Randomness and Quantumness in
Space-Bounded Computation

WEI ZHAN

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
ofF DocToOR oF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

ADVISER: Ran Raz

SEPTEMBER 2023

© COoPYRIGHT BY WEI ZHAN, 2023. ALL RIGHTS RESERVED.

ABSTRACT

In the field of computational complexity theory, we study the power and limits of dif-
ferent computational resources and the interplay between them. The constraints on space
complexity provide a natural and interesting setting, that is often more tractable than the
time-restricted counterparts. In this dissertation, we specifically study how randomness and
quantumness interact with space complexity.

Our results consist of two parts. In the first part, we present our algorithmic results. We
show that randomness used for BPL algorithms can be reduced to logarithmic with the
access to untrusted random bits. Consequentially, every BPL algorithm can be certifiably
derandomized using presumably hard functions. For quantum computing, we show how
to eliminate intermediate measurement in logspace quantum circuits, and simulate general
quantum algorithms in BQL with only unitaries.

In the second part, we present our lower bound results. For decision problems, we pro-
pose the coupon-collector model where one receives random coordinates of the input, and
prove a quadratic time-space tradeoft lower bound in the model. For computing multi-
output functions, we prove the first polynomial separation between randomized and de-
terministic oblivious computation for total functions. And for learning, we prove an ex-
ponential time lower bound against classical-quantum hybrid learners with sub-quadratic
classical memory and sublinear quantum memory.

iii

ABSTRACT

1 INTRODUCTION

1.1 Randomness with Bounded Space
1.2 Quantum computation with Bounded Space
1.3 Learning with Bounded Space

1.4 Dissertation Organization and Bibliographic Details

2. PRELIMINARIES

2.1 Vectorsand Matrices
2.2 Quantum Information
2.3 Some Useful Inequalities
2.4 Computational Models and Complexity Classes

I Algorithmic Results
3 OVERVIEW OF PART |

4 RoBUSTLY RANDOMIZED ALGORITHMS

4.1 Simple Relations with Other Classes
4.2 Streaming ProofforBPL
4.3 Query-Complexity Separations

s CERTIFIED HARDNESS vS. RANDOMNESS FOR LOGSPACE

5.1 Logspace Verifierfor PRG
5.2 Efficiently Reconstructive Derandomization
5.3 Universal Derandomizationof BPL

6 UNITARY QUANTUM SIMULATION

6.1 Unitary Quantum Logspace Algorithms
6.2 Error ReductioninBQuL
6.3 Equivalence of Learning and Deciding
6.4 Bonus: Streaming Proof for BQL

iv

Contents

iii

33
34

41

.......... 42
.......... 48

60

.......... 61
.......... 66

.......... 87

I Lower Bound Results
7 OVERVIEW OF PART II

8 DecisioN ProBLEMS: THE CoOUuPON-COLLECTOR MODEL
8.1 Zero-Error Coupon Collector Lo
8.2 Relation with Oblivious Branching Programs

9 MuLTti-OutruT FUNCTIONS: A POLYNOMIAL SEPARATION
9.1 TheBorodin-CookMethod
9.2 Polynomial Separation for Oblivious Computation
9.3 Separations that Imply Decision Lower Bounds

10 LEARNING WITH CLASSICAL-QUANTUM HYBRID MEMORY
1o.1 Classical-Quantum Hybrid Model
1o.2 Linear Quantum LowerBound Lo 0oL
10.3 Truncation of Classical-Quantum Branching Programs
10.4 Target Distributionand Badness

REFERENCES

117

118

128
129
136

140
141
144
150

161
162
167

173
188

203

To THE LIGHT OF MY LIFE.

vi

Acknowledgments

First and foremost, I want to express my gratitude to my PhD adviser, Ran Raz, who pa-
tiently walked me through the basics in my junior years when I was weak in the fundamen-
tals, who always encouraged me on my unorthodox research ideas while being very careful
about the correctness, and who was extremely forgiving of my chaotic sleep schedules and
my poor memory for not appearing in meetings. His extensive knowledge, rigorous atti-
tude and easygoing personality has positively influenced me throughout the years. I am so
indebted, yet so honored to have Ran as my mentor.

I was fortunate to collaborate with some of the most brilliant researchers during my
PhD, including Sumegha Garg, Uma Girish, Justin Holmgren, Qipeng Liu, Kunal Mit-
tal, Edward Pyne, Ran Raz and Huacheng Yu. I want to thank Jian Li and Seth Pettie for
introducing me to the theory world in my undergraduate years, and also Zeev Dvir and
Emmanuel Abbe for guiding me in my first year when I was unclear about what type of
research I want to do. I cannot overstate how much I learned from discussing with them,
which not only led to the results presented in this dissertation, but overall helped me find
the direction I like. Besides my collaborators and advisors, there are countless other people
who generously shared their knowledge with me via in-person discussions, emails or online
forums. I could not list all of you here, but I am sincerely grateful for your inputs.

I want to thank the computer science department and the theory group, including the
staff, the faculty and the students, for creating such a wonderful working environment. In
particular, I am thankful to Nicki Mahler and Mitra Kelly for their prompt support on ad-
ministrative issues; to Mark Braverman, Gillat Kol, Ran Raz, Zeev Dvir and Huacheng Yu
for taking their time being my committee members; and to Fermi Ma and Clayton Thomas
for helping me when I was in need.

I am grateful to Princeton University for offering me the Francis Robbins Upton Fel-
lowship. My research was also funded by Ran’s grants from Simons foundation and NSF.

The journey would not be so fun without the help and supports from my friends. As a
partial list, let me share my thanks to Zhiyuan Li and Yuping Luo, who tried out the dishes
I made; to Jiaxin Guan, who shared with me the dishes he made; and to Runzhe Yang, who
collaborated dishes with me. As well as thanks to Dingli Yu for letting me petting his dog,
and to Xiaoqi Chen for his constant Chanel shipments. Special thanks to the friends I met
in the Werewolf board games, where I spent some of the most enjoyable Saturday nights.

Finally, I want to give my heartfelt thanks to two of my lifelong friends: Kody Wang and
Zui Tao, along with my parents and my cousin, for their continued company and support.

vii

Introduction

How MUCH COMPUTATIONAL RESOURCES do we need for a computation task? This is
the fundamental problem in computational complexity theory, where the resources of in-
terest vary from model to model, including but not limited to time, space, randomness,
communication with other parties, etc. Usually we could utilize multiple dimensions of
resources which demonstrate interesting interplay: sometimes there is a smooth tradeoft
between two resources, and other times one overshadows another. Studying these phenom-
ena not only provides insights on how to optimize resource allocation for different tasks
in practice, but also has great theoretical value for understanding the roles played by these
resources in computation.

Ever since the introduction of computational complexity [], a majority of the
efforts from theorists have been made in exploring the interactions between different re-
sources and time complexity. Indeed, the most influential open problems in classical com-

plexity theory, derandomization and quantum computing respectively, P versus NP, BPP

and BQP, can be viewed as the questions of whether nondeterminism, randomness and
quantum mechanics enhance the power of time-bounded computation. Decades of re-
search lead to significant advancements in our knowledge on these questions (some of
which we will mention in the corresponding parts of this dissertation), yet it is still widely
open whether any of NP, BPP or BQP could be equal to P or much larger classes, say,
EXP.

In comparison, despite it receiving relatively less attention, we still saw plenty of results
proved exclusively for space-bounded computation, especially the algorithmic ones show-
ing that certain resources can efficiently simulate others. Generally speaking, the space con-
straint provides extra structures that are useful in designing simulation algorithms. And
specifically for logspace computations, operations like going over all possible configurations
(which in general would take exponential time) are enabled. For instance, many computa-
tional resources can be replaced by a quadratic increase in space, and as a result the space-
counterpart of the aforementioned classes, NL, BPL and BQL, are all easily shown to be
contained in L2. In fact, much more are known about these space-bounded classes, and
people are quite optimistic about the resolution of some fundamental problems such as L
vs BPL. We will review the developments on related topics later in this chapter.

On the other hand, to show that certain resources are essential and cannot be replaced
ata small cost, we need to prove corresponding lower bounds. Lower bounds results seems
easier to prove with the additional space constraint, but in reality this is mostly not the case.
Most of the lower bounds in space complexity we know today are proved via communica-
tion complexity, which applies only to the streaming model. For more general computation

models, the same method leads to resorting to multi-party communication complexity,

where we do not know any non-trivial result for a large number of parties. Even worse, Bar-
rington’s Theorem implies that without huge breakthroughs in circuit complexity, even
with extreme space constraints, we cannot expect to prove any lower bound better than
some small polynomial for decision problems. Fortunately, it turns out that we can cir-
cumvent the obstacles and prove meaningful lower bounds by modifying the computation
model, or by considering non-decision problems. But even then, there are still plentiful
challenging open problems that await to be resolved.

This dissertation is devoted to the study of the above problems, in particular to under-
stand more about the power of randomness and quantumness when interacting with space
complexity. Below we briefly motivate and summarize the results included in this disserta-

tion.

1.1 RANDOMNESS WITH BOUNDED SPACE

To what extend could randomness help reducing other computational resources? When
the resource of interest refers to time, it is widely believed that randomness could not pro-
vide exponential speed up in general sequential computation models, and algorithms us-

ing randomness can be efficiently derandomized, yielding deterministic algorithms with

the same functionality. Indeed, by the bhardness-vs-randomness paradigm | , ,
, , , |, BPP = P under plausible cryptographic or hardness as-
sumptions. As noted in [], the framework also works in the space-bounded regime,

that BPL = L assuming the existence of space-efficient hard functions.
Unlike the polynomial-time counterpart, there are also considerable progress towards

proving unconditional efficient derandomization of BPL, and one can refer to []and

[| respectively for earlier and more recent developments in the area. Most notably,
it was proved that BPL C L3/2 by Saks and Zhou [], and the result was slightly im-
proved to BPL C DSPACE(log*? 1/ /loglog 7) by Hoza [1.

