w, and the black-box

oracle access to a PRG G : {0, 1}s → {0, 1}n, runs in space O(s+ log(nw)), and either

1. Confirms that G ε · n-fools B; Or

2. Outputs an OBP T of length at most n and width w that is an ε/2-next-bit predictor

for G.

Lemma 5.1.5 can be proved using Theorem 4.1.11, as we described at the start of this

chapter. Here we present a simpler and more direct proof. We first define a series of poten-

tial distinguishers, with the property that each can be evaluated in logspace. Each distin-

guisher measures the bias of the next bit in the PRG upon reaching a particular state.

Definition 5.1.6. Given an OBP B of length n, for every i < n and v ∈ Vi, let Nv :

{0, 1}i+1 → {−1, 0, 1} be the function defined as:

Nv(x) =


1 if B→v(x) = 1 and xi+1 = 1

−1 if B→v(x) = 1 and xi+1 = 0

0 otherwise.

Furthermore, Nv is computable in logspace given B and v.

When x is uniformly random, B→v(x) and xi+1 are independent, and thereforeE[Nv] =

0 for all v. Consequentially, our verifier checks that |EG[Nv]| is small for all v, where we feed

the first i+ 1 bits of the PRG output toNv. We first show its soundness:

63

Lemma 5.1.7. Given an OBP B of length n, suppose that for every i,
∑

v∈Vi
|EG[Nv]| ≤ ε.

Then G ε · n-fools B.

Proof. As every edge from layerVi goes into layerVi+1, for every i < nwe have

∑
v∈Vi+1

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣
≤
∑
v∈Vi

∑
b∈{0,1}

∣∣∣∣ Prx∼Un
[B→v(x) = 1 ∧ xi+1 = b]− Pr

x∼G(Us)
[B→v(x) = 1 ∧ xi+1 = b]

∣∣∣∣ .
Notice that by the definition ofNv, we have

E[Nv] = Pr
x∼Un

[B→v(x) = 1 ∧ xi+1 = 1]− Pr
x∼Un

[B→v(x) = 1 ∧ xi+1 = 0]

= 2 Pr
x∼Un

[B→v(x) = 1 ∧ xi+1 = 1]− E[B→v]

= E[B→v]− 2 Pr
x∼Un

[B→v(x) = 1 ∧ xi+1 = 0],

and the above holds similarly under pseudorandomness generated byG. Therefore we fur-

ther have

∑
v∈Vi+1

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣ ≤∑
v∈Vi

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣+∑
v∈Vi

∣∣∣E[Nv]− E
G
[Nv]

∣∣∣
=
∑
v∈Vi

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣+∑
v∈Vi

∣∣∣E
G
[Nv]

∣∣∣ .
With the assumption that

∑
v∈Vi
|EG[Nv]| ≤ ε and the fact thatE[B→v0] = EG[B→v0] = 1,

we conclude that
∑

v∈Vn
|E[B→v]− EG[B→v]| ≤ ε · n. As the output labels are binary, this

means that |E[B]− EG[B]| ≤ ε · n, i.e. G ε · n-fools B.

64

Proof of Lemma 5.1.5. For every i < n, the algorithm iterates through every v ∈ Vi and

all the possible seeds forG, computes
∑

v∈Vi
|EG[Nv]| and checks if it is at most ε. This can

be done in spaceO(s + log(nw)). If all such checks pass, we have by Lemma 5.1.7 thatG

ε · n-fools B.

Otherwise, we find some i < n such that
∑

v∈Vi
|EG[Nv]| > ε. Let T be an OBP of

length i that is the same as B from layerV0 toVi, such that the output label on each v ∈ Vi

is 1 ifEG[Nv] ≥ 0, and 0 if EG[Nv] < 0. Such an OBP is of size at most that of B, and can

be constructed in spaceO(s+ log(nw)). We have

Pr
x∼G(Us)

[T(x1..i) = xi+1]

=
∑
v∈Vi

EG[Nv]≥0

Pr
x∼G(Us)

[B→v(x) = 1 ∧ xi+1 = 1] +
∑
v∈Vi

EG[Nv]<0

Pr
x∼G(Us)

[B→v(x) = 1 ∧ xi+1 = 0]

=
∑
v∈Vi

1
2

(
E
G
[B→v] +

∣∣∣E
G
[Nv]

∣∣∣)
>

1
2
(1+ ε).

What remains is to construct an alleged PRG from the alleged hard function f, such

that given its next-bit predictor we can efficiently reconstruct the circuit that computes f.

Formally, we state the following theorem, which will be proved in the next section.

Theorem 5.1.8. Given ε > 0, and a family of functions f ∈ DSPACE[m] where f = {fm :

{0, 1}m → {0, 1}}m∈N, there is a family of explicit generators G : {0, 1}s → {0, 1}n with

s = O(log n) computable in space O(log n), and a deterministic logspace algorithm that,

given n ∈ N and a 1/(8n)-next-bit predictor B for G of size at most n2 which is evaluable in

space O(log n), outputs a circuit C of size 2ε·m0 for fm0 with m0 = Θ(log n).

65

For now, let us see how Theorem 5.1.1 follows from Lemma 5.1.5 and Theorem 5.1.8.

Proof of Theorem 5.1.1. LetG : {0, 1}s → {0, 1}n be the generator of Theorem 5.1.8 with

error ε and function family f, and letm = m0 be the instance size of f used to constructG.

We then apply Lemma 5.1.5 on B andGwith ε = 1/(4n). Of the two possible out-

comes:

1. If it is certified thatG ε · n-fools B. In this case the algorithm computes and outputs

EG[B]which approximatesE[B]within additive error 1/4.

2. Otherwise we get for some i < n an explicit OBP T of length i and width w, such

that Prx∼Us [T(G(x)1..i) = G(x)i+1] >
1
2(1 + ε). In other words, T is an ε/2 =

1/8n next-bit predictor againstG of size at most n2, and T can be evaluated in space

O(log n). Then by Theorem 5.1.8, we can construct in spaceO(log n) a circuit C for

f on inputs of sizem = Θ(log n) of size at most 2εm.

5.2 Efficiently Reconstructive Derandomization

We prove Theorem 5.1.8 in four stages. Following the framework of [IW97], we first as-

sume that f is a (worst-case) hard function, and construct a PRG via hardness amplifica-

tions and the Nisan-Wigderson PRGs [NW94]. The detailed steps are slightly different

from those in [IW97], and we adapt the following strategy:

1. From f, construct (by low-degree extension) a function f′ that is hard-on-average on a

0.99 fraction of inputs.

2. From f′, construct (by derandomized XOR Lemma) a function f′′ (with multiple

bits of output) that is hard-on-average on a 2−Ω(m) fraction of inputs.

66

3. From f′′, construct (by Goldreich-Levin) a function f′′′ with single-bit output that is

hard-on-average on a 1/2+ 2−Ω(m) fraction of inputs.

4. Use f′′′ to instantiate a Nisan-Wigderson pseudorandom generatorG : {0, 1}s →

{0, 1}n for s = O(m).

We make sure that f′, f′′, f′′′ andG are all computable withinO(log n) space.

Furthermore, we prove that every step can be made logspace reconstructive, in the sense

that given a counterexample to the conclusion (i.e. a small circuit that obtains some advan-

tage) we can produce a counterexample to the assumption in deterministic logspace. This

requires modifying the standard reconstruction algorithms for the first three steps, all of

which use randomness-inefficient applications of the probabilistic method. Over the next

four subsections, we state and prove the necessary components of the reconstructive PRG,

and in Section 5.2.6, combine these results to conclude Theorem 5.1.8.

5.2.1 Derandomization Toolbox

First, we recall some notation related to the advantage of circuits.

Definition 5.2.1. Given f : {0, 1}n → {0, 1}m and a circuit C, let

SUC(C, f) = Pr
x∼Un

[C(x) = f(x)].

For m = 1, let ADV(C, f) = 2SUC(C, f)− 1.

Wewill repeatedly make use of an averaging sampler in order to make probabilistic

method arguments randomness efficient. We first recall the definition of an averaging sam-

67

pler, and then recall the classical result in [RVW01] that there exist highly efficient averag-

ing samplers, even with exponentially small error.

Definition 5.2.2. Given m ∈ N and ε, δ > 0, we say that SAMP : {0, 1}ℓ → ({0, 1}m)t is

a t-query (m, ε, δ)-averaging sampler with seed length ℓ if for every g : {0, 1}m → [0, 1] we

have

Pr
q1,...,qt∼SAMP(Uℓ)

[∣∣∣∣ Ei∈[t][g(qi)]− E[g]
∣∣∣∣ ≤ ε

]
≥ 1− δ.

Proposition 5.2.3 ([RVW01]). Given m ∈ N and ε > 0, there exists t = poly(m/ε)

and a t-query (m, ε, 2−2m)-averaging sampler with seed length 4m. Moreover, the sampler is

evaluable in space O(m).

Another tool that is repeatedly used in our proof is the combinatorial design, which is a

family of subsets S1, . . . , Sn ⊆ [s] such that |Si| = αs for some constant α ∈ (0, 1) and all

i ∈ [n], while |Si ∩ Sj| ≤ 2α2s for all i 6= j. The design will be used at two places: once

in derandomized XOR Lemma (Section 5.2.3) and once in the Nisan-Wigderson PRG

(Section 5.2.5). While the application in Section 5.2.3 only requires a linear-sized design,

the application in Section 5.2.5 requires an exponential-sized design that is deterministically

constructible in linear pace. The later was formally given in [KvM02], so we concurrently

use it for both applications.

Proposition 5.2.4 ([KvM02]). For every α ∈ (0, 1), there is β ∈ (0, 1) such that for s ∈ N

one can deterministically generate in space O(s) a combinatorial design of size n = 2βs over

[s], that is, a family of subsets S1, . . . , Sn ⊆ [s] such that |Si| = αs and |Si ∩ Sj| ≤ 2α2s for all

1 ≤ i < j ≤ n.

68

5.2.2 Derandomizing the Polynomial Decoder

For step (a) in Theorem 5.1.8, we need to convert a worst-case hard function to one with

constant average-case hardness.

Lemma 5.2.5. Given f : {0, 1}m → {0, 1}, there is g : {0, 1}m′ → {0, 1} where m′ =

Θ(m) such that, for every circuit B such that SUC(B, g) > 0.99, there is a circuit C of size

mO(1) · |B| such that

C(x) = f(x), ∀x ∈ {0, 1}m.

Moreover, when f is computable in space O(m), g is also computable in space O(m), and there

is a deterministic O(m)-space algorithm that, given the circuit B which is evaluable in space

O(m), prints C, and C is also evaluable in space O(m).

The proof for Lemma 5.2.5 is inspired by [STV01], where we encode f through Reed-

Muller codes and switch to boolean domain via Hadamard codes. However, since we only

need the resulting function to be average-case hard on a constant fraction of inputs, the

code can be directly decoded instead of list-decoded, and we derandomize the decoding

procedure with samplers.

We need the following two facts. The first is a folklore fact on constructing low-degree

extension, whose proof can be found at [GKR15, Proposition 2.2]:

Proposition 5.2.6. Given a finite field F and a subset H ⊆ F, and oracle access to a function

f : Hℓ → {0, 1}, one can compute in space O(log |F| + log ℓ) an ℓ-variable polynomial

p : Fℓ → F that coincides with f on Hℓ, and the degree of p in each variable is smaller than

|H|.

69

The second fact concerns decoding Reed-Solomon codes:

Proposition 5.2.7. Given a finite field F with |F| = N, whose elements can be canonically

listed as a1, . . . , aN where a1 = 0, there exists a circuit DEC : FN → FN that satisfies the

following: If there exists a univariate polynomial q : F → F of degree at most d < N, such

that q(ai) = bi for at least (N+ d)/2 of i ∈ [N], then

DEC(b1, . . . , bN) = (q(a1), . . . , q(aN)).

Furthermore, DEC is of size poly(N) and depth polylog(N), and can be uniformly constructed

in space O(logN) given the arithmetics in F.

Proof. The circuit DEC instantiates the Berlekamp-Welch algorithm [WB86, GS92]. The

algorithm involves solving systems ofO(N) linear equations onO(N) variables, for which

Csanky’s algorithm [Csa76] can be implemented in logspace-uniform-NC.

Proof of Lemma 5.2.5. We assume without loss of generality thatm is a power of 2. Let

ℓ = m/ logm, and F be a finite field of characteristic 2 and sizem2. TakeH ⊂ F to be a

subset of sizem, and we identify the domain {0, 1}m of fwithHℓ as 2m = |H|ℓ. The arith-

metics in F can be done in timeO(|F|) and spaceO(m), and so does the bijection between

{0, 1}m andHℓ (and its reverse).

Let p : Fℓ → F be the polynomial in Proposition 5.2.6, and let g : Fℓ+1 → {0, 1} be the

function defined as

g(x1, . . . , xℓ, y) = 〈p(x1, . . . , xℓ), y〉,

where 〈·, ·〉 stands for inner product in F2 when taking the binary representation of the

70

two arguments in F. It is clear that g can be computed in spaceO(m), and the input of g

has length (ℓ+ 1) log |F| = O(m)when represented in binary.

Now assume there is a circuit B such that SUC(B, g) > 0.99. We first construct the

circuit B′ : Fℓ → F such that the i-th bit of the output is

B′
i(x1, . . . , xℓ) = MAJz∈F(B(x1, . . . , xℓ, ei + z)− B(x1, . . . , xℓ, z)).

Here ei is the element in Fwhose binary representation has 1 on the i-th bit and 0 else-

where.

Claim 5.2.8. SUC(B′, p) ≥ 0.96.

Proof. Since SUC(B, g) > 0.99, there are at least a 0.96-fraction of (x1, . . . , xℓ) ∈ Fℓ such

that B coincide with g on more than 3/4 of y ∈ F, which contains both z and (ei + z)with

probability larger than 1/2 for a random z ∈ F. In such cases we have B′
i(x1, . . . , xℓ) =

〈p(x1, . . . , xℓ), ei〉 for every i, and thus B′(x1, . . . , xℓ) = p(x1, . . . , xℓ).

From B′, we reconstruct the circuit C : {0, 1}m → {0, 1} as follows. Let SAMP :

{0, 1}8m → (Fℓ)t be the sampler in Proposition 5.2.3 with ε = 0.01 and thus t = poly(m).

We think of SAMP as sampling t random vectors v = (v1, . . . , vℓ) ∈ Fℓ, and given the input

x = (x1, . . . , xℓ) ∈ Hℓ for C, each vector v represents a line {x+ λv | λ ∈ F}. On each line,

p(x + λv) is a univariate polynomial on λ of degree at most ℓ|H| = m2/ logm, and we use

the decoder circuit DEC in Proposition 5.2.7 to decode the Reed-Solomon code given by

B′ on the line. We let the value of C(x) to be the most common (breaking ties arbitrarily)

decoded value among the t lines. Notice that this process depends on the seed of the sam-

71

pler, and we actually go through all the seeds and choose the one that makes C(x) correctly

compute f on all x ∈ Hℓ.

Formally, we present this linear space reconstruction algorithm as Algorithm 5.1.

Algorithm 5.1:Reconstruction Algorithm in Lemma 5.2.5
1 Let SAMP : {0, 1}8m → (Fℓ)t be the sampler of Proposition 5.2.3 with ε = 0.01.
2 for y ∈ {0, 1}8m do
3 let v1, . . . , vt ← SAMP(y).
4 Let C : {0, 1}m → {0, 1} be the circuit

C(x) = MAJi∈[t](DEC1((B′(x+ λvi))λ∈F)).

5 if C(x) = f(x) for all x ∈ {0, 1}m then return C.

The circuit C constructed in the algorithm is of size 2t|F|2|B| + mO(1) = mO(1) · |B|,

and has additional depth polylog(m) compared to that of B. Therefore C can be evaluated

in spaceO(m).

Now we prove that the algorithm always returns a valid circuit C. Notice that for uni-

formly random v ∈ Fℓ, x + λv is also uniformly random after given x and λ 6= 0. Since

SUC(B′, p) ≥ 0.96, it means that there are at least a 0.84-fraction of v ∈ Fℓ such that

B′ coincide with p on x + λv for at least 3/4 of λ ∈ F, λ 6= 0. Recall that the degree of

q(λ) = p(x + λv) is at most ℓ|H| = |F|/ logm, and therefore by Proposition 5.2.7 we

conclude that for every x ∈ {0, 1}ℓ,

Pr
v∈Fℓ

[DEC((B′(x+ λv))λ∈F) = (p(x+ λv))λ∈F] ≥ 0.84,

in which case we have DEC1((B′(x+ λv))λ∈F) = p(x). Viewing this probability as an expec-

tation of the indicator function on v, by the guarantee of the sampler in Proposition 5.2.3

72

we have

Pr
v1,...,vt∼SAMP(U8m)

[
Pr
i∈[t]

[DEC1((B′(x+ λvi))λ∈F) = p(x)] ≥ 0.51
]
≥ 1− 2−4m.

By a union bound over x ∈ {0, 1}m, there must exist a y ∈ {0, 1}8m such that C(x) =

p(x) = f(x) for all x ∈ {0, 1}m. Therefore the algorithm always returns such a circuit C.

Moreover, the algorithm can be implemented to run in spaceO(m), as we can enumerate

over seeds to the sampler and construct the circuit (as a function of the sampler output) in

spaceO(m), and test if the circuit correctly computes f in this space bound.

5.2.3 Derandomizing the Derandomized XOR Lemma

Our next step follows the approach of Impaggliazo andWigderson [IW97], who use a de-

randomized XOR lemma to produce from a function that is hard on a constant fraction of

inputs, a function that is hard on any exponentially small fraction of inputs. The construc-

tion is identical to the one in [IW97], except that we modify the reconstruction algorithm

and analysis to make the circuit C constructible in deterministic spaceO(m).

Lemma 5.2.9. For every γ ∈ (0, 1), there is an O(m)-space computable function G :

{0, 1}m′ → ({0, 1}m)m, where m′ = Θ(m/γ), that satisfies the following: Given f :

{0, 1}m → {0, 1}, and a circuit B satisfying SUC(B, fm ◦ G) ≥ 2−γm, there exists a cir-

cuit C of size 2O(γm) · |B| such that

SUC(C, f) > 0.99.

Moreover, when f is computable in space O(m), there is a deterministic O(m)-space algorithm

73

that, given the circuit B which is evaluable in space O(m), prints C, and C is also evaluable in

space O(m).

We first give the construction of the functionG, which is called a direct-product genera-

tor in [IW97]. As in [IW97], it consists of two components: an expander walk and a com-

binatorial design. For the expander walk, we need an explicit expander where the neighbors

of a vertex can be efficiently computed:

Proposition 5.2.10 (see e.g. [LPS88]). There is a constant λ ∈ (0, 1), such that for every

m ∈ N, there exists a 4-regular graph Em on the vertex set {0, 1}m with spectral expansion

(second largest eigenvalue of the normalized adjacency matrix) at most λ, such that given any

vertex v ∈ {0, 1}m, its neighbors can be computed in time poly(m) and space O(logm).

Define the expander walk function EW : {0, 1}3m → ({0, 1}m)m as follows: Given

the input v ∈ {0, 1}m and d = (d1, . . . , dm) ∈ [4]m, the output is sequence of ver-

tices v1, . . . , vm in Em that starts with v1 = v, and take vi+1 to be the di-th neighbor of

vi. On the other hand, let S1, . . . , Sm ⊆ [s] be the firstm sets in the combinatorial de-

sign from Proposition 5.2.4 with α = γ/2 and s = m/α. Then we defined the function

G : {0, 1}3m+s → ({0, 1}m)m as:

G(r, v, d) =
(
(r|S1)⊕ EW(v, d)1, . . . , (r|Sm)⊕ EW(v, d)m

)
.

Here r|S is the part of r ∈ {0, 1}s on indices S, and⊕ is bit-wise XOR. From the definition

we have thatG can be computed in time poly(m) and spaceO(m). The input length ofG is

m′ = 3m+ 2m/γ = O(m/γ).

74

Now given f : {0, 1}m → {0, 1}, assume there is a circuit B such that SUC(B, fm ◦

G) ≥ 2−γm. Before we move on and show how to reconstruct the circuit C efficiently and

deterministically from B, let us first review the reconstruction step in [IW97]. For i ∈ [m],

x ∈ {0, 1}m, a ∈ {0, 1}s−m, v ∈ {0, 1}m and d ∈ [4]m, let h(i, x, a, v, d) = (r, v, d)where

r ∈ {0, 1}s such that

r|Si = x⊕ EW(v, d)i and r|Si = a.

The function h is called the restricting function ofG. Given x ∈ {0, 1}m, with i, a, v and

d chosen uniformly at random, they build a circuitF that first simulates B to compute

B(h(i, x, a, v, d)) = (y1, . . . , ym). Then it computes a number t defined as

t =
∣∣{j 6= i | yj 6= f

(
Gj ◦ h(i, x, a, v, d)

)}∣∣ ,
and outputs yi with probability 2−t, while outputting a random bit with probability 1 −

2−t. To compute t, for each j 6= i, f(Gj ◦ h(i, x, a, v, d)) is computed through a non-

uniformly constructed look-up table for f of size 2γm, containing the values of f(xj) for all

possible j-th output xj ofG ◦ hwith the fixed i, a, v and d.

We could not resort to non-uniformity to construct the look-up table. Nevertheless,

when f is computable in spaceO(m), we can compute the entire table in spaceO(m) and

hardwire it to the circuit. Even better, when i, a, v and d are given, each output xj ofG ◦ h

is fixed except for γm bits (corresponding to the coordinates in Si ∩ Sj), so we only need to

go through all 2γm possibilities for these bits to compute the table.

The circuitF presented above uses a stringR of |R| = O(m) random bits, including

i, a, v, d along with w ∈ {0, 1}m+1, the randomness used to decide the final output. It was

75

proved in [IW97] that:

Proposition 5.2.11 ([IW97, Theorem 15]). Suppose that SUC(B, fm ◦ G) ≥ 2−γm. There

exists c > 0 (that depends on γ), such that the fraction of inputs x ∈ {0, 1}m with

Pr
R
[F(x,R) = f(x)] ≥ 1/2+ 2−γm/c

is more than 0.99.

Therefore, the final circuit C takesO(m · 22γm) independent copies ofF and outputs

their majority, and there exists a fixing of the randomness that provides the final determin-

istic circuit C. We could not afford to store exponentially many random bits if they are in-

dependently sampled. Instead, we employ the efficient sampler in Proposition 5.2.3 that

uses onlyO(m) random bits as the seed to generate 2O(γm) samples, and we can enumer-

ate over all the seeds to find the one that makes SUC(C, f) > 0.99. As shown in the proof

below, such seed always exists.

Algorithm 5.2:Reconstruction Algorithm in Lemma 5.2.9
1 Let SAMP : {0, 1}4|R| → ({0, 1}|R|)t be the sampler of Proposition 5.2.3 with

ε = 2−γm/(2c).
2 for y ∈ {0, 1}4|R| do
3 LetR1, . . . ,Rt ← SAMP(y).
4 Let C : {0, 1}m → {0, 1} be the circuit

C(x) = MAJ(F(x,R1), . . . ,F(x,Rt)).

5 if SUC(C, f) > 0.99 then return C

Proof of Lemma 5.2.9. LetF : {0, 1}m+|R| → {0, 1} be the circuit described above, and

76

c > 0 be the constant in Proposition 5.2.11. We give the formal description of the linear-

space algorithm for the reconstruction procedure as Algorithm 5.2.

By Proposition 5.2.3 we have t = poly(m/ε) = 2O(γm) for ε = 2−γm/(2c). From the

description we know thatF has size |B| + 2γm · mO(1), and therefore C has size t|F| +

mO(1) = 2O(γm) · |B|. When B is evaluable in spaceO(m), C is clearly also evaluable in space

O(m).

By the guarantee of the averaging sampler in Proposition 5.2.3, for every x ∈ {0, 1}m:

Pr
R1,...,Rt∼SAMP(U4|R|)

[∣∣∣∣ Ei∈[t][F(x,Ri)]− E
R
[F(x,R)]

∣∣∣∣ ≤ ε

]
≥ 1− 2−2|R|.

By Proposition 5.2.11, there exists a subsetV ⊆ {0, 1}m such that |V| > 0.99 · 2m, such

that for every x ∈ V:

∣∣∣E
R
[F(x,R)]− f(x)

∣∣∣ ≤ 1/2− 2−γm/c = 1/2− 2ε.

Therefore for every x ∈ V, it is implied that

Pr
R1,...,Rt∼SAMP(U4|R|)

[∣∣∣∣ Ei∈[t][F(x,Ri)]− f(x)
∣∣∣∣ ≤ 1/2− 2ε+ ε

]
≥ 1− 2−2|R|,

which means that

Pr
R1,...,Rt∼SAMP(U4|R|)

[MAJ(F(x,R1), . . . ,F(x,Rt)) = f(x)] ≥ 1− 2−2|R| > 1− 1/|V|.

By a union bound over x ∈ V, there must exist a y ∈ {0, 1}4|R| such that C(x) = f(x)

for all x ∈ V, which satisfies SUC(C, f) > 0.99. Therefore the algorithm always returns a

77

valid C. Moreover, the algorithm runs in spaceO(m), as it enumerates the seeds of length

O(|R|) = O(m), constructs and evaluates the circuit C and makes oracle calls to f, which all

can be done in spaceO(m).

5.2.4 Derandomizing the Goldreich-Levin Theorem

Lemma 5.2.12. Given f : {0, 1}m → {0, 1}m, let g : {0, 1}m × {0, 1}m → {0, 1} be

defined as g(x, r) = 〈f(x), r〉. Then, given δ > 0, there is δ′ ≥ Ω(δ3/m) so that, for every B

satisfying ADV(B, g) > δ, there is a circuit C of size at most |B| · (m/δ)O(1) satisfying

SUC(C, f) > δ′.

Moreover, when f is computable in space O(m), there is a deterministic O(m)-space algorithm

that, given the circuit B which is evaluable in space O(m), prints C, and C is also evaluable in

space O(m).

Note that the original Goldreich-Levin theorem [GL89] does not guarantee (and in fact

does not give) an efficient deterministic reconstructor, as it is not randomness efficient. A

later work of Hoza and Klivans [HK18] achieves this, though with a significantly more

involved proof. As such, we directly show this using small-bias spaces, which we define

now:

Definition 5.2.13. A function G : {0, 1}t → {0, 1}k is an ε-biased generator if G(Ut) is a

ε-biased probability space over {0, 1}k, which formally means that for every T ∈ {0, 1}k,

Pr
y∼Ut

[〈T,G(y)〉 = 1] ∈ [1/2− ε, 1/2+ ε].

78

We recall that small-bias generators exist with good seed length, and moreover these gen-

erators can be evaluated in small space:

Proposition 5.2.14 ([NN93]). Given k ∈ N and ε > 0, there is an O(t)-space evaluable

ε-biased generator BIAS : {0, 1}t → {0, 1}k with seed length t = O(log(k/ε)).

We require a basic Fourier-analytic lemma, that states that a small-bias space fools the

conjunction of k parities.

Lemma 5.2.15. Let BIAS : {0, 1}t → {0, 1}k be an ε-biased generator. Then for every

collection T1, . . . ,Td ∈ {0, 1}k and v1, . . . , vd ∈ {0, 1} we have∣∣∣∣∣∣ E
r∼BIAS(Ut)

∧
i∈[d]

(〈Ti, r〉 ⊕ vi)

− E
r∼Uk

∧
i∈[d]

(〈Ti, r〉 ⊕ vi)

∣∣∣∣∣∣ ≤ 2ε.

Proof. We have

∧
i∈[d]

(〈Ti, r〉 ⊕ vi) = 1− 2 · 2−d
∑
S⊆[d]

⊕
i∈S

¬ (〈Ti, r〉 ⊕ vi)

= 1− 2 · 2−d
∑
S⊆[d]

(〈⊕
i∈S

Ti, r

〉
⊕
⊕
i∈S

¬vi

)

and as BIAS fools all such parities to error ε in the summation over S ⊆ [d], we have that

the total error is at most 2ε.

Proof of Lemma 5.2.12. If δ < 2−m, we can choose δ′ = 2−m and the lemma trivially holds

for a circuit C outputting a constant. Therefore, from now on we assume that δ ≥ 2−m.

We formally state our algorithm as Algorithm 5.3, with δ′ to be determined later. Note that

79

ℓ = O(m), and therefore in the ε-biased generator BIAS : {0, 1}t → {0, 1}ℓ×m we

have t = O(log(ℓm/ε)) = O(m)with ε = 2−4m−1, and the algorithm runs in space

O(t+ ℓ+m) = O(m).

Algorithm 5.3:Reconstruction Algorithm in Lemma 5.2.12
1 Let ℓ← dlog2(128m/δ2 + 1)e.
2 Let BIAS : {0, 1}t → {0, 1}ℓ×m be the generator of Proposition 5.2.14 with

ε = 2−4m−1.
3 for y ∈ {0, 1}t do
4 Let r1, . . . , rℓ ← BIAS(y).
5 for (b1, . . . , bℓ) ∈ {0, 1}ℓ do
6 Let C : {0, 1}m → {0, 1}m be the circuit that for each i ∈ [m]:

Ci(x) = MAJJ⊆[ℓ]:J ̸=∅(bJ ⊕ B(x, rJ ⊕ ei)).

7 if SUC(C, f) > δ′ then return C.

We view the output of BIAS as a tuple of ℓ vectors:

BIAS(y) = (r1, . . . , rℓ), ri ∈ {0, 1}m.

For convenience, let r⃗ := (r1, . . . , rℓ) and b⃗ := (b1, . . . , bℓ). For every J ⊆ [ℓ], let:

rJ :=
⊕
i∈J

ri, bJ =
⊕
i∈J

bi.

Note that in the original GL algorithm, all ri’s are i.i.d. uniformly over {0, 1}m. We first

argue that our distribution over rJ’s satisfies (approximately) the two properties used in the

analysis of the original algorithm:

Claim 5.2.16. The following two properties hold:

80

1. For every non-empty J, rJ is 2−2m-close to Um in ℓ1-distance.

2. For every non-empty J and J′ where J 6= J′, (rJ, rJ′) is 2−2m close to U2m in ℓ1-distance.

Proof. For i ∈ [m], the i-th bit of rJ can be written as 〈Ti,J, BIAS(y)〉where Ti,J indicates a

non-empty subset of bits. From Lemma 5.2.15 we know that for every v ∈ {0, 1}m,

∣∣∣∣∣∣ Pr
r∼BIAS(Ut)

[rJ = v]− Pr
r∼Uℓm

∧
i∈[m]

(〈Ti,J, r〉 = vi)

∣∣∣∣∣∣ ≤ 2ε.

Notice that {Ti,J}i∈[m] are linearly independent, and thus (〈Ti,J, r〉)i∈[m] is uniformly dis-

tributed over {0, 1}m. Therefore taking the sum over v ∈ {0, 1}m we have that rJ is 2ε ·

2m ≤ 2−2m-close toUm in ℓ1 distance.

When J 6= J′ are both non-empty, {Ti,J}i∈[m] ∪ {Ti,J′}i∈[m] are still linearly independent.

For the same reason as above, (rJ, rJ′) is 2ε · 22m = 2−2m-close toU2m in ℓ1 distance.

Now recall that for i ∈ [m] the ith bit of the output of C is

Ci(x) = MAJJ:J̸=∅(bJ ⊕ B(x, rJ ⊕ ei)).

Thus C has size |C| ≤ (|B| + O(ℓ)) · 2ℓm ≤ |B| · O(2ℓℓm) = |B| · (m/δ)O(1) as claimed.

To analyze the performance of C, let

S := {x ∈ {0, 1}m : Pr
z∼Um

[B(x, z) = g(x, z)] ≥ 1/2+ δ/2}.

By a standard averaging argument, |S| ≥ (δ/2) · 2m.

81

Claim 5.2.17. For every x ∈ S and i ∈ [m],

Pr
(r1,...,rℓ)∼BIAS(Ut)

[∣∣{J : B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei)}
∣∣ ≤ 1

2
(2ℓ − 1)

]
≤ 1

2m
.

Proof. For the remainder of the proof we fix x and i. Let A ⊂ {0, 1}m be the set of values

r on which B(x, r) = g(x, r). By the fact that x ∈ Swe have |A| ≥ (1/2 + δ/2) · 2m.

Furthermore, for each y ∈ {0, 1}t (where y is the input to BIAS) let

ζJ(y) = I[rJ ⊕ ei ∈ A]

and observe that ζJ = 1 is equivalent to B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei), i.e. B computes the

inner product with f(x) correctly on that input. Now observe that by Claim 5.2.16,

E
y
[ζJ] = Pr

y
[ζJ(y) = 1] ≥ 1/2+ δ/2− 2−2m ≥ 1/2+ δ/4.

We now bound the variance of the number of such places where we compute the inner

product correctly. Let

σ2 = Var

(∑
J

ζJ

)
=
∑
J,J′

Cov(ζJ, ζJ′)

≤
∑
J

Var(ζJ) +
∑
J,J′

2−2m

≤ 2ℓ + 22ℓ · 2−2m ≤ 2ℓ+1

where the first inequality follows from Claim 5.2.16. Now the result follows by Cheby-

82

shev’s inequality and a union bound. For convenience let d = 2ℓ − 1, and the probability

in the claim equals:

Pr
y

[∑
J

ζJ ≤
d
2

]
≤ Pr

y

[∣∣∣∣∣∑
J

ζJ − E[ζJ] · d

∣∣∣∣∣ ≥
(
dδ
4σ

)
· σ

]

≤ 16σ2

δ2(2ℓ − 1)2
≤ 32σ2

δ222ℓ
≤ 64

δ22ℓ
≤ 1

2m
.

Notice that when B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei) and for every j ∈ [ℓ], bj = g(x, rj), we have

bJ ⊕ B(x, rJ ⊕ ei) = g(x, rJ)⊕ g(x, rJ ⊕ ei) = g(x, ei) = fi(x).

Therefore using a union bound over i ∈ [m] on Claim 5.2.17, we have that for every x ∈ S,

Pr
r⃗∼BIAS(Ut)

b⃗∼Ul

[C(x) = f(x)]

≥ Pr
r⃗∼BIAS(Ut)

[
∀i ∈ [m],

∣∣{J : B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei)}
∣∣ > 1

2
(2l − 1)

]
· Pr
b⃗∼Uℓ

[
∀j ∈ [ℓ], bj = g(x, rj)

]
≥ 1

2
· Pr
b⃗∼Uℓ

[
∀j ∈ [ℓ], bj = g(x, rj)

]
≥ 2−ℓ−1.

Thus, there is an assignment of y and b⃗ such that C computes f correctly on at least |S| ·

2−ℓ−1 ≥ 2m · δ2−ℓ−2 inputs. Moreover, we can find such a circuit by enumerating the

assignments to y and b⃗, and verifying the success probability by evaluating C and f over all

83

x ∈ {0, 1}m. Therefore letting

δ′ = δ2−ℓ−2 = Ω(δ3/m)

completes the proof.

5.2.5 Space-Efficient Nisan-Wigderson PRG

We recall the argument of [KvM02] that there is a space-efficient implementation of the

Nisan-Wigderson [NW94] PRG, using the linear-space constructible combinatorial design

(Proposition 5.2.4). While we rephrase their result in our notation, we make no changes to

the construction, as (in contrast to all other steps) the existing implementation satisfies our

desired reconstruction property.

Lemma 5.2.18. Given ρ > 0 and n ∈ N and a family of functions fm : {0, 1}m →

{0, 1} ∈ DSPACE[m], there exists an m = Θ(log n) and G : {0, 1}s → {0, 1}n with

s = O(m) such that, given a circuit B which is a next-bit predictor for G with advantage ε,

there is a circuit C of size |B|+ O(n2ρm) satisfying

ADV(C, fm) > ε.

Moreover, there is a deterministic O(m)-space algorithm that, given the circuit B which is

evaluable in space O(m), prints C, and C is also evaluable in space O(m).

Proof of Lemma 5.2.18. Fix α ∈ (0, 1) such that α ≤ ρ/2, and let β ∈ (0, 1) be the

constant in Proposition 5.2.4. Choose s = O(log n) such that 2βs = n, and letm = αs.

84

Let S = (S1, . . . , Sn) be the design of Proposition 5.2.4 over [s]with parameter α, and let

fm : {0, 1}m → {0, 1} be the function on inputs of sizem = O(log n).

We letG(x) := f(xS1)f(xS2) . . . f(xSn).Now suppose B is an ε-next-bit predictor for bit i

ofG, i.e.

Pr
x∼Us

[B(G(x)1..i) = G(x)i+1] >
1
2
+ ε.

Then let S := Si+1 and T := [s] \ Si+1 and write the above inequality as

Pr
(xS,xT)∼Us

[B(G(xS ∪ xT)1..i) = f(xS)] >
1
2
+ ε.

For each fixing of xT, we let the circuit C to be C(xS) = B(G(xS ∪ xT)1..i). Then we have

E
xT
[ADV(C, fm)] > ε.

Thus, the algorithm can enumerate over all possible assignments to xT in space |T| =

O(m), and for each assignment check the advantage of C. Once the algorithm has found

the fixing of xT such that the restricted circuit has advantage at least ε, for every j ≤ i, the

j-th bit of the output ofG(xS ∪ xT), which is f(xSj), depends on |S ∩ Sj| ≤ 2α2s = ρm

bits of xS, and hence we can output a (O(m)-space constructible) circuit for f(xSj) of size at

mostO(2ρm), and hence the total size of C is at most |B|+ O(n2ρm).

5.2.6 Putting It All Together

Proof of Theorem 5.1.8. Given ε, we first do the construction steps. For eachm ∈ N:

1. Let f′ : {0, 1}m1 → {0, 1} be the function g of Lemma 5.2.5 applied to fm.

85

2. Let f′′ : {0, 1}m2 → {0, 1}m1 be the function f′m1 ◦ G of Lemma 5.2.9 applied to f′m1

with the constant γ to be chosen later.

3. Let f′′′ : {0, 1}m3 → {0, 1} be the function g of Lemma 5.2.12 applied to f′′m2
with

the constant δ to be chosen later.

4. LetG : {0, 1}s → {0, 1}n be the function of Lemma 5.2.18 applied to f′′′m3
and B

with the constant ρ to be chosen later.

Notice thatm1,m2,m3 and s are all Θ(m), and the functions f′, f′′, f′′′ andG are all com-

putable in spaceO(m).

Suppose now we are given a 1/(8n) next-bit predictor B forG of size n2. As n is given,

we decide the value ofm3 = Θ(log n) through Lemma 5.2.18, which in turn decides the

value ofm = Θ(log n). The reconstruction steps go as follows:

4. By Lemma 5.2.18, we can construct in spaceO(m) a circuit C3 such that ADV(C3, f′′′m3
) >

1/(8n), and C3 has size s3 = n2 + O(n2ρm3) ≤ 2c3ρm for some constant c3 > 0.

3. By Lemma 5.2.12, where we now set δ = 1/(8n), we can construct in spaceO(m)

a circuit C2 such that SUC(C2, f′′m2
) > Ω(δ3/m2) ≥ 2−c2ρm, and C2 has size s2 =

s3 · (m2/δ)O(1) ≤ 2c2ρm for some constant c2 > 0.

2. By Lemma 5.2.9, where we now set γ = c2ρ, we can construct in spaceO(m) a cir-

cuit C1 such that SUC(C1, f′m1
) > 0.99 and C1 has size s1 = s2 · 2O(γm1) ≤ 2c1ρm for

some constant c1 > 0.

1. By Lemma 5.2.5, we can construct in spaceO(m) a circuit C such that C(x) = fm(x)

for every x ∈ {0, 1}m, and C has size s = s1 ·mO(1) ≤ 2c0ρm for some constant c0 > 0.

86

By choosing ρ = ε/c0, we obtain the final result.

5.3 Universal Derandomization of BPL

Here we state the main theorem of this section, that there exists a universal derandomizer

for logspace computation.

Theorem 5.3.1. There is a deterministic Turing machine U such that:

• On input 1n and an OBP B of length and width at most n, the output U(1n,B) satisfy-

ing |U(1n,B)− E[B]| < n−1.

• For every space-constructible function S : N → N satisfying S(n) ≥ log n, U runs in

space O(S(n)) if and only if BPL ⊆ DSPACE(S).

Notice that the condition BPL ⊆ DSPACE(S) is stronger than say, there exists a PRG

for BPLwith seed lengthO(S). Therefore we cannot simply enumerate Turing machines

and use their outputs blindly as pseudorandomness. Instead, we use them as the outputs of

a specific BPL-complete search problem.

5.3.1 A Pseudo-Deterministic BPL-Complete Problem

Definition 5.3.2. The problem OBPRoundingc with parameter c ∈ N is a promise search

problem that outputs a real number in [0, 1], defined as follows. Given an ordered branching

program B of length n and width poly(n), and a shifting parameter r with the promise that

∣∣E[B]− k · n−c+2 + r
∣∣ > n−c

6
, ∀k ∈ Z,

87

the problem asks to output a real number δ that satisfies |E[B]− δ| ≤ n−c+2. Further more,

we require δ be pseudo-deterministic, that is, on every fixed input, the randomized algorithm

that computes OBPRoundingmust output the same δ with probability at least 2/3.

The promise means thatE[B] + r is polynomially bounded away from every multiple

of n−c+2. We introduce the promise and the shifting parameter r to prevent the case when

E[B] is very close to some multiple of n−c+2, and it becomes hard to determining whether

the expectation is above or below the cutoff. This is inspired by the approach of Saks and

Zhou [SZ99].

Proposition 5.3.3. OBPRoundingc is BPL-complete under L reductions.

Proof. Fix arbitrary c ≥ 3. We first prove that OBPRoundingc can be computed in BPL.

We sample n2c+1 random walks on the branching program B, and let γ be the fraction of

these walks which reach the acceptance state. Let k ∈ Z be the largest value such that

γ+ r ≥ k · n−c+2, and return δ = k · n−c+2. Since this algorithm clearly runs in randomized

logspace, it suffices to show that, for B and r that satisfy the promise, there is some fixed k

that the above algorithm identifies with probability over 2/3. Note that by the promise, we

have that for some k0 ∈ Z,

k0 · n−c+2 +
n−c

6
< E[B] + r < (k0 + 1) · n−c+2 − n−c

6
.

On the other hand, using concentration bounds we can show that with probability at least

2/3,

|(E[B] + r)− (γ + r)| = |E[B]− γ| ≤ n−c

6
.

In this case the algorithm always identifies k = k0 since k0 ·n−c+2 < γ+r < (k0+1) ·n−c+2.

88

We now prove that OBPRoundingc is BPL-hard. Recall the standard BPL-complete

problem: Given an OBP B of length and width n, determine ifE[B] < 1/3 orE[B] > 2/3,

where the promise is that one of these cases holds. We reduce this problem to OBPRound-

ing as follows. Let TB : {0, 1}dn → {0, 1} be the OBP defined as

TB(x1, . . . , xd) = MAJ(B(x1), . . . ,B(xd))

where d = O(c log n) such that if E[B] < 1/3 then E[TB] < n−c/6, and if E[B] > 2/3

then E[TB] > 1 − n−c/6. Observe that TB has length and width polynomial in n, and

is constructible in deterministic logspace given B. Let the input to OBPRoundingc be

(TB, n−c), which satisfies the promise. Hence if the answer is less than 1/2 we determine

thatE[B] < 1/3, and otherwise determine that E[B] > 2/3.

5.3.2 Universal Derandomization Algorithm

Intuitively, our universal derandomizer U enumerates over deterministic Turing machines

〈i〉, space bounds j, and shifting parameters r. At each step, it simulate 〈i〉 on input (B→v, r)

for every state v in the OBP B. If 〈i〉 ever touches more than j spaces on the work tape, U

halts and increments i or j. Otherwise, we have a set of estimates {p→v} = {〈i〉(1n,B→v)}

which can be generated on the fly in spaceO(j + log n). We then verify whether these esti-

mates are close to the actual probabilitiesE[B→v], and return the estimate of the probabil-

ity of reaching the accepting state if they pass the check.

Note that given the OBP B, we can construct in logspace the probability transition ma-

trix corresponds to B. Therefore the verifier Algorithm 4.2 in Lemma 4.2.3 is able to ac-

complish the verification job. The verifier there was randomized, but we can make it deter-

89

ministic by going over all possibilities of theO(log n) random bits, as the estimates {p→v}

are not read-once. A simpler verifier with even better parameters can be found in [CH22],

which we state below.

Proposition 5.3.4 ([CH22]). There is a deterministic logspace algorithm V that takes as

an OBP B of length n and width poly(n), and the estimates {p→v}. If for every state v of B,

|p→v − E[B→v]| ≤ n−3 the algorithm accepts, and moreover if the algorithm accepts, |p→v −

E[B→v]| ≤ n−1 for every v.

We now give the formal description of the algorithm as Algorithm 5.4. By the soundness

of the verifier V , if U returns a value, it must be a good approximation of the acceptance

probability of B. Therefore it suffices to show that the machine halts and runs in the de-

sired space bound.

Algorithm 5.4:Universal derandomizer U(B)
1 for j← 0, 1 . . . , do
2 for i← 0, 1, . . . , j do
3 for t← 1, . . . , 2n2 do
4 let r← t · n−5/2;
5 Compute b← V(B, {〈i〉(1n,B→v, r)}v∈V(B));
6 whenever 〈i〉 uses more than j space or more than 2j time do
7 Abort the simulation of 〈i〉 and pass to the next r.
8 if b = 1 then return 〈i〉(B, r).

Lemma 5.3.5. For every space-constructible function S : N → N with S(n) ≥ log n, if

BPL ⊆ DSPACE(S), then U halts and runs in space O(S(n)).

Proof. We prove that U(1n,B) halts and returns a value with i+ j ≤ c · S(n) for an absolute

constant c (in particular, i, j < ∞), which suffices to establish the lemma by the composi-

tion of space-bounded algorithms.

90

By Proposition 5.3.3, there is a Turing machine 〈i〉 that computes OBPRoundingc for

c = 5 inDSPACE(S). We now show that there exists r ∈ {1 · n−5/2, 2 · n−5/2, . . . , 2n2 ·

n−5/2} such that ∣∣E[B→v]− k · n−3 + r
∣∣ > n−5/6 (5.1)

for every k and v. There are n2 different valuesE[B→v] over v in the vertex setV(B) of the

branching program, and for each v, there is at most one assignment to r such that (5.1) fails

to hold for some k ∈ Z. As there are 2n2 possible values for r, there must be one such that

(5.1) holds for all k and v.

Finally, let j = O(S(|B|)) be such that 〈i〉(B→v, r) halts using at most j space for every

v. Such a j exists per assumption and the fact that the input (B→v, r) satisfies the promise

of Proposition 5.3.3 for every v. Thus, upon reaching the tuple (i, j, r), the set of estimates

p→v = 〈i〉(B→v, r)must satisfy |p→v − E[B→v]| ≤ n−3 for every v ∈ V(B). Then running

V(B, {p→v}v∈V(B)) (where we wait for the test to request a particular value p→v and then

recompute it from 〈i〉, avoiding the need to store all n2 values) will result in V accepting,

and hence U halts in the claimed space bound. Moreover, the returned value δ = 〈i〉(B, r)

satisfies that |δ− E[B]| ≤ n−1.

We can now conclude the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. Let U be Algorithm 5.4. The fact that |U(1n,B) − E[B]| < n−1

follows from the soundness in Proposition 5.3.4 applied to p→v = 〈i〉(B→v, r).

The direction that U runs in spaceO(S(n)) if BPL ⊆ DSPACE(S)was proved in

Lemma 5.3.5. To prove the other direction, notice that U actually deterministically solves

OBPRoundingc for c = 3, which by Proposition 5.3.3 is BPL-hard. Therefore if U ∈

91

DSPACE(S) then BPL ⊆ DSPACE(S).

92

6
Unitary Quantum Simulation

In this chapter we study the power of unitary quantum computing with bounded space.

Most of the results stated here will be focusing on logarithmic space, but they generally

work for any larger space bound as well.

The main problem we consider in this chapter is the simulation of space-bounded quan-

tum computing with general quantum channels, i.e. BQL. This is captured by the follow-

ing problem of powering matrices that represents quantum channels.

Definition 6.1. In the ChannelPowering problem, given n = 2S, a quantum channel

Φ : L(Cn) → L(Cn) in its natural representation K(Φ) ∈ Cn2×n2 and a positive integer T

in unary, it is promised thatTr[ρ0 · Φ
T(ρ0)] is either in [0, 1/3] or [2/3, 1] for ρ0 = |0

S〉〈0S|,

and the goal is to distinguish between the two cases.

Notice that in general a quantum algorithm is specified by T channels Φ1, . . . ,ΦT in-

stead of one, but we could simply add a register ofO(logT) qubits that stores the time

stamp, and make

Φ(ρ⊗ |t〉〈t|) = Φt(ρ)⊗ |t+ 1〉〈t+ 1|.

93

The final measurement that measures the |0S〉 state is also general enough for BQL, as men-

tioned in Section 2.2. Therefore we have:

Theorem 6.2. ChannelPowering is BQL-hard.

In the following sections, we will show how the ChannelPowering problem is com-

puted with only unitary operators, how the error can be reduced in unitary logspace even

for the problem of outputting the measurement probabilities, and its relations with quan-

tum learning.

6.1 Unitary Quantum Logspace Algorithms

In this section we survey some of the important problems that can be solved in BQUL,

which at the end leads to the resolution of BQL = BQUL. Note that in all these results,

the unitary quantum circuits we construct are uniform, and contains only unitary opera-

tors from a fixed universal gate set. We first state a simple but useful lemma regarding error

propagation in quantum computing:

Lemma 6.1.1. If A1, . . . ,Ak,B1, . . . ,Bk ∈ Cn×n satisfy ‖Ai − Bi‖ ≤ ε for every i, and has

bounded spectral norm for all partial products, that is

∥∥AiAi+1 · · ·Aj
∥∥ , ∥∥BiBi+1 · · ·Bj

∥∥ ≤ κ, ∀i ≤ j

for some κ ≥ 1, then ‖A1 · · ·Ak − B1 · · ·Bk‖ ≤ kεκ2. In particular, when Ai and Bi are all

unitary, ‖A1 · · ·Ak − B1 · · ·Bk‖ ≤ kε.

94

Proof. We have

‖A1 · · ·Ak − B1 · · ·Bk‖ ≤
k∑

i=1

‖A1 · · ·AiBi+1 · · ·Bk − A1 · · ·Ai−1Bi · · ·Bk‖

≤
k∑

i=1

‖A1 · · ·Ai−1‖ · ‖Ai − Bi‖ · ‖Bi+1 · · ·Bk‖

≤ kεκ2.

State Preparation We start from the task of preparing any given pure quantum state

from the initial state |0S〉. A considerable amount of study has been conducted trying to

reduce the time complexity for state preparation, and these works usually requires huge

amount of ancilla qubits (and therefore requires large space); see [ZLY22] for a exposure

on this topic. Here we provide a simple space-efficient construction, relying on the result of

[Ta-13] which uses the space-efficient Solovay-Kitaev Theorem [vMW12]:

Lemma 6.1.2. Given n = 2S, a unit vector v ∈ Cn and ε > 0, we can construct a unitary

quantum circuit Qv on S qubits with time O(n · polylog(1/ε)) and space O(log(n/ε)) such

that ‖Qv|0S〉 − v‖2 ≤ ε.

Proof. The circuit is a composition of n − 1 two-level unitaries, that is, unitaries that op-

erate on two dimensions of the computational basis). More specifically, starting from the

initial state |0S〉, in the i-th step the unitaryUai =

 ai
√
1− |ai|2√

1− |ai|2 ai

 is applied

on the i-th and (i + 1)-th dimension, where ai = vi/
√
|vi|2 + |vi+1|2 + · · ·+ |vn|2, so that

95

the state after the i-th step is

(v1, . . . , vi,
√
|vi+1|2 + · · ·+ |vn|2, 0, . . . , 0).

By [Ta-13], each two-level unitary can be implemented up to error ε/mwith timeO(m ·

polylog(1/ε)) and spaceO(log(m/ε)). By Lemma 6.1.1 the total error is at most ε.

We also note that the result in Lemma 6.1.2 was known in [MVBS05] with a slightly

different proof, and while the space complexity is not originally stated there, it is implicit

from their construction.

Hamiltonian simulation Given a HamiltonianH, which is a Hermitian matrix that

describes the evolution of the quantum system, the Hamiltonian simulation problem asks

to simulate the evolution eiHt for arbitrary t > 0. Ta-Shma showed in [Ta-13] how to per-

formHamiltonian simulation with a space-efficient unitary quantum circuit, and it is in-

place (without any ancillas). We restate the result for Hermitian contractions:

Theorem 6.1.3 ([Ta-13]). Given a Hamiltonian H ∈ Cn×n and ε > 0, we can construct

a unitary quantum circuit U with time poly(n/ε) and space O(log(n/ε)), such that ‖U −

eiH‖ ≤ ε.

For Hamiltonians with bounded spectral norms, the dependence on εwas improved in a

series of works [BCC+14, BCC+15, BCK15]. Formally we have:

Theorem 6.1.4 ([BCK15]). Given a Hamiltonian H ∈ Cn×n with ‖H‖ ≤ poly(n) and

ε > 0, we can construct a unitary quantum circuit U with time poly(n, log(1/ε)) and space

O(log(n/ε)), such that ‖U− eiH‖ ≤ ε.

96

Matrix-Vector Product andMatrix Inverse Using the Hamiltonian simulation

algorithm and phase estimation (see e.g. [NC10, Section 5.2]), Ta-shma [Ta-13] gives an

efficient way to computeH−1|u〉 for any well-conditioned matrixH and unit vector |u〉,

based on the framework of [HHL09]. Assuming thatH is Hermitian and ‖H‖ ≥ 1, we

sketch how the algorithm works as follows.

• First apply the phase estimation over the unitary eiH so that it maps |uλ〉 to |uλ〉|λ〉,

where uλ is an eigenvector ofHwith eigenvalue λ.

• For each eigenvector apply the unitary transformation

|λ〉 → λ−1|0〉|λ〉+
√

1− λ−2|1〉|λ〉

according to the eigenvalue λ ≥ 1.

• Uncompute the eigenvalues by reversing the phase estimation over eiH.

When ‖H‖ ≥ κ−1 for some κ > 1, we can simply apply the algorithm on κH. Also whenH

is not Hermitian, the matrix

 0 H

H† 0

 does the trick. Finally, notice that by replacing λ−1

with λ while assuming ‖H‖ ≤ κ, the algorithm also works on computingH|u〉.

Theorem 6.1.5. Given a matrix H ∈ Cn×n with κ = poly(n) such that ‖H‖, ‖H−1‖ ≤ κ,

and an error parameter ε > 0, we can construct unitary quantum circuits QH and Q′
H with

time poly(n/ε) and space O(log(n/ε)), such that

∥∥(In ⊗ |0ℓ〉〈0ℓ|)QH(In ⊗ |0ℓ〉〈0ℓ|)− (κ−1H)⊗ |0ℓ〉〈0ℓ|
∥∥ ≤ ε,

97

∥∥(In ⊗ |0ℓ〉〈0ℓ|)Q′
H(In ⊗ |0ℓ〉〈0ℓ|)− (κH−1)⊗ |0ℓ〉〈0ℓ|

∥∥ ≤ ε,

where ℓ = O(log(1/ε)) is the number of ancilla.

In other words,QH andQ′
H are efficiently constructed block encodings [CGJ19] of κ−1H

and κH−1.

Based on Theorem 6.1.5, Fefferman and Lin [FL18] showed that Poly-Conditioned

MatrixInverse, the problem of approximating one entry ofH−1 to constant error, is in

fact a complete problem for BQUL.

Matrix Powering WhenH is a contraction, that is when ‖H‖ ≤ κ = 1, a directly

corollary of Theorem 6.1.5 is that we can actually compute the powers ofH, by simply

repeatedly applyingH. Each application produces poly(n/ε) dimensions of junks and re-

quires 2ℓ additional clean dimensions, and thus to computeHT for T = poly(n) the overall

space usage is stillO(log(n/ε)).

Notice that the channel powering problem is essentially powering the natural represen-

tation matrix of a channel, as we have

Tr[|0S〉〈0S| · ΦT(|0S〉〈0S|)] = 〈02S|K(Φ)T|02S〉. (6.1)

And since the natural representationK(Φ) being a contraction corresponds to the chan-

nel Φ being unital, taking ε = O(1/T), by Lemma 6.1.1 we get a BQUL algorithm for a

restricted version of ChannelPowering on unital channels.

Theorem 6.1.6. UnitalChannelPowering ∈ BQUL.

98

When κ is larger, repeated applying κ−1H does not work because the error will also be

multiplies by κT which is too large. Instead, observed by Fefferman and Remscrim [FR21]

is that there is a reduction frommatrix powering to matrix inverse that maintains the well-

conditioned property: Let Z ∈ Cn(T+1)×n(T+1) such that

Z =



In −H 0 · · · 0

0 In −H
... 0
... . . . In −H

0 · · · · · · 0 In


,

then

Z−1 =



In H H2 · · · HT

0 In H
... H2

... . . . In H

0 · · · · · · 0 In


.

Moreover, ‖Z‖ ≤ 1 + κ and ‖Z−1‖ ≤ 1 + Tκ. Use the fact that Poly-Conditioned

MatrixInverse is in BQUL [FL18], this gives a BQUL algorithm for powering matrices

with κ = poly(n).

Theorem 6.1.7 ([FR21]). Given a matrix H ∈ Cn×n with κ = poly(n) such that ‖H‖ ≤ κ,

a positive integer T, two unit vectors v,w ∈ Cn and an error parameter ε > 0, we can

construct a unitary quantum circuitW with time poly(n/ε) and space 2S = O(log(n/ε))

99

such that ∣∣|〈0S|W|0S〉|2 − |w†HTv|2
∣∣ ≤ ε.

WhenH = K(Φ) for a quantum channel on S qubits, by Proposition 2.3.6 we have

‖H‖ ≤ 2S =
√
n, and thus by taking κ =

√
n they conclude that ChannelPowering ∈

BQUL. Combined with Theorem 6.2, this implies that

Theorem 6.1.8 ([FR21]). BQL = BQUL.

6.2 Error Reduction in BQUL

Just like in classical randomized computation, quantum algorithms in BQL can also be am-

plified to reduce the error rates. One example of such techniques is the Marriott-Watrous

amplification [MW05].

Theorem 6.2.1 ([MW05]). Given a unitary quantum circuit U with time T = poly(n)

and space S = log n, with a final measurement that outputs 0 with probability p, and

an error parameter ε > 0, we can construct a circuit U′ with time poly(n/ε) and space

O(log(n/ε)), with intermediate measurements, that outputs a value p̃ that |p̃ − p| ≤ ε

with probability 1− 1/poly(n/ε).

The drawback of the Marriott-Watrous amplification is that it uses intermediate mea-

surements. In [FKL+16], Fefferman et al. proposed a unitary amplification algorithm for

decision problems, which also obtains the optimal exponential error reduction.

Theorem 6.2.2 ([FKL+16]). BQUL = QUL(1 − 2−poly(n), 2−poly(n)), which stands for

unitary quantum logspace with exponentially small error.