Their results are based on simpler derandomization objects such as pseudorandom gen-
erators (PRGs). Improving the constructions of these objects is the most direct approach
to achieve the final goal of proving BPL = L: If we can construct a PRG with seed length
O(log 7) that fools BPL machines, then by going over all possible seeds we can fully de-
randomize BPL. Actually, it turns out that PRG is not even necessary and a hitting-set

generator with seed length O(log 7) suffices to imply that BPL = L []. However,

currently the best known seed length for all these objects are O(log” #) [, ,
,], which only yield the trivial BPL C L* when applied naively. The results
in []and [] applied these objects in much more sophisticated ways.

In this dissertation we present several results that supplement this line of work, and prac-
tically derandomize all problems in BPL. To start with, we show that O(log 7) trusted ran-
domness suffices for computation in BPL. In contrast to true randomness, we allow the
algorithm to use untrusted randomness which is supposed to be randomness but could

have arbitrary distribution.

Theorem 1.1. Forevery problem in BPL, there is a randomized logspace algorithm that uses

O(log n) truly random bits and an unlimited number of untrusted random bits, such that:

1. If the untrusted random bits are perfectly random, then the algorithm must output the

corvect answer with high probability.

2. For every possibility of the untrusted random bits, even adversarially chosen after seeing

the input, the algorithm must with bigh probability either output the correct answer or

abort the computation.

Theorem 1.1 is formally stated as Theorem and proved in Section . The sec-
ond guarantee in Theorem 1.1 makes our algorithm literally error-free: we can use anything
as the untrusted randomness, such as the digits of 7, and in the worst case the computation
just gets aborted with high probability. In addition, in most cases the digits of 7 should be
irrelevant to the computation that we execute and thus look indistinguishable from per-
fectly random numbers, and we could hope to receive the correct answer with high proba-
bility.

After all, the digits of 7 are not designed to fool randomized computation, but there are
things designed to do so, namely the pseudorandom generators. In particular, when we use
the outputs of the PRGs based on hard functions [, ,] as the untrusted
randomness, we either obtain the correct answer and successfully derandomize, or know for
a fact that the PRG is distinguishable from perfect randomness when the algorithm aborts.
The latter case further implies that the hard function, which the PRG is based on, is not

really hard.

Theorem 1.2. For every family of functions f decidable in linear space, with the hardness
assumption that it cannot be computed by circuits of size 2°" for some e > 0, there is a deter-

ministic logspace process that, given a BPL algorithm, outputs either
1. The correct derandomized answer of the algorithm; Or

2. A small civcuit computing f that refutes the hardness assumption.

Theorem 1.2 is formally stated as Theorem . We can view it as a practical deran-
domization of BPL: For instance, we can use SAT as the hard function f'whose hardness
is based on the non-uniform version of Exponential Time Hypothesis (ETH) [1,
and choose a scale of diminishing €. Previously we believe this works because we believe
in ETH, but the derandomized result cannot be fully trusted as there is no guarantee on
the result in a world where ETH is false. In comparison, no matter ETH is true or not, the
derandomized result in Theorem 1.2, if outputted, is always correct.

Another way to think of using PRG as untrusted randomness is that, Theorem 1.1 ef-
fectively provides an efficient way to check whether a PRG is working (for the specific de-
randomization instance) or not. Suppose now that an optimal PRG exists, in the form of a
Turing machine which can be described by a constant number. Therefore, to derandomize
a BPL algorithm, we can enumerate all Turing machines and plug in each one of them un-
til a derandomized answer is outputted, which is guaranteed to be correct. In other words,
without knowing the actual PRG, we have a explicit algorithm that universally derandom-
ize all computation.

In fact, we can prove something even stronger: We only need to assume that BPL = L,
and then such universal derandomization exists. This is formally stated as Theorem s

and here we give a informal description.

Theorem 1.3. There exists a explicitly described deterministic Turing machine that deran-

domizes every BPL algorithm, and runs in space O(S) if and only if BPL C DSPACE(S).

Now let us consider a more fine-grained problem: Assuming BPL = L, how large would
the derandomization overhead be? For the space usage, it is recently shown by Doron and

Tell [] that under proper assumptions, we can manage to blow up the space only by a

6

very small constant factor. What about time usage? By definition the overhead in time is at
most polynomial, whereas in practice we would like the polynomial to be as small as possi-
ble. For derandomizing BPP, Chen and Tell [] showed that an O(%) overhead factor
in time is both possible and necessary under plausible assumptions, and one could expect a
similar conditional result holds for derandomizing BPL. Proving it unconditionally would
be hard as we will explain in Chapter 7, and instead we can show an unconditional poly-
nomial lower bound for derandomizing logspace computation for multi-ontput functions

rather than decision problems:
Theorem 1.4. There is a total function on n inputs and O(n) outputs, such that:

* There exists a randomized oblivious algorithm with space O(log n), time O(n log n)

and one-way access to randomness, that computes the function with high probability.

o Any deterministic oblivious algorithm with space S and time T that computes the func-

tion must satisfy TS > Q(n*).

Theorem 1.4 will be formally stated as Theorem . Its implies that black-box de-
randomization, which keeps the oblivious query pattern for any randomized oblivious
algorithm, of logspace computation requires at least an Q(n"/*) overhead in time. An in-
teresting open problem is that if we can prove a stronger lower bound to push the overhead
to Q(7) to match the lower bound in [,]. A matching linear overhead upper
bound is also not completely out of scope: [] even showed that, if we just want to
reduce the number of random bits to O(log) (for decision problems and in average-case),

it can be done even with only constant overhead.

1.2 QUANTUM COMPUTATION WITH BOUNDED SPACE

Unlike the case of randomness, it is widely believed that quantum mechanics provides
super-polynomial speed-ups against classical computation, i.e. BQP # P, with candidate
separating problems such as FACTORING []. The space constraints emerges naturally
in quantum computing, since at the time of writing the largest-scale circuit-based quantum
processor consists of only hundreds of qubits, and the number is not expected to drastically
increase in the near future without theoretical breakthroughs. Therefore, near-term quan-
tum devices by themselves have limited space, at least for the quantum part of the memory.

However, quantum computational complexity with bounded space was relatively under-
studied, mostly due to the confusion and complication in definition. The space-bounded
quantum complexity classes, such as BQL, were first formally defined by Watrous []
via quantum Turing machines, similar to the way BQP and related time-bounded classes
were defined by Bernstein and Vazirani []. There is a huge caveat in this definition
though: the time-evolution of the states of the machine must be unitary, which rules out
operations like intermediate measurements (measuring some qubits during the computa-
tion) or classical erasure (in general, physically feasible operations on quantum states are
characterized by quantum channels). For BQP this is not a problem, since we have the
principle of deferred measurements (see e.g. | , Section 4.4]) and in general every
quantum channel can be perceived as a unitary in a larger Hilbert space by Stinespring’s
dilation theorem [].

But with limited space, this becomes a severe problem. It is highly non-trivial to even

simulate classical deterministic machines and show the containment L C BQL, without

using the classical reversible computation result by Lange, McKenzie and Tapp []
Even worse, it was entirely not clear whether BPL is contained in BQL (which was raised
as an open problem in [1), as the trick of simulating random bits with qubits and
Hadamard gates does not work in logspace without the ability to reset qubits. Conse-
quently, a lot of later works on space-bounded quantum computation, such as [,

,], use the more general notion of BQL which allows the usage of any quan-
tum channel, and the previous one that allows only unitaries are changed to be denoted as
BQuL []. The discrepancy in notation is often confusing, and one may hope to unify
these notations by showing that they are actually the same class. As a starting point, Vidick
[] explicitly asked whether intermediate measurements could be eliminated without
increasing the space too much.

Vidick’s question was answered positively in [], which showed that in general
all unital quantum channels can be simulated with unitary quantum computers with only
constant blow-up in space. These channels include intermediate measurements but not

the classical operations like erasure. The full equality BQL = BQuL was finally proved

by Fefferman and Remscrim [], and here we presented the strongest statement of
simulating general quantum channels with unitaries, using the conclusion of |]and
the techniques of []:

Theorem 1.5. Given a general guantum algorithm A with time T and space S, represented
by the quantum channels applied in each step, we can compute in time poly(25T) and space
O(S + log T) a unitary guantum circuit U with the same time and space, such that the final

state of A and U are polynomially close when measured under the computational basis.

Theorem 1.5 will be formally stated as Theorem . Note thatin [] the result

was stated for approximating a single coordinate, and the corresponding result in []

that it relies on has constant error probability. As the simulation result with constant error

in [] is entirely subsumed by that of [], we will focus on the error reduction
part with techniques developed in [].
As a by-product, the series of work [, ,] also provides multiple com-

plete problems for BQL, which works as candidate problems separating BQL and BPL.
Examples of such problems include approximating powers of unitary matrices (with addi-
tive error), or determinants of well-conditioned matrices (with multiplicative error). The
best classical upper bound for these problems is NC?, hence no classical polynomial-time
algorithm with O(Iog‘z_5 n) space is known. The equality BQL = BQuL also helped char-
acterizing quantum space complexity using span programs [I

Finally, we would like to mention that in the large space regime, a highly-efficient inter-
mediate measurement elimination scheme was proposed by Girish and Raz []. When
the original quantum algorithm consists of only unitaries and measurements, the inter-
mediate measurements can be removed in time 7"+ poly(S) and space O(S - log 7). Thus
multiple extensions of Theorem 1.5 remains open: To show a unitary simulation of gen-
eral quantum algorithms matching the bounds of [], simulation with one-sided error

(RQL = RQuL) [], and similar simulation result for state synthesis [].

1.3 LEARNING WITH BOUNDED SPACE

Even with the oracle separation BQ P® ¢ PH® by Raz and Tal [] and numerous
reports on experimental quantum supremacy, proving unconditional, unrelativized super-

polynomial quantum advantage still has a long way to go. The closest result, by Yamakawa

I0

and Zhandry [], is still relative to a random oracle. This is most due to the fact that we
do not know how to prove unconditional super-polynomial classical lower bounds in gen-
eral computation models, and the situation is not bettered when adding space constraints
(see Chapter 7 for a discussion).