100

Corollary 6.2.3. BQL = QUL(1− 2−poly(n), 2−poly(n)).

Built on these previous works on error reduction, here we present a simulation of BQL

with unitary quantum circuits in a strong sense, that is not limited to decision problems

and does not require promises on the measurement probabilities. We start with the numer-

ical form of ChannelPowering:

Lemma 6.2.4. Given a matrix H ∈ Cn×n with κ = poly(n) such that ‖H‖ ≤ κ, a positive

integer T, two unit vectors v,w ∈ Cn and an error parameter ε > 0, we can construct a uni-

tary quantum circuit with time poly(n/ε) and space O(log(n/ε)) such that with probability

1− 1/poly(n/ε), it outputs |w†HTv|2 with additive error ε.

Proof. LetW be the circuit in Theorem 6.1.7, which outputs 0 with probability p such

that ∣∣p− |w†HTv|2
∣∣ ≤ ε/2,

and the problem here is to output the numerical value p. By Theorem 6.2.1, we can con-

struct a quantum circuitW′ with time poly(n/ε) and spaceO(log(n/ε))with intermedi-

ate measurements, which with probability 1− δ = 1− 1/poly(n/ε) outputs a value p̃ such

that |p̃− p| ≤ ε/4.

Since the resulting circuitW′ is not unitary, we would like to use Corollary 6.2.3 to

compute unitarily each bit in the output value p̃ ofW′ while reducing the error. Assume

that every bit in p̃ is 0 with probability either in [0, 1/3] or [2/3, 1], then for 1 ≤ i ≤

dlog(1/ε)e + 2, we letWi be the unitary quantum circuit that computes the i-th bit of

p̃with exponentially small error. Ideally, the outputs ofWi combined together would ε-

approximate |w†HTv|2.

101

However, the value p̃ outputted by the Marriott-Watrous amplification might be differ-

ent in eachWi, so the final approximation assembled can be totally wrong (for instance,

when p = 0.5, the outputs p̃ = 0.1000 . . . and p̃ = 0.0111 . . .might be assembled to

0.1111 . . .). Moreover, the error reduction in [FKL+16] may have unpredictable results, as

the promises on the distributions of the bits in p̃ are not guaranteed (again when p = 0.5,

the most significant bit of p̃ is equally distributed on 0 and 1).

Fortunately, we can solves both problems by computing from the most significant bit to

the least significant bit. We maintain a value q ∈ [0, 1]which is initialized to 0. For each

i = 1 to dlog(1/ε)e + 2 do the following: Run the modified circuitWi which outputs

the i-th bit of (p̃ − q) instead of p̃. To deal with case when p̃ − q is outside of [0, 2−i+1),

if p̃ − q < 0 it outputs 0, and if p̃ − q ≥ 2−i+1 it outputs 1. Let the output bit be bi and

update q to q+ bi · 2−i.

We claim that with probability 1 − poly(n/ε), |q − p| ≤ ε/2. First notice that, if every

bit in p̃ is 0 with probability in [0, 2δ] ∪ [1 − 2δ, 1], then the error reduction will work as

intended, while with probability 1 − O(δ log(1/ε)) = 1 − 1/poly(n/ε) the value p̃ is the

same in each circuitWi, so that q is also the same as p̃.

Now let i be the first index such that the i-th bit of p̃ is 0 with probability in [2δ, 1− 2δ].

As the Marriott-Watrous amplification outputs incorrectly with probability at most δ, it

means that there are two valid outputs p̃1 and p̃2, both are ε/4-close to p, and they coincide

in the first i − 1 bits but differs at the i-th bit. Let qi be the value of q at that step, which

consists of the first i−1 bits of p̃1 and p̃2, then |qi+2−i−p| ≤ ε/4. Therefore the remaining

bits of q could only be 011 . . . 11, 100 . . . 00 or 100 . . . 01, which means |qi+2−i−q| ≤ ε/4

and thus |q − p| ≤ ε/2. Notice that on the i-th (and the last bit when bi = 1) the error

102

reduction may fail and arbitrarily output 0 or 1, but it does not matter as both 0 and 1 are

viable in these cases.

As a conclusion, the value q is an ε-approximation of |w†HTv|2 with probability 1 −

1/poly(n/ε). The circuit that outputs q is clearly constructible with time poly(n/ε) and

spaceO(log(n/ε)), and the circuit is unitary since theO(log(1/ε))measurements that out-

put bi can be deferred directly, while eachWi can be uncomputed by implementing the

circuit in reverse.

Corollary 6.2.5. Given a matrix H ∈ Cn×n with κ = poly(n) such that ‖H‖ ≤ κ,

a positive integer T, two unit vectors v,w ∈ Cn and an error parameter ε > 0, we can

construct a unitary quantum circuit with time poly(n/ε) and space O(log(n/ε)) such that

with probability 1− 1/poly(n/ε), it outputs w†HTv with additive error ε.

Proof. LetH1 =

H

1

, v1 =

v/
√
2

1/
√
2

, v′1 =

v/
√
2

i/
√
2

 and w1 =

w/
√
2

1/
√
2

. Notice

that ‖H1‖ ≤ max(κ, 1). Since we have

w†HTv =
1
2

(
4|w†

1HT
1 v1|2 − |w†HTv|2 − 1

)
+

i
2

(
4|w†

1HT
1 v′1|2 − |w†HTv|2 − 1

)
,

computing |w†HTv|2 up to error ε/2, and computing |w†
1HT

1 v1|2 and |w
†
1HT

1 v′1|2 each up to

error ε/8 gives w†ATvwith error ε.

Notice that one can instead achieve 1/poly(n/ε) error probability without using the ex-

ponential error reduction in [FKL+16], by simply repeating the decision circuit in BQUL

forO(log(n/ε)) rounds. Nevertheless, it is enough for proving the following theorem,

103

which states that unitary quantum circuits can simulate any quantum algorithm in logspace

by computing its output distribution with polynomially small error.

Theorem 6.2.6. Given a quantum algorithm with time T = poly(n) and space S = log n

specified by the natural representations K(Φ1), . . . ,K(ΦT) ∈ Cn2×n2 , where

ρT = ΦT ◦ ΦT−1 ◦ · · · ◦ Φ1(|0S〉〈0S|)

is its final state, a multi-outcome measurement {M1, . . . ,Mr} with r = poly(n), and an

error parameter ε > 0, we can construct a unitary quantum circuit U with time poly(n/ε)

and space S′ = O(log(n/ε)) such that for every j ∈ [r] it holds that

∣∣|〈j|W|0S′〉|2 − Tr[ρTMj]
∣∣ ≤ ε.

Proof. As shown at the start of this chapter, we can define a unified channel Φ such that

ΦT(ρ0 ⊗ |0〉〈0|) = ρT ⊗ |T〉〈T|,

andK(Φ) is simply a block matrix consists ofK(Φ1), . . . ,K(ΦT). Note that ‖K(Φ)‖ ≤

κ = poly(n) by Proposition 2.3.6. Now we have

Tr[ρTMj] = vec(Mj)
† vec(ρT) =

(
vec(Mj)

† ⊗ 〈T2|
)
K(Φ)T

(
vec(ρ0)⊗ |0〉

)
.

For every j ∈ [r], letmj = ‖ vec(Mj)‖2 ≤
√
n by Proposition 2.3.7. Therefore by letting

w = vec(Mj)⊗ |T2〉/mj and v = vec(ρ0)⊗ |0〉

104

uj

U

preparation
circuit

⇒
U

preparation
circuit

Qj Q−1
j...

...
...

Figure 6.1: The quantum operatorU in the preparation circuit controlled by an entry uj of u, in binary representation
with classical bits. We replace the classical control by first implementing the circuitQj, applying the controlled‐U opera‐
tor, and implementingQj in reverse.

in Corollary 6.2.5, we get a unitary quantum circuitQj with time poly(n/ε) and space

O(log(n/ε)) such that with probability 1 − 1/poly(n/ε), it outputs a value ε/(2
√
nr)-

close to Tr[ρTMj]/mj, which implies an ε/(2r)-approximation of Tr[ρTMj].

Consider the preparation circuit constructed in Lemma 6.1.2 which prepares the unit

vector

u =
(√

Tr[ρTM0],
√
Tr[ρTM1], . . . ,

√
Tr[ρTMr−1]

)
.

with error ε/3. By construction, the preparation circuit can be viewed as a composition of

r − 1 unitary operators, each controlled by a different entry in u. Since u is not explicitly

given, we instead control these unitary operators with the output qubits ofQj, but without

measurements. Each circuitQj is applied in reverse after the control, so that the space can

be reused. See Figure 6.1 for an illustration.

It is clear that the entire circuit is with time poly(n/ε) and spaceO(log(n/ε)). The error

introduced by replacing each of th r − 1 unitary operators with circuitsQj andQ−1
j is at

105

most ε/(2r) + 1/poly(n/ε), therefore by Lemma 6.1.1 the total error is at most

ε/3+ (r− 1)(ε/(2r) + 1/poly(n/ε)) < ε.

6.3 Equivalence of Learning andDeciding

In this section we show that, the existence of efficient classical simulation of quantum

learning is equivalent to that on decision problems, which by our beliefs are highly un-

likely. This is formally stated as the following theorem.

Theorem 6.3.1. Every quantum learning algorithm with time T and space S can be simu-

lated classically with time poly(2ST) and space O(S+ logT), if and only if BQL = BPL.

Note that here we state the theorem with respect to uniform learning algorithms. If we

want to extent the result to all non-uniform algorithms, the corresponding decision classes

also need to be changed to non-uniform ones, i.e. BQL/poly and BPL/poly. Below we

prove both directions of this equivalence.

Lemma 6.3.2. If there are functions t(·, ·) and s(·, ·), such that every unitary quantum

learning algorithm with time T and space S can be simulated classically with time t(T, S)

and space s(T, S), then

BQUL ⊆ BPTISP(t(poly(n),O(log n)), s(poly(n),O(log n))).

Specifically, if every unitary quantum learning algorithm in time T and space S can be simu-

lated classically with time poly(2ST) and space O(S+ logT), then BQUL = BPL.

106

Proof. Suppose that we have a unitary quantum circuit with time T(n) = poly(n) and

space S(n) = O(log n) that decides a partial function f : X → {0, 1}, where X ⊆ {0, 1}n.

LetU(x, i) be the unitary gate at the i-th step of the decision algorithm with input x, which

can be constructed in time poly(n) and spaceO(log n).

We can convert the quantum circuit to a learning algorithm as follows. Use X directly

as the sample space, while the samples are always constant x for some fixed x ∈ X. The

learning task is to distinguish between x ∈ f−1(0) or x ∈ f−1(1). Upon receiving the sample

x, the learning algorithm simply applies the following unitary operator onC2S(n) ⊗ CT(n):

|ψ〉|i〉 →
(
U(x, i)|ψ〉

)
|(i+ 1)mod T(n)〉

so that after T(n) steps it computes in the first register the same state as in the quantum

circuit. Therefore it computes f(x) and distinguishes between the two cases. Using the

premises, we have a classical learning algorithm with time t(poly(n),O(log n)) and space

s(poly(n),O(log n)) that accomplishes the same task. The classical learning algorithm can

be viewed as a randomized decision algorithm that computes f(x) by self-constructing the

stochastic matrices in the same time and space.

Alternatively, in the learning task we can have a potentially much smaller sample space

Γ = {0, 1} × [n], by viewing the learning problem as computing f in the random-query

model (see Chapter 8). For each x ∈ X, let distributionDx be the one that uniformly draws

i ∈ [n] and outputs (xi, i). LetX = {Dx | x ∈ f−1(0)} andY = {Dx | x ∈ f−1(1)}. Each

xi can be retrieved withinO(n log n) samples with high probability, therefore the quantum

learning algorithm can compute eachU(x, i)with high probability in time poly(n) and

spaceO(log n), and the rest of the proof is the same as above.

107

Lemma 6.3.3. If ChannelPowering ∈ BPTISP(t(n), s(n)), where t(n) ≥ Ω(n) and

s(n) ≥ Ω(log n), then every quantum learning algorithm with time T and space S can be

simulated classically with time t(poly(2ST)) and space s(poly(2ST)).

Proof. Suppose that we have a quantum learning algorithm with time T and space S =

log n that distinguishes between two distribution familiesX andY . Let Φ(z) be the chan-

nel applied when receiving the sample z, and letM be the final measurement. With the

sample distributionD, let

A = E
z∼D

[K(Φ(z))].

Note that A is also a natural representation (specifically, for the channelEz∼D[Φ(z)]). Sim-

ilar to proof of Theorem 6.2.6, the probability of the learning algorithm outputting 0 is

E
z∼DT

[
vec(M0)

†K(ΦT) · · ·K(Φ1) vec(ρ0)
]
= vec(M)†AT vec(ρ0).

What’s different from Theorem 6.2.6 is that here A is not explicitly given. Instead, by

Chernoff bound each time an entry of A is requested, it takes poly(nT) samples z to ap-

proximate the entry to at most 1/poly(nT) error, so that the approximated matrix Ã dif-

fers from the actual matrix A by at most ‖Ã − A‖ ≤ O((n2T)−1). By Lemma 6.1.1 and

Proposition 2.3.6, it means that ‖ÃT − AT‖ ≤ O(n−1). Therefore applying the channel

powering algorithm on Ã gives a classical learning algorithm that distinguishesX andY in

time t(poly(nT)) and space s(poly(nT)).

The above scheme has two problems. First, a fixed matrix Ã cannot be directly stored,

and if every time the same entry is requested, the entry is approximated as the average of

a different batch of samples, it may result in different requested values for the same en-

108

try (even though the difference is small with high probability), similar to the problem in

Lemma 6.2.4. However, unlike the case in Lemma 6.2.4, here the classical powering algo-

rithm is not explicitly given, and may not be robust against changing inputs.

The solution to this problem is the shift and truncate method by Saks and Zhou [SZ99],

which has found numerous applications in space-bounded algorithms [Ta-13] and deran-

domization [CCvM06, GL19]. Concretely, let P = t(poly(nT)) be the largest number

of possible requests to entries of A in the powering algorithm, and take a uniform random

number ζ ∈ [8P]. For simplicity let L = 12n2T andN = 24n4T. When the entry Ajk is

requested, the algorithm takes t(poly(nT)) samples zi and calculate the average value a of

the (j, k)-entries ofK(Φ(zi)), so that |a−Ajk| < 1
8NP with probability at least 1− 2−P. The

value fed back for the request is

Ãjk =
1
N

⌊
N · Re(a) + ζ

8P

⌋
+

i
N

⌊
N · Im(a) +

ζ
8P

⌋
.

We claim that with high probability, this value coincides with the fixed value

1
N

⌊
N · Re(Ajk) +

ζ
8P

⌋
+

i
N

⌊
N · Im(Ajk) +

ζ
8P

⌋
.

For the real part, as |N · Re(a) − N · Re(Ajk)| < 1
8P , there is at most one possibility

for ζ such that
⌊
N · Re(a) + ζ

8P

⌋
6=
⌊
N · Re(Ajk) +

ζ
8P

⌋
, which is of probability 1

8P , and

the same holds for the imaginary part. By the union bound on the bad events during all P

requests, with probability

1−
(
2−P +

1
8P

+
1
8P

)
P >

2
3

109

for every (j, k) the value Ãjk are always the same, and |Ãjk − Ajk| ≤
√
2

N ≤ (n2L)−1, so

‖Ã− A‖ ≤ L−1.

Now by Proposition 2.3.6 we have ‖A‖ ≤
√
n, and thus ‖Ã‖ ≤ ‖A‖+‖Ã−A‖ ≤

√
n+

L−1. Since ‖ vec(M)‖2 ≤
√
n by Proposition 2.3.7 and ‖ vec(ρ0)‖2 = 1, by Lemma 6.1.1

we have ∣∣∣vec(M)†(Ã′T − AT) vec(ρ0)
∣∣∣ ≤ √n · TL · (√n+ L−1)2 <

1
12
.

Since the error of the original quantum learning algorithm can be amplified to 1/4 so

that vec(M)†AT vec(ρ0) is in [0, 1/4] or [3/4, 1], we conclude that with probability 2/3,

vec(M)†ÃT vec(ρ0) ∈ [0, 1/3] or [2/3, 1].

and the two cases can be distinguished by the classical ChannelPowering algorithms on

Ã.

Corollary 6.3.4. If ChannelPowering ∈ BPL, then every quantum learning algorithm

with time T and space S can be simulated classically with time poly(2ST) and space O(S +

logT).

Theorem 6.3.1 follows as we already know ChannelPowering ∈ BQUL. In addition,

as we also know that BQUL ⊆ uniformNC2 ⊆ TISP(nO(1), log2 n), we have the following

unconditional result:

Corollary 6.3.5. Every quantum learning algorithm with time T and space S can be simu-

lated classically with time poly(2ST) and space O(S2 + log2 T).

Finally, we show that there are indeed cases when the quantum learning algorithm can be

110

simulated classically with efficiency. Specifically, when the learning task is to distinguish an

arbitrary family of distributions with a single distribution, we have the following result.

Theorem 6.3.6. IfY = {Y}, then any quantum learning algorithm that distinguishes

betweenX andY within time T and space S can be simulated classically in time poly(2ST)

and space O(S+ logT).

Proof. Suppose that we have a quantum learning algorithm with time T and space S =

logm that distinguishes betweenX and {Y}. Let Φ(z) be the unital channel applied when

receiving the sample z. We already know from Lemma 6.3.3 that with the sample distri-

butionD, the output probability is vec(M)†AT vec(ρ0)where A = Ez∼D[K(Φ(z))] ∈

Cn2×n2 . Since the distribution Y is fixed, the corresponding matrix B = Ez∼Y[K(Φ(z))] is

also fixed. Now for anyD ∈ X , we know that

∣∣vec(M)†(AT − BT) vec(ρ0)
∣∣ ≥ 1/3.

By Proposition 2.3.6, we have ‖Ai‖, ‖Bi‖ ≤
√
n for every i ≤ T. Thus by Lemma 6.1.1,

‖A− B‖F ≥ ‖A− B‖ ≥ 1√
nT
‖AT − BT‖ ≥ 1

3nT
.

which means there must exist i, j ∈ [n2] such that |Ai,j − Bi,j| ≥ 1
9n

−6T−2.

The classical simulation algorithm iterates over all i, j ∈ [n2]. For each choice of i, j,

the algorithm approximatesEz[K(Φ(z))i,j], compares it to Bi,j, and claims the samples are

drawn from a distribution inX if there exists i, j such that

∣∣∣E
z
[K(Φ(z))i,j]− Bi,j

∣∣∣ ≥ 1
10b6T2 .

111

Since each entry ofK(Φ(z)) can be computed in timeO(T) and spaceO(S) and has

magnitude at most 1, the Chernoff bound asserts that poly(nT) samples are enough for ac-

curacy (100n6T2)−1 with probability 2/3, in which case the algorithm correctly distinguish

X and {Y}.

6.4 Bonus: Streaming Proof for BQL

Now that we have the simulation results of BQL, we note that the proof in Section 4.2.2

can be easily modified to work with BQL as well. The definition of a streaming proof is the

same as in Definition 4.2.1, and the only difference here is that we allow the prover to have

quantum computation power (but still in logspace and outputs a classical proof).

Theorem 6.4.1. A language is in BQL if and only if it has a streaming proof between a

quantum logspace prover and a classical logspace verifier where the verifier uses O(log n) ran-

dom bits.

The rest of this section is to prove Theorem 6.4.1. First, it is clear that any streaming

proof between a quantum logspace prover and a classical logspace verifier can be imple-

mented by a BQL algorithm, which simulates the honest prover and the verifier, with suc-

cess probability at least (3/4)2 > 1/2 which can be amplified. It suffices to argue that

Unitary Matrix Powering Theorem 3.2, the logspace-complete problem for BQL, can be

solved by a streaming proof between a quantum logspace prover and a classical logspace

verifier, where the verifier usesO(log n) random bits. We recall the problem definition here.

Definition 6.4.2 (Unitary Matrix Powering). The input include a unitary matrixM ∈

Cn×n, a parameter T ≤ poly(n) and a projective measurementΠ ∈ Cn×n. The promise

112

on the input is that ‖ΠMT(e1)‖22 ≥ 4/5 or ‖ΠMT(e1)‖22 ≤ 1/5, and the output is 1 in the

former case and 0 in the latter.

Towards this, we change the notion of δ-good sequence of vectors for a matrixM to be

defined with ℓ2-norm.

Definition 6.4.3. LetM be any n × n matrix and T ≤ poly(n) be a natural number. Let

vi = Mi(e1) for all i ≤ T. Let δ ∈ [0, 1]. A sequence of vectors v′0, v′1, . . . , v′T ∈ Rn is said to

be δ-good forM if for all i ∈ [T], we have ‖v′i − vi‖2 ≤ δ and v0 = e1.

Wemake use of the following claims.

Claim 6.4.4. There is a quantum logspace prover which given an n × n unitary matrixM

and parameters T ≤ poly(n), δ ≥ 1/poly(n) as input, outputs a δ-good sequence of vectors

forM with probability at least 3/4.

Claim 6.4.5. Let 1/poly(n) < δ ≤ (104T2)−1. There is a randomized logspace verifier

which given any n × n unitary matrixM and parameters T ≤ poly(n) and δ as input and

read-once access to a stream of vectors v′0, . . . , v′T ∈ Rn (where each vector is specified up to

Θ(log(n)) bits of precision), does the following.

• If the sequence is δ-good forM, then the verifier aborts with probability at most 1/4.

• If ‖v′T − vT‖2 ≥ 1/5, then the verifier aborts with probability at least 3/4.

Furthermore, this algorithm only uses O(log(n)) bits of randomness.

Let us see how to complete the proof using Claim 6.4.4 and Claim 6.4.5. Given an n× n

unitary matrixM as input and a parameter T ≤ poly(n), set δ = min {(104T2)−1, 1/10}.

113

Run the prover’s algorithm from Claim 6.4.4 using this value of δ to produce a stream

v′0, . . . , v′T. Run the verifier’s algorithm from Claim 4.2.6 on this stream to verify. If the

verifier does not abort, we have it return 1 if ‖Πv′T‖
2
2 ≥ 0.6, return 0 if ‖Πv′T‖

2
2 ≤ 0.4

and return⊥ otherwise. With the access to read Π from the input, this computation can

be easily done in classical logspace when v′T is given as a stream.

Completeness: Claim 6.4.4 implies that an honest prover outputs a δ-good sequence

with probability at least 3/4. Claim 6.4.5 implies that an honest proof is aborted with

probability at most 1/4. Since ‖v′T − vT‖2 ≤ δ ≤ 1/10 by assumption and Π is a projec-

tion, ‖Πv′T −ΠvT‖2 ≤ 1/10. Hence, if ‖ΠvT‖22 ≥ 4/5, then ‖Πv′T‖
2
2 ≥ (

√
4/5−0.1)2 ≥

0.6 and if ‖ΠvT‖22 ≤ 1/5 then ‖Πv′T‖
2
2 ≤ (

√
1/5 + 0.1)2 ≤ 0.4. Thus, the verifier will

return the correct answer whenever the subroutine does not abort.

Soundness: Consider the behavior of this verifier on an arbitrary proof. If the verifier

makes a mistake and returns the incorrect answer, it must be the case that either ‖ΠvT‖22 ≥

4/5 and ‖Πv′T‖
2
2 ≤ 0.4, or ‖ΠvT‖22 ≤ 1/5 and ‖Πv′T‖

2
2 ≥ 0.6. In either case, we must

have ‖v′T − vT‖2 ≥ min
{√

4/5−
√
0.4,
√
0.6−

√
1/5
}
≥ 1/5. Claim 6.4.5 implies

that such a proof is aborted with probability at least 3/4.

This completes the proof of Theorem 6.4.1. We now proceed to prove Claim 6.4.4 and

Claim 6.4.5.

Proof of Claim 6.4.4. The prover starts by outputting v0 = e1. To output the intermediate

vi, note that vi(j) = e†jMie1, so the prover can use Corollary 6.2.5 to estimate vi(j) up to

error ε in poly(n/ε) time andO(log(n/ε)) space with success probability 1 − p, where

p = 1/poly(n/ε). Taking the average overO(p−1 log n) trials gives an estimate of vi(j) up

114

to error ε + pwith probability 1 − (4nT)−1, and thus by union bound, we get a quantum

logspace prover which with probability at least 3/4, estimate each vi(j) up to ε + p additive

accuracy for all i ∈ [T] and j ∈ [n].

Take ε = 1/poly(n) so that ε+ p ≤ δ/n, and we have ‖v′i − vi‖2 ≤ ‖v′i − vi‖∞ · n ≤ δ.

This completes the proof of Claim 6.4.4.

Proof of Claim 6.4.5. The verifier’s algorithm is exactly the same as Algorithm 4.2, and the

proofs for completeness and soundness are almost identical.

Completeness of the Algorithm: Suppose v′0, . . . , v′T is a δ-good sequence, then

‖v′i − vi‖2 ≤ δ for all i ∈ [T] and v′0 = e1. SinceM is unitary, for all i ∈ [T]

∥∥M · v′i−1 − v′i
∥∥
2 ≤

∥∥M · v′i−1 −M · vi−1
∥∥
2 +

∥∥M · vi−1 − vi
∥∥
2 + ‖vi − v′i‖2

≤ ‖vi−1 − v′i−1‖2 + ‖vi − v′i‖2 ≤ 2δ.

Thus, ‖w‖2 ≤ 2Tδ. Consider the quantity Δ = 〈α,w〉 that the algorithm estimates. Sim-

ilarly by Chebyshev’s Inequality, with probability at least 0.99, we have |〈α,w〉| ≤ 20Tδ.

This implies that with probability at least (0.99)11 ≥ 0.8, every iteration in Algorithm 4.2

does not abort.

Soundness of the Algorithm: Suppose a dishonest prover produces a stream of

vectors v′0, . . . , v′T such that ‖v′T − vT‖2 ≥ 1/5. Assume that v′0 = e1. Let ε = 1/(10T).

We argue that for some i ∈ [T], we must have ‖wi‖2 > ε. Assume by contradiction that

115

∥∥M · v′i−1 − v′i
∥∥
2 ≤ ε for all i ∈ [T]. Then by triangle inequality we have

‖vT − v′T‖2 =
∥∥MT(v′0)− v′T

∥∥
2 ≤

T∑
i=1

∥∥MT−(i−1) · v′i−1 −MT−i · v′i
∥∥
2

≤
T∑
i=1

∥∥MT−i∥∥
2 ·
∥∥M · v′i−1 − v′i

∥∥
2

≤
T∑
i=1

ε = Tε = 1/10.

which contradicts the assumption that ‖v′T − vT‖2 ≥ 1/5. Thus, we must have ‖w‖2 ≥ ε.

Similarly by 4-wise independence and the Paley-Zygmund Inequality [PZ32] we conclude

that Pr [|〈α,w〉| ≥ ε/10] ≥ 1
8 . By repeating this experiment 11 times, we can ensure that

with probability at least 1− (1− 1/8)11 ≥ 3/4, we find at least one instance so that

|〈α,w〉| ≥ ε/10 > 20Tδ,

as δ ≤ (104T2)−1. This implies that the algorithm aborts with probability at least 3/4.

116

Part II

Lower Bound Results

117

7
Overview of Part II

In Part II, we present our results that proves lower bounds for space-bounded computa-

tion. These results are roughly in two regimes: Polynomial lower bounds for traditional

computational problems with some fixed input, and exponential lower bounds for learning

problems.

Time-Space Tradeoffs for Decision Problems

Proving strong lower bounds for explicit decision problems is always hard. The current

best lower bound on circuit size barely passes 3n after decades of research [Blu84, LY22],

and the current best formula size lower bound is still under Ω(n3) [Tal17, Bog18].

To get stronger unconditional lower bounds, we need to add other restrictions, and

the space constraint usually is a natural assumption. However, by Barrington’s theorem

[Bar89], even for width-5 branching programs, which corresponds to an unreasonably

small space less than 3 bits, the best lower bound for time could not pass the lower bound

formula size which is less than cubic. Actually, even this close-to-cubic barrier has not been

118

obtained when we allow mildly larger space. Under uniformmodels, Williams [Wil08]

proved that SAT cannot be solved inO(nc) time andO(nε) space with c = 2 cos(π/7) ≈

1.8 and some ε > 0, which is the best lower bound up to date. On the other hand, for non-

uniformmodels is it still open even to obtain something polynomially better than linear:

Open Problem 7.1. Find an explicit family of decision problems F : {0, 1}n → {0, 1},

such that any branching program with space S ≤ polylog(n) that computes F requires time

T = n1+Ω(1).

In fact, Open Problem 7.1 is so notoriously hard that in the past decades, remarkable

effort were put into works just to prove T = Ω(n·polylog(n))with better poly-logarithmic

factors. Even for the most restrictive model of deterministic oblivious branching programs,

the best lower bound we have is T = Ω(n log2 n) for S = O(n1−ε) by Babai, Nisan and

Szegedy [BNS92], and for the general randomized, non-oblivious branching programs, we

have the sophisticated lower bound T = Ω
(
n
√

log n
log log n

)
for S = O(n1−ε) by Beame, Saks,

Sun and Vee [BSSV03].

Our results in Chapter 8 represents an attempt to improve these lower bounds and

answer Open Problem 7.1. We propose a new computation model called the coupon-

collector model, in reminiscence of the famous coupon-collector problem. In this model,

the input x ∈ {0, 1}n is not given by querying specific coordinates, but is given as samples

(i, xi) for uniformly random i. Clearly any algorithm in the standard model can be con-

verted to one in the coupon-collector model with anO(n) overhead in time by waiting for

the desired coordinate, but for certain problems like Gap-Hamming we can do much bet-

ter. As a result, it is completely non-trivial to prove superlinear lower bounds in this model.

In fact, we showed that if we allow equality dependencies among the input samples, any

119

time-space lower bound in the coupon-collector model can be directly translated to the

same lower bound on deterministic oblivious branching programs, up to logarithmic fac-

tors. Therefore, proving strong lower bounds in the our model is potentially a way to the

resolution of Open Problem 7.1. As a first step, we proved such bounds for a restricted

class of branching programs, along with a quadratic lower bound for general branching

programs with zero error when the samples are independent. The next reasonable step is to

improve the latter bound to the bounded-error case, which was recently proved in [Din23].

Time-Space Tradeoffs forMulti-Output Functions

Beside decision problems, we also consider the computation of multi-output functions,

which maps {0, 1}n to {0, 1}m for somem = poly(n). Borodin and Cook [BC82] gave a

powerful method to prove polynomial time-space lower bounds for these problems, and in

particular showed that Sorting requires a tradeoff of TS ≥ Ω(n2). Actually all previous

classical time-space lower bounds for multi-output functions, whether their authors were

aware or not, are applications of this method by Borodin and Cook.

The Borodin-Cook method has a crucial drawback that it is a counting method over

some fixed distribution, and there for by Yao’s Minimax Principle it provides the same

lower bound for deterministic and randomized computation. On the other hand, if we

ignore the Borodin-Cook method, we essentially only have lower bounds for decision prob-

lems and thus are subject to Open Problem 7.1, which means that we do not have any ran-

domized vs. deterministic separation better thanO(log2 n).

In Chapter 9 we resolve this discrepancy and prove a polynomial randomized vs. de-

terministic separation. We present an explicit multi-output function on [n]n, that can be

120

computed by a randomized oblivious branching program with linear time and logarith-

mic space, but requires Ω̃(n1.25) time for deterministic oblivious logspace. The function

is a total function and thus prevents the trivial separation with sublinear randomized algo-

rithm [Mon10], and our lower bound proof is a combination of adversarial method and

the Borodin-Cook method.

Our results also suggest that the reason for this separation not being known is that the

candidate problem requires careful design. We show that for many natural candidates

for which we know better randomized algorithms, proving a separation could lead to the

surprising resolution of Open Problem 7.1. One such example is the SetIntersection

problem (given two sets A and B, output elements in A ∩ B), whose optimal randomized

algorithm uses random [BCM13] (or pseudo-random [CJWW22, LZ23]) hash functions.

A time and space-efficient reduction from SetIntersection to a decision problem shows

that, if we prove fully derandomization of these algorithms must introduce polynomial

overhead, then Open Problem 7.1 is solved.

Finally, we would like to mention that a quantum vs. randomized separation for multi-

output functions has been known for long, due to the quantum algorithm for Sorting

by Klauck [Kla03] with T2S = Õ(n3). The separation is extra strong in the sense that the

quantum algorithm uses only polylog(n) quantummemory for any S. On the other hand,

lower bounds for quantum time-space tradeoffs are more scarce and the proofs are more

ad-hoc. Currently, only two proof methods are known for quantum lower bounds: via

direct-product theorems [KŠdW07] and via the recording query technique [HM21].

121

Time-Space Lower Bounds for Learning

In a sharp contrast to traditional computational problems where it is hard even to prove

lower bounds with large polynomials, for learning problems we do have lower bounds ex-

ponential in the size of samples. One reason for that is because learning problems naturally

has an exponentially large space of inputs (albeit heavy with redundancy), and the stream-

ing nature of the problems also provides huge advantage for proving lower bounds.

Our result in Chapter 10 is a quantum extension of the result of [GRT18], which is also

where our techniques originates from. Therefore, it helps to give a quick recap of how the

classical lower bound in [GRT18] works. We using parity learning [Raz18] as an example,

soM(a, x)means the inner product of a and x in F2.

Consider a classical branching program that tries to learn an unknown and uniformly

random x ∈ {0, 1}n from samples (a, b), where a ∈ {0, 1}n is uniformly random and

b = M(a, x). We associate every state vwith a distribution PX|v over {0, 1}n, indicating the

distribution of x conditioned on reaching that state, and examine the evolution of the inner

product

〈PX|v,P〉 =
∑

x∈{0,1}n
PX|v(x) · P(x)

with some target distribution P. Receiving a sample (a, b) implies thatM(a, x) = b, hence

only the part of PX|v supported on such x proceeds. If this part is close to 1
2 probability, we

say that a divides PX|v evenly. Denoting the new distribution as P(a,b)
X|v , after proper normal-

122

ization the new inner product is

〈P(a,b)
X|v ,P〉 =

∑
x∈{0,1}n
M(a,x)=b

PX|v(x) · P(x)
/ ∑

x∈{0,1}n
M(a,x)=b

PX|v(x). (7.1)

Ideally, both PX|v and the point-wise product vector PX|v · P should have reasonably small

ℓ2 norms. Due to the extractor property ofM, most of a ∈ {0, 1}n should divide both

vectors evenly, and thus the denominator is close to 1
2 while the enumerator is close to

1
2〈PX|v,P〉. That means, given a uniformly random a, we get limited progress on the in-

ner product. On the other hand, from 〈U,P〉 = 2−n with uniform distributionU to

〈P,P〉 = 22εn · 2−n, the branching program needs to make multiple steps of progression.

Therefore it happens with an extremely small probability.

To ensure that the above statement goes smoothly, we require the following properties

for every state v in the branching program:

• The ℓ2 norm
∥∥PX|v

∥∥
2 is small.

• The ℓ2 norm
∥∥PX|v · P

∥∥
2 is small, which is implied if the ℓ∞-norm

∥∥PX|v
∥∥
∞ is small.

• The denominator in (7.1) is bounded away from 0 for every sample (a, b).

These properties do not hold by themselves. Instead, we execute a truncation procedure

to the branching program stop whenever one of the properties fails. The proof then boils

down to proving a 2−Ω(n2) bound on the probability of reaching a state with large
∥∥PX|v

∥∥
2,

from which by a standard union bound, we can prove that either 2Ω(n) samples or Ω(n2)

bits of memory are necessary.

123

To bound the probability of reaching a state with a large ℓ2-norm, the basic idea is to fix

its distribution as the target distribution P, and bound the increment of the inner product

〈PX|v,P〉. Define a bad event to be a pair (v, a) of the state v and the upcoming part of the

sample a, such that 〈PX|v,P〉 ≥ 2−n, and for one of the two possible outcomes b,

∑
x∈{0,1}n
M(a,x)=b

PX|v(x) · P(x) ≥
(
1
2
+ 2−δn

)
· 〈PX|v,P〉 (7.2)

with some small constant δ. In other words, the inner product 〈PX|v,P〉 is large enough,

while not being divided evenly by a. From (7.1) we know that the inner product gets at

most roughly doubled through a bad event. In contrast, in the good case, the inner product

either gets a mere (1+2−δn)multiplicative factor or is already smaller than the baseline 2−n.

Also, the extractor property ofM ensures that for every state v, over uniformly random a,

the bad event happens with at most 2−Ω(n) probability.

We then define the badness level β(v) of a state v keeps track of howmany times the com-

putational path went through bad events before reaching v. The above observations on the

bad events imply that (omitting the smaller factors):

• For every state v, 〈PX|v,P〉 is bounded by 2β(v) · 2−n;

• Heading to the next stage, β(v) increases by 1 with probability 2−Ω(n).

Therefore at each stage, the total weight of states with badness level β is at most 2−Ω(βn).

Thus any state with 〈PX|v,P〉 ≥ 22εn · 2−n must have 2−Ω(n2) probability, which concludes

the proof for the classical lower bound.

Now, to prove our quantum lower bound, some of the notions above could be easily

124

transferred to the scenario with quantummemory:

• The state v is a quantum state in the complex linear space of quantummemory;

• The distribution PX|v is still well-defined: It is the distribution of xwhen the quan-

tummemory is measured to v (see (10.1));

• We are still able to implement ℓ2 truncation: If PX|v has large ℓ2-norm, project the

entire system to the orthogonal subspace v⊥ of v and repeat, until there is no such

state v.

• We are also able to implement sample truncation, in a similar manner to ℓ2 trunca-

tion. As the criteria here depends on a, we separately create a copy of the current

system for each a, truncate the states v using projection when PX|v is not evenly di-

vided by a in each copy, and then merge them back together. We prove that the error

introduced by this truncation is small.

However, their are two major problems that prevent us from copying the proof verbatim

into the quantum case. The first problem is the ℓ∞ truncation. When we try to emulate

the classical implementation of ℓ∞ truncation with quantum truncation, that is, to only

project to v⊥ the system conditioned on the specific xwhere PX|v(x) is large, instead of for

every x, it may lead to huge changes to the distributions PX|u on states u non-orthogonal to

v, even eliminating the entire system.

And the second problem is the definition of badness levels. If we define the badness level

β(v) for each state v individually by examining the bad events over the historical states, then

it is not clear how to measure the total weight of a badness level β. Or we could have a more

operational definition of badness levels, but since the bad event in (7.2) is not linear in v,

125

such an definition, which is a linear operator, inevitably introduces error that escalates fast

with the number of stages.

These problems occur when we are shooting for the quadratic quantummemory lower

bound. It turns out that if we limit the quantummemory to a small linear number, both

problems could be solved with ease.

ℓ∞ Truncation. When there is only small quantummemory and no classical memory,

the treatment for ℓ∞ truncation is straightforward. We remove all quantum states vwith

distributions of large ℓ∞ norm, by projecting the system to the orthogonal subspace v⊥,

just like the process of ℓ2 truncation. As the overall distribution on x is uniform, any state v

with ‖PX|v‖∞ ≥ 2δn · 2−n must have weight at most 2−δn. Therefore, as long as the dimen-

sion of the Hilbert space is much smaller than δn, the error introduced in this truncation is

small.

With classical memory in presence, the actual ℓ∞ truncation step is a bit more compli-

cated. We first apply the original classical ℓ∞ truncation on the classical memoryW. Now

that ‖PX|w‖∞ is bounded for each classical memory state w, we can remove the quantum

states vwith large ‖PX|v,w‖∞ by projection as stated above.

Badness Levels. We are able to avoid the problems of defining the badness level on

quantummemory altogether, by keeping it a property on the classical memory only. To

do so we need to alter the definition of a bad event: it is now a pair (w, a) of classical mem-

ory state w and sample a, such that there exists some quantummemory state vwith PX|v,w

satisfying (7.2).

For each fixed classical memory state w, we still need to ensure that bad events happen

126

with a small probability. We prove it by showing that, if there are many different samples a,

each associated with some quantum state va satisfying (7.2), then there is some quantum

state v that simultaneously satisfies (7.2) with most of such a (which is impossible because

of the extractor property). This is ultimately due to the continuous nature of (7.2): Under

some proper congruent transformation, (7.2) becomes a simple threshold inequality on

quadratic forms over v. Now if it is satisfied by some va, it is going to be satisfied by most

v for a much smaller threshold parameter δ, and hence the existence of a simultaneously

satisfying v. In this argument, we use Lemma 2.3.10 and crucially relies on the fact that the

dimension is at most 2εn for some small ε.

127

8
Decision Problems:

The Coupon-Collector Model

The goal of this chapter is to introduce the coupon collector model on decision problems,

prove a relatively simple lower bound in this model, and relate it to the time-space lower

bounds for standard oblivious branching programs.

We first recall the classical coupon-collector problem, which asks how large T should be,

so that a uniformly random T-tuple in [n]T contains every element of [n]with high proba-

bility. Generalizing the goal to a subset A ⊆ [n], we have the following answer:

Proposition 8.1. Given any subset A ⊆ [n], for a uniformly random i ∈ [n]T, the probabil-

ity that A ⊈ {i1, . . . , iT} is at most n(1+ log |A|)T−1.

The proof follows directly from the fact that the expected waiting time for every element

in A to appear is n
∑|A|

j=1 j−1 ≥ n(1+ log |A|), andMarkov’s inequality.

In the coupon-collector model of computation, at each step t ∈ N+ a uniformly random

index it ∈ [n] (corresponding to a coupon) is provided. When the problem specifies an

128

input x ∈ {0, 1}n, at each step t the value of the bit xit ∈ {0, 1} is also given along with

the random index it. In this paper, we consider two cases for the joint distribution of the

indices:

Independent The indices i1, i2, . . . are mutually independent.

Recurring The only dependencies allowed among i1, i2, . . . are equalities. More formally,

there is a partition p : N+ → N+, such that it = i′p(t) for every t ∈ N+, where

i′1, i′2, . . . are mutually independent and uniformly random over [n].

For the rest of the paper, we refer to the two cases as independent distribution and recurring

distributions. Notice that the independent distribution is a special case of the recurring

ones.

8.1 Zero-Error Coupon Collector

Consider the task of computing a function f : {0, 1}n → {0, 1}with zero-error in the

coupon-collector model, where the algorithm is allowed to output 0, 1 or a special symbol

⊥. For every x ∈ {0, 1}n, we require that the probability of outputting f(x) is at least 1/2,

and the probability of outputting 1− f(x) is zero, where the probability is over the random-

ness used by the algorithm and the randomness from the coupon-collector model itself.

At the end of this section, we will prove the following theorem:

Theorem 8.1.1. Let f : {0, 1}n → {0, 1} be a boolean function with sensitivity s(f). Under

the coupon-collector model with the independent distribution, every branching program of

length T and width 2S ≥ n which computes f with zero-error must satisfy TS ≥ 1
8n · s(f) for

sufficiently large n.

129

Recall the definition of sensitivity: Let s(f, x) the number of coordinates i ∈ [n] such

that f(x ⊕ ei) 6= f(x), and the the sensitivity of f is s(f) = maxx s(f, x). Applying Theo-

rem 8.1.1 to functions with large sensitivities yields the quadratic time-space lower bound:

Corollary 8.1.2. Let f be a boolean function on n-bits with sensitivityΩ(n) (For instance,

AND, XOR,Majority, s-t connectivity, etc.). Under the coupon-collector model with the inde-

pendent distribution, every branching program of length T and width 2S ≥ n which computes

f with zero-error must have satisfy TS ≥ Ω(n2).

Remark. Theorem 8.1.1 is tight up to logarithmic factors, in the sense that for every m ≤ n,

the function x1 ⊕ · · · ⊕ xm with sensitivity m can be computed with zero-error within S space

and O(nmS−1 log n) time. We briefly sketch the algorithm here: Equally partition [m] into

O(mS−1) parts, each of size O(S). For each part P, use O(n log n) steps to record the values xi

for all indices i ∈ P. If any i ∈ P does not appear within these O(n log n) steps, output⊥.

Otherwise compute the partial parity
⊕

i∈P xi, and accumulate the partial parities.

In order to prove Theorem 8.1.1, we first look at the task of solving the original coupon-

collector problem with zero-error, that is, the collector can choose to claim success or fail-

ure when it stops. Whenever it claims success it must be the case that all coupons in a target

set A ⊆ [n] have been collected, and this happens with probability at least 1/2. Note that

in Proposition 8.1, if the collector blindly claims success atO(n log n) time, there is still

probability that the claim is false.

8.1.1 Set-Labeled Branching Program

To show a lower bound for the zero-error coupon-collector problem, we first restrict the

computation model to a certain type of branching programs called set-labeled branching

130

programs.

Definition 8.1.3. In a set-labeled branching program, every non-leaf vertex has n outgo-

ing edges, labeled with each element in [n] exactly once which corresponds to the index of the

coupon it receives. Furthermore, every vertex v is labeled with a set H(v) ⊆ [n], satisfying the

following soundness condition: if an edge from vertex u to vertex v is labeled with i ∈ [n], it

must hold that H(v) ⊆ H(u) ∪ {i}. The start vertex must be labeled with∅. For a target set

A ⊆ [n], a leaf v claims success if A ⊆ H(v).

Theorem 8.1.4. Under any recurring distribution and for any set A ⊆ [n], every set-labeled

branching program of length n and width 2S ≥ |A| that solves the zero-error coupon-collector

problem for the target set A must satisfy TS ≥ 1
8n|A| for sufficiently large n.

Fix such a set-labeled branching program. We first prove an upper bound on the proba-

bility of the computation path reaching two given vertices:

Lemma 8.1.5. For any two vertices u, v in a set-labeled branching program, where u ∈ Vi,

v ∈ Vj and i < j. Under the coupon-collector model with any recurring distribution,

Pr[reaching u ∧ reaching v] ≤
(
j− i
n

)|H(v)\H(u)|

.

Proof. Let p : N+ → N+ be the partition in the recurring distribution. LetG be the

random variable that represents the set of indices received between layerVi and layerVj,

and let ℓ = |{p(k) | i < k ≤ j}|. Note thatG is uniformly distributed over [n]ℓ. By

the soundness requirement of set-labeled branching programs, if the computation path

reaches u and then v, the setG corresponding to this path must satisfyH(v) ⊆ H(u) ∪ G.

131

Therefore,

Pr[reaching u ∧ reaching v] ≤ Pr[H(v) ⊆ H(u) ∪ G] = Pr[H(v) \H(u) ⊆ G].

If ℓ < |H(v) \ H(u)| then the above probability is zero. Otherwise by (over)counting the

positions where the elements of |H(v) \H(u)| appear and the union bound we have

Pr[H(v) \H(u) ⊆ G] ≤ ℓ!

(ℓ− |H(v) \H(u)|)!
· n−|H(v)\H(u)|

≤
(
ℓ

n

)|H(v)\H(u)|

≤
(
j− i
n

)|H(v)\H(u)|

.

Remark. For the independent distribution, the above argument yield:

Pr[reaching v | reaching u] ≤
(
j− i
n

)|H(v)\H(u)|

.

The weaker result in Lemma 8.1.5, however, holds more generally for any recurring distribu-

tion. It is also strong enough for proving Theorem 8.1.4.

Nowwe are ready to prove Theorem 8.1.4.

Proof of Theorem 8.1.4. Suppose the length of the set-labeled branching program is B. De-

fine the weight of a vertex v asW(v) = E[B→v] = Pr[reaching v]. For a set of verticesA,

letW(A) =
∑

v∈AW(v). Since the leaves are all inVT, for every 0 ≤ i ≤ Twe have

W(Vi) = 1. The fact that the branching program succeeds on the target set A ⊆ [n]

132

translates to: ∑
v∈LT

A⊆H(v)

W(v) ≥ 1/2. (8.1)

We divide the branching program into |A|
2S stages, each consists of a consecutive part of

the layers. For every 0 ≤ k ≤ |A|
2S , let i(k) be the smallest index i of a layerVi such that

∑
v∈Vi

|H(v)|≥2kS

W(v) ≥ kS
|A|

.

By (8.1) we know such a layer must exist. Now the k-th stage consists of the layers from

Vi(k) toVi(k+1)−1. Let

Ak = {u ∈ Vi(k) | |H(u)| ≥ 2kS}, Bk = {u ∈ Vi(k−1) | |H(u)| < 2kS}.

By the definitions of i(k), we know thatW(Ak) ≥ kS/|A|,W(Bk) > 1− kS/|A|.

Now we show that every stage contains at least (n/3 − 1) layers. Suppose for contradic-

tion that for some k, it holds that i(k + 1) − i(k) < n/3 − 1. For any two vertices u ∈ Bk

and v ∈ Ak+1, by Lemma 8.1.5 we have

Pr[reaching u ∧ reaching v] ≤
(
ik+1 − ik + 1

n

)|H(v)\H(u)|

< 3−2S.

Since each layer consists of 2S vertices, we have

Pr[reaching Bk ∧ reaching Ak+1] ≤
∑
u∈Bk
v∈Ak+1

Pr[reaching u ∧ reaching v] ≤ 2S · 2S · 3−2S.

133

Therefore, applying the union bound gives:

Pr[reachingVi(k)−1 ∧ reachingVi(k+1)]

≤ Pr[reachingVi(k)−1 \ Bk] + Pr[reachingVi(k+1) \ Ak+1]

+ Pr[reaching Bk ∧ reaching Ak+1]

≤ 1−W(Bk) + 1−W(Ak+1) + 2S · 2S · 3−2S

<
kS
|A|

+ 1− (k+ 1)S
|A|

+ (2/3)2S = 1− S
|A|

+ (2/3)2S < 1.

The last step is because 1/|A| ≤ 2−S. However, since the computation path must pass

through bothVi(k)−1 andVi(k+1), the probability above must be 1, which is a contradiction.

Thus we conclude that, for n large enough, ik+1 − ik ≥ n/3− 1 ≥ n/4. Therefore,

T ≥
∑

0≤k<|A|/2S

(ik+1 − ik) ≥
n|A|
8S

.

8.1.2 Reduction to Set-Labeled Branching Programs

We will prove Theorem 8.1.1 by reducing every decision problem to a set-labeled branching

program solving the coupon-collector problem with zero-error. The first step is to show

that in general, any such branching program is set-labeled.

Lemma 8.1.6. Under the independent distribution, for any set A ⊆ [n], every branching

program of length n and width 2S ≥ |A| that solves the zero-error coupon-collector problem

for the target set A can be assigned on each vertex a label H(v) ⊆ [n] so that the branching

program is set-labeled.

134

Proof. Let P(v) be the collection of directed paths from the starting vertex to v. For every

directed path p let h(p) be the collection of indices labeled on the edges of p. Then we de-

fineH(v) = ∩p∈P(v)h(p).

The starting vertex is clearly labeled with the empty set. To check the soundness, con-

sider an edge e from vertex u to vertex v labeled with i. For every path p ∈ P(u), the con-

catenation pe is a path in P(v), and h(pe) = h(p) ∪ {i}. Therefore,

H(v) ⊆
⋂

p∈P(u)

h(pe) = H(u) ∪ {i}.

Notice that every path from the starting vertex to a leaf corresponds to a collection of in-

dices i1, . . . , iT, that are given with probability n−T > 0 under the independent distribu-

tion. Since the branching program collects Awith zero-error, for every path to a leaf that

claim success, it must hold that A ⊆ {i1, . . . , iT}. Thus every successful leaf v is now la-

beled withH(v) ⊇ A.

Now we are able to prove Theorem 8.1.1.

Proof of Theorem 8.1.1. Suppose there is a branching programP of length T and width 2S

that computes fwith zero-error. Let x ∈ {0, 1}n be an input such that s(f) = s(f, x), and

let A = {i ∈ [n] | f(x) 6= f(x(i))}. We show below that fromP , one can extract a simple

branching programP ′ for the coupon-collector problem of width at most 2S and length T,

which solves the zero-error coupon-collector problem for the target set A. Since |A| = s(f),

by Lemma 8.1.6 we know that TS ≥= 1
8n · s(f) for sufficiently large n.

We constructP ′ inductively to simulateP on input x. For vertex v inP we use v′ to

denote its corresponding vertex inP ′. The start vertex v′0 inP ′ corresponds to the start

135

vertex v0 inP . If inP there exists an edge from u to v labeled with (i, xi), and u′ is inP ′,

then add v′ toP ′ (if v′ is not already there), and add an edge from u′ to v′ labeled with i.

Finally, every leaf v′ inP ′ claims success if the output on v is f(x), and otherwise claims

failure.

First notice that under the independent distribution, the probability of reaching a vertex

v′ inP ′ is exactly the same as the probability of reaching v inP with the input x. Since the

probability thatP outputs f(x) on input x is at least 1/2, the probability thatP ′ claims

success is also at least 1/2.

We now show that conditioned on reaching a successful leaf v′ inP ′, it must hold that

A ⊆ {i1, . . . , iT}. Suppose not, then for some index i ∈ A there is a path p′ from the

start vertex to v′ where no edge is labeled with i. Consider the corresponding path p inP .

On input x(i), the computation follows the path pwith non-zero probability and outputs

f(x) 6= f(x⊕ ei), which contradicts the zero-error property ofP . That concludes the proof

thatP ′ solves the zero-error coupon-collector problem for the target set A.

8.2 RelationwithOblivious Branching Programs

Note that the zero-error guarantee is crucial to Theorem 8.1.1, since for instance, the n-bit

AND function can be computed with constant error by a branching program of length

O(n) and widthO(1). However, when specified to the parity function, the best trade-off

seems to be still quadratic even in the bounded-error setting. We propose the following

conjecture, which is still open at the time of writing this thesis:

Conjecture 8.2.1. Under the coupon-collector model with the independent distribution, any

branching program of length T and width 2S which computes x1 ⊕ · · · ⊕ xn with error 1/3

136

must satisfy TS = Ω̃(n2).

Interestingly, there is another algorithm for computing parity (which actually computes

the Hamming weight) with bounded error, which is essentially different from the algo-

rithmmentioned in the previous remark: Equally partition [n] intoO(S/ log n) parts. For

each part P, record the number of steps twhen a pair (i, xi) such that i ∈ P and xi = 1 is

received, and finally approximate the partial sum
∑

i∈P xi with the integer closest to tn/T.

By Chernoff bound, T = O(n2S−1 log2 n) is enough so that the approximation of each part

is wrong with probabilityO(n−1).

Notice that this algorithm does not work in the zero-error setting. While the previous

algorithm corresponds directly to a set-labeled branching program, it is not clear whether

this approximation algorithm is related to set-labeled branching programs or not.

We note that by the time this dissertation is finished, Dinur [Din23] proved our Conjec-

ture 8.2.1 affirmatively. In fact, for any total boolean function an lower bound holds with

respect to its total influence:

Theorem 8.2.2 ([Din23]). Let f : {0, 1}n → {0, 1} be a boolean function with total

influence I(f). Under the coupon-collector model with the independent distribution, every

branching program of length T and width 2S ≥ n which computes f with at most 1/3 error

must satisfy TS ≥ Ω̃(n) · I(f).

The conjecture (now a theorem) is also interesting as it could be seen as the first step to

prove strong lower bounds for oblivious branching programs. In this section, we present

two potential directions, both via proving lower bounds in the coupon-collector model.

Let SURJn,m : [n]m → {0, 1} be the surjectivity function: SURJn,m(i) = 1 if and only

{i1, . . . , im} = [n].

137

Theorem 8.2.3. For any m ≥ 2n(log n+ 1), any deterministic oblivious branching program

computing SURJn,m is also a branching program for zero-error coupon-collector problem with

the target set [n] under some recurring distribution.

Proof. Suppose at level t− 1 the oblivious branching program reads ip(t), for some function

p : Z+ → [m]. Use p as the partition in the recurring distribution, then the computation

of the branching program for the coupon-collector problem is exactly the same as in the

oblivious branching program with a uniformly random input i ∈ [n]m. Proposition 8.1

shows that the probability of SURJn,m(i) = 1 is at least 1/2. As the deterministic oblivi-

ous branching program always outputs correctly, as a branching program for the coupon-

collector problem it succeeds with zero-error.

For any boolean function f : {0, 1}n → {0, 1} andm ≥ n, let f∗ : [n]m × {0, 1}m →

{0, 1} be a partial function defined as follows: f∗(i, y) is well-defined for i ∈ [n]m and

y ∈ {0, 1}m, if and only if SURJn,m(i) = 1, and whenever ij = ik it must hold yj = yk.

When f∗(i, y) is well-defined, the value of f∗(i, y) is f(yj1 , . . . , yjn), where for every τ ∈ [n], jτ

is some j ∈ [m] such that ij = τ.

Theorem 8.2.4. Given any function f : {0, 1}n → {0, 1}, and for any m ≥ 3n(log n + 1),

if there is a deterministic oblivious branching program computing f∗ of length T and width 2S

(on the inputs where f∗ is well-defined), then there is a branching program of the same length

and width, that computes f with error 1/3 in the coupon-collector model under some recurring

distribution.

Proof. Add dummy levels to the oblivious branching program to double the length, such

that if originally at level t the branching program reads either ij or yj, now it reads ij at level

138

2t and yj at level 2t + 1. The oblivious branching program now can be regarded as the one

of length T and width 2S that at each level t reads a pair (ip(t), yp(t)), for some function p :

N+ → [m].

Use p as the partition in the recurring distribution. For any fixed x ∈ {0, 1}n, the com-

putation in the coupon-collector model on input x is exactly the same as in the oblivious

branching program with a uniformly random i ∈ [n]m, and input y ∈ {0, 1}m defined

as yj = xij . For such i and y, f∗(i, y) is well-defined if and only if SURJn,m(i) = 1, and

Proposition 8.1 indicates the probability that f∗(i, y) is well-defined is at least 2/3. Since

whenever f∗(i, y) is well-defined, the deterministic oblivious branching program correctly

outputs f(yj1 , . . . , yjn) = f(x), as a branching program under the coupon-collector model it

computes fwith error 1/3.

As a corollary, if in the coupon-collector model we were able to prove a time-space lower

bound that holds under any recurring distribution, either for the coupon-collector prob-

lem with zero-error, or for any bounded-error computation, we would immediately have

the same lower bound (up to logarithmic factors) on deterministic oblivious branching

programs, and thus solves Open Problem 7.1.

139

9
Multi-Output Functions:

A Polynomial Separation

In this chapter we study the time-space tradeoffs for multi-output functions. Previously all

lower bounds on such tradeoffs were proved by the Borodin-Cook method [BC82], which

we will revise in Section 9.1. However, as the Borodin-Cook method inherently give the

same lower bound for deterministic and randomized computation, the following question

remains unanswered for a long time:

Is there a polynomial separation between randomized and deterministic branch-

ing programs for time-space tradeoffs of multi-output functions?

Here we answer this question in the affirmative for oblivious branching programs, where

the queries made in the branching programs are independent of the input. In particular,

we design a total function (n, p)-Non-Occurring Elements (Definition 9.2.1) on [n]n

which outputs a subset of [n], such that:

• There exists a randomized oblivious algorithm with spaceO(log n), timeO(n log n)

140

and one-way access to randomness, that computes the function with probability

1− O(1/n);

• Any deterministic oblivious branching program with space S and time T that com-

putes the function must satisfy T2S ≥ Ω(n2.5/ log n).