It turns out that our current best hope in proving such advantage is on learning prob-
lems, for which we do have exponential classical lower bounds. Indeed, in [] Raz
showed that parity learning, the problem of learning an unknown parity function on 7
bits, requires 2(*) samples when the space usage is sub-quadratic. A long line of follow-up
works [, , , , , , ,] extend this
result to many different learning problems and settings. In particular, [] showed
that a similar exponential sample lower bound with bounded space holds whenever the
learning problem exhibits the extractor property, which includes problems such as learning
low-degree polynomials and learning error correcting codes.

With these strong classical lower bounds, it seems that proving an exponential separation
between quantum and classical learning in the space-bounded setting is not out of reach.
However, we show that in certain regime, this task as hard as proving separations for deci-

sion problems:

Theorem 1.6. Every quantum learning algorithm with time T and space S = O(log T)) can
be simulated classically with time poly(T) and space O(log T), if and only if BQL = BPL.

Theorem 1.6 will be proved in Section 6.3. It indicates that if we want to prove super
polynomial separations, we need to look for candidate problems where the quantum learn-
ing algorithm uses more than logarithmic number of qubits. In fact, such a result has been

given by Chen, Cotler, Huang and Li |]. They showed that for tasks like shadow

II

tomography [] on an z-qubit state, classical learning algorithms need to measure
292 copies of the state, while O() copies suffices when there are 7 qubits of quantum
memory. Moreover, when the shadow tomography is on Pauli observables, they proved a
smooth tradeoff that with £ qubits of quantum memory, 20(n—k) samples are required.

Yet, the resultin [] is not a desired proof of quantum advantage, because the
learning problems there are inherently quantum, and a classical learning algorithm does not
have full access to a sample which is a copy of the quantum state. Therefore, the question
of demonstrating exponential quantum vs. classical separation for classical learning prob-
lems is still open. Given the results of [], the natural candidates for this separation
are the learning problems with the extractor property. We study the plausibility of these
candidate problems and show that their classical lower bounds could not be improved with
a small amount of quantum memory. Using the parity learning as an example, our result

states as follows.

Theorem 1.7. Any learning algorithm for parity learning on n bits requires either:
* Q(n?) bits of classical memory; or,
* O (n) qubits of quantum memory; or,
o 290 samples.

Theorem 1.7 will be formally stated as Theorem . It implies that if any such prob-
lems works in demonstrating the separation, the usage of quantum memory in the quan-
tum upper bound will not be small. It is in sharp contrast with the situation of problems

like SORTING, where O(log) qubits of quantum memory suffices to defy the classical

I2

lower bound []. The result also gives a direct lift on the bounded-storage cryptog-
raphy [] based on parity learning [, , ,]. For a crypto-
graphic protocol using parity learning on 7 bits (which is treated as a security parameter),
Theorem 1.7 shows that the security holds even in the presence of a quantum adversary
with at most O(7?) bits of classical memory and O(7) qubits of quantum memory.

We also note that the lower bound in [] is not always tight for all parameters.
For instance, when the task is to learnx € {0, 1}” with samples being parity equations

tlog) o1 the number of samples, which is

on x with sparsity ¢, they gave lower bound 29
sublinear in 7 when £ is small and clearly not optimal. At an extreme, consider the case
when ¢ = 1, that is every sample provides a random coordinate in x. This is the standard
coupon-collector scenario and we know that O(7 log) samples suffices to recover the full
information about x. But when the memory is much less than 7, we cannot store all the
samples, and the situation becomes much more interesting if the goal is to answer some

question about x, e.g. computing its parity, instead of outputting x as a whole which is

impossible.

Theorem 1.8. Any algorithm that computes x, © - - - @ x, in the above coupon-collector

scenario with T samples and S space with zero-ervor must satisfy TS > Q(n?).

Theorem 1.8 will be formally stated and generalized to other computation problems in
Theorem . We conjecture that the same bound holds for bounded-error computa-
tion (as this dissertation is finishing, we are glad to know that Dinur |] affirmatively
proved our conjecture), which will serve as the first step to tighten up the time-space trade-
offs of learning in the polynomial regime. This result is also closely related to strong lower

bounds on deterministic branching programs, which is a major open problem that will be

13

discussed in Chapter 7.

1.4 Di1SSERTATION ORGANIZATION AND BIBLIOGRAPHIC DETAILS

In Chapter 2 we provide some background knowledge, definitions of notations and useful
inequalities required for the reading. The rest of this dissertation will be divided into two
parts: Part | on algorithmic results and Part I1 on lower bound results. At the beginning of
each part, we will give an overview (Chapter 3 and Chapter 7) on related topics and tech-
niques used in proving our results. Note that the two parts are not isolated, and there are
many intersections and interactions between the two parts.

In Chapter 4, we study the robust notion of randomness and prove Theorem 1.1, based

on []:

Uma Girish, Ran Raz, and Wei Zhan. In

14th Innovations in Theoretical Computer Science Conference, ITCS 2023.

In Chapter 5, we revise the hardness vs. randomness paradigm in logspace and prove Theo-

rem 1.2, base on []:

Edward Pyne, Ran Raz, and Wei Zhan.

Electronic Colloguium on Computational Complexity: ECCC, z023.

In Chapter 6, we show the power of unitary quantum logspace, proving Theorem 1.5 and

Theorem 1.6, based on []:

Uma Girish, Ran Raz, and Wei Zhan.
In 48th International Colloguinm on

Automata, Languages, and Programming, [CALP zoz1.

14

In Chapter 8, we propose the coupon-collector model and prove Theorem 1.8 based on

[RZ20]:

Ran Raz and Wei Zhan.
In 11th Innovations in Theoretical Computer Science Confer-

ence, [TCS 2020.

In Chapter 9, we examine randomized vs. deterministic separations in time-space tradeoffs

and prove Theorem 1.4 based on []:

Huacheng Yu and Wei Zhan.

In Preparation, 2023.

And finally, in Chapter 10, we give time-space lower bound for learning with classical-

quantum hybrid memory, proving Theorem 1.7 based on [IE

Qipeng Liu, Ran Raz, and Wei Zhan.
In §5th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2023.

Other works the author completed during the doctoral study, that are not included in
this dissertation because of thematic relevance, are the series of works on parallel repetition

[, ,], and the work on the Forrelation function |]

IS5

Preliminaries

Let us begin with some general notations. Let N, N, R, R, C be the set of natural num-
bers, positive integers, real numbers, positive numbers and complex numbers. For» € N,
let [n] be the set {0,1, ..., z}. The logarithm in base 2 is simply denoted as log, and ¢ is the
base of natural logarithm In.

We use x ~ D to denote drawing x from a distribution D. Let the support supp(D) be
the elements d such that Pr,p[x = d| > 0. When D is a uniform distribution over its
support D, we abuse the notation and use x ~ D to stand for x ~ D. Denote the uniform
distribution over {0,1}" by U,,.

For a random variable X, the expectation is denoted as [E[X], and the variance is Var X =
E[X?] — E[X]*. The covariance of two random variables X and Yis Cov(X, ¥) = E[XY] —
E[X] E[Y]. Note that we have Var(X + ¥) = VarX 4 Var Y+ 2 Cov(X,).

The asymptotic notations O(-) and Q(-) are used to bound the growth of functions.
For any two quantities £, ¢ > 0 that varies depending on other variables, we say /' = O(g) if

f < ¢ galways holds for some absolute constant ¢, and similarly = Q(g) if f > ¢- g always

16

holds. We use asymptotic notations O and Q to hide poly-logarithmic factors in O(-) and
Q(+). When the input size 7 is clear from context, the poly-logarithmic factors are always

on z, e.g. 0(1) always stands for O(polylog(z)).

2.1 VECTORS AND MATRICES

We claim the following notations for complex vectors and matrices, but they are defined the
same way on all other base sets whenever applicable. Let v € C” be a vector, we use v; to

denote the z-th coordinate of v. For every p € [1, 00], let the £, norm of v be

d 1/p

lol, = { D lesl”

=1

In particular, when p = o0, ||v|| . = max,c[, [v;]. Whenever p > p/, we have
loll, < llell, < - lloll,

For two vectors #, v € C%, define their inner product as

d

(u,v) = u'v = Zu_iv,».

i=1

Hence ||v]|> = (v,). We also abuse the notation to identify every distribution D over

[n] as a non-negative real vector in R” with | D||, = 1. Forevery7 € [n],lete; be the
special vector whose 7-th coordinate is 1 and all other coordinates are 0. The all-zero vector
is denoted as 0.

For an m by n matrix M € C™*”,let M, ; be the entry of M at row 7 and column ;.

17

We sometimes also use M7, j] for the same meaning. We use M, to denote the vector in
C” corresponding to the 7-th row of M. Let vec(M) be the vectorization of M, which is a

vector of dimension 7. formed by stacking the columns of M on top of each other, that is
vec(M) it (j—ym = My;, Vi€ [m],j € [n].

For every vector v € C”,let Diagv € C**” be the diagonal matrix whose diagonal entries
represent v. Conversely, for every square matrix M € C**”, let diag M be the vector con-
sisting of the diagonal entries of 4. The trace of A1 is the sum of elements in diag A4, that
is,

Tr[M] = iMZ-,,-.
=1

We use I, € C**” to denote the identity matrix, and a matrix with only entries 0 is simply
denoted as 0. Let M be the conjugate transpose of M. When m = n, we say M is unitary
if MM = 1, and Hermitian if M = M. A Hermitian M is further positive semi-definite
(PSD) if for every v € C*, ol My > 0,andisa projection ifM? = M. We say M < N for

two Hermitian matrices if N — M is PSD.

MaTtRrix NORMS

We will encounter a lot of different matrix norms. Let us start with the operator norms,

which for every p € [1, 00] is defined as

Mol
|M||, = max .
P e T

18

This norm is sub-multiplicative, i.e. for any two matrices M, N we have
|¢n, < 1], N,

In particular, when p = 2, we usually omit the subscript and use ||A1|| directly, which
is called the spectral norm of M. Other matrix norms we consider include the Frobenius
norm ||[M||; = ||vec(M)]|,, and the trace norm ||M||,, = Tr [\/MTM] . We have the

following inequalities: For every M € C™*”,
M| < |M]lg < [[M] g, -

Finally, we say a matrix M € {—1,1}"*" isa (k, {)-extractor with error 27, if for every

distribution P over [] with || P||, < 2¢/./n, there are at most 2 *m rows 7 € [m] such that
(M, P)| >27".
This definition will specifically be used in Chapter

2.2 QUANTUM INFORMATION

We use the Dirac notation to denote a pure quantum state |v), which is a vector in the C”
with [||0)l, = L and (| = |v)'. The state evolves by unitaries [v) — Ui|o) = e |0)

where H is a Hermitian matrix called Hamiltonian. For a non-zero vector » € C”, we use
|v) ~ u to denote a quantum state in the same direction as #, thatis, |v) = #/||«||,.

A mixed state is a probability distribution of pure states, which can be described as a

I9

density operator
p=_pilo(uil,

where) . p; = 1. The maximally-mixed state is %]In. Another way to formulate the density
operator is 2a PSD matrix p € C"*” with Tr[p] = 1. By comparison, a partial density
operator is a PSD matrix 7 € C**” with Tr[z] < 1. All the notions below on density
operators also works on partial density operators.

The magnitude of p on a pure state |v) is given by

(vlelv) = Trlelo) (v]].

More generally, a measurement on quantum states is represented by a PSD matrix M €
C"* such that M < T, and the probability of getting this measurement outcome on p is
Tr[pM]. A positive operator-valued measure (POVM) is a set of measurements {44, } such
that) M; =1,.

We use the notation p,, to stress the case when p describes the quantum state of a system
V. If V consists of two parts X and Y, that is, the space of classical base states is a tensor
productV = X ®), then the quantum state describing the sub-system on X is given by

the partial trace:

Py = Tryloy], where (x[Trylpy, Jlv) = > (x.9loglv.y), Vre X,
yeY

20

For every y €), let the conditional system on X given ¥ = |y) be

Pxly = (Ly © Gl)pyy(lx @ 7)),

which is a partial density operator on X. Here [y = > _|x) (x| is the identity operator on X,

which is an identity matrix in the matrix form. We can show the equality

Px = Z Z) (6, Yoy, 7) (] = ZﬁXU"

xEX yeY yey

The fidelity between two quantum states p and ¢ in the same underlying space is
Flp.) = Tl "
The von Neumann entropy of state p is defined as
S(p) = —Trlplnpl,
and the quantum mutual information between two states is defined as
S(p || o) = Tr[plnp — plna].

We can then write the quantum mutual information between the two parts X and Y of the

systemjoXY as

L (X;Y) =S(py) +S(py) — Sloyy) =S (/OXY [®ﬁY) :

21

QuANTUM CHANNELS

Let £(C”) be the space of linear operators on C”. A quantum channel @ is a completely-
positive trace-preserving (CPTP) linear map @ : L£(C”) — L(C”), which maps every
density operator p € L(C”) to a density operator ®(p) € L(C”).

There are several ways to represent a quantum channel. The Kraus representation of the

quantum channel @ is a set of matrices £, . . . , £, € C**” such that

k k
> EE =1, and ®(p) =) EpE.
i=1 i=1
The natural representation of ®, denoted as K(®), is a matrix in C* %" such that

vec(D(p)) = K(D) vec(p)

for any density operator p € L£(C”). Given the Kraus representation £, . . ., Ej, of @, one

can easily compute the natural representation

We focus on quantum channels from £(C”) to itself. An important property of quan-
tum channels is the contractivity under trace norms, thatis, | ®(7)||, < |7, for any
7 € L(C”). A channel @ is unital if it is also contractive under Frobenius norms, i.e.

|®(7)||z < ||7]|g or equivalently, || K(®D)|| < 1. Another equivalent definition of uni-

tal channels is the channels that map the maximally-mixed state to the maximally-mixed

22

state:

The Kraus representation of a unital channel additionally satisfies Zfil EZ-EZT- =10,.
Quantum channels represents all the physically feasible operations on quantum states.
Every unitary operator U : |v) — Ulv) is a quantum channel ®(p) = UpU'. A distribu-

tion over unitary operators is a mixed-unitary channel

D(p) = ZPnyon-

A POVM {A;} is also a quantum channel after specifying the post-measurement states. In
particular, if the post-measurement state of p with outcome M, is /M,p/M, [Tr[pM,], it

corresponds to the channel
Dlp) = > Mp\/M,.
Unitary channels, mixed-unitary channels and POVM specified this way are all unital. An

example of non-unital channels is resetting, that is, ®(p) = |0”)(0”|.

2.3 SOME USEFUL INEQUALITIES

2.3.1 CONCENTRATION BOUNDS

The Chernoff Bound will be used countless number of times. Here we state a general com-

plex version of it.

Lemma 2.3.1 (Chernoff-Hoeftding). Lez X be a random complex number with | X| < 1,

23

and Xy, . .., X, are n independent copies of X. Then

{1
Pr

n

X, +---+X,) —]E[X]‘ > 5] < 4¢ 2

Besides, we will use the following concentration and anti-concentration bounds.

Lemma 2.3.2 (Chebyshev). Let X be a real random variable with variance Var X = o>, For
every k > 0,

1

Pr[|X — E[X]| > ko] < ;

Lemma 2.3.3 (Paley-Zygmund [). Let X > 0 be a real random variable, and 8 €

[0,1]. Then
B[
> > (1—6)* :
PrX > 0E[X]] > (1—9) E[x?]
Lemma 2.3.4 (Laurent-Massart | 1). Letg ~ N(0,1)" be the n-dimensional standard

Gaussian. Then X = || gH§ ~ x> follows the chi-square distribution, and for every x > 0,
Pr [XZ n—+ 2x+ 2\/nx] <e

Lemma 2.3.5 (Carbery—Wright [1). There is a absolute constant c > 0, such that for

everyn € Ny, € > 0, Hermitian H € C*” and the standard Gaussian g ~ N(0,1)",
Pr [|g"Hg|* < e Var[g'Hgl]] < cz.

2.3.2 QUANTUM INEQUALITIES

We first present two bounds on the norm of quantum operators.

24

Proposition 2.3.6. Every quantum channel @ : L(C*) — L(C”) satisfies | K(D)|| < /.
The proof for Proposition can be found in [].
Proposition 2.3.7. Every measurement M € C"*” satisfies |[vec(M)||, = ||M||z < /7.

Proof. Since M is PSD and M < I, we have M? <1, and thus
| M|} = Te[M M) = Tr[M?*] < Tr[L,] = ». O

The Fuchs-van de Graaf inequality [] states that for two density operators p and

2l = ol < /1= Flp.o).

Here we prove a variant of this inequality on general PSD operators.

o, we have

Lemma 2.3.8. Let p, o be two PSD operators. Assume Tt|p| > Tro|. Then

W—ﬂn_¢ (Tr[g] + Tt[])2) < y/Telgl2 -

Proof. Let # and v be purifications of p and o, thatis, #,» € C" with p = Tr4[uu'] and ¢ =
Tr,[vo'] where 4 is some additional system. Let Ube a unitary that diagonalizes #z' — vo',

that is there is a diagonal matrix A € C”*” such that un' — vt = UAU'. Let p =

25

diag Ul uut U and q = diag Utvot U. Then we have

W= Tt[U uu'U) = Zp[,
=1

vlo = Tr[Ul v’ U] = qu»,
=1

H%%T — UUT T = HA“Tr = Z |Pl — ql.|’
i=1
(e, 0)| = [(Ulu, U'o)| <Y~ \/pag.
i=1

Therefore, by Cauchy-Schwarz inequality,

» 2
s — ool [, (Z e M)
=1

=<ZM€-—@

v+ v
) (X_:Wﬁ+\@
(e (2

< (u'u+ UTU)Z — 4|{u,v)|*.

)

s(ZI@—@

Notice that [[p — o], < ||ua’ — 00|

1o Ttlp] = #'uand Tr[o] = v'v. By Uhlmann’s

theorem [], we can also choose # and v such that F(p, o) = |(#, v)|*. Plugging them

into the above inequality concludes the proof. O

26

Corollary 2.3.9. For every partial density operator p and projection operator I1 on p, we have
lo — TTpIT|[3, < 4Ttle]” — 4Tr[ILe)".
Proof. By Lemma , it suffices to prove the following bound on fidelity:
Flp, TIpIT) > Tr[I1p)*.

Let # be a purification of p, thatis, p = Tr, [uuﬂ for some system 4. Then (H ® 1 A)u isa

purification of ITpIT. By Uhlmann’s theorem we have

Fp, ITpIT) > ‘%T (H ®]Lq)u

|2

=Tr [(H ®]IA)sz}z
= Tr [IT- TrA[uuTHZ = Tr[IIp)*. O
Finally, we prove the anti-concentration bound on uniformly random pure states.

Lemma 2.3.10. There exists an absolute constant ¢ such that following holds. Let |v) be a
uniformly random pure state in C”, and let H € C"*" be a Hermitian. Then for every

e > 0, we bave

Pr [|(v|H|v)| < en'||H||] < ev/e+e

Proof. Letg = (g1, .,g,) ~ N(0,1)" be the standard Gaussian. Notice that |gog| /| |¢]|3

27

is equidistributed as | (v|H|v)|. Therefore by union bound we have

. lell3
pe [| (1) < en~ 1] = P [L@Hg <cja - 1ol
< Pr[lgHg| < se|H|] + Pr [|ll; = 57]
For the first term, notice that Var[g' Hg] = 2Tr[H?] (seee.g. [, Chapter s]) which

is no smaller than 2 || H]||*. Therefore, by Carbery—Wright inequality Lemma , there

exists an absolute constant ¢ such that
Pr [|g'Hg| < se||H]|] < Pr[|g'Hg| < 4e Var[g'Hg]'?] < cv/E.
And the second term is bounded by Lemma with x = #:
e [[gl}3 > 52| <. 0

2.4 COMPUTATIONAL MODELS AND COMPLEXITY CLASSES

2.4.1 BRANCHING PROGRAMS

Universally in this dissertation, the computational models we consider are branching pro-
grams. These are the most general sequential models when considering both time and space
complexity, and our results can all be easily translated to more restrictive models such as
Turing machines or RAMs.