This will be proved in Section 9.2. The proof is is not technically hard, and the difficulty in

proving such a separation actually lies mostly in finding a proper total function where the

adversarial method works. We demonstrate this difficulty by showing that, for several natu-

ral candidate problems whose best known deterministic algorithms are polynomially worse

than randomized algorithms, proving a polynomial separation will lead to the resolution of

Open Problem 7.1.

9.1 The Borodin-CookMethod

In this section we revise the Borodin-Cook method which was used in all previous works

for proving time-space lower bounds of multi-output functions. The original method by

Borodin and Cook [BC82], used on the sorting problem, is quite complicated and not

modular enough to be applied to other problem. It was simplified by Beame [Bea91], and

from then on used to provide lower bounds for a variety of multi-output problems, in-

cluding algebraic problems like matrix multiplication and inversion [Abr91], frequency

moments over sliding windows [BCM13], and more recently, the memory game [CC17],

printing and counting SAT assignments [MW18] and multiple collision finding [Din20],

just to name a few. For a formal but restrictive description of the method and more applica-

tions, see [Sav98, Chapter 10].

141

Here we give a brief framework of the proof method:

1. Fix a distributionD over the inputs (often uniform), and find a suitable number

a(S) such that given a(S) bits in the input, only S bits of output are revealed on aver-

age.

2. Prove that, given any decision tree of depth a(S) and c · S bits of output assigned to

each path in the tree, these outputs are correct with probability 2−Ω(S) underD, for

some large c > 1.

3. Now split the branching program into stages of length a(S), and by a union bound

over the 2S starting nodes of each stage, the above argument shows that most inputs

underD cannot generate c · S bits output within a stage. This implies a lower bound

of the form ST/a(S) ≥ Ω(n).

Step 2 is the technical part of the proof, which usually involves certain counting arguments

as the distributionD is often a uniform distribution on some support. To give a concrete

taste of the method, we prove a lower bound for the following problem.

Definition 9.1.1. In the 2-StepPointerChasing (2-PC for short) problem, the input is a

function f : [n]→ [n], and the output consists of (x, f(f(x))) for all x ∈ [n].

Proposition 9.1.2. Any randomized oblivious branching program with space S and time T

that computes 2-PC must satisfy T2S ≥ Ω̃(n3).

Proof. Consider a deterministic oblivious branching programA computing 2-PC. Divide

the branching program into ℓ stages where each stage consists of a = 1
6

√
nS consecutive

layers, for ℓ = T/a.

142

Take any such stage k, and assume that the oblivious queries within the stage are on

f(x1), . . . , f(xa)where x1, . . . , xa are distinct elements in [n]. Let f : [n] → [n] be a uni-

formly random permutation, and let

I =
{
i ∈ [a] | ∃j ∈ [a], f(xi) = xj

}
.

Notice that |I| = |f(A) ∩ A|where A = {x1, . . . , xa} has size a, and f(A) is a uniformly

random subset of [n] of size a. Therefore,

Pr
f∼Sn

[|I| ≥ S] ≤
(
n
a

)−1

·
(
a
S

)(
n

a− S

)
=

a!a!(n− a)!
(a− S)!(a− S)!S!(n− a+ S)!

≤ a2S

S!(n− a)S
≤
(

ea2

S(n− a)

)S

≤ 5−S.

Now consider the probability

Pr
f∼Sn

[On input f, at least 3S distinct pairs of (x, f(f(x))) are outputted in stage k]. (9.1)

When |I| < S, let us fix the query answers in stage k and examine (9.1). Among the 3S pair

of outputs (x, f(f(x))) at least S of them satisfies that x /∈ I and f(f(x)) /∈ f(I). For those x,

f(f(x)) is simply uniformly distributed over the not-revealed n − a elements, which means

that these answers are correct with probability at most (n− a− S)−S.

Thus by union bound over the 2S starting points of stage k, we can bound the probabil-

143

ity in (9.1) by

2S
(
Pr
f∼Sn

[|I| ≥ S] + (n− a− S)−S
)

< 2−S.

Without loss of generality, assume that S > log n, then the above bound is smaller than

1/(2T) ≤ 1/(2ℓ). But on the other hand, since throughout the ℓ stages, n correct pairs

of answers are outputted, it means that as long as 3ℓS < n there must be a stage k such

that this probability is at least 1/ℓ, which is a contraction. Hence we have 3ℓS ≥ n, which

translates to T2S ≥ Ω(n3).

Finally, notice that we actually proved that no deterministic oblivious branching pro-

gram could succeed with probability 1/2 on computing 2-PC when the input f is uni-

formly drawn over permutations Sn. By Yao’s Minimax Principle, we conclude that no

distribution over deterministic oblivious branching programs could computing 2-PC with

probability 1/2.

Note that the final application of Yao’s Minimax Principle is not a coincidence. In fact,

by the design of Borodin-Cook method, we always first prove a lower bound on determinis-

tic branching programs over some input distributionD, and thus Yao’s Minimax Principle

is always applicable. Therefore, the Borodin-Cook method itself could not demonstrate a

randomized vs. deterministic separation. In the next section, we show how to combine the

Borodin-Cook method with the adversarial method to bypass this weakness.

9.2 Polynomial Separation for Oblivious Computation

Here we define our total function (n, p)-NOE that demonstrate the polynomial separation

between randomized and deterministic oblivious branching programs.

144

Definition 9.2.1. Let n > 1 and p be a prime factor of n. In the (n, p)-Non-Occurring

Elements ((n, p)-NOE for short) problem, the input is an unordered list of n numbers X =

(x1, . . . , xn) ∈ [n]n. The output is a set Y ⊆ [n] such that:

• If for every c ∈ [n], the number of times that c occurs in X is a multiple of p (0 included,

so there are at most n/p distinct occurring elements), then Y consists of the (at least n −

n/p) elements in [n] that do not occur in X;

• Otherwise Y = ∅.

Theorem 9.2.2. There is a randomized oblivious branching program with space O(log n)

and timemax{1, n/p2} · O(n log n), that computes (n, p)-NOE with probability at least

1 − 2/n. Moreover, the algorithm can be implemented with one-way access to random bits.

On the other hand, any deterministic oblivious branching program with space S and time T

that correctly computes (n, p)-NOEmust satisfy T2(S+ logT) ≥ Ω(n3/p).

Taking n = p2, we get a polynomial separation with randomized upper bound S =

O(log n),T = O(n log n) and deterministic lower bound T2S ≥ Ω̃(n2.5).

We note that our (n, p)-NOE problem could be perceived as a “promised” version of the

Non-Occurring Elements problem (in which the output at all times consists of the

elements not occurring in X), and the latter problem has time-space tradeoff TS = Θ(n2)

for both deterministic and randomized branching programs [MW18]. The promise that

every elements occurs a multiple of p times can be efficiently checked with randomness

(Lemma 9.2.3), however there may as well be a deterministic algorithm that verifies the

promise in almost-linear time and poly-log space (subject to Open Problem 7.1). The above

145

facts imply that neither the Non-Occurring Elements problem nor the promise itself

could demonstrate the desired separation.

We first prove the randomized upper bound for (n, p)-NOE, which consists of two

parts: the algorithm for checking the promise Lemma 9.2.3, and the algorithm for solving

Non-Occurring Elements under the promise Lemma 9.2.4.

Lemma 9.2.3. There is a randomized algorithm using O(log n) space and O(log n) random

bits that reads X = (x1, . . . , xn) ∈ [n]n as a one-pass stream and satisfies that:

• If every c ∈ [n] occurs in X a multiple of p times, the algorithm always accepts;

• Otherwise, the algorithm rejects with probability at least 1− 2p−1/2 log n.

Proof. The algorithmmaintains a linear sketch of the frequencies of elements in [n]. Specif-

ically, let α1, . . . , αn be uniformly and independently drawn from Fp. The algorithm com-

putes
∑

i αxi and accepts if the sum equals 0. If some c ∈ [n] occurs not a multiple of p

times, the factor before αc in the sum is non-zero, and the sum equals 0 with probability

1/p.

To reduce the random bit usage (the naive approach uses n log p random bits) we use

Reed-Muller codes. Instead of drawing α1, . . . , αn independently, the algorithm draws

β1, . . . , βm ∈ Fp uniformly and independently, and let α1, . . . , αn be the values of monomi-

als

βd11 β
d2
2 · · · β

dm
m , 0 ≤ d1, . . . , dm < d.

By taking d = p1/2 andm = 2 log n/ log p, the number of such monomials is at least

dm ≥ n. Sincem log p = O(log n), the algorithm can draw and store β1, . . . , βm directly.

146

After reading xi = c ∈ [n], (c−1) is decomposed in base d to obtain d1, . . . , dm in sequence,

while the algorithm computes αc = βd11 β
d2
2 · · · β

dm
m and accumulates it to the sum

∑
i αxi .

Now the sum
∑

i αxi is a total degreemd polynomial in Fp on variables β1, . . . , βm,

where the the coefficients are the frequencies of elements in [n] occurring in X. If every

c ∈ [n] occurs in X a multiple of p times, the polynomial is always zero; Otherwise, the

polynomial is non-zero, and by the Schwartz-Zippel Lemma, the probability that the poly-

nomial evaluates to zero is at mostmd/p ≤ 2p−1/2 log n.

Lemma 9.2.4. Suppose X = (x1, . . . , xn) ∈ [n]n satisfies that every c ∈ [n] occurs in X either

0 or at least p times. Then there is a randomized oblivious algorithm using O(log n) space

and O(n2p−2 log n) time, with one-way access to random bits, that solves Non-Occurring

Elements on X with probability at least 1− 1/n.

Proof. LetR ⊆ [n] be a randommulti-set of size r = 3np−1 ln n. As every occurring

element occurs at least p times, the probability that {xi | i ∈ R} does not contain all

occurring elements in X is at most

n · (1− p/n)r ≤ n · e−3 ln n = n−2. (9.2)

The algorithm goes for n/p rounds, in each round independently samples such a multi-

setR of size r, and queries xi for i ∈ R. The algorithm also stores an number j, which is

initialized as 0, and in each round j is updated to

j′ = min {xi > j | i ∈ R} ∪ {n+ 1}.

At the end of each round, the algorithm outputs every number strictly between the pre-

147

updated j and j′. By (9.2) and a union bound, with probability at least 1 − 1/n, in every

round {xi | i ∈ R} contains all occurring elements (where there are at most n/p of them).

In this case j goes through all occurring elements in order, and thus the outputs are exactly

the non-occurring ones.

The overall time complexity is rn/p = O(n2p−2 log n), and since elements inR can

be sampled sequentially to compute j′ and no need to be stored, the only space usage is for

storing j and j′ which isO(log n).

Note that Lemma 9.2.3 solves a decision problem and thus can be repeated forO(log n)

times to amplify the success probability to 1− 1/n. Then combined with Lemma 9.2.4, we

obtain the desired randomized oblivious upper bound of spaceO(log n) and timeO((1 +

n/p2) · n log n). We now show the deterministic lower bound, from which Theorem 9.2.2

follows.

Lemma 9.2.5. Any deterministic oblivious branching program with space S and time T that

correctly computes (n, p)-NOEmust satisfy T2(S+ logT) ≥ Ω(n3/p).

Proof. Divide the branching program into ℓ = 2T/n stages, each of which contains T/ℓ =

n/2 queries. We first construct a partitionP on [n] that consists of n/p parts of size p as

follows:

1. Initially, letP = ∅.

2. For each stage of the branching program, letQk be the set of indices queried in the

k-th stage. Arbitrarily pick r = n2/(4Tp) disjoint sets of size p outside
⋃
{P ∈

P} ∪ Qk, and add them intoP .

148

3. Finally after going through all the stages, arbitrarily partition the remaining elements

in [n] into sets of size p.

Notice that during Step 2, the total number of elements in
⋃
{P ∈ P} never exceeds

rℓp =
n2

4Tp
· 2T
n
· p = n/2.

As |Qk| ≤ n/2, this implies that Step 2 is always feasible.

We define a distributionD of X ∈ [n]n as follows: For every part P ∈ P , uniformly

and independently pick c ∈ [n] and let xi = c for all i ∈ P. Notice that the (n, p)-NOE

problem is identical to Non-Occurring Elements on supp(D). Now consider the

probability

Pr
X∼D

[On input X, at leastm distinct elements are outputted in stage k]. (9.3)

Since for each input X ∈ supp(D) there are at least n − n/p ≥ n/2 non-occurring

elements, there must exist a stage k such that the above probability is at least 1/ℓ form =

n/(2ℓ).

On the other hand, Step 2 in the construction ofP implies that, given the query an-

swers in stage k (i.e. xi for all i ∈ Qk), there are at least r parts inP whose values in X are

still uniformly random. When the query answers are given, there are at most 2S different

collections of outputs in stage k (dictated by the starting state of the stage), and ifm dis-

tinct elements are outputted and thus non-occurring, each one of the r parts is consistent

with these outputs with probability 1 − m/n. Therefore the probability in (9.3) is upper

149

bounded by

2S ·
(
1− m

n

)r
= 2S ·

(
1− n

4T

) n2
4Tp ≤ 2S · e−

n3
16T2p .

As the probability is at least 1/ℓ ≥ 1/T, we have

S− log e · n3

16T2p
≥ − logT ⇒ T2(S+ logT) ≥ Ω(n3/p).

9.3 Separations that Imply Decision Lower Bounds

In this section we present several natural candidates of multi-output function for random-

ized vs. deterministic separations, and show that actually proving such separations will lead

to answering Open Problem 7.1. These results can be perceived in two ways: On one hand,

these are currently barrier results implying that proving separations for these natural prob-

lems is difficult, which is where the (n, p)-NOE problem in our main result stands out;

On the other hand, one may hope that future developments in proving lower bounds for

multi-output functions will help towards the final resolution of Open Problem 7.1.

Before getting into the concrete examples, we note that every multi-output function

F : {0, 1}n → {0, 1}m can be converted to a decision problem F′ : {0, 1}n × [m]→ {0, 1}

defined as F′(x, i) = F(x)i. Therefore, if F′ can be computed in spaceO(log n) and time

Õ(n), then F can trivially be computed in spaceO(log n) and time Õ(mn). Our results in

this section holds non-trivially with better time complexity than Õ(mn). However, this im-

plication is still useful as it makes decision problems and single-output functions (whose

outputs are in [n], or generally have lengthm = polylog(n)) morally equivalent with re-

spect to Open Problem 7.1: Any lower bound for a single-output function that is polyno-

150

mially better than trivial implies a corresponding lower bound for a decision problem.

9.3.1 Pointer Chasing and Expanders

Recall the definition of the 2-StepPointerChasing problem, where the input is a func-

tion f : [n] → [n], and the output consists of (x, f(f(x))) for all x ∈ [n]. For non-oblivious

algorithms, 2-PC can be easily solved in deterministic spaceO(log n) and timeO(n), by

querying f on each x and adaptively on f(x). On the other hand for oblivious algorithms,

we have the T2S ≥ Ω̃(n3) lower bound in Proposition 9.1.2, which provides an example

of polynomial separation between oblivious and non-oblivious time-space tradeoffs of total

functions.

The bound is also tight and can be achieved via the following simple algorithm: In each

round pick two random subsets X,Y ⊆ [n]with |X| = |Y| =
√
nS. We store at most Õ(S)

pairs of (x, f(x)) ∈ X × Y by querying f on X, and output the corresponding (x, f(f(x)))

by querying f on Y. Each pair in a round is found with probability close to S/n, and thus

Õ(n/S) rounds suffices.

The above algorithm heavily relies on the fact that Y is decided entirely by randomness

and hardwired into the branching programs. A natural question is whether the same time-

space tradeoff holds for oblivious computation with weaker notions of randomness, or

even without randomness at all. In Theorem 9.3.4 below, we show that proving impossi-

bility results to this question will give answers to Open Problem 7.1. We first need to intro-

duce the single-output function, ExpanderMatching based on the explicit unbalanced

bipartite expanders by Guruswami, Umans and Vadhan [GUV09].

Definition 9.3.1. A bipartite graph Γ ⊆ [n] × [m] is a (k, a)-expander if for every subset

151

L ⊆ [n] with |L| ≤ k, the number of the neighbors of L is at least a · |L|.

Theorem 9.3.2 ([GUV09]). For every constant α > 0, given n ∈ N and k ≤ n, there is

an explicitly constructed bipartite graph Γα,n,k ⊆ [n] × [m] which is a (k, 1)-expander, with

|Γα,n,k| = Õ(n) and m ≤ Õ(k1+α).

The original result in [GUV09] is stronger than stated in Theorem 9.3.2, with the expan-

sion factor a arbitrarily close to the degree |Γα,n,k|/n = polylog(n). For our application, we

only need expansion to be no less than 1. We use the graph to construct an explicit single-

output function as follows:

Definition 9.3.3. The (α, n, k)-ExpanderMatching problem is a function [n]k× [m]→

[n] ∪ {⊥}, with m decided by Theorem 9.3.2. Given the input L ∈ [n]k and y ∈ [m], we

think of L as a subset of [n] with |L| ≤ k. There exists a matching for L in Γα,n,k because of the

(k, 1)-expander property, and we consider the lexicographically smallest matchingM : L →

[m] in Γα,n,k. The output of the problem isM−1(y) if it exists, or⊥ if not.

Theorem 9.3.4. For every constant α > 0, if (α, n, k)-ExpanderMatching can be solved

by deterministic oblivious branching programs with space Õ(1) and time Õ(k), then for every

S ≤ n, there is a deterministic oblivious branching program solving 2-PC with space Õ(S) and

time Õ(
√

n3+α/S).

Proof. We partition [n] into blocks B1 t · · · t Bn/k of size k, with k to be optimally chosen

later. The deterministic oblivious algorithm for 2-PC consists of n/(kS) stages, where in

each stage we output (x, f(f(x))) all x in S consecutive blocks. In order to do so we need to

query f on f(Bi), but as the queries are oblivious, we instead query f on the neighbors of y

152

for each y ∈ [m]. Since |f(Bi)| ≤ k, the matching for f(Bi) provides all the answers for

x ∈ Bi. More concretely, the algorithm is described in Algorithm 9.1.

Algorithm 9.1:The deterministic oblivious algorithm for 2-PC
1 for ℓ← 0, . . . , n/(kS)− 1 do
2 for y ∈ [m] do
3 for i ∈ [S] do
4 Apply (α, n, k)-ExpanderMatching on f(Bi+ℓS) ∈ [n]k and y;
5 Store the answer ui ∈ [n] ∪ {⊥}.
6 foreach v ∈ [n] such that (v, y) ∈ Γα,n,k do
7 Query f(v);
8 if v = ui for some i ∈ [S] then attach f(ui) to ui.
9 for x ∈ BℓS+1 t · · · t B(ℓ+1)S do
10 Query f(x);
11 if f(x) = ui for some i ∈ [S] then output (x, f(ui)).

To prove the correctness, it suffices to show that every x ∈ [n] is outputted. This is

guaranteed in every block Bi+ℓS, as when y goes through [m], every element in f(Bi+ℓS) is

matched and appears as ui at some point.

The space complexity is clearly Õ(S) as the bottleneck is storing ui and f(ui) for i ∈ [S].

To identify the time complexity, notice that f is queried in all three inner loops. For each ℓ

and y, the (α, n, k)-ExpanderMatching algorithmmakes Õ(kS) queries in total, while

querying f(x) for x ∈ BℓS+1 t · · · t B(ℓ+1)S also takesO(kS) time. Besides, for each ℓ,

querying f(v) for every edge (v, y) ∈ Γα,n,k takes up |Γα,n,k| = Õ(n) time. Therefore the

total number of oblivious queries is

n
kS

(
m · Õ(kS) + Õ(n)

)
= Õ

(
k1+αn+

n2

kS

)
.

Taking k =
√

n/S, the above expression is upper bounded by Õ(
√
n3+α/S).

153

As a direct corollary of Theorem 9.3.4, if we managed to prove a polynomial separation

between randomized and deterministic oblivious time-space tradeoffs of 2-PC, it would

imply a strong lower bound for (α, n, k)-ExpanderMatching for some α > 0 and thus

would answer Open Problem 7.1.

9.3.2 Element Distinctness and Collision Finding

We recall the definition of the ElementDistinctness problem.

Definition 9.3.5. In the ElementDistinctness (ED for short) problem, the input is a

list of n elements from a fixed domain D, with |D| = poly(n). The output is 1 if all elements

are distinct, and 0 otherwise.

A randomized algorithm for ED with T2S = Õ(n3)was given in [BCM13], and it was

later improved to use only one-way access to randomness in [CJWW22, LZ23]. Based on

the same algorithm, they also showed that the SetIntersection problem (given two sets

A and B of size n, output A ∩ B) can be solved T2S = Õ(n3), and the tradeoff is known

to be tight [Din20]. Different variants of this problem was also studied, such as memory

games [CC17] and n-collision finding [Din20], which share the same tight tradeoff for

randomized algorithms.

Here we present a general form of SetIntersection, that covers all the variants when

two sets that contains no duplicates are given, and show its black-box relationship with ED:

Definition 9.3.6. In the SetCollision problem, the input contains two sets A,B ⊆ D

given as unordered lists (a1, . . . , an) and (b1, . . . , bn) that contain no duplicated elements in

each list itself. The output consists of all collisions, that are triples (i, j, x) such that ai = bj =

x.

154

Theorem 9.3.7. If ED can be solved deterministically with space Õ(1) and time Õ(n), then

SetCollision can be solved deterministically with space Õ(1) and time Õ(n3/2). Further-

more, if the algorithm for ED is oblivious, then for every S ≤ n, there is a deterministic (non-

oblivious) algorithm that solves SetCollision with space Õ(S) and time Õ(
√

n3/S).

Proof. We first present a simple divide-and-conquer algorithmA for solving SetColli-

sion. The algorithmA(ℓ, s, s′) is described recursively as Algorithm 9.2, where for the sake

of simplicity we assume that ℓ is a power of 2:

Algorithm 9.2:Recursive algorithmA(ℓ, s, s′) for SetCollision
1 if ℓ = 1 then
2 if as = bs′ thenOutput (s, s′, as);
3 return.
4 if ED(as, . . . , as+ℓ−1, bs′ , . . . , bs′+ℓ−1) = 1 then return.
5 let ℓ′ ← ℓ/2;
6 Sequentially executeA(ℓ′, s, s′),A(ℓ′, s+ ℓ′, s′),A(ℓ′, s, s′ + ℓ′) and
A(ℓ′, s+ ℓ′, s+ ℓ′).

It is easy to see thatA(ℓ, s, s′) outputs all the collisions between the two intervals

a[s, . . . , s+ ℓ− 1] and b[s′, . . . , s′ + ℓ− 1],

since whenever ℓ > 1 and there exists at least one collision (which is checked by the ED

call), the algorithm splits each interval into two sub-intervals of half length, and solve all

four pairs of sub-intervals with the four recursive calls. HenceA(n, 1, 1) solves SetColli-

sion.

The space usage ofA(n, 1, 1) is Õ(1), since there areO(log n) levels of recursion and

each recursive call locally uses Õ(1) space. To bound the time usage, the key observation is

155

that there are at most n collisions. Therefore, although there could be as much as (n/ℓ)2

possible recursive calls toA at the level of recursion with interval length ℓ, there are in fact

at mostO(n) actual calls within each level, while the rest are prematurely stopped because

of the ED check. Taking the summation over ℓ = 2t for t = 0, . . . , log n, the total time

usage ofA(n, 1, 1) bounded by

∑
t≤ 1

2 log n

O(n) · Õ(2t) +
∑

t> 1
2 log n

(n
2t
)2
· Õ(2t) = Õ(n3/2).

When the space S is larger, in order to leverage the space advantage and reduce the time

usage we need to parallelize the algorithmA. However, the core of algorithmA is the

black-box ED algorithm, whose instances cannot be parallelized if they are highly adap-

tive. Therefore from now on, we assume that the space-Õ(1) and time-Õ(n) ED algorithm

is oblivious.

To understand how oblivious ED algorithm helps parallelization, consider the recursion

level with ℓ =
√
n. At this level, we need to answer ED(as, . . . , as+ℓ−1, bs′ , . . . , bs′+ℓ−1)

for all n pairs of s, s′ ∈ {1,
√
n + 1, . . . , n −

√
n + 1}. We can call the oblivious ED

algorithm to solve the instance with s = s′ = 1, and call it again to solve another instance

with s =
√
n, s′ = 1. Because the algorithm is oblivious, whenever ai (resp. bi) is queried

in the first instance, ai+√
n (resp. bi) is queried in the second instance at the exact same time

step. That means the two algorithm instance can be interleaved, using double the space

while the queries to B do not need to be repeated. Take a step further, we can interleave the

4 instances of ED with s, s′ ∈ {1,
√
n+1}, using 4 times the space but only double the time.

In our actual algorithm, we partition {1,
√
n + 1, . . . , n −

√
n + 1} into

√
n/S groups,

156

each of size
√
S. With the idea stated above, for each pair of groups of s and s′, we can solve

all the ED instances within this pair (where there are S instances) with space Õ(S) and time

Õ(
√
nS). As there are n/S pairs of groups, the overall time usage all the ED instances at

level ℓ =
√
n is Õ(

√
n3/S). More generally, using the same idea, we design a parallelized

version ofA, which is the algorithmA∗(ℓ, (si, s′i)i∈I) described in Algorithm 9.3, that takes

as an argument a list of |I| ≤ S pairs of s and s′.

Algorithm 9.3:Recursive algorithmA∗(ℓ, (si, s′i)i∈I) for SetCollision
1 if ℓ = 1 then
2 for i ∈ I do
3 if asi = bs′i thenOutput (si, s′i, asi);
4 return.
5 Solve ei ← ED(asi , . . . , asi+ℓ−1, bs′i , . . . , bs′i+ℓ−1) for all i ∈ I in parallel;
6 let ℓ′ ← ℓ/2,Q← ∅;
7 foreach i ∈ I such that ei = 0 do
8 for (Δs,Δs′)← (0, 0), (ℓ′, 0), (ℓ′, 0), (ℓ′, ℓ′) do
9 Add (si + Δs, s′i + Δs′) to the queueQ;

10 if |Q| = S or reaching the end of the algorithm then
11 ExecuteA∗(ℓ′,Q);
12 Q← ∅.

It is clear from the description thatA∗(ℓ, (si, s′i)i∈I) functions the same as the sequential

execution ofA(ℓ, si, s′i) for all i ∈ I. Our final algorithm for SetCollision is to run se-

quentiallyA∗(
√
n,G× G′), for allG andG′ chosen from the

√
n/S groups of size

√
S that

partitions {1,
√
n+ 1, . . . , n−

√
n+ 1}, and thus it correctly outputs all collisions between

set A and B. Each recursive call ofA∗ usesO(S log n) space locally, plus the Õ(S) space to

compute at most S instances of ED in parallel. As there areO(log n) levels of recursion, the

overall space usage is Õ(S).

To bound the time usage, we first examine howmuch time is used to solve S instances

157

of ED in parallel. Fix the initial argumentG andG′ at the start of the recursion and focus

on one level of recursion with interval length ℓ. At this level, one instance of the ED algo-

rithm takes Õ(ℓ) time. Since the input intervals for these ED instances are either the same

or disjoint, each query is repeated for at most |G| ·
√
n/ℓ times at its parallel places after the

interleaving parallelization. Thus the time usage for solving ED is Õ(|G| ·
√
n) = Õ(

√
nS).

As the rest of steps takeO(S) ≤ O(
√
nS) time, altogether each recursive call ofA∗ locally

takes Õ(
√
nS) time, regardless of the level of recursion.

On the other hand, let us call a recursive callA∗(ℓ, (si, s′i)i∈I) complete if |I| = S, and

incomplete if |I| < S. Since there are at most n collisions, at each level of the recursion there

are at mostO(n/S) complete calls, while each call produces at most one incomplete call in

the next level. Initially there are n/S calls, and therefore the total number of calls toA∗ in

our final algorithm is Õ(n/S). So the total running time is Õ(
√

n3/S).

Since SetCollision has the randomized lower bound T2S = Ω̃(n3), Theorem 9.3.7

implies that any polynomial separation between randomized and deterministic time-space

tradeoffs of SetCollision (or its variants such as SetIntersection) would answer

Open Problem 7.1 on ElementDistinctness.

Notice that in the reduction of Theorem 9.3.7, the input guarantee that both lists A

and B are sets is only used so that ED decides the distinctness between the two lists. With-

out the guarantee, we can instead resort to the ListDistinctness problem studied in

[BGNV18].

Definition 9.3.8. In the ListDistinctness problem (LD for short), the input contains two

unordered lists (a1, . . . , an) and (b1, . . . , bn) from a fixed domain D, with |D| = poly(n).

The output is 1 if there exist i, j ∈ [n] such that ai = bj, and 0 otherwise.

158

LD is at least as harder as ED, and while ED can be solved in Õ(1) space and Õ(n3/2)

time, no algorithm even with no(1) space and n2−Ω(1) time was known for LD. The proof of

Theorem 9.3.7 can be altered to show that the problem of n-Collision reduces determin-

istically to LD:

Definition 9.3.9. In the n-Collision problem, the input is an unordered list (a1, . . . , an)

of elements in D. The output consists of n distinct collisions, that are triples (i, j, x) such that

i 6= j and ai = aj = x, or all of the collisions if there are less than n of them.

Strictly speaking, the n-Collision problem is not a function, but rather a relational

problem, as the collection of outputted collisions is not uniquely determined. However, a

time-space lower bound of T2S = Ω̃(n3) is still know for n-Collision [Din20].

Theorem 9.3.10. If LD can be solved deterministically with space Õ(1) and time Õ(n),

then n-Collision can be solved deterministically with space Õ(1) and time Õ(n3/2). Fur-

thermore, if the algorithm for LD is oblivious, then for every S ≤ n, there is a deterministic

(non-oblivious) algorithm that solves n-Collision with space Õ(S) and time Õ(
√

n3/S).