We start with the definition of classical branching programs. A deterministic branching

program B with space S and time T'is a layered directed acyclic graph (DAG) that consists of

2.8

at most 7'+ 1 layers of vertices (or states) Vy, . .., V7, each contains at most 2° vertices. The
first layer V) contains one unique state called the initial state v, and each state in the last
layer V7 represents an output. Let V(B) be the collection of vertices in B. For each vertex

v € V(B),let B_,, be the branching program that cuts off all the layers in B after v, and
instead let » output 1 while all other vertices in the same layer of v output 0.

When the inputs (or samples) of the problem are from a domain D, each vertexv ¢ V7
has | D| edges going out towards the next layer labeled with elements in D. If the problem
allows querying specific coordinates of the input from D", v is also label with some 7 €
[n] indexing the coordinate that the algorithm queries at the state v. We say the branching
program is oblivious, it the query pattern is independent of the input. Specifically, if 7= »
and the branching program always queries coordinates 1, . . ., in order, then we way it is
an ordered branching program (OBP).

A randomized branching program with space S and time 7is a distribution over deter-
ministic branching programs with the same space and time bound. If the deterministic
branching programs in the distribution are all oblivious, the randomized branching pro-
gram is also oblivious. We say that a randomized branching program has one-way access to
random bits, if in each layer the labels on the vertices and outgoing edges are independent
of the rest of the branching program.

For both deterministic and randomized branching programs, the computation path is the
path that starts from the initial vertex vy, at each vertex following the edges labeled by the
query answers or samples it receives until reaching the last layer. The computation path is
subject to the randomness of the branching program, and samples in the learning case, but

for learning we can actually without loss of generality assume that the branching program is

29

deterministic because of linearity of expectation.

For quantum branching programs, we can use a similar definition by replacing edges
with transitions on superpositions of states. Here we present a simpler but equivalent def-
inition. A unitary quantum algorithm with space S and time 7 starts from the initial state
) = |0°), and applies the unitary operator U, € L£(C?) controlled by either the input

query or the sample in each time step ¢ € [7]. After T steps the final state becomes

which is measured in the computational basis, and outputs the answer according to the
measurement result.

In general, a quantum algorithm could allow non-unitary quantum channels, and thus
we instead describe the state using density operators. Starting from the initial state o, =
05) (0%, in each step #a channel @ : £(C*') — L£(C?) is applied, and hence the final state
is

pr=Qro--0®(p).

In addition, for decision problems we can assume that the final measurement is some two-
outcome measurement {1, — M}, so that the probability of the branching program
outputting 0 is Tr[p,.M)].

For all branching program models presented above, we say the branching program with
space S and time 7'is uniform, if the branching program itself can be printed by a determin-

istic Turing machine within the same space and time bound for every input size.

30

2.4.2 SPACE-BOUNDED COMPLEXITY CLASSES

For the sake of succinctness, we only define the complexity classes that will appear sub-
stantially in subsequent chapters, and we only define their space bounded versions. These

include:

DSPACE(S) The set of decision problems solvable by uniform deterministic branching
programs with space O(S) and time O(2%). In particular, L = DSPACE(log #) and
L2 = DSPACE(log”).

BPTISP(T,S) The set of decision problems solvable by uniform randomized branching
programs with space O(S) and time O(7'), with one way access to random bits. On
every input, the output s in {0, 1} and must be correct with probability at least 2/3

(which is called bounded error).

BPL The union of BPTISP (%, log) for all¢ > 0. Equivalently, It is the set of decision
problems solvable with bounded error by OBPs on the random bits, that uniformly

depends on the input, with space O(log 7) and time poly(#).

ZPL The same as BPL, but on every input, the outputisin {0, 1, L } where L stands for
giving up. The correct answer must be outputted with probability at least 1/2, and

the wrong answer is never outputted (this is called zero error).

BQL The set of decision problems solvable with bounded error by uniform quantum

branching programs with space O(log 7) and time poly(#).

BQuL The same as BQL, but the quantum branching programs are unitary.

31

All the above classes are usually defined for languages, which are total functions on {0, 1}*.
In this dissertation we instead use these notations to denote the more general promised

versions, which are defined for all partial boolean functions on {0, 1}*. Most of our results
still holds for languages, and the exceptions are clearly identifiable from context. Finally, we

note that all these classes can be naturally extended to their non-uniform versions.

32

Part 1

Algorithmic Results

33

Overview of Part I

In Part I, we present our results that could be classified as algorithmic. A shared theme for
all these results is that certain classes of space-bounded computation can be simulated by

some other classes with less resources while the space usage increases by at most a constant
factor. For instance, we partially derandomized BPL, and eliminate intermediate measure-

ments for BQL, while keeping the space logarithmic.

SPACE-BOUNDED COMPUTATION AND MATRIX POWERING

A particularly interesting perspective of space-bounded computation is that all the classes
with space constraint can be characterized as powering (or iteratively multiplying) matri-
ces with bounded dimensions. This is because when the space is limited to O(S) (qu)bits,
the computation model contains at most 2(S) base states, and the actual state could be

a probability distribution or a superposition on the base states, depending on which re-
source the model possesses. Then the transition between the states naturally corresponds to

20(8) x 2°0) matrices. Specifically we have the following correspondences:

34

Classical deterministic computation <+ Deterministic Transition matrices (0, 1-

matrices that has exactly one entry 1 in each column)

Classical reversible computation <+ Permutation matrices

Classical randomized computation <+ Stochastic matrices

* Quantum computation <+ Unitary matrices

The actual computation is just applying these transition matrices, which are determined
by the input x (and uniformly determined if the model is uniform), for the time limit num-
ber of times. Therefore, the computation corresponds to repeatedly multiplying such ma-
trices, or even powering the matrices where we integrate the time stamps if the time limit
T < 29(S). Since matrix powering is a problem in NC?, this fact alone is powerful enough
to put almost all logspace complexity classes (L, NL, BPL, BQL, #L and GapL, etc.) in
NC?. This also provides a very simple characterization of these complexity classes via the

complete problems of powering corresponding matrices, for instance:
plete p p g p g

Theorem 3.1. The Stochastic Matrix Powering problem is BPL-complete. The input includes
an n X n stochastic matrix M and a parameter T such that T < poly(n). The promise is that

M n,1] > 4/5 or M"n, 1] < 1/5, and the output is 1 in the former case and 0 in the latter.

Theorem 3.2. The Unitary Matrix Powering problem is BQL-complete. The input include
a unitary matrix M € C"™7", a parameter T < poly(n) and a projective measurement
IT € C**". The promise on the input is that |TLM”¢||5 > 4/5 or |I1M e,||3 < 1/5, and

the output is 1 in the former case and 0 in the latter.

35

Albeit being simple observations, characterizations like Theorem 3.1 and Theorem
turn out to be very fundamental and have found numerous applications, such as designing
new complete problems for space-bounded complexity classes [,], and devel-
oping new derandomization algorithms []. In the rest of Part | we will see more

applications, which we give a brief overview below.

RoBUST ALGORITHMS WITH UNTRUSTED RANDOMNESS

One benefit of the matrix powering characterization is that linear algebra is efficiently veri-
fiable. To verify that M - x = y, where the matrix A1 is easily accessible but the vectors x and
y are costly to access, one could sample a random vector and check whether (2 - M) - x
equals « - y. This way, each entry of x and y is accessed only once. Even better, it suffices to
use a pseudorandom vector z (specifically £-wise independent when the field is R), so that
the randomness usage and space usage are both only logarithmic in the dimension.

This implies an efficient way to verify space-bounded computation: Since all we care
about is M7e; for some easily computable transition matrix A/ and initial vector ¢;, the
proof could just be Mey, M?e, . .., MTe, and we check whether each vector after multi-
plied by A equals the next. The proof could be generated by simply repeatedly simulating
the original computation, and therefore the proof protocol could be realized by a pair of
efficient prover and verifier where the prover has unlimited randomness but the verifier has
only logarithmic randomness.

As we show in Chapter 4, this protocol is closely related to the notion of robust ran-
domness. We consider algorithms that uses two parts of randomness, one is trusted and is

guaranteed to be perfectly random, while the other is untrusted and could be adversarially

36

chosen. In particular, if we run the prover’s algorithm from the above protocol but feed it
with untrusted random bits, the generated proof either passes the verification and yields the
correct answer or gets rejected, and the verification uses only O(log) trusted random bits.
In order words, we reduce the trusted random bit usage to logarithmic while keeping the
small space usage. This gives rise to the result of Theorem , which in the language of

complexity classes is translated to BPL = RPL(log 7).

CERTIFIED HARDNESS vs. RANDOMNESS

Assume that we have a function that is supposed to be a PRG, for instance the Nisan-
Wigderson PRG [] constructed from a presumably hard function f. We use its out-
puts as the untrusted random bits fed to the prover above. This provides an efficient way
to utilize the pseudorandomness that is in some sense certified: Either the algorithm gives
an output that is certified to be correct, or rejects the proof and aborts so that the function
fis certified to be not hard, and a certification of the latter fact, which is a small circuit that
average-case computes f, could be easily generated.

What we do in Chapter 5 is even stronger. Instead of using the average case hardness
assumption in [], we can start with the worse-case assumption in [] and im-
plement the hardness amplification process. In details, starting with a boolean function f
that we assume no small circuit could compute correctly on all inputs, [] shows that
how to construct another boolean function f that no small circuit could compute correctly
even on a little bit more than half of the inputs, which is the hard function we want in the
Nisan-Wigderson PRG. It was further checked in [] that the construction from f'to

f is realizable in logspace, which gives rise to a RPG for BPL assuming fis computable in

37

small (actually linear) space.

In their proof for the hardness amplification process, [] showed that if there ex-
ists a small circuit B that computes / in the average case, then there exists a small circuit C
computing fin the worst case (i.e. on all inputs). For our purpose, we want the result to be
certifiable so we need to explicitly reconstruct the circuit C from B, deterministically in small
space. However, even though [] did provide the reconstruction somewhat explicitly,
certain steps in the process is not clearly implementable within small space. Moreover, the
reconstruction heavily depends on taking the majority vote over repeated random proce-
dures, in the form that if B(x,) equals f{x) with high probability over random 7, then tak-
ing polynomially many independent 7; we have that MAJ;(B(x, 7;)) equals f{x) with error
probability exponentially small. By the union bound over all possible inputs x, there must
exists a selection of 7; which makes the majority equals f{x) on all x. This is basically the
same way that BPP = P /poly is proved [], but we cannot assort to non-uniformity,
nor could we store that many random bits and test all possibilities.

In our actual proof, we use an amplification and reconstruction process that is a bit
different from the one in |]. In particular, the amplification from a worst-case hard
function to a constant-average-case hard (hard on a constant fraction of inputs) func-
tion in [], which relies on Impagliazzo’s Hardcore-Set Lemma [] and is not
clearly doable in logspace, is replaced with the low-degree polynomial extension process in
[]. The results in [] actually showed that the entire hardness amplification in
[] could be replaced with low-degree extension, and the reconstruction corresponds
to list-decoding Reed-Muller codes. However, it is also not clear that list-decoding could be

done deterministically in logspace, so we only use low-degree extension up to constant er-

38

ror so that it can be directly decoded with Berlekamp-Welch algorithm []. The other
technical issue mentioned above of error reduction by repetition, is solved by not repeating
the randomness independently but using pseudorandomness, generated by samplers (Defi-

nition), which has logarithmic seed length and is computable in logspace [].

UNITARY QUANTUM COMPUTING

Notice that Theorem 3.2 does not hold trivially. In fact, since the problem is only powering
unitary matrices, the corresponding computation should be unitary quantum logspace, i.c.
BQuL. The reason it holds is because we have the results that general quantum computing
can be simulated by unitary quantum computing, with constant error in logspace [].

Without the logspace constraint, it was known how to simulate any quantum channel
with unitary quantum circuits [,], in which intermediate measurements
are allowed and can be deferred at the cost of space. The key idea to perform the simulation
in logspace is that instead of simulating the channels ® themselves, we simulate their nat-
ural representations K(®). The problem with this approach is that K(®) could have large
spectral norms, and if we force them into unitary matrices we have to scale them down,
and that introduces a exponentially large factor in error after powering. In |], they
found out that we actually do not need to scale each individual K(®) down: The problem
of computing the power K(®) actually reduces to computing the inverse Z for some
matrix Z polynomially related to K(®), and we just need to scale Z down which only intro-
duces polynomially large factor in error.

In Chapter ¢ we give a detailed review of this approach, and enhance the result of |]

by showing that not only decision problems can be simulated, we can actually use unitary

39

quantum circuits to output the entire final state of any general quantum algorithm up to
polynomial accuracy, and thus could simulate the results of any multi-part measurement.
We also show that any algorithm that simulates quantum computing for decision problem
can also be used to simulate quantum learning with the same efficiency. Both these results
rely heavily on producing consistent {0, 1}-bits so that the results on decision problems
could be used, similar to the concept of pseudo-determinism for randomized computation,
and indeed we adapt the shift and truncate method by Saks and Zhou [] to prove our

results.

40

Robustly Randomized Algorithms

The goal of this chapter is to introduce a new type of randomized algorithms called robustly
randomized algorithms, define the related complexity classes and prove its relations with
previously-studied classes.

We first recall the definition of robustly randomized algorithms. Note that for simplic-
ity, we define here robustly randomized algorithms only for total functions, but similar
definitions can be given for partial functions, search problems, etc. Similar definitions can
also be given in essentially all other settings where random strings are used, for example,

query complexity, interactive proofs, etc.

Definition 4.1. Lerf = {f, : {0,1}" — {0,1}},en be a family of functions. Let

k : N — N bea monotone computable function. Let A be a randomized algorithm that
uses two separate (read-once) random strings Ry, Ro. We say that A is a robustly randomized
algorithm for f, with O(k) trusted random bits, if on every input x of length n, the algorithm
A reads at most O(k(n)) bits from Ry and the outpur A(x) satisfies the following two require-

ments:

41

1. With the uniform distribution over Ry, R,,

Pr [A(x) = f,(x)] > 3/4

Ri,R;
2. Forevery r (even adversarially chosen after seeing the input x),
BIAG) € (/i) LHR: =] 2 3/4
(where the probability is over the uniform distribution over R,).

4.1 S1MPLE RELATIONS WITH OTHER CLASSES

In this section we show that many previously-studied complexity classes can be revisited

and redefined in light of our new definition. We first consider polynomial-time algorithms.

Definition 4.1.1. Letk : N — N be a monotone computable function. The class RPP (k)
is the class of all languages computable by a polynomial-time robustly randomized algorithm

with O(k) trusted random bits.

Let ZPP be the class of problems solvable by zero-error probabilistic polynomial-time
algorithms, and BPP () be the class of problems solvable by bounded-error probabilistic
polynomial-time algorithms that are limited to reading O(k) random bits. We have the

following relations:

Proposition 4.1.2.

RPP(0) = RPP(log) = ZPP.

42

Proof. Given alanguage L in ZPP, consider the zero-error randomized algorithm for L
that outputs the correct answer with probability at least % This algorithm can be directly
viewed as a robustly-randomized algorithm where all the random bits are untrusted, and
thus ZPP C RPP(0).

On the other hand, given a language L in RPP(log), consider its robustly randomized
algorithm 4 with O(log 7) trusted random bits R; and (polynomially many) untrusted ran-
dom bits R,. We design a zero-error randomized algorithm for L as follows. After sampling
r ~ R, and storing 7, it iterates through all 20(logn) possible values of R;. In each iteration
it runs 4 based on the chosen value of R and 7, and takes the majority vote (breaking ties
arbitrarily) over all 2°0°8”) outputs as the final output.

To see the correctness of the algorithm, first notice that it is zero-error as for every 7, any
incorrect answer can be outputted by at most i fraction of R; and thus cannot win the
majority vote. Also notice that the correct answer wins the majority vote if it is outputted
for more than half of R;. Since the correct answer is outputted with probability at least

over Ry, R,, it must win the majority vote (and be the final output) with probability at least

1

5 over R,.

Therefore we showed RPP(logz) C ZPP, and together it holds that RPP(0) = ZPP =
RPP(log 7). []

Proposition 4.1.3. Forcvery k,

BPP(k) C RPP(k).

Proof. Given a language L in BPP (), consider the bounded-error randomized algorithm

43

for L that outputs the correct answer with probability at least 2. This algorithm can be

directly viewed as a robustly randomized algorithm where all the O(%) random bits are

trusted, and thus BPP(k£) C RPP(k). O

Corollary 4.1.4. For every k,
BPP(k)“"" C RPP(k).

Proof: Consider an algorithm in BPP (£)?PF with error probability Z. By Proposition
and Proposition , we can simulate such an algorithm with a RPP (k) algorithm that
uses only trusted random bits itself, but answers the oracle calls with RPP(0) subrou-
tines which uses only untrusted random bits. The overall number of trusted random bits
is O(k).

Suppose there are 7 oracle calls. We can assume each RPP(0) subroutine outputs the
correct answer to the oracle call with probability at least 1 — ¢ - by repetition. The algorithm
aborts whenever one of the subroutines outputs L, so the overall success probability is at

least % by union bound.]

Proposition 4.1.5.

| JRPP(x) = BPP.

Proof. For every ¢, given a language L in RPP(%¢) and its robustly randomized algorithm.
We modify it so that whenever it is supposed to output L, it simply outputs 0 instead.

Then the algorithm can be viewed as a randomized algorithm for L with error bounded

44

by %, and thus RPP () C BPP. Combined with Proposition we have
BPP = JBPP(n) = | JRPP(x"). O
Proposition 4.1.6. Forevery k, if BPP (k) and ZPP do not contain one another, then
BPP(k) U ZPP # RPP(k).

Proof. Take L; € BPP(k) \ ZPP,and L, € ZPP \ BPP(k). We claim that L = L; & L,
(the symmetric difference of Z; and L,) gives the desired separation.

Since L € BPP(k)**", by Proposition 4.1.> we have L € RPP (k). On the other hand,
L ¢ BPP(k) since otherwise so does L, = L & L;. Similarly L ¢ ZPP. Notice that here

we crucially use the fact that both classes are closed under symmetric difference. Therefore

BPP(k) U ZPP + RPP (k). 0

Next, we show that every efficient robustly randomized algorithms is equivalent to an
interactive proof with efficient prover and verifier, where the prover is allowed an unlimited
number of random bits, but the random bits for the verifier (public or private) are limited.
That is, unlike standard interactive proofs, the prover and the verifier here have the same
computational power and only differ in the number of random bits that they are allowed to

use, and the verifier is allowed to abort. We give the formal definition below.

Definition 4.1.7. A language L is recognized by an interactive proof protocol (P, V) which

outputs 1, 0 or L, if the following requirements are satisfied:
1. With the bonest prover P, (P, V) outputs1ifx € L and outputs 0ifx ¢ L with

45

probability at least 3.

2. With any (computationally unbounded) prover P', (P, V) outputs Lor L ifx € L

and outputs 0 or L ifx ¢ L with probability at least 3.

Such an interactive proof can be viewed as a proof of randomness: The prover sends
arandom string to the verifier and tries to convince the verifier that the random string is
sufficiently random to perform the computation on a particular input x (which they both

know). We are now ready to show the equivalence.

Proposition 4.1.8. A language L is in RPP (k) if and only if it is recognizable by an in-
teractive proof (which outputs 1, 0 or L) with a probabilistic polynomial-time prover and a
probabilistic polynomial-time verifier, where the verifier is limited to at most O(k) random

bits.

Proof. Given a robustly randomized algorithm, we design an interactive proof where the
verifier simulates the algorithm, but with the untrusted random bits provided by the prover
as proof. The verifier also aborts when the length of the proof does not equal to the num-
ber of untrusted random bits it needs. On the other hand, given a interactive proof proto-
col, we can simulate the protocol with a robustly randomized algorithm where the random
bits used by the verifier are trusted and the random bits used by the prover are untrusted.

The equivalence follows from Definition and Definition . [l
Finally, we consider robustly randomized algorithms in the logspace regime.

Definition 4.1.9. Letk : N — N be a monotone computable function. The class RPL(k)
is the class of all languages computable by a logarithmic-space and polynomial-time robustly-

randomized algorithm with O(k) trusted random bits.