Proof. Notice that the collisions found in the algorithms in Theorem 9.3.7 are all distinct.

By setting a global counter for the number of collisions already found and outputted, the

algorithms and proofs in Theorem 9.3.7 can be copied verbatim to show a reduction to LD

from the problem k-ListCollision, where the input consists of two unordered lists of

size n that may contain duplicates, and the output contains k collisions (if exist) between

the two lists. If LD can be solved deterministically with space Õ(1) and time Õ(n), then the

deterministic algorithm for k-ListCollision works in space Õ(S) and time max{m, n} ·

Õ(
√

n/S), wherem is the actual number of collisions outputted (S can be arbitrary when

the algorithm for LD is oblivious, and S = O(1) in the general case).

159

Now notice that the complete graph over n vertices can be partitioned into a set of com-

plete bipartite graphs, 2t−1 of which being of size (n/2t, n/2t) for t = 1, . . . , log n. We

apply n-ListCollision on each pairs of lists of size n/2t defined by these bipartite graphs,

until n collisions are found. This clearly solves the n-Collision problem with space Õ(S).

Suppose that the number of collisions actually outputted on each bipartite graph is

m1,m2, . . . respectively, then the total time usage is

max
{
m1,

n
2

}
· Õ
(√

n
2S

)
+max

{
m2,

n
4

}
· Õ
(√

n
4S

)
+max

{
m3,

n
4

}
· Õ
(√

n
4S

)
+ · · ·

≤ (m1 +m2 + · · ·) · Õ
(√

n
2S

)
+

log n∑
t=1

2t−1 · n
2t
· Õ
(√

n
2tS

)
= Õ

(√
n3/S

)
.

Similarly, we have the corollary of Theorem 9.3.10 that any polynomial separation be-

tween randomized and deterministic time-space tradeoffs of n-Collision (or its variants

such as MemoryGame [CC17]) would answer Open Problem 7.1 on ListDistinct-

ness.

160

10
Learning with Classical-Quantum

Hybrid Memory

In the final chapter of this dissertation, we study the learning problems with the presence

of quantummemory. Consider the parity learning problem: Let x ∈ {0, 1}n be uniformly

random an hidden from the learner, the goal is to learn x from samples (a, b), where a ∈

{0, 1}n is uniformly random and b = 〈a, x〉 under F2. In [Raz18] it was shown that either

Ω(n2) space or 2Ω(n) time (samples) is required to learn x classically. We will show that

when we have both classical and quantummemory, we then need either Ω(n2) classical

space, or Ω(n) quantum space, or 2Ω(n) time.

More generally, following previous works [Raz18, KRT17, Raz17, GRT18, GRT19,

GKLR21], we use a matrixM to represent the following learning problem. There is an

unknown element x ∈ X that was chosen uniformly at random. A learner tries to learn x

from samples (a, b), where a ∈ A is chosen uniformly at random and b = M(a, x). That

is, the learning algorithm is given a stream of samples, (a1, b1), (a2, b2), . . ., where each

161

at is uniformly distributed and for every t, bt = M(at, x). WhenM is a (k, ℓ)-extractor

with error 2−r, we show in Theorem 10.3.1 that either Ω(k · ℓ) bits of classical memory,

or Ω(r) qubits of quantummemory, or 2Ω(r) time is required for the learning problem

corresponding toM.

10.1 Classical-QuantumHybridModel

10.1.1 Classical-Quantum Systems

Let us first rigorously define what it means by having classical and quantum hybrid mem-

ory. Consider a two-part quantum system on registers X and Y represented by the density

operator ρXY. We say X is classical, if for every |x〉 6= |x′〉 in the computational basis of X, we

have

(〈x′| ⊗ IY)ρXY(|x〉 ⊗ IY) = 0.

In this case, we can identify the space of Xwith its computational basis, and remove the

Dirac notation when we talk about the values of X. The system ρXY can also be written as a

direct sum

ρXY =
⊕
x

ρY|x.

Also notice that when X is classical, both ρX and ρX|y for all quantum states |y〉 on Y are

diagonal. If Tr[ρX|y] > 0, it induces a distribution over the computation basis of X, defined

as

Pρ
X|y = diag ρX|y/Tr[ρX|y]. (10.1)

162

From now on whenever we use this notation, it is always implicitly assumed that the corre-

sponding Tr[ρX|y] is non-zero and the distribution exists.

We will typically consider the following scenario: There is a quantummemory register

V in the complex linear space V , and a classical memory registerW ranging in the set of

classical memory statesW , along with some classical information X ∈ X (the concept to be

learned) that is correlated withV andW. We will often make use of the following fact:

Claim 10.1.1. Let ρXVW be a classical-quantum system over classical X,Wand quantum V.

For every w ∈ W , Pρ
X|w is a convex combination of Pρ

X|v,w for some {|v〉} ⊆ V .

Proof. Let B be an orthogonal basis of V , so that we have (from the end of last section)

ρX|w =
∑
|v⟩∈B

ρX|v,w.

Therefore Pρ
X|w is a linear combination of Pρ

X|v,w for |v〉 ∈ B, with non-negative coefficients.

Since they are all distributions, it must be a convex combination.

Now we identify all possible operators on the classical-quantum hybrid memory space

V ⊗ W . A priori to the assumption thatW is classical, we think of a quantum channel

operating on the system as working on the underlying space V ⊗ C|W|. Now we denote

TV⊗W to be the set of all such quantum channels Φ that satisfy the following: for every

classical-quantum system ρVW in V ⊗ W ,W is still classical in Φ(ρVW). That is, for every

two states |v〉, |v′〉 ∈ V and every pair of distinct w,w′ ∈ W , we have

〈v,w|Φ(ρVW)|v′,w′〉 = 0.

163

Note that not all channels inTV⊗W are physically realizable. For instance, with one-bit

classical memory and no quantummemory, the channel

a c

c b

 7→
 a ic

−ic b


is not a classical operator. However, since we are constrained to classical quantum systems,

this channel is effectively equivalent to an identity channel on one-bit classical memory.

Generally speaking, every channel inTV⊗W is equivalent to a channel controlled byW that

maps V to V ⊗W . Below, we prove this observation and use it to show the following claim:

Claim 10.1.2. Let ρXVW be a classical-quantum system over classical X,Wand quantum V.

LetΦ ∈ TV⊗W , and we useΦ(ρ) to denote the system after applyingΦ to VW and identity

to X. Then for every |v〉 ∈ V and w ∈ W , PΦ(ρ)
X|v,w is a convex combination of Pρ

X|v′,w′ for some

{|v′〉} ⊆ V and {w′} ⊆ W .

Notice that unlike Claim 10.1.1, in Claim 10.1.2 it is not always possible to write PΦ(ρ)
X|v,w

as a convex combination of Pρ
X|v′,w′ for |v′〉 from an orthogonal basis of V .

Proof. Since Φ ∈ TV⊗W , the following channel is functionally equivalent to Φ on classical-

quantum systems:

Φ′ : ρ→
∑
w∈W

Φ(ρV|w ⊗ |w〉〈w|).

The physical meaning of Φ′ is to measureW under the computational basis (which should

not change the functionality we care about) and apply Φ.

164

By defining the channel Φw(·) := Φ(· ⊗ |w〉〈w|), the above can be alternatively written

as:

Φ′ : ρ→
∑
w∈W

Φw(ρV|w).

Now consider the Kraus representation of each Φw, that is, a finite set of linear operators

Ew,k : V → V ⊗W such that

Φw(ρV|w) =
∑
k

Ew,kρV|wE
†
w,k,

∑
k

E†
w,kEw,k = IV.

We can write

Φ(ρ)X|v,w = Φ′(ρ)X|v,w = (IX ⊗ 〈v,w|)Φ′(ρ)(IX ⊗ |v,w〉)

=
∑
w′∈W

∑
k

(IX ⊗ 〈v,w|Ew′,k)ρXV|w′(IX ⊗ E†
w′,k|v,w〉)

=
∑
w′∈W

∑
k

∥∥E†
w′,k|v,w〉

∥∥
2 · ρX|v′,w′

where in each term of the summation, |v′〉 ∼ E†
w′,k|v,w〉. Similar to the arguments in

Claim 10.1.1, PΦ(ρ)
X|v,w is a convex combination of Pρ

X|v′,w′ .

10.1.2 Branching ProgramwithHybridMemory

For a learning problem that corresponds to the matrixM, a branching program of hybrid

memory withm-bit classical memory, q-qubit quantummemory and length T is specified

as follows.

165

At each stage 0 ≤ t ≤ T, the memory state of the branching program is described as

a classical-quantum system ρ(t)VW over quantummemory space V = (C2)⊗q and classical

memory spaceW = {0, 1}m. The memory state evolves based on the samples that the

branching program receives, and therefore depends on the unknown element x ∈R X . We

can then interpret the overall systems over XVW, in which X consists of an unknown con-

cept x, resulting in a classical-quantum system ρ(t)XVW. It always holds that the distribution

of x is uniform, i.e.,

ρ(t)X = TrVW[ρ(t)XVW] =
1
2n
IX.

Initially the memoryVW is independent of X and can be arbitrarily initialized. We assume

that it starts from the maximally mixed state

ρ(0)XVW =
1
2n
IX ⊗

1
2q
IV ⊗

1
2m

IW.

At each stage 0 ≤ t < T, the branching program receives a sample (a, b), where a ∈R A

and b = M(a, x), and applies an operation Φt,a,b ∈ TV⊗W over its memory state. Thus the

evolution of the entire system can be written as

ρ(t+1)
XVW = E

a∈RA

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)
(
ρ(t)VW|x

)]
.

Finally, at stage t = T, a measurement over the computational bases is applied on ρ(T)VW, and

the branching program outputs an element x̃ ∈ X as a function of the measurement result

(v,w) ∈ {0, 1}q+m. The success probability of the program is the probability that x̃ = x

166

which can be formulated as

∑
x∈X ,v∈{0,1}q,w∈W

x̃(v,w)=x

〈x, v,w|ρ(T)XVW|x, v,w〉.

10.2 Linear Quantum Lower Bound

Let us first prove a linear quantummemory lower bound for learning algorithms without

classical memory. This will not be used as a part of our actual proof of the main theorem,

but since the proof is fully information theoretical, it is simple enough to be included.

We first define the quantum extractor property that we need, which is a simplified ver-

sion of the ones considered in [KK12]. Given a matrixM : A × X → {−1, 1}, consider

two independent sources A and X uniformly distributed overA andX respectively. Sup-

pose there is some quantum registerVwhose state depends on A and X, and they together

form a classical-quantum system

ρAXV =
⊕

a∈A,x∈X

ρV|a,x,

where ρV|a,x is the state ofVwhen A = a and X = x. For any function f on A × X, we say

thatV depends only on f(A,X) if for any a, a′ ∈ A and x, x′ ∈ X , whenever f(a, x) =

f(a′, x′)we have ρV|a,x = ρV|a′,x′ . In particular,V depending only on A is equivalent toV

being independent of X, or ρXV = ρX ⊗ ρV.

We say thatM is an X-strong (q, r)-quantum extractor, if for every classical-quantum

system ρAXV, as above, with the q-qubit quantum subsystemV that depends only on A, it

167

holds that ∥∥∥ρM(A,X)XV − U⊗ ρX ⊗ ρV
∥∥∥
Tr
≤ 2−r.

HereU =

1/2 0

0 1/2

 is the uniform operator over one bit, and ρM(A,X)XV is the classical-

quantum system constructed by adding a new classical register which stores the value of

M(A,X), and then tracing out A. In other words,

ρM(A,X)XV =
⊕

b∈{−1,1},x∈X

∑
a∈A

M(a,x)=b

ρV|a,x.

Notice that if we chooseV to be trivial, the above inequality immediately implies that

|E[M(A,X)]| ≤ 2−r.

As an example, the results in [KK12] imply that the inner product function on n bits,

whereA = X = Fn
2 and

M(a, x) = (−1)a·x,

is an X-strong (k, n− k)-quantum extractor for every 2 ≤ k ≤ n.

In this section we prove the following theorem, which provides a linear lower bound on

quantummemory when applied to :

Theorem 10.2.1. LetX ,A be two finite sets with n = log2 |X |. Let M : A×X → {−1, 1}

be a matrix which is a X-strong (q, r)-quantum extractor. Let ρ be a branching program for

the learning problem corresponding toM, described by classical-quantum systems ρ(t)XV, with

q/2-qubit quantummemory V and length T, and without classical memory. Then the success

168

probability of ρ is at most

2−n + 8T
√

n+ q · 2−r/4.

The proof of Theorem 10.2.1 is significantly simpler than the proof of our main theo-

rem for hybrid memory, which will be presented in the next section. We first need to define

the following measure of dependency:

Definition 10.2.2. Let ρXV be a classical-quantum system over classical X and quantum V.

The dependency of V on X in ρXV is defined as

ξρ(X;V) = min
τV

∥∥ρXV − ρX ⊗ τV
∥∥
Tr

where τV is taken over all density operators on V. Notice that in this definition taking τV =

ρV is almost optimal as we have

∥∥ρXV− ρX⊗ ρV
∥∥
Tr ≤

∥∥ρXV− ρX⊗ τV
∥∥
Tr +

∥∥ρV− τV
∥∥
Tr ≤ 2

∥∥ρXV− ρX⊗ τV
∥∥
Tr. (10.2)

WhenV consists of q qubits, we have the following relationship between our depen-

dency measure and quantummutual information:

Lemma 10.2.3.
1
2
ξρ(X;V)2 ≤ Iρ (X;V) ≤ q · ξρ(X;V) + 2

√
ξρ(X;V).

Proof. On one hand, using the inequality on quantum relative entropy and trace distance

(see e.g. [OP04, Theorem 1.15]), we have

Iρ (X;V) = S
(
ρXV ‖ ρX ⊗ ρV

)
≥ 1

2
∥∥ρXV − ρX ⊗ ρV

∥∥2
Tr ≥

1
2
ξρ(X;V)2.

169

On the other hand, Fannes-Audenaert inequality [Aud07] tells us that for every x ∈ X , the

difference between the von-Neumann entropies of any two states ρ and τ onV is bounded

by

|S(ρ)− S(τ)| ≤ q · 1
2
∥∥ρ− τ

∥∥
Tr + h

(
1
2
∥∥ρ− τ

∥∥
Tr

)
where h(ε) = −ε log2 ε− (1− ε) log2(1− ε) is the binary entropy function. Since the state

ofV conditioned on X = x is ρV|x/ Pr[X = x] = 2nρV|x, we have

Iρ (X;V) = E
x∼X

[
S(ρV)− S(2nρV|x)

]
≤ 1

2
q · E

x∼X

∥∥ρV − 2nρV|x
∥∥
Tr + E

x∼X
h
(
1
2
∥∥ρV − 2nρV|x

∥∥
Tr

)
≤ 1

2
q ·
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr + h

(
1
2
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr

)
≤ 1

2
q ·
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr +

√
2
∥∥ρXV − ρX ⊗ ρV

∥∥
Tr,

as h is concave and h(ε) ≤ 2
√
ε. Now let τV be the optimal density operator in the defini-

tion of ξρ(X;V). Plugging in (10.2), we conclude that

Iρ (X;V) ≤ q · ξρ(X;V) + 2
√

ξρ(X;V).

Lemma 10.2.4. For every classical-quantum system ρAXV with the q-qubit quantum subsys-

tem V that depends only on A, we have

Iρ (X;M(A,X),V) ≤ 2(n+ q) · 2−r/2.

Proof. Since Iρ (X;V) = 0, it suffices to bound Iρ (X;M(A,X) | V) ≤ Iρ (M(A,X);X,V).

170

To bound the later, we first notice that sinceM is a strong (q, r)-quantum extractor,

ξρ(M(A,X);X,V) ≤
∥∥∥ρM(A,X)XV − ρM(A,X) ⊗ ρX ⊗ ρV

∥∥∥
Tr

≤
∥∥∥ρM(A,X)XV − U⊗ ρX ⊗ ρV

∥∥∥
Tr
+ |E[M(A,X)]|

≤ 2 · 2−r.

As the total dimension of X andV is 2n+q, by Lemma 10.2.3 we have

Iρ (X;M(A,X),V) ≤ Iρ (M(A,X);X,V)

≤ (n+ q) · ξρ(M(A,X);X,V) + 2
√

ξρ(M(A,X);X,V)

≤ 5(n+ q) · 2−r/2.

Lemma 10.2.5. For every classical-quantum system ρAXV with q/2-qubit quantum subsystem

V that depends only on A andM(A,X), we have

ξρ(X;V) ≤ 4
√

n+ q · 2−r/4.

Proof. LetW = ρa,0 ⊗ ρa,1, where ρa,b is the density matrix ofVwhen A = a and

M(A,X) = b. ThenW is a q-bit quantum system that depends only on A. SinceV can

be decided fromM(A,X) andW, we have

ξρ(X;V)2 ≤ 2Iρ (X;V) ≤ 2Iρ (X;M(A,X)),W) ≤ 10(n+ q) · 2−r/2.

We are now ready to prove Theorem 10.2.1. Let Φt,a,b be the quantum channel applied

171

onV at stage twith sample (a, b), and recall that the evolution of the system ρ(t)XV can be

expressed as

ρ(t+1)
XV = E

a∼A

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)
(
ρ(t)V|x
)]

.

Proof of Theorem 10.2.1. We are going to bound the increment of ξt, which is the short-

hand for ξρ
(t)
(X;V). For now let us focus on some stage t, and let τ be the density operator

that minimizes ξt =
∥∥ρ(t)XV − ρ(t)X ⊗ τ

∥∥
Tr. Notice that ρ(t)X = ρX = 2−nIX for every t.

Since τ is a fixed quantum state, we can prepare τ and apply ΦA,M(A,X) on τ to obtain a

new quantum registerV′, which depends only on A andM(A,X). Notice that

ρXV′ = E
a∼A

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)(τ)

]
,

and therefore by contractivity of quantum channels under trace norms, we can show that

∥∥∥ρ(t+1)
XV − ρXV′

∥∥∥
Tr
≤ E

a∼A

∑
x∈X

∥∥∥Φt,a,M(a,x)
(
ρ(t)V|x
)
− Φt,a,M(a,x)(τ)

∥∥∥
Tr

≤
∑
x∈X

∥∥ρ(t)V|x − τ
∥∥
Tr ≤

∥∥∥ρ(t)XV − ρX ⊗ τ
∥∥∥
Tr
= ξt.

Hence we have

ξt+1 ≤
∥∥∥ρ(t+1)

XV − ρX ⊗ ρV′

∥∥∥
Tr

≤
∥∥∥ρ(t+1)

XV − ρXV′

∥∥∥
Tr
+
∥∥ρXV′ − ρX ⊗ ρV′

∥∥
Tr

≤ ξt + 2ξρ(X;V′)

≤ ξt + 8
√

n+ q · 2−r/4.

172

Since ξ0 = 0, we conclude that

ξT ≤ 8T
√
n+ q · 2−r/4.

This value bounds the difference of the success probability of ρ, and that of a quantum

branching program whose memory is independent of X. The later is clearly at most 2−n,

which finishes the proof.

10.3 Truncation of Classical-Quantum Branching Programs

Now we start to prove our actual lower bound, which states as follows for any branching

program using both classical and quantummemory. Since the inner product function on

n bits is a (Ω(n),Ω(n))-extractor with error 2−Ω(n) [GRT18], the theorem implies either

Ω(n2) classical space or Ω(n) quantum space is necessary for sub-exponential-time parity

learning.

Theorem 10.3.1. LetX ,A be two finite sets with n = log2 |X |. Let M : A×X → {−1, 1}

be a matrix which is a (k′, ℓ′)-L2 extractor with error 2−r′ for sufficiently large k′, ℓ′ and r′,

where ℓ′ ≤ n. Let

r = min
{
1
4
r′,

1
26

ℓ′ +
1
6
,
1
2
(k′ − 1)

}
.

Let ρ be a branching program for the learning problem corresponding toM, described by

classical-quantum systems ρ(t)XVW, with q-qubit quantummemory V, m-bit classical mem-

oryW and length T. If m ≤ 1
44(k

′ − 1)ℓ′, q ≤ r− 7 and T ≤ 2r−2, the success probability of

ρ is at most O(2q−r).

173

From now on we let k = k′ − 1 and ℓ = 1
5(ℓ

′ − 13r − 2). Then we have the following

inequalities to be used later:

q+ r+ 1− r′ ≤ −2r. (10.3)

2ℓ+ 9r− n ≤ −r. (10.4)

(k− r)ℓ ≥ 2m+ 4r+ 1. (10.5)

Like the proofs in [Raz17, GRT18], our proof heavily depends on the notion of truncating

the branching program, which we will explain below.

10.3.1 Truncated Classical-Quantum Systems

Here we describe how to truncate a partial classical-quantum system ρXVW according to

some propertyG(v,w) of desire on ρX|v,w. The goal is to remove the parts of ρXVW whereG

is not satisfied. We execute the following procedure:

1. Maintain a partial system ρ′XVW initialized as ρXVW, and subspaces Vw ⊆ V initialized

as V for each w ∈ W .

2. Pick w ∈ W and |v〉 ∈ Vw such that Tr[ρ′X|v,w] > 0 andG(v,w) is false.

3. Change the partial system ρ′XVW into the following system by projection:

(
IX ⊗ (IVW − |v,w〉〈v,w|)

)
ρ′XVW

(
IX ⊗ (IVW − |v,w〉〈v,w|)

)
,

174

and change Vw to its subspace orthogonal to |v〉, that is

{|v′〉 ∈ Vw | 〈v|v′〉 = 0}.

4. Repeat from step 2 until there is no such w and |v〉. Denote the final system as ρ|GXVW.

In step 2 we pick w and |v〉 arbitrarily as long as it satisfies the requirements, however we

could always think of it as iterating over w ∈ W and processing each ρXV|w separately.

The choices of |v〉 for each w do affect the final system ρ|GXVW; Yet as we will see later, these

choices are irrelevant to our proof.

Below, we give two useful lemmas on truncated systems.

Lemma 10.3.2. For every |v〉 ∈ V and w ∈ W such thatTr[ρ|GX|v,w] > 0, there exists |v′〉 in

the remaining subspace Vw such that

Pρ|G
X|v,w = Pρ

X|v′,w = Pρ|G
X|v′,w.

Proof. It suffices to prove the lemma with one round of the truncation procedure executed.

Suppose the |v1,w1〉 is picked in step 2, resulting in the partial system

ρ′XVW =
(
IX ⊗ (IVW − |v1,w1〉〈v1,w1|)

)
ρXVW

(
IX ⊗ (IVW − |v1,w1〉〈v1,w1|)

)
.

175

We can write

ρ′X|v,w =
(
IX ⊗ 〈v,w|

)
ρ′XVW

(
IX ⊗ |v,w〉

)
=
(
IX ⊗ (〈v,w| − 〈v,w|v1,w1〉〈v1,w1|)

)
ρXVW

(
IX ⊗ (|v,w〉 − |v1,w1〉〈v1,w1|v,w〉)

)
.

• If w 6= w1, then

ρ′X|v,w =
(
IX ⊗ 〈v,w|

)
ρXVW

(
IX ⊗ |v,w〉

)
= ρX|v,w.

And the lemma holds directly by choosing |v′〉 = |v〉.

• If w = w1, then with 〈v1,w1|v,w〉 = 〈v1|v〉 = λ, we have

ρ′X|v,w =
(
IX ⊗ (〈v| − λ〈v1|)〈w|

)
ρXVW

(
IX ⊗ (|v〉 − λ|v1〉)|w〉

)
.

By the fact that Tr[ρ|GX|v,w] > 0, we must have |v〉 6= |v1〉. Therefore if we let |v′〉 ∼

|v〉 − λ|v1〉, which is the normalized projection of |v〉 onto the orthogonal subspace

of |v1〉, the above equality implies that Pρ′
X|v,w = Pρ

X|v′,w. Meanwhile, since 〈v1|v′〉 = 0

we have ρ′X|v′,w = ρX|v′,w, which completes the proof.

A direct corollary of the above lemma is that ifG(v,w) only depends on the distribution

Pρ
X|v,w, thenG(v,w) holds for every |v〉 ∈ V and w ∈ W in the truncated system ρ|GXVW, even

when |v〉 is not in the remaining subspace Vw.

Lemma 10.3.3. For each w ∈ W, let |v1〉, . . . , |vd〉 be the states picked in step 2 within Vw.

176

Then ∥∥ρXV|w − ρ|GXV|w
∥∥
Tr ≤ 3

d∑
i=1

√
Tr[ρX|vi,w]Tr[ρXV|w].

Proof. In Corollary 2.3.9, take ρ to be ρXV|w, and Π to be

IX ⊗
d∏
i=1

(IV − |vi〉〈vi|) = IX ⊗

(
IV −

d∑
i=1

|vi〉〈vi|

)
.

Then ΠρΠ = ρ|GXV|w and Tr[Πρ] = Tr[ρXV|w]−
∑d

i=1 Tr[ρX|vi,w]. Therefore we have

∥∥ρXV|w − ρ|GXV|w
∥∥
Tr ≤

√
4Tr[ρ]2 − 4Tr[Πρ]2

≤
√
8(Tr[ρ]− Tr[Πρ])Tr[ρ]

=

√√√√8
d∑
i=1

Tr[ρX|vi,w]Tr[ρXV|w]

≤ 3
d∑
i=1

√
Tr[ρX|vi,w]Tr[ρXV|w].

Since Tr[ρXV|w] ≤ 1 always holds, by summing over all w ∈ W we get the following

corollary:

Corollary 10.3.4. Let |v1,w1〉, . . . , |vd,wd〉 be all of the memory states picked in step 2. Then

∥∥ρXVW − ρ|GXVW
∥∥
Tr ≤ 3

d∑
i=1

√
Tr[ρX|vi,wi

].

10.3.2 Truncated Branching Program

The properties that we desire for the partial system ρXVW consist of three parts:

177

• Small L2 norm: LetG2(v,w) be the property that

∥∥Pρ
X|v,w

∥∥
2 ≤ 2ℓ · 2−n/2.

• Small L∞ norm: LetG∞(v,w) be the property that

∥∥Pρ
X|v,w

∥∥
∞ ≤ 22ℓ+9r · 2−n.

• Even division: For every a ∈ A, letGa(v,w) be the property that

|〈Ma,P
ρ
X|v,w〉| ≤ 2−r.

Nowwe define the truncated branching program, by specifying the truncated partial

classical-quantum system τ(t)XVW for each stage t. Initially let τ(0)XVW = ρ(0)XVW. For each stage

0 ≤ t ≤ T, the truncation consists of three ingredients (below we ignore the superscripts

on P for convenience):

1. Remove parts where
∥∥PX|v,w

∥∥
2 is large. That is, let τ

(t,⋆)
XVW = τ(t)|G2

XVW .

2. Remove parts where
∥∥PX|v,w

∥∥
∞ is large. This is done by two steps.

- First, let g ∈ {0, 1}X⊗W be an indicator vector such that g(x,w) = 1 if and

only if

Tr[τ(t,⋆)X|w] > 0 and Pτ(t,⋆)
X|w (x) ≤ 22ℓ+5r · 2−n.

Let τ(t,◦)XVW = (gg† ⊗ IV)τ(t,⋆)XVW(gg† ⊗ IV), where gg† is the projection operator

178

acting onX ⊗W .

- To make sure that the distributions did not change a lot after the projection

gg†, for each 0 ≤ t < T, letGt(v,w) be the property that

Tr[τ(t,◦)X|v,w] ≥ (1− 2−r)Tr[τ(t,⋆)X|v,w].

Let τ(t,∞)
XVW = τ(t,◦)|G∞∧Gt

XVW .

3. For each a ∈ A, remove (only for this a) parts where PX|v,w is not evenly divided by

a. That is, for each a ∈ A, let τ(t,a)XVW = τ(t,∞)|Ga
XVW .

Then, if t < T, for each a ∈R Awe evolve the system by applying the sample operations

Φt,a,b as the original branching program on τ(t,a)XVW, so that we have

τ(t+1)
XVW = E

a∈RA

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)
(
τ(t,a)VW|x

)]
.

10.3.3 Bounding the Truncation Difference

In order to show that the success probability of the original branching program ρ(t) is low,

the plan is to prove an upper bound on the success probability of the truncated branching

program τ(t), and bound the difference between the two probabilities.

Here we bound the difference by the trace distance between the two systems ρ(t)XVW and

τ(t)XVW. We will show that the contribution to the trace distance from each one of the trun-

cation ingredients is small, and in addition the evolution preserves the trace distance.

179

Truncation byG2

Lemma 10.3.5. For every 0 ≤ t ≤ T, |v〉 ∈ V and w ∈ W such that G2(v,w) is violated

(that is,
∥∥Pτ(t)

X|v,w

∥∥
2 > 2ℓ · 2−n/2), we must haveTr[τ(t)X|v,w] < 2−2m · 2−4r.

The lemma says, for any direction |v,w〉 picked by the truncation procedure, the weight

will be small and the truncation will not change the state significantly.

Proof. This is our main technical lemma and we defer the proof to Section 10.4.

Since there are at most 2q+m such directions picked in the truncation procedure, we con-

clude the following corollary.

Corollary 10.3.6. For every 0 ≤ t ≤ T, we have
∥∥τ(t,⋆)XVW − τ(t)XVW

∥∥
Tr ≤ 3 · 2q−2r.

Proof. Recall that τ(t,⋆)XVW = τ(t)|G2
XVW . Since dim(V ⊗W) = 2q+m, the truncation lasts for at

most 2q+m rounds. Since in every round the picked |v,w〉 has Tr[τ(t)X|v,w] < 2−2m · 2−4r, by

Corollary 10.3.4 we have

∥∥τ(t,⋆)XVW − τ(t)XVW
∥∥
Tr ≤ 3 · 2q+m ·

√
2−2m · 2−4r = 3 · 2q−2r.