46

Similar to the polynomial-time cases, both ZPL (the class of problems solvable by zero-
error probabilistic logspace algorithms) and BPL (%) (the class of problems solvable by
bounded-error probabilistic logspace algorithms that are limited to reading O(k) random
bits) are closely related to RPL(%). In fact, we can show the following analog of Proposi-

tion

Proposition 4.1.10.

RPL(0) = RPL(1) = ZPL.

Proof. The proof is almost the same as the one for Proposition . The proof for ZPL C
RPL(0) goes in exactly the same way. However for the other direction RPL(1) C ZPL,
there is a caveat: a logarithmic-space algorithm cannot afford to store all the untrusted ran-
dom bits. Therefore, instead of sequential iterations over all possible values of the trusted
bits, we do it in parallel, so that the untrusted random bits are still read-once. As there are

O(1) trusted random bits, this only increases the space by an O(1) factor. O

However, rather surprisingly, unlike Proposition , we do not need to characterize
BPL using RPL with polynomially many trusted random bits. As shown in the next theo-

rem, O(log) trusted random bits suffice to accomplish all the jobs in BPL.

Theorem 4.1.11.

RPL(log n) = BPL.

We will prove Theorem in the next section.

47

4.2 STREAMING ProOF FOR BPL

To prove Theorem , we will first show the equivalence of RPL algorithms with a spe-
cial type of non-interactive proofs called streaming proofs, in a similar way to the equiva-

lence in Proposition

4.2.1 STREAMING PROOFS

A streaming proof consists of a pair of randomized Turing machines (a randomized prover
and a randomized verifier) which share a common stream tape. We assume that the verifier
is a logspace machine. The prover doesn’t have a separate output tape, instead, it has write-
once access to the stream tape onto which it writes a proof IT. The verifier has read-once
access to the stream tape from which it can read IT. Both the verifier and the prover have
read-many access to the inputx € {0,1}*. We allow the prover and verifier to output a
special symbol L. Upon outputting this symbol, the algorithm stops all further processing

and we say that the algorithm aborts.

Definition 4.2.1. Let F = {f, : {0,1}* — {0,1}},en bea family of functions. Let
P : N — N beamonotone computable function. We say that F has a streaming proof
of length P if there exists a prover P using a random string R, and a randomized logspace

verifier V using a random string Ry such that on input x € supp(f,,),

1. The honest prover P, with at least % probability over Ry, outputs a (randomized) proof

I € {0,1}7") such that

NI

PV (s 1) = £,(x)] =
(where the probability is over the uniform distribution over Ry, R,).

48

2. Foran arbitrary T1 € {0,1}'") (even adversarially chosen after seeing the input x),

Pr(V(x, TT) € {f(x), L}] >3

Ry

(where the probability is over the uniform distribution over R,).

Letk : N — N be a monotone computable function. If the verifier V never reads more than

O(k(n)) random bits from Ry, we say that the verifier uses at most O(k(n)) random bits.

We sometimes omit mentioning the length P(%) of the proof and it is understood that it

is always bounded by the running time of the prover, which is polynomial in 7.

Lemma 4.2.2. A family of functions is in RPL(k) if it bas a streaming proof between a

logspace prover and a logspace verifier where the verifier uses O(k) random bits.

Proof. Given a streaming proof between a logspace verifier and a logspace prover where

the verifier uses O(k) random bits, consider a RPL () algorithm that simulates the verifier
using trusted randomness. For each bit of the stream that the verifier wants to read, we have
the algorithm simulate the honest prover using untrusted randomness. The completeness
follows as both the verifier and the honest prover simultaneously succeed with probability
at least (3/4)* > 1/2, furthermore, the probability that the verifier incorrectly answers
given any proof is at most 1/4. By standard error-reduction techniques, we can amplify the

completeness to be at least 3 /4. This completes the proof. O

What remains is to show that BPL can be solved by streaming proof protocols with
k = O(logn). This s reflected in the following lemma, which will be proved in the next

subsection. For now, let us see how the two lemmas imply Theorem

49

Lemma 4.2.3. Every family of functions in BPL has a streaming proof between a logspace

prover and a logspace verifier where the verifier uses O(log n) random bits.

Proof of Theorem from Lemma and Lemma . Firstly, it is easy to see the
containment RPL(logz) C BPL. We consider any RPL(log) algorithm and modify it so
that whenever it is supposed to output L, it outputs 0 instead. This can be viewed as a BPL
algorithm with error at most 1/4 and thus, RPL(logz) C BPL.

The conclusion that BPL C RPL(log #) follows immediately from Lemma and

Lemma .]

4.2.2 PROOF OF LEMMA

It suffices to develop a streaming proof for the Stochastic Matrix Powering problem, which
is logspace-complete for BPL. Towards this, we define a notion of a d-good sequence of

vectors for a stochastic matrix M.

Definition 4.2.4. Let M be any n X n stochastic matrix and T < poly(n) be a natural
number. Letv; = M (&) foralli < T. Ler 9 € [0,1]. A sequence of vectors vy, v}, ..., v €

R” Zs said to be d-good for M if for all i € [T, we have ||v, — v||, < dand vy = ey.
We make use of the following two claims.

Claim 4.2.5. There is a randomized logspace prover which given an n X n stochastic matrix
M and parameters T < poly(n), d > 1/poly(n) as input, outputs a d-good sequence of vectors

for M with probability at least 3 /4.

Claim 4.2.6. Let0 < 9 < (10*n1°) . There is a randomized logspace verifier which given

any n X n stochastic matrix M and parameters T < poly(n), d > 1/poly(n) as input and

50

read-once access to a stream of vectors v, . . . , vy € R” (where each vector is specified up to

O(log(n)) bits of precision), does the following.
* If the sequence is 9-good for M, then the verifier aborts with probability at most 1/4.
o If ||t — vrll, > 1/4, then the verifier aborts with probability at least 3 /4.
Furthermore, this verifier only uses O(log(n)) bits of randomness.

We now complete the proof of Lemma using Claim and Claim . Con-
sider the Stochastic Matrix Powering Problem. Given an z X # stochastic matrix A as
input and a parameter 7' < poly(n), set & = min {(10*27%)~*,1/10}. Run the prover’s al-
gorithm from Claim using this value of 0 to produce a stream v, . . . , /7. Run the ver-
ifier’s algorithm from Claim on this stream to verify, and return | whenever it aborts.
If the verifier does not abort, we have it return 1 if o/(n) > 2/3, return 0 if () < 1/3

and return | otherwise.

CoMPLETENESS: Claim implies that an honest prover outputs a d-good sequence
with probability at least % Claim implies that a verifier aborts an honest proof with
very small probability. Since ||v}; — v7||, < & < 1/10 by assumption, if v7(z) > 4/5, then
v'/(n) > 2/3andif vr(n) < 1/S then v/ (n) < 1/3. Since MT[n,1] = vy(n), the verifier

returns the correct answer whenever the subroutine does not abort.

SounDpNESss: Consider the behavior of this verifier on an arbitrary proof. If the verifier
makes a mistake and returns an incorrect answer, it must be the case that either v7(n) >

4/S and vl (n) < 1/3orvr(n) < 1/5Sandv/(n) > 2/3. In either case, we must have

SI

o — o7, > |Vp(n) — vr(n)] > 1/4. Claim

with probability at least 3 /4.

This completes the proof of Lemma . We now proceed to prove Claim
Claim
Proof of Claim . The prover’s algorithm is formally described in Algorithm

uses multiple samples to estimate the entries of M (¢;). It is clear that Algorithm

performed in space O(log 7).

implies that such a proof is aborted

and

, which

can be

Algorithm 4.1: Algorithm for Prover in Claim

« Output vy = ¢;.
> let C + ©(n?log(nT)/5).
3 fori<—1,...,T,j<1,...,ndo

4
5
6
7

8

9

10

for count + 1,...,Cdo
let estimate; ; <— 0, k < 1.
forr+1,...,7do
Sample #' € [r] with probability Mk, #'].;
letk < k.
let estimate, ; <— estimate, ; + 1.
Output vector v; where v/(j) = estimate;;/C.

To see the correctness of the algorithm, observe that by evolving the state £ from the ini-

tial state 1 for 7 steps according to M, the algorithm produces a state which is j with prob-

ability exactly M’[1,] = v;(j) foreach; € [n]. By repeated sampling and taking the em-

pirical average, the algorithm can estimate each v;() up to 9/ accuracy with probability

atleast 1 — 1/(4n7T) using C = ©(n*log(nT)/3”) samples by Chernoff bound. This,

along with a union bound over 7 € [7],7 € [n] implies that the algorithm with probabil-

ity at least 3/4, estimates each v;(;) up to d/# precision, and hence produces ¢, such that

[l = dl, < 9.

52

O

Proof of Claim . The verifier’s algorithm is formally described in Algorithm 4.2, which
tries to check that M- v!_, is approximately equal to ¢/, for all 7 € [7]. However, to do this in
a streaming fashion, the verifier will instead test that a random linear combination of these
approximate equations holds. To reduce the randomness from 7"to O(log 7), instead of
using a truly random combination of the equations the verifier uses a pseudorandom com-
bination drawn using a 4-wise independent collection of {—1, 1}-random variables. This is

similar to the ¢,-frequency estimation algorithm in [].

Algorithm 4.2: Algorithm for Verifier in Claim

v Abortif v # ¢;.

2 forr<1,...,11do

3 Sample a,;; € {—1,1} for7 € [T],; € [n] from a collection of 4-wise
independent {—1, 1}-random variables with mean 0;

4 let

A <+ Z iy (M) () — ui(f)] -

i€[1] €[]

s | Abortif |A| > 2070

One can sample from a collection of 4-wise independent {—1, 1}-random variables of

size O(nT) in logspace using only O(log(7)) bits of randomness []. Note that the

jeln]
only on the entries of M and «, and can be computed in logspace. Thus, a logspace algo-

quantity A can be expressed as) (o T}‘Bizjv;(/') where 184], are coefficients that depend

rithm can read the stream of v/(j) for7 = 0,..., T'andj € [z] once from left to right and
compute A =}, [Bl.jv;(/') in a streaming fashion.
We now move on to the completeness and soundness. Let w € R*” be defined at 7 €

(71,7 € [n) by w;; = (M - v,_,)(j) — vi(j). Let vy, . . ., v7 be defined as before.