Truncation byG∞

Lemma 10.3.7. For every 0 ≤ t ≤ T and w ∈ W we have

∑
x∈X

g(x,w)=0

Pτ(t,⋆)
X|w (x) ≤ 2−5r.

180

Proof. By Claim 10.1.1, Pτ(t,⋆)
X|w is a convex combination of Pτ(t,⋆)

X|v,w. From Lemma 10.3.2 we

know thatG2(Pτ(t,⋆)
X|v,w) holds for every |v〉 and w, and thus by convexity of ℓ2-norms we know

thatG2(Pτ(t,⋆)
X|w) also holds. That means

E
x∼Pτ(t,⋆)X|w

[
Pτ(t,⋆)
X|w (x)

]
=
∥∥Pτ(t,⋆)

X|w
∥∥2
2 ≤ 22ℓ · 2−n.

Therefore, by Markov’s inequality we have

∑
x∈X

g(x,w)=0

Pτ(t,⋆)
X|w (x) = Pr

x∼Pτ(t,⋆)X|w

[
Pτ(t,⋆)
X|w (x) > 22ℓ+5r · 2−n

]
≤ 2−5r.

Corollary 10.3.8. For every 0 ≤ t ≤ T and every w ∈ W , we have τ(t,◦)XV|w ≤ τ(t,⋆)XV|w, and

Tr[τ(t,◦)XV|w] ≥ (1− 2−5r) · Tr[τ(t,⋆)XV|w].

Moreover, we have
∥∥τ(t,◦)XVW − τ(t,⋆)XVW

∥∥
Tr ≤ 2−5r.

Proof. Since X andW are both classical and τ(t,◦)XVW = (gg† ⊗ IV)τ(t,⋆)XVW(gg† ⊗ IV), we have

τ(t,⋆)XV|w − τ(t,◦)XV|w =
∑
x∈X

g(x,w)=0

|x〉〈x| ⊗ τ(t,⋆)V|x,w,

which is positive semi-definite. Recalling (10.1) that

Tr[τ(t,⋆)V|x,w] = 〈x,w|τ
(t,⋆)
XW |x,w〉 = diag τ(t,⋆)X|w (x) = Pτ(t,⋆)

X|w (x)Tr[τ(t,⋆)X|w],

181

we have

Tr[τ(t,⋆)XV|w]− Tr[τ(t,◦)XV|w] =
∑
x∈X

g(x,w)=0

Tr[τ(t,⋆)V|x,w] =
∑
x∈X

g(x,w)=0

Pτ(t,⋆)
X|w (x) · Tr[τ(t,⋆)X|w] ≤ 2−5r · Tr[τ(t,⋆)X|w].

And therefore, as τ(t,◦)XVW − τ(t,⋆)XVW is positive semi-definite, we have

∥∥τ(t,◦)XVW − τ(t,⋆)XVW

∥∥
Tr =

∑
w∈W

Tr[τ(t,⋆)XV|w]− Tr[τ(t,◦)XV|w] ≤ 2−5r
∑
w∈W

Tr[τ(t,⋆)X|w] ≤ 2−5r.

Lemma 10.3.9. For every 0 ≤ t ≤ T, |v〉 ∈ V and w ∈ W such that G∞(v,w) is

violated (that is,
∥∥Pτ(t,◦)

X|v,w

∥∥
∞ > 22ℓ+9r · 2−n) or Gt(v,w) is violated (that is,Tr[τ(t,◦)X|v,w] <

(1− 2−r)Tr[τ(t,⋆)X|v,w]), we must haveTr[τ(t,◦)X|v,w] < 2 · 2−4r · Tr[τ(t,◦)X|w].

Proof. IfG∞(v,w) is violated, let x ∈ X be the one such that Pτ(t,◦)
X|v,w(x) > 22ℓ+9r · 2−n. If

g(x,w) = 0 then Pτ(t,◦)
X|w (x) = 0, while if g(x,w) = 1 then by Corollary 10.3.8,

Pτ(t,◦)
X|w (x) ≤

Tr[τ(t,⋆)X|w]

Tr[τ(t,◦)X|w]
· 22ℓ+5r · 2−n ≤ (1− 2−5r)−1 · 22ℓ+5r · 2−n.

Hence we always have

Tr[τ(t,◦)X|v,w] ≤
Pτ(t,◦)
X|w (x)

Pτ(t,◦)
X|v,w(x)

· Tr[τ(t,◦)X|w] ≤ 2 · 2−4r · Tr[τ(t,◦)X|w],

where the first inequality comes from the fact that τ(t,◦)X|w ≥ τ(t,◦)X|v,w and (10.1).

182

IfGt(v,w) is violated, since we know from Corollary 10.3.8 that

∣∣∣Tr[τ(t,◦)X|v,w]− Tr[τ(t,⋆)X|v,w]
∣∣∣ ≤ ∥∥τ(t,◦)XV|w − τ(t,⋆)XV|w

∥∥
Tr ≤ 2−5r · Tr[τ(t,⋆)XV|w]

≤ 2−5r · (1− 2−5r)−1 · Tr[τ(t,◦)XV|w],

therefore from Tr[τ(t,◦)X|v,w] < (1− 2−r)Tr[τ(t,⋆)X|v,w]we deduce that

Tr[τ(t,◦)X|v,w] < (2r − 1) ·
(
Tr[τ(t,⋆)X|v,w]− Tr[τ(t,◦)X|v,w]

)
≤ (2r − 1) · 2−5r · (1− 2−5r)−1 · Tr[τ(t,◦)XV|w]

< 2 · 2−4r · Tr[τ(t,◦)X|w].

Corollary 10.3.10. For every 0 ≤ t ≤ T, we have
∥∥τ(t,∞)

XVW − τ(t,◦)XVW

∥∥
Tr ≤ 5 · 2q−2r.

Proof. Recall that τ(t,∞)
XVW = τ(t,◦)|G∞∧Gt

XVW . For each w ∈ W , the truncation picks at most

dimV = 2q states |v,w〉, each with Tr[τ(t,◦)X|v,w] < 2 · 2−4r · Tr[τ(t,◦)X|w]. Therefore by applying

Lemma 10.3.3 for each w ∈ W , we have

∥∥τ(t,∞)
XVW − τ(t,◦)XVW

∥∥
Tr ≤ 3 ·

∑
w∈W

2q ·
√
2 · 2−4r · Tr[τ(t,◦)X|w] ≤ 5 · 2q−2r.

Truncation byGa

Notice that in the truncation step from τ(t,⋆) to τ(t,◦), the distribution Pτ(t,⋆)
X|v,w might change

and not satisfyG2 anymore. However, with the truncation byGt, any such distribution

that changes too much is eliminated, and we have the following guarantee.

183

Lemma 10.3.11. For every 0 ≤ t ≤ T, |v〉 ∈ V and w ∈ W , we have

∥∥Pτ(t,∞)

X|v,w
∥∥
2 ≤ (1− 2−r)−1 · 2ℓ · 2−n/2.

Proof. By Lemma 10.3.2, there exists |v′〉 ∈ V such that Pτ(t,∞)

X|v,w = Pτ(t,∞)

X|v′,w = Pτ(t,◦)
X|v′,w. The

truncation byGt ensures that Tr[τ(t,◦)X|v′,w] ≥ (1− 2−r)Tr[τ(t,⋆)X|v′,w], and therefore

∥∥Pτ(t,∞)

X|v,w
∥∥
2 =

∥∥Pτ(t,◦)
X|v′,w

∥∥
2 =

∥∥ diag τ(t,◦)X|v′,w

∥∥
2

Tr[τ(t,◦)X|v′,w]
≤

∥∥ diag τ(t,⋆)X|v′,w

∥∥
2

(1− 2−r)Tr[τ(t,⋆)X|v′,w]
≤ (1−2−r)−1·2ℓ·2−n/2.

Lemma 10.3.12. For every partial classical-quantum system τXV overX ⊗ V such that∥∥Pτ
X|v

∥∥
2 ≤ 2ℓ′ · 2−n/2 holds for every |v〉 ∈ V , we have

Pr
a∈RA

[
∃|v〉 ∈ V , |〈Ma,Pτ

X|v〉| ≥ 2−r
]
≤ 2−2r.

Proof. Notice that we can think of τV = TrX[τXV] to be IV. This is because we can first

assume that τV is full rank (otherwise change V to its subspace and the conclusion in this

lemma still holds), and if we have diagonalizationQ†τVQ = IV for some non-singularQ,

then consider the new system

τ′XV = (IX ⊗ Q†)τXV(IX ⊗ Q),

and the set of distributions {Pτ
X|v} and {Pτ′

X|v} over |v〉 ∈ V are the same, since Pτ′
X|v = Pτ

X|v′

for |v′〉 ∼ Q|v〉. With τV = IV we have Tr[τX|v] = 1 for every |v〉 ∈ V , and thus Pτ
X|v =

diag τX|v.

184

LetA′ ⊆ A be the set of a ∈ A such that there exists |v〉 ∈ V with |〈Ma,Pτ
X|v〉| ≥ 2−r.

For each a ∈ A′, let

σa = TrX[(DiagMa ⊗ IV)τXV]

which is a Hermitian operator on V . There exists |v〉 ∈ V such that

|〈v|σa|v〉| = |〈Ma, diag τX|v〉| = |〈Ma,Pτ
X|v〉| ≥ 2−r,

which means that ‖σa‖2 ≥ 2−r. Now let |u〉 be a uniformly random unit vector in V , and

by Lemma 2.3.10 we know that for some absolute constant c,

Pr
|u⟩

[
|〈u|σa|u〉| ≥ 2−r′

]
≥ 1− 2(q+r−r′)/2c− e−2q ≥ 1− 2−rc− e−1 ≥ 1/2.

The second last inequality comes from Eq. (10.3), while the last inequality is because of the

assumption that r is sufficiently large.

Since the above holds for every a ∈ A′, it implies that Pra∈A′,|u⟩[|〈u|σa|u〉| ≥ 2−r′] is

at least 1/2. It means that there exists some |u〉 ∈ V such that |〈u|σa|u〉| ≥ 2−r′ for at

least half of a ∈ A′. On the other hand, sinceM is a (k′, ℓ′)-extractor with error 2−r′ , and∥∥Pτ
X|u

∥∥
2 ≤ 2ℓ′ · 2−n/2, there are at most 2−k′ fraction of a ∈ A such that |〈u|σa|u〉| =

|〈Ma,Pτ
X|u〉| ≥ 2−r′ . That means

Pr
a∈RA

[a ∈ A′] ≤ 2 · 2−k′ ≤ 2−2r.

Here k′ − 1 ≥ 2r, by the definition of r.

Corollary 10.3.13. For every 0 ≤ t ≤ T, we haveEa∈RA
∥∥τ(t,a)XVW − τ(t,∞)

XVW

∥∥
Tr ≤ 2−2r.

185

Proof. For each w ∈ W , the partial system τ(t,∞)
XV|w satisfies the condition of Lemma 10.3.12

since for every |v〉 ∈ V ,

∥∥Pτ(t,∞)

X|v,w
∥∥
2 ≤ (1− 2−r)−1 · 2ℓ · 2−n/2 ≤ 2ℓ′ · 2−n/2.

Notice that for each a ∈ A such that there does not exist |v〉 ∈ V with |〈Ma,Pτ(t,∞)

X|v,w 〉| ≥

2−r (that is, whenGa(v,w) holds for every |v〉 ∈ V), the sub system τ(t,∞)
XV|w is not touched in

the truncation byGa and we have τ(t,a)XV|w = τ(t,∞)
XV|w . Therefore

E
a∈RA

∥∥τ(t,a)XVW − τ(t,∞)
XVW

∥∥
Tr =

∑
w∈W

E
a∈RA

∥∥τ(t,a)XV|w − τ(t,∞)
XV|w

∥∥
Tr

≤
∑
w∈W

Pr
a∈RA

[
∃|v〉 ∈ V , |〈Ma,Pτ(t,∞)

X|v,w 〉| ≥ 2−r
]
· Tr[τ(t,∞)

XV|w]

≤ 2−2r ·
∑
w∈W

Tr[τ(t,∞)
XV|w] ≤ 2−2r.

Evolution preserves trace distance

Lemma 10.3.14. For every 0 ≤ t < T, we have
∥∥τ(t+1)

XVW − ρ(t+1)
XVW

∥∥
Tr ≤ Ea∈RA

∥∥τ(t,a)XVW −

ρ(t)XVW
∥∥
Tr.

Proof. Recall that

ρ(t+1)
XVW = E

a∈RA

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)
(
ρ(t)VW|x

)]
,

τ(t+1)
XVW = E

a∈RA

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)
(
τ(t,a)VW|x

)]
.

186

Therefore by triangle inequality and contractivity of quantum channels under trace norms,

∥∥τ(t+1)
XVW − ρ(t+1)

XVW

∥∥
Tr ≤ E

a∈RA

∥∥∥∥∥∑
x∈X

|x〉〈x| ⊗
(
Φt,a,M(a,x)

(
τ(t,a)VW|x

)
− Φt,a,M(a,x)

(
ρ(t)VW|x

))∥∥∥∥∥
Tr

= E
a∈RA

∑
x∈X

∥∥∥Φt,a,M(a,x)
(
τ(t,a)VW|x

)
− Φt,a,M(a,x)

(
ρ(t)VW|x

)∥∥∥
Tr

≤ E
a∈RA

∑
x∈X

∥∥τ(t,a)VW|x − ρ(t)VW|x

∥∥
Tr

= E
a∈RA

∥∥τ(t,a)XVW − ρ(t)XVW
∥∥
Tr.

We are finally ready to prove Theorem 10.3.1.

Proof. First, combining Corollaries 10.3.6, 10.3.8, 10.3.10 and 10.3.13 and Lemma 10.3.14

we have

∥∥τ(t+1)
XVW − ρ(t+1)

XVW

∥∥
Tr ≤

∥∥τ(t)XVW − ρ(t)XVW
∥∥
Tr + 8 · 2q−2r + 2−5r + 2−2r.

Since τ(0)XVW = ρ(0)XVW, by triangle inequality we know that
∥∥τ(T)XVW − ρ(T)XVW

∥∥
Tr ≤ T · 10 ·

2q−2r ≤ 10 · 2q−r, and thus

∥∥τ(T,∞)
XVW − ρ(T)XVW

∥∥
Tr ≤ 10 · 2q−r + 8 · 2q−2r + 2−5r.

This bounds the difference between the measurement probabilities of τ(T,∞)
XVW and ρ(T)XVW

under any measurement, specifically the difference between the success probability of the

187

branching program ρ and the following value on τ:

∑
x∈X ,v∈{0,1}q,w∈W

x̃(v,w)=x

〈x, v,w|τ(T,∞)
XVW |x, v,w〉 =

∑
v∈{0,1}q,w∈W

Tr[τ(T,∞)
X|v,w] · Pτ(T,∞)

X|v,w (̃x(v,w)).

Since
∥∥Pτ(T,∞)

X|v,w

∥∥
∞ ≤ 22ℓ+9r · 2−n and Tr[τ(T,∞)

XVW] ≤ 1, the above value is at most 22ℓ+9r · 2−n.

Therefore the success probability of the branching program ρ is at most (recall that 2ℓ +

9r− n ≤ −r)

10 · 2q−r + 8 · 2q−2r + 2−5r + 22ℓ+9r · 2−n = O(2q−r).

10.4 Target Distribution and Badness

In this section we prove Lemma 10.3.5. The first step is to analyze how Pτ(t)
X|v,w evolves ac-

cording to the rule

τ(t+1)
XVW = E

a∈RA

[∑
x∈X

|x〉〈x| ⊗ Φt,a,M(a,x)
(
τ(t,a)VW|x

)]
.

We introduce the following notations. For every a ∈ A and b ∈ {−1, 1}, let

1⃗a,b =
1
2
(⃗1+ b ·Ma),

which is a 0-1 vector that indicates whetherM(a, x) = b. Let

τ(t,a,b)XVW = (Diag 1⃗a,b ⊗ IVW)τ(t,a)XVW, (10.6)

188

so that we can write

τ(t+1)
XVW = E

a∈RA

[
(IX ⊗ Φt,a,1)

(
τ(t,a,1)XVW

)
+ (IX ⊗ Φt,a,−1)

(
τ(t,a,−1)
XVW

)]
. (10.7)

Thus Claim 10.1.2 implies that Pτ(t+1)

X|v,w is a convex combination of Pτ(t,a,b)
X|v′,w′ for some a, b,w′

and |v′〉.

10.4.1 Target Distribution

Before considering the target distribution, let us first establish that the ℓ2-norms of Pτ(t)
X|v,w

cannot be too large:

Lemma 10.4.1. For every 0 ≤ t ≤ T, |v〉 ∈ V , w ∈ W , we have

∥∥Pτ(t)
X|v,w
∥∥
2 ≤ 4 · 2ℓ · 2−n/2.

Proof. When t = 0 the statement is clearly true as Pτ(0)
X|v,w is always uniform.

Now assume t > 0. By Lemma 10.3.2 and Lemma 10.3.11 we know that

∥∥Pτ(t−1,a)

X|v′,w′

∥∥
2 ≤ (1− 2−r)−1 · 2ℓ · 2−n/2

for every w′ ∈ W , |v′〉 ∈ V and a ∈ A, as τ(t−1,a)
XVW is truncated from τ(t−1,∞)

XVW . Since

Ga(Pτ(t−1,a)

X|v′,w′) is true, meaning that the distribution is evenly divided by a, we further have

∥∥Pτ(t−1,a,b)

X|v′,w′

∥∥
2 =

∥∥⃗1a,b · Pτ(t−1,a)

X|v′,w′

∥∥
2∥∥⃗1a,b · Pτ(t−1,a)

X|v′,w′

∥∥
1

≤ 2(1− 2−r)−1 ·
∥∥Pτ(t−1,a)

X|v′,w′

∥∥
2 ≤ 4 · 2ℓ · 2−n/2.

189

Since Pτ(t)
X|v,w is a convex combination of Pτ(t−1,a,b)

X|v′,w′ , by convexity its ℓ2-norm is bounded by

4 · 2ℓ · 2−n/2.

From now on we use P to denote a fixed target distribution (which we will later choose

to be the distribution in Lemma 10.3.5), such that

2ℓ · 2−n/2 ≤ ‖P‖2 ≤ 4 · 2ℓ · 2−n/2.

Wewant to bound the progress of 〈Pτ(t)
X|v,w,P〉, which starts off as 2−n at t = 0, and becomes

at least 22ℓ · 2−n when Pτ(t)
X|v,w = P. Note that by Cauchy-Schwarz we always have

〈Pτ(t)
X|v,w,P〉 ≤

∥∥Pτ(t)
X|v,w
∥∥
2

∥∥P∥∥2 ≤ 16 · 22ℓ · 2−n. (10.8)

In order to bound the progress, we introduce some new notations. For any superscript

(such as (t, a)) on the partial systems, we use σXVW to denote τXVW(DiagP⊗ IVW). Notice

that

Tr[σX|v,w] = Tr[τX|v,wDiagP] = Tr[τX|v,w] · 〈Pτ
X|v,w,P〉.

Similarly, Pσ
X|v,w can be deduced from Pτ

X|v,w via

Pσ
X|v,w(x) =

Tr[τX|v,w]
Tr[σX|v,w]

· Pτ
X|v,w(x) · P(x) =

Pτ
X|v,w(x) · P(x)
〈Pτ

X|v,w,P〉
. (10.9)

Therefore we can bound the ℓ2 norm of Pσ
X|v,w as

∥∥Pσ
X|v,w
∥∥
2 ≤

1
〈Pτ

X|v,w,P〉
·
∥∥Pτ

X|v,w
∥∥
∞ ·
∥∥P∥∥2.

190

10.4.2 Bad Events

Now we can identity the places where 〈Pτ(t)
X|v,w,P〉 increases by a lot, which happens when

the inner product is not evenly divided by some a ∈ A (we will see the reason in the analysis

later). Formally, at stage 0 ≤ t < T, we say (w, a) is bad if

∃|v〉 ∈ V , s.t. |〈Ma,Pσ(t,a)
X|v,w〉| > 2−r and 〈Pτ(t,a)

X|v,w,P〉 ≥
1
2
· 2−n. (10.10)

Lemma 10.4.2. For every 0 ≤ t < T and w ∈ W , we have

Pr
a∈RA

[(w, a) is bad] ≤ 2−k.

Proof. Since τ(t,a)XVW is truncated from τ(t,∞)
XVW , Lemma 10.3.2 shows that for every |v〉 ∈ V ,

w ∈ W and a ∈ A there is |v′〉 ∈ V such that

Pτ(t,a)
X|v,w = Pτ(t,∞)

X|v′,w

and by (10.9) it also implies that

Pσ(t,a)
X|v,w = Pσ(t,∞)

X|v′,w .

Now fix some w ∈ W , and letA′ ⊆ A be the set of of a ∈ A such that

∃|v〉 ∈ V , s.t. |〈Ma,Pσ(t,∞)

X|v,w 〉| > 2−r and 〈Pτ(t,∞)

X|v,w ,P〉 ≥ 1
2
· 2−n.

ThenA′ contains all a such that (w, a) is bad, and our goal is to bound the fraction ofA′

inA.

191

In the rest of the proof we temporarily omit the super script and write τ(t,∞) and σ(t,∞)

simply as τ and σ. For the same reason as in Lemma 10.3.12 we can assume that τV|w = IV,

and thus

〈v|σV|w|v〉 = Tr[σX|v,w] = 〈Pτ
X|v,w,P〉, and Tr[σXV|w] = 〈Pτ

X|w,P〉 ≤ 16 · 22ℓ · 2−n.

where the last inequality is by Lemma 10.3.11 and Cauchy-Schwarz, in the same way as

(10.8).

Suppose that we have diagonalization σV|w = U†DU, whereU is unitary andD is diag-

onal and non-negative. Let V ′ ⊆ V be the subspace spanned byU†|e〉 over the computa-

tional basis vectors |e〉 ∈ V such that 〈e|D|e〉 ≥ 2−4r · 2−2ℓ · 2−n. So for every |v〉 ∈ V ′ we

have

〈Pτ
X|v,w,P〉 = Tr[σX|v,w] ≥ 2−4r · 2−2ℓ · 2−n.

We claim that for every a ∈ A′, there exists |v〉 ∈ V ′ such that |〈Ma,Pσ
X|v,w〉| >

1
2 ·

2−r. To prove the claim, let Π be the projection operator from V to V ′, and then (IX ⊗

Π)σXV|w(IX⊗Π) can be conceptually seen as a truncated partial system σ|GXV|w whereG(v,w)

holds when Tr[σX|v,w] ≥ 2−4r−2ℓ · 2−n for the fixed w. By Lemma 10.3.3 we have

∥∥σ|GXV|w − σXV|w
∥∥
Tr ≤ 3 · 2q ·

√
2−4r−2ℓ−n · Tr[σXV|w] ≤ 12 · 2q−2r · 2−n.

Since a ∈ A′, assume for |u〉 ∈ V we have |〈Ma,Pσ
X|u,w〉| > 2−r and Tr[σX|u,w] =

192

〈Pτ
X|u,w,P〉 ≥

1
2 · 2

−n. Let |v〉 ∼ Π|u〉, then we have

∥∥Pσ
X|u,w − Pσ

X|v,w
∥∥
1 =

∥∥Pσ
X|u,w − Pσ|G

X|u,w
∥∥
1 ≤

∥∥∥∥∥ σX|u,w
Tr[σX|u,w]

−
σ|GX|u,w

Tr[σ|GX|u,w]

∥∥∥∥∥
Tr

≤

∥∥∥∥∥ σX|u,w
Tr[σX|u,w]

−
σ|GX|u,w

Tr[σX|u,w]

∥∥∥∥∥
Tr

+

∥∥∥∥∥ σ|GX|u,w
Tr[σX|u,w]

−
σ|GX|u,w

Tr[σ|GX|u,w]

∥∥∥∥∥
Tr

=

∥∥∥∥∥ σX|u,w
Tr[σX|u,w]

−
σ|GX|u,w

Tr[σX|u,w]

∥∥∥∥∥
Tr

+

∣∣∣∣∣ 1
Tr[σX|u,w]

− 1
Tr[σ|GX|u,w]

∣∣∣∣∣ · Tr[σ|GX|u,w]
=

∥∥σX|u,w − σ|GX|u,w
∥∥
Tr

Tr[σX|u,w]
+

∣∣∣Tr[σ|GX|u,w]− Tr[σX|u,w]
∣∣∣

Tr[σX|u,w]

≤
2
∥∥σX|u,w − σ|GX|u,w

∥∥
Tr

Tr[σX|u,w]

≤
2
∥∥σXV|w − σ|GXV|w

∥∥
Tr

Tr[σX|u,w]

≤ 48 · 2q−2r ≤ 1
2
· 2−r,

where the last step is due to q ≤ r− 7. Thus

|〈Ma,Pσ
X|v,w〉| ≥ |〈Ma,Pσ

X|u,w〉| −
∥∥Pσ

X|u,w − Pσ
X|v,w
∥∥
1 >

1
2
· 2−r.

Similarly to the proof for Lemma 10.3.12, for each a ∈ A′ let

πa = TrX[(DiagMa ⊗ U†D−1/2U) · σXV|w · (IX ⊗ U†D−1/2U)]

which is a Hermitian operator on V . For each |v〉 ∈ V , let |v′〉 ∼ U†D1/2U|v〉. Recall that

193

σV|w = U†DU, and therefore

Pσ
X|v,w =

diag (IX ⊗ 〈v|)σXV|w(IX ⊗ |v〉)
〈v|σV|w|v〉

=
diag (IX ⊗ 〈v′|U†D−1/2U)σXV|w(IX ⊗ U†D−1/2U|v′〉)

〈v′|U†D−1/2UσV|wU†D−1/2U|v′〉

= diag (IX ⊗ 〈v′|U†D−1/2U)σXV|w(IX ⊗ U†D−1/2U|v′〉).

And that means

〈v′|πa|v′〉 =
〈
Ma, diag (IX ⊗ 〈v′|U†D−1/2U)σXV|w(IX ⊗ U†D−1/2U|v′〉)

〉
= 〈Ma,Pσ

X|v,w〉.

We showed above that there exists |v〉 ∈ V ′, and thus |v′〉 ∈ V ′ such that

|〈v′|πa|v′〉| =
∣∣∣〈Ma,Pσ

X|v,w〉
∣∣∣ ≥ 1

2
· 2−r,

which means that for ΠπaΠ, the restriction of πa on V ′, we have ‖ΠπaΠ‖2 ≥ 1
2 · 2

−r.

Now consider a uniformly random unit vector |v′〉 in V ′, and by Lemma 2.3.10 we know

that for some absolute constant c,

Pr
|v⟩′

[
|〈v′|σa|v′〉| ≥ 2−r′

]
≥ 1− 2(q+r+1−r′)/2c− e−2q ≥ 1− 2−rc− e−1 ≥ 1

2
.

Therefore, for the random vector |v〉 ∼ U†D−1/2U|v′〉where |v′〉 is uniform in V ′, we

conclude that

Pr
|v⟩

[
|〈Ma,Pσ

X|v,w〉| ≥ 2−r′
]
≥ 1

2
.

194

On the other hand, as |v′〉 ∈ V ′, it also holds that |v〉 ∈ V ′, therefore 〈Pτ
X|v,w,P〉 ≥ 2−4r ·

2−2ℓ · 2−n is always true. Thus there exists a |v〉 ∈ V that simultaneously satisfies

〈Pτ
X|v,w,P〉 ≥ 2−4r · 2−2ℓ · 2−n and |〈Ma,Pσ

X|v,w〉| ≥ 2−r′

for at least 1/2 of a ∈ A′. Since

∥∥Pσ
X|v,w
∥∥
2 ≤

1
〈Pτ

X|v,w,P〉
·
∥∥Pτ

X|v,w
∥∥
∞ ·
∥∥P∥∥2 ≤ 4 · 25ℓ+13r · 2−n/2 = 2ℓ′ · 2−n/2,

andM is a (k′, ℓ′)-extractor with error 2−r′ , there are at most 2−k′ fraction of a ∈ A such

that |〈Ma,Pσ
X|v′,w〉| ≥ 2−r′ , which means that

Pr
a∈RA

[(w, a) is bad] ≤ Pr
a∈RA

[a ∈ A′] ≤ 2 · 2−k′ = 2−k.

10.4.3 Badness Levels

At stage t, for each classical memory state w ∈ W we count howmany times the path to

it has been bad, which is a random variable depending on the previous random choices of

a ∈ A. This is stored in another classical register B, which we call badness level and takes

values β ∈ {0, . . . ,T}. It is initially set to be 0, that is, we let

τ(0)XVWB = τ(0)XVW ⊗ |0〉〈0|B.

We ensure that the distribution of B always only depends onW and is independent of

X andV conditioned onW, using the following updating rules on the combined system

195

τXVWB for each stage 0 ≤ t < T:

• The truncation steps are executed independently of B. Therefore, for each a ∈ Awe

let

τ(t,a)XVWB =
∑
w∈W

τ(t,a)XV|w ⊗ |w〉〈w| ⊗DiagPτ(t)
B|w. (10.11)

• The value of B updates before the evolution step, where for each a ∈ A and b ∈

{−1, 1}we let

τ(t,a,b)XVWB = (Diag 1⃗a,b ⊗ IV ⊗ Ua)τ(t,a)XVWB(IXV ⊗ U†
a).

HereUa is a permutation operator, depending on τ(t,a)XVW, acting onW ⊗ {0, . . . ,T}

such that

Ua|w〉|β〉 =

 |w〉|(β + 1)mod(T+ 1)〉 if (w, a) is bad,

|w〉|β〉 otherwise.

• For the evolution step, we apply the channels Φt,a,b on the memoriesW andV to get

τ(t+1)
XVWB = E

a∈RA

[
(IX ⊗ Φt,a,1 ⊗ IB)

(
τ(t,a,1)XVWB

)
+ (IX ⊗ Φt,a,−1 ⊗ IB)

(
τ(t,a,−1)
XVWB

)]
.

Notice that the evolution step might introduce dependencies between X,V and B. How-

ever, such dependencies are eliminated later due to how we handle the truncation steps

(10.11), and thus do not affect our proof.

We can check that the combined partial system τ(t)XVWB defined above is always consis-

tent with the partial system τ(t)XVW that we discussed in previous sections, in the sense that

196

TrB[τ(t)XVWB] = τ(t)XVW always holds:

• For the truncation step, it is straightforward to check that

TrB[τ(t,a)XVWB] =
∑
w∈W

τ(t,a)XV|w ⊗ |w〉〈w| = τ(t,a)XVW.

• The permutation operatorUa acts onW as identity since

TrB
[
Ua|w, β〉〈w, β|U†

a
]
= |w〉〈w|.

Recalling (10.6) that τ(t,a,b)XVW = (Diag 1⃗a,b ⊗ IV)τ(t,a)XVW, we have TrB[τ(t,a,b)XVWB] = τ(t,a,b)XVW .

• The evolution step can be checked directly from the formula without B by (10.7):

τ(t+1)
XVW = E

a∈RA

[
(IX ⊗ Φt,a,1)

(
τ(t,a,1)XVW

)
+ (IX ⊗ Φt,a,−1)

(
τ(t,a,−1)
XVW

)]
.

So all previously proved properties about τ(t)XVW are preserved. In addition, we prove the

following two properties about badness levels.

Lemma 10.4.3. For every 0 ≤ t ≤ T, |v〉 ∈ V and w ∈ W , we have

〈Pτ(t)
X|v,w,P〉 ≤

T∑
β=0

Pτ(t)
B|w(β) · 2β · 2−n · (1− 2−r)−3t.

Proof. We prove it by induction on t. For t = 0 the lemma is true as 〈Pτ(t)
X|v,w,P〉 = 2−n and

Pτ(t)
B|w(0) = 1.

197

Suppose the lemma holds for some t < T. By an argument similar to Lemma 10.3.11

and applying Lemma 10.3.2 multiple times, we know that for every |v〉 ∈ V ,w ∈ W and

a ∈ A, there exists |v′〉and |v′′〉 ∈ V such that

〈Pτ(t,a)
X|v,w,P〉 = 〈Pτ(t,◦)

X|v′,w,P〉 ≤ (1− 2−r)−1〈Pτ(t,⋆)
X|v′,w,P〉 = (1− 2−r)−1〈Pτ(t)

X|v′′,w,P〉,

and therefore

〈Pτ(t,a)
X|v,w,P〉 ≤

T∑
β=0

Pτ(t)
B|w(β) · 2β · 2−n · (1− 2−r)−3t−1. (10.12)

Also, the truncation step byGa implies that |〈Ma,Pτ(t,a)
X|v,w〉| ≤ 2−r. That is, for both b ∈

{−1, 1},

1− 2−r ≤ 2
∥∥⃗1a,b · Pτ(t,a)

X|v,w
∥∥
1 ≤ 1+ 2−r.

Therefore we have, unconditionally

〈Pτ(t,a,b)
X|v,w ,P〉 =

〈⃗1a,b · Pτ(t,a)
X|v,w,P〉∥∥⃗1a,b · Pτ(t,a)
X|v,w

∥∥
1

≤ 2(1− 2−r)−1 · 〈Pτ(t,a)
X|v,w,P〉. (10.13)

When the inner product is evenly divided, i.e. |〈Ma,Pσ(t,a)
X|v,w〉| ≤ 2−r, we further have

〈⃗1a,b · Pτ(t,a)
X|v,w,P〉 ≤

1
2
(1+ 2−r)〈Pτ(t,a)

X|v,w,P〉 ≤
1
2
(1− 2−r)−1〈Pτ(t,a)

X|v,w,P〉,

which means that

〈Pτ(t,a,b)
X|v,w ,P〉 =

〈⃗1a,b · Pτ(t,a)
X|v,w,P〉∥∥⃗1a,b · Pτ(t,a)
X|v,w

∥∥
1

≤ (1− 2−r)−2 · 〈Pτ(t,a)
X|v,w,P〉. (10.14)

198

Now there are three cases to discuss:

• If (w, a) is bad, we have Pτ(t,a,b)
B|w (β) = Pτ(t)

B|w(β − 1) for every β > 0. Notice that

Pτ(t)
B|w(T) = 0 as t < T, and thus (10.12) and (10.13) imply that

〈Pτ(t,a,b)
X|v,w ,P〉 ≤

T−1∑
β=0

Pτ(t)
B|w(β) · 2β+1 · 2−n · (1− 2−r)−3t−2

≤
T∑

β=0

Pτ(t,a,b)
B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

• If (w, a) is not bad and |〈Ma,Pσ(t,a)
X|v,w〉| ≤ 2−r, we have Pτ(t,a,b)

B|w (β) = Pτ(t)
B|w(β) for every

β ≥ 0. Then (10.12) and (10.14) imply that

〈Pτ(t,a,b)
X|v,w ,P〉 ≤

T∑
β=0

Pτ(t)
B|w(β) · 2β · 2−n · (1− 2−r)−3t−3

=
T∑

β=0

Pτ(t,a,b)
B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

• If (w, a) is not bad and |〈Ma,Pσ(t,a)
X|v,w〉| > 2−r, by the definition of badness (10.10) we

must have 〈Pτ(t,a)
X|v,w,P〉 <

1
2 · 2

−n. Thus by (10.13),

〈Pτ(t,a,b)
X|v,w ,P〉 < (1− 2−r)−1 · 2−n ≤

T∑
β=0

Pτ(t,a,b)
B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

The last inequality follows from
∑T

β=0 Pτ(t,a,b)
B|w (β) · 2β · 2−n · (1 − 2−r)−3(t+1) ≥ 2−n(1 −

2−r)−3(t+1). Hence we obtain the same conclusion from all three cases.

For the evolution step, since B is classical we can view X and B as a whole and apply

199

Claim 10.1.2 on Pτ(t+1)

XB|v,w, which asserts that P
τ(t+1)

XB|v,w is a convex combination of Pτ(t,a,b)
XB|v′,w′ for

some a, b,w′ and |v′〉. Noted that even though in τ(t+1), X and B are not independent, we

can still use the linearity of partial trace to conclude that

〈Pτ(t+1)

X|v,w ,P〉 ≤
T∑

β=0

Pτ(t+1)

B|w (β) · 2β · 2−n · (1− 2−r)−3(t+1).

Lemma 10.4.4. For every 0 ≤ β ≤ t ≤ T we have

〈β|τ(t)B |β〉 ≤ 2−kβ
(
t
β

)
.

Proof. We prove it by induction on t. For t = 0 the lemma holds as τ(0)B = |0〉〈0|B. Also

notice that the lemma is trivially true for every twhen β = 0.

Now suppose the lemma holds for some t. By definition we have

τ(t+1)
B = E

a∈RA
[τ(t,a,1)B + τ(t,a,−1)

B] = E
a∈RA

TrW[Uaτ(t,a)WB U
†
a].

Therefore

〈β|τ(t+1)
B |β〉 =

∑
w∈W

E
a∈RA

[
〈w, β|Uaτ(t,a)WB U

†
a|w, β〉

]
.

By Lemma 10.4.2 we know that for every w ∈ W , the probability that (w, a) is bad for

a ∈R A is at most 2−k. In other words, for every β > 0,

U†
a|w, β〉 =

 |w, β〉, w.p. ≥ 1− 2−k

|w, β − 1〉, w.p. ≤ 2−k

200

where the probability is taken over the random choice of a. It means that

〈β|τ(t+1)
B |β〉 ≤

∑
w∈W

〈w, β|τ(t,a)WB |w, β〉+ 2−k
∑
w∈W

〈w, β − 1|τ(t,a)WB |w, β − 1〉

= 〈β|τ(t,a)B |β〉+ 2−k · 〈β − 1|τ(t,a)B |β − 1〉.

Notice that

τ(t,a)B =
∑
w∈W

Tr[τ(t,a)XV|w] ·DiagPτ(t)
B|w ≤

∑
w∈W

Tr[τ(t)XV|w] ·DiagPτ(t)
B|w = τ(t)B ,

and thus we conclude that

〈β|τ(t+1)
B |β〉 ≤ 〈β|τ(t)B |β〉+ 2−k · 〈β − 1|τ(t)B |β − 1〉

≤ 2−kβ
(
t
β

)
+ 2−k · 2−k(β−1)

(
t

β − 1

)
= 2−kβ

(
t+ 1
β

)
.

With the lemmas above in hand, we can finally prove Lemma 10.3.5.

Proof for Lemma 10.3.5. For the target distribution P = Pτ(t)
X|v,w we have 〈Pτ(t)

X|v,w,P〉 >

22ℓ · 2−n, so by Lemma 10.4.3,

T∑
β=0

Pτ(t)
B|w(β) · 2β · (1− 2−r)−3t > 22ℓ.

Since t ≤ T ≤ 2r−2, we have (1− 2−r)−3t ≤ 2, and thus

T∑
β=ℓ

Pτ(t)
B|w(β) · 2β >

1
2

22ℓ − 2 ·
ℓ−1∑
β=0

2β
 > 2ℓ.

201

On the other hand, for every β ≥ ℓ, by Lemma 10.4.4,

Tr[τ(t)B|w] · P
τ(t)
B|w(β) ≤ 〈β|τ

(t)
B |β〉 ≤ (2−kt)β < 2−(k−r)β,

and thus by (10.5),

Tr[τ(t)X|v,w] ≤ Tr[τ(t)B|w] < 2−ℓ

T∑
β=ℓ

2−(k−r)β · 2β ≤ 2 · 2−(k−r)ℓ ≤ 2−2m · 2−4r.

202

References

[Aar20] Scott Aaronson. Shadow tomography of quantum states. SIAM J. Comput.,
49(5), 2020.

[Abr91] Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general
sequential machines. J. Comput. Syst. Sci., 43(2):269–289, 1991.

[Adl78] LeonardM. Adleman. Two theorems on random polynomial time. In 19th An-
nual Symposium on Foundations of Computer Science, pages 75–83. IEEE Computer
Society, 1978.

[AMS99] Noga Alon, Yossi Matias, andMario Szegedy. The space complexity of approxi-
mating the frequency moments. Journal of Computer and System Sciences, 58:137–
147, 1999.

[Aud07] KoenraadMRAudenaert. A sharp continuity estimate for the von neumann
entropy. Journal of Physics A:Mathematical and Theoretical, 40(28):8127, 2007.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages inNC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BC82] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a gen-
eral sequential model of computation. SIAM J. Comput., 11(2):287–297, 1982.

[BCC+14] Dominic W. Berry, AndrewM. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Exponential improvement in precision for simulating sparse
hamiltonians. In Symposium on Theory of Computing, STOC 2014, pages 283–292.
ACM, 2014.

[BCC+15] Dominic W. Berry, AndrewM. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Simulating hamiltonian dynamics with a truncated taylor
series. Physical review letters, 114(9):090502, 2015.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-
optimal error for read-once branching programs. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 353–362.
ACM, 2018.

203

[BCK15] Dominic W. Berry, AndrewM. Childs, and Robin Kothari. Hamiltonian sim-
ulation with nearly optimal dependence on all parameters. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, pages 792–809. IEEE
Computer Society, 2015.

[BCM13] Paul Beame, Raphaël Clifford, andWidadMachmouchi. Element distinct-
ness, frequency moments, and sliding windows. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, pages 290–299. IEEE Computer
Society, 2013.

[Bea91] Paul Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput., 20(2):270–277, 1991.

[BGNV18] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-
efficient algorithms for subset sum, k-sum, and related problems. SIAM J. Comput.,
47(5):1755–1777, 2018.

[BGY18] Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for
learning finite functions from random evaluations, with applications to polynomi-
als. In Conference On Learning Theory, COLT 2018, volume 75 of Proceedings of
Machine Learning Research, pages 843–856. PMLR, 2018.

[Blu84] Norbert Blum. A boolean function requiring 3n network size. Theor. Comput.
Sci., 28:337–345, 1984.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudorandom bits. SIAM J. Comput., 13(4):850–864, November 1984.

[BNS92] László Babai, NoamNisan, andMario Szegedy. Multiparty protocols, pseu-
dorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci.,
45(2):204–232, 1992.

[Bog18] Andrej Bogdanov. Small bias requires large formulas. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, volume 107
of LIPIcs, pages 22:1–22:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[BSSV03] Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-
off lower bounds for randomized computation of decision problems. J. ACM,
50(2):154–195, 2003.

204

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM J.
Comput., 26(5):1411–1473, 1997.

[CC17] Amit Chakrabarti and Yining Chen. Time-space tradeoffs for the memory game.
arXiv preprint arXiv:1712.01330, 2017.

[CCHL21] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential
separations between learning with and without quantummemory. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 574–
585. IEEE, 2021.

[CCvM06] Jin-yi Cai, Venkatesan T. Chakaravarthy, and Dieter vanMelkebeek. Time-
space tradeoff in derandomizing probabilistic logspace. Theory Comput. Syst.,
39(1):189–208, 2006.

[CDST22] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating
iterated multiplication of stochastic matrices in small space. Electron. Colloquium
Comput. Complex., TR22-149, 2022.

[CGJ19] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-
encoded matrix powers: Improved regression techniques via faster hamiltonian sim-
ulation. In 46th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2019, volume 132 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[CH22] Kuan Cheng andWilliamM. Hoza. Hitting sets give two-sided derandomization
of small space. Theory of Computing, 18(21):1–32, 2022.

[CJWW22] Lijie Chen, Ce Jin, R. RyanWilliams, and HongxunWu. Truly low-space
element distinctness and subset sum via pseudorandom hash functions. In Proceed-
ings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages
1661–1678. SIAM, 2022.

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618–
623, 1976.

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard func-
tions: eliminating randomness at almost no cost. In STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 283–291. ACM, 2021.

205

[CW01] Anthony Carbery and James Wright. Distributional and Lq norm inequalities for
polynomials over convex bodies inRn. Mathematical Research Letters, 8(3):233–
248, 2001.

[Din20] Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs and
their applications. In EUROCRYPT 2020, 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, volume 12105 of Lecture
Notes in Computer Science, pages 405–434. Springer, 2020.

[Din23] Itai Dinur. Time-space lower bounds for bounded-error computation in the
random-query model. Electronic Colloquium on Computational Complexity: ECCC,
2023.

[DQW22] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Authentication in the
bounded storage model. In EUROCRYPT 2022 - 41st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, volume 13277 of
Lecture Notes in Computer Science, pages 737–766. Springer, 2022.

[DST17] Dean Doron, Amir Sarid, and Amnon Ta-Shma. On approximating the
eigenvalues of stochastic matrices in probabilistic logspace. Comput. Complex.,
26(2):393–420, 2017.

[DT23] Dean Doron and Roei Tell. Derandomization with minimal memory footprint.
Electron. Colloquium Comput. Complex., TR23-036, 2023.

[FKL+16] Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Mori-
mae, and Harumichi Nishimura. Space-efficient error reduction for unitary quan-
tum computations. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, volume 55 of LIPIcs, pages 14:1–14:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[FL18] Bill Fefferman and Cedric Yen-Yu Lin. A complete characterization of uni-
tary quantum space. In 9th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2018, volume 94 of LIPIcs, pages 4:1–4:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[FR21] Bill Fefferman and Zachary Remscrim. Eliminating intermediate measurements in
space-bounded quantum computation. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1343–1356. ACM, 2021.

206

[FvdG99] Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguisha-
bility measures for quantum-mechanical states. IEEE Transactions on Information
Theory, 45(4):1216–1227, 1999.

[GHM+21] Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, andWei Zhan.
Parallel repetition for the GHZ game: A simpler proof. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM2021, volume 207 of LIPIcs, pages 62:1–62:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[GHM+22] Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, andWei Zhan. Par-
allel repetition for all 3-player games over binary alphabet. In 54th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2022, pages 998–1009. ACM,
2022.

[GKLR21] Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-
sample lower bounds for learning parity with noise. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM2021, volume 207 of LIPIcs, pages 60:1–60:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy NRothblum. Delegating com-
putation: interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64,
2015.

[GKR20] Sumegha Garg, Pravesh K. Kothari, and Ran Raz. Time-space tradeoffs for
distinguishing distributions and applications to security of goldreich’s PRG. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM2020, volume 176 of LIPIcs, pages 21:1–21:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, STOC ’89, page 25–32, New York, NY, USA, 1989. Association for
ComputingMachinery.

[GL19] Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in
log-space. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
creteAlgorithms, SODA 2019, pages 606–620. SIAM, 2019.

207

[GMRZ22] Uma Girish, Kunal Mittal, Ran Raz, andWei Zhan. Polynomial bounds
on parallel repetition for all 3-player games with binary inputs. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM2022, volume 245 of LIPIcs, pages 6:1–6:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[GR22] Uma Girish and Ran Raz. Eliminating intermediate measurements using pseudo-
random generators. In 13th Innovations in Theoretical Computer Science Conference,
ITCS 2022, volume 215 of LIPIcs, pages 76:1–76:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

[GRT18] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower
bounds for learning. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, pages 990–1002. ACM, 2018.

[GRT19] Sumegha Garg, Ran Raz, and Avishay Tal. Time-space lower bounds for two-
pass learning. In 34th Computational Complexity Conference, CCC 2019, volume
137 of LIPIcs, pages 22:1–22:39. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019.

[GRZ21a] Uma Girish, Ran Raz, andWei Zhan. Lower bounds for XOR of forrelations.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM2021, volume 207 of LIPIcs, pages 52:1–
52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[GRZ21b] Uma Girish, Ran Raz, andWei Zhan. Quantum logspace algorithm for power-
ing matrices with bounded norm. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 73:1–
73:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[GRZ23] Uma Girish, Ran Raz, andWei Zhan. Is untrusted randomness helpful? In 14th
Innovations in Theoretical Computer Science Conference, ITCS 2023, volume 251
of LIPIcs, pages 56:1–56:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

[GS92] Peter Gemmell andMadhu Sudan. Highly resilient correctors for polynomials.
Information processing letters, 43(4):169–174, 1992.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbal-
anced expanders and randomness extractors from parvaresh-vardy codes. J. ACM,
56(4):20:1–20:34, 2009.

208

[GZ19] Jiaxin Guan andMark Zhandry. Simple schemes in the bounded storage model.
In EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, volume 11478 of Lecture Notes in Com-
puter Science, pages 500–524. Springer, 2019.

[HHL09] AramW. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Physical review letters, 103(15):150502, 2009.

[HK18] WilliamM. Hoza and AdamR. Klivans. Preserving randomness for adaptive
algorithms. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM2018, volume 116 of LIPIcs,
pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[HM21] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for find-
ing multiple collision pairs. In 16th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography, TQC 2021, volume 197 of LIPIcs, pages
1:1–1:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Hoz19] WilliamM. Hoza. Typically-correct derandomization for small time and space.
In 34th Computational Complexity Conference, CCC 2019, volume 137 of LIPIcs,
pages 9:1–9:39. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[Hoz21] WilliamM. Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM2021, volume 207
of LIPIcs, pages 28:1–28:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[Hoz22] WilliamM. Hoza. Recent progress on derandomizing space-bounded computa-
tion. Bulletin of EATCS, 138(3), 2022.

[HS65] Juris Hartmanis and Richard Edwin Stearns. On the computational complexity of
algorithms. Transactions of the AmericanMathematical Society, 117:285–306, 1965.

[ICC17] Raban Iten, Roger Colbeck, andMatthias Christandl. Quantum circuits for
quantum channels. Physical Review A, 95(5):052316, 2017.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In
36th Annual Symposium on Foundations of Computer Science, pages 538–545. IEEE
Computer Society, 1995.

209

[INW94] Russell Impagliazzo, NoamNisan, and Avi Wigderson. Pseudorandomness for
network algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory
of Computing, pages 356–364. ACM, 1994.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings
of the 14th Annual IEEE Conference on Computational Complexity, pages 237–240.
IEEE Computer Society, 1999.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential cir-
cuits: Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, pages 220–229. ACM, 1997.

[Jef22] Stacey Jeffery. Span programs and quantum space complexity. Theory Comput.,
18:1–49, 2022.

[KK12] Roy Kasher and Julia Kempe. Two-source extractors secure against quantum
adversaries. Theory Comput., 8(1):461–486, 2012.

[Kla03] Hartmut Klauck. Quantum time-space tradeoffs for sorting. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing, pages 69–76. ACM, 2003.

[KRT17] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse
parities. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 1067–1080. ACM, 2017.

[KŠdW07] Hartmut Klauck, Robert Špalek, and Ronald deWolf. Quantum and classical
strong direct product theorems and optimal time-space tradeoffs. SIAM J. Comput.,
36(5):1472–1493, 2007.

[KvM02] AdamR. Klivans and Dieter vanMelkebeek. Graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM
J. Comput., 31(5):1501–1526, 2002.

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic func-
tional by model selection. The Annals of Statistics, 28(5), October 2000.

[LMT00] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals
deterministic space. J. Comput. Syst. Sci., 60(2):354–367, 2000.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8(3):261–277, 1988.

210

[LRZ23] Qipeng Liu, Ran Raz, andWei Zhan. Memory-sample lower bounds for learn-
ing with classical-quantum hybrid memory. In 55th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2023. To Appear, 2023.

[LV21] Jiahui Liu and Satyanarayana Vusirikala. Secure multiparty computation in the
bounded storage model. In Cryptography and Coding - 18th IMA International
Conference, IMACC 2021, volume 13129 of Lecture Notes in Computer Science,
pages 289–325. Springer, 2021.

[LY22] Jiatu Li and Tianqi Yang. 3.1n − o(n) circuit lower bounds for explicit functions.
In 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022,
pages 1180–1193. ACM, 2022.

[LZ23] Xin Lyu andWeihao Zhu. Time-space tradeoffs for element distinctness and set
intersection via pseudorandomness. In Proceedings of the 2023 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2023, pages 5243–5281. SIAM, 2023.

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. J. Cryptol., 5(1):53–66, 1992.

[MM18] DanaMoshkovitz andMichal Moshkovitz. Entropy samplers and strong generic
lower bounds for space bounded learning. In 9th Innovations in Theoretical Com-
puter Science Conference, ITCS 2018, volume 94 of LIPIcs, pages 28:1–28:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Mon10] Ashley Montanaro. Nonadaptive quantum query complexity. Inf. Process. Lett.,
110(24):1110–1113, 2010.

[MVBS05] MikkoMöttönen, Juha J Vartiainen, Ville Bergholm, andMartti M Salomaa.
Transformation of quantum states using uniformly controlled rotations. Quantum
Information & Computation, 5(6):467–473, 2005.

[MW05] Chris Marriott and JohnWatrous. Quantum arthur-merlin games. Comput.
Complex., 14(2):122–152, 2005.

[MW18] DylanM.McKay and R. RyanWilliams. Quadratic Time-Space Lower Bounds
for Computing Natural Functions with a RandomOracle. In 10th Innovations in
Theoretical Computer Science Conference (ITCS 2019), volume 124 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 56:1–56:20, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

211

[NC10] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[Nis90] NoamNisan. Psuedorandom generators for space-bounded computation. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages
204–212. ACM, 1990.

[NN93] Joseph Naor andMoni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM J. Comput., 22(4):838–856, 1993.

[NW94] NoamNisan and Avi Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49(2):149–167, October 1994.

[OP04] Masanori Ohya and Dénes Petz. Quantum entropy and its use. Springer Science &
Business Media, 2004.

[PRZ23] Edward Pyne, Ran Raz, andWei Zhan. Certified hardness vs. randomness for
log-space. Electronic Colloquium on Computational Complexity: ECCC, 2023.

[PZ32] R.E.A.C. Paley and A. Zygmund. A note on analytic functions in the unit circle.
InMathematical Proceedings of the Cambridge Philosophical Society, volume 28,
pages 266–272. Cambridge University Press, 1932.

[Raz17] Ran Raz. A time-space lower bound for a large class of learning problems. In 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
732–742. IEEE Computer Society, 2017.

[Raz18] Ran Raz. Fast learning requires good memory: A time-space lower bound for
parity learning. J. ACM, 66(1), dec 2018.

[RPRŻ13] Wojciech Roga, Zbigniew Puchała, Lukasz Rudnicki, and Karol Życzkowski.
Entropic trade-off relations for quantum operations. Physical Review A,
87(3):032308, 2013.

[RS08] Alvin C. Rencher and G. Bruce Schaalje. Linear models in statistics. JohnWiley &
Sons, 2008.

[RT22] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. J. ACM,
69(4):30:1–30:21, 2022.

[RVW01] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics, 155(1),
January 2001.

212

[RY22] Gregory Rosenthal and Henry Yuen. Interactive proofs for synthesizing quantum
states and unitaries. In 13th Innovations in Theoretical Computer Science Conference,
ITCS 2022, volume 215 of LIPIcs, pages 112:1–112:4. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

[RZ20] Ran Raz andWei Zhan. The random-query model and the memory-bounded
coupon collector. In 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, volume 151 of LIPIcs, pages 20:1–20:11. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[Sak96] Michael Saks. Randomization and derandomization in space-bounded com-
putation. In Proceedings of the 11th Annual IEEE Conference on Computational
Complexity, pages 128–149, 1996.

[Sav98] John E. Savage. Models of computation - exploring the power of computing.
Addison-Wesley, 1998.

[Sha81] Adi Shamir. The generation of cryptographically strong pseudo-random se-
quences. In CRYPTO, page 1. U. C. Santa Barbara, Dept. of Elec. and Computer
Eng., ECE Report No 82-04, 1981.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, pages
124–134. IEEE Computer Society, 1994.

[SNA+17] Chao Shen, Kyungjoo Noh, Victor V Albert, Stefan Krastanov, Michel H
Devoret, Robert J Schoelkopf, SMGirvin, and Liang Jiang. Quantum channel con-
struction with circuit quantum electrodynamics. Physical Review B, 95(13):134501,
2017.

[Sti55] W Forrest Stinespring. Positive functions on c*-algebras. Proceedings of the Ameri-
canMathematical Society, 6(2):211–216, 1955.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators
without the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSpace(S) ⊆ DSPACE(S3/2). J. Comput.
Syst. Sci., 58(2):376–403, 1999.

[Ta-13] Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace. In
Symposium on Theory of Computing Conference, STOC’13, pages 881–890. ACM,
2013.

213

[Tal17] Avishay Tal. Formula lower bounds via the quantummethod. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 1256–1268. ACM, 2017.

[Uhl76] Armin Uhlmann. The “transition probability” in the state space of a *-algebra.
Reports onMathematical Physics, 9(2):273–279, 1976.

[Vid18] Thomas Vidick. The quantum circuit model. UCSD Summer school notes, 2018.

[vMW12] Dieter vanMelkebeek and Thomas Watson. Time-space efficient simulations of
quantum computations. Theory Comput., 8(1):1–51, 2012.

[Wat99] JohnWatrous. Space-bounded quantum complexity. J. Comput. Syst. Sci.,
59(2):281–326, 1999.

[WB86] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction for algebraic block
codes, December 30 1986. US Patent 4,633,470.

[Wil08] R. RyanWilliams. Time-space tradeoffs for countingNP solutions modulo inte-
gers. Comput. Complex., 17(2):179–219, 2008.

[Wil16] R. RyanWilliams. Strong ETH breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. In 31st Conference on Computational Com-
plexity, CCC 2016, volume 50 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pages 80–91. IEEE Computer Society, 1982.

[YZ22] Takashi Yamakawa andMark Zhandry. Verifiable quantum advantage without
structure. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, pages 69–74. IEEE, 2022.

[YZ23] Huacheng Yu andWei Zhan. Randomized vs. deterministic separation in time-
space tradeoffs of multi-output functions, 2023. In Preparation.

[ZLY22] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan. Quantum state preparation
with optimal circuit depth: Implementations and applications. Physical Review
Letters, 129(23):230504, 2022.

214

	Abstract
	Introduction
	Randomness with Bounded Space
	Quantum computation with Bounded Space
	Learning with Bounded Space
	Dissertation Organization and Bibliographic Details

	Preliminaries
	Vectors and Matrices
	Quantum Information
	Some Useful Inequalities
	Computational Models and Complexity Classes

	I Algorithmic Results
	Overview of Part I
	Robustly Randomized Algorithms
	Simple Relations with Other Classes
	Streaming Proof for BPL
	Query-Complexity Separations

	Certified Hardness vs. Randomness for Logspace
	Logspace Verifier for PRG
	Efficiently Reconstructive Derandomization
	Universal Derandomization of BPL

	Unitary Quantum Simulation
	Unitary Quantum Logspace Algorithms
	Error Reduction in BQUL
	Equivalence of Learning and Deciding
	Bonus: Streaming Proof for BQL

	II Lower Bound Results
	Overview of Part II
	Decision Problems: The Coupon-Collector Model
	Zero-Error Coupon Collector
	Relation with Oblivious Branching Programs

	Multi-Output Functions: A Polynomial Separation
	The Borodin-Cook Method
	Polynomial Separation for Oblivious Computation
	Separations that Imply Decision Lower Bounds

	Learning with Classical-Quantum Hybrid Memory
	Classical-Quantum Hybrid Model
	Linear Quantum Lower Bound
	Truncation of Classical-Quantum Branching Programs
	Target Distribution and Badness

	References