53

COMPLETENESS OF THE ALGORITHM: Suppose v, . . . , v is a d-good sequence, then

|lof — v;||, < dforalls € [T]and vy = ¢. Since M is a contraction map with respect to

|| - |1, forall 7 € [T]

/ /
HM v,y — U

Y YR VRN (R YR

1 + ||Ul’ - UZ'HI

< ot — vyl + Jlos = ol < 22,

Thus, [|w]|> < [|w][y < 270. Consider the quantity A = (z,w) = >_, a;;w;; that the

algorithm estimates. Note that E(x, w) = 0, and
Var(a, w) = Ela, w)* = Y w}, = ||w]3.
i

Chebyshev’s Inequality implies that with probability at least 0.99, we have | (2, w)| <
2079%. This implies that with probability at least (0.99)"! > 0.8, every iteration in Algo-

rithm 4.2 does not abort.

SOUNDNESS OF THE ALGORITHM: Suppose a dishonest prover produces a stream of
vectors v, . . ., v such that ||v}. — v7||, > 1/4. The verifier always returns L if v}y # ¢, so
we may assume that vy, = ¢. Lete = 1/(107). We argue that for some 7 € [7], we must

> &. Assume by contradiction that || A4 - o], — vi-”1 < eforall7 € [T]. Then

have [|u],

54

by triangle inequality we have

HMT (-1) | - MT*Z' -

2

lor = vl = [|a4" (o) — ||, < i

IN

||M v —

z

1

IN

= T= = 1/10.

S

which contradicts the assumption that ||, — v7||, > 1/4. Thus, we must have ||w||, >

|w||1/(nT) > &/(nT). Note that E{z, w) = 0 and E(z, w)* = ||w||3. Furthermore,

E(z,w)* =E Z wwww e < 6 Z wf‘wj‘2 < 6||w|3.
ik i

Here, we used the fact that the random variables are 4-wise independent. By the Paley-

Zygmund Inequality [], it implies that

Pr | (2, w)® lwllz| = (1=1/10)* -

Vv
OO.I —

> —
— 10

This, along with the fact that ||w||, > &/(»7) implies that Pr [|{2, w)| > 1=2] > 3. By

10T

repeating this experiment 11 times, we can ensure that with probability at least1 — (1 —

1/8)" > 3/4, we find at least one instance so that

e, w)| > —

= > 2077.
= 10nT 100nT?

55

The last inequality is because & < (10*27°)~". This implies that the algorithm aborts with

probability at least 3 /4. [

Remark. In our algorithm, the verifier essentially checks if a certain random linear combi-
nation of the M - v._, is close to the same linear combination of the v,. The verifier could have
instead checked if for every i € [T, M - v)_, was close to V.. This could bave been done by test-
ing foreach i € [T] whether (M - V._,, w) was close to (v, w) for a certain random vector w.
While the latter test is conceptually simpler, the former test bas the additional useful property

that the verifier simply computes a linear function in the variables {v;(j)}.

4.3 QUERY-COMPLEXITY SEPARATIONS

In this section we consider the query-complexity model, where one can fully prove that the

untrusted random string is helpful.

Proposition 4.3.1. Foranyn,k € N, there are two disjoint subsets A, B C {0,1, 2}2"+k
(where {0,1, 2} is viewed as the set of all functions f = {0,1}"** — {0,1,2}), such
that, given a black box access to a function f: {0,1}"™* — {0,1,2}, the following three are
satisfied:

1. There is a robustly randomized protocol that uses only k trusted random bits and only
one query to f and distinguishes between the cases [€ A and f € B with probability at

least 3 /4.

2. For any constant € > 0, any randomized protocol that uses at most (1 — €)n random
bits and distinguishes between the cases f € A and f € B with probability at least 3 /4,

requires at least 22" queries to f.

56

3. Any zero-error randomized protocol that distinguishes between the casesf € A and
f € Buwith probability at least 3 | 4 (and outputs do not know with probability at most

1/4) requires at least 2*®) queries to f.

Specifically, taking £ = log# in Proposition , we observe that there are promise
problems that can be solved by robustly-randomized protocols with only one query and
just a logarithmic number of trusted random bits, whereas any randomized protocol re-
quires either a linear number of random bits or an exponential number of queries, and any

zero-error randomized protocol requires a polynomial number of queries.

Proof. We define the subsets 4, B C {0, 1, 2}2n+k as follows. Let Ry and R, be uniformly
distributed over {0, 1}* and {0, 1}” respectively. For every function f : {0,1}"™* —

{0,1,2}, we say that

* f€ Aifand onlyif Pr[f{R;, R,) = 0] > 3, and for every » € {0,1}",

|

Pr[f(R,, 7) € {0,2}] >

* f€ Bifand only if Pr[AR;, R,) = 1] > 2, and for every » € {0,1}",

Pr[AARy, 7) € {1,2}] >

SRS

Clearly 4 and B are disjoint as Pr[f{R;, R;) = 0] + Pr[AR,R,) =1] < 1.

1. A robustly randomized protocol that distinguishes between f € 4 and f € B uses

k trusted random bits R; and 7 untrusted random bits R,. It makes a single query

57

for f{R;, R,) and based on the query result being 0,1 or 2, outputs 4, B or L accord-

ingly. The correctness of the protocol is guaranteed by Definition

. For any constante > 0, consider a randomized protocol using at most (1 —)z
random bits and making at most ¢ queries to /. Fix all the query answers to be 2, and
let Q C {0,1}"** be all the possible positions being queried over all choices of the

random bits. Assuming g < }; - 27, we have |Q] < 2(1_5)”4 < }; .27,

Now pick £, ¢ : {0,1}"* — {0,1,2} to be:

0 ifr¢Q 1 ifr¢Q
fr) =) =
2 ifreQ 2 ifreQ
It is straightforward to check that f € 4andg € B. The protocol behaves exactly

the same on fand g, thus being incorrect with probability at least % on either one of

them. Therefore, a successful protocol must have g > 29(),

. Consider a zero-error randomized protocol making at most ¢ queries to £. Fix fto be
the constant function 0 and clearly f € 4. We arbitrarily fix a choice of the random
bits where the protocol outputs f € 4, and let Q be the positions queried under the

fixing. Assume that |Q| < ¢ < %} -2k,

Now pick ¢ : {0,1}"+* — {0,1,2} to be:

1 ifr¢Q
0 ifreQ

g(r) =

It is straightforward to check that ¢ € B. Under the fixed choice of random bits, the

58

protocol behaves exactly the same on fand ¢, and thus incorrectly decides ¢ € 4.

Therefore, a successful protocol must have g > 20 O

59

Certified Hardness vs. Randomness for

Logspace

Given Theorem from last chapter, that every BPL problem can be solved with ro-
bustly randomized algorithms with O(log 7) trusted random bits, the follow-up question is
how to manipulate the untrusted random bits for our benefit. It turns out that the natural
choice is to feed pseudorandom bits to the untrusted part. Say we have an RPL(log) algo-
rithm A(x, Ry, R,) for some BPL problem, where |R;| = O(log#) and R, is untrusted,
and we are given an alleged pseudorandom generator G of seed length O(log 7). In logspace

we can find the majority of outputs, among {0, 1.1}, over A(x, y, G(z)) for all y and 2:

¢ If the majority is 0 or 1, it must be the correct answer on x by soundness of the ro-

bustly randomized algorithm.

* On the other hand, if the majority is L, it means that the pseudorandomness is de-
fective. After all, if we replace G(z) with truly random bits, by completeness the ma-

jority of outputs cannot be L. Therefore in this case we know for a fact that G is not

6o

really pseudorandom, and \A(x; y, -) is a proof for this fact.

The goal of this chapter is to work more effectively with the above intuition, and prove

two main results: Theorem and Theorem

5.1 LoOGSPACE VERIFIER FOR PRG

This and the next section are devoted to prove the following theorem:

Theorem s.1.1. Forevery family of boolean functions f € DSPACE[n| and ¢ > 0, there is
a deterministic algorithm that, given as the input an OBP B of length n and width n, runs in

space O(log n), and either
1. Outputs B[B| with 1/4 error; Or
2. Outputs a circuit C of size 2°™ that computes fon {0,1}” where m = ©(logn).

Before getting into the proof, let us first compare it to the result of Klivans and van

Melkebeek [].

Theorem s.1.2 ([1). If there is a family of boolean functions f € DSPACE|[n| that is

not computable by circuits of size 27" for some e > 0, then BPL = L.

Their proof is based on the worst-case hardness vs. randomness results by Imagliazzo
and Wigderson [], and shows how every step in the construction of the Imagliazzo-
Wigderson pseudorandom generator can be executed in deterministic logspace. To obtain
our desire result, we need to provide two additional features. First, give an algorithm that
distinguishes between the PRG and real randomness, we need to explicitly construct a next-

bit predictor for the PRG. Second, we need to reconstruct the circuit that computes f from

61

the next-bit predictor in a space-efficient and uniform manner. In this section, we address
the first feature. In order to do so let us first formally define pseudorandom generators and

next-bit predictors.

Definition s5.1.3. A4 pseudorandom generator (PRG) is a function G : {0,1} — {0,1}",
where s is usually referred to as seed length. We say that G e-fools a function f: {0,1}” — R
if

‘E[f] - Ig[f]‘ <e,

where we use E[f] and Eg|f] to denote the expectation of f under uniformly distributed inputs

and pseudorandom inputs generated by G respectively, that is,

Efi = E =) Ef= E GO

x~U,

We use the same convention in all of the rest of this section.
Definition s.1.4. Given a generator G : {0,1} — {0,1}", a function T : {0,1}* — {0,1}
with i < n is an e-next-bit predictor for G if

Lo [T(G)10) = Gla)i] > 1/2 + €.

Note that a next-bit predictor is naturally not fooled by the pseudorandom generator.
The main lemma in this section is the following, which shows that there is a logspace
verifier for PRGs (with logarithmic seed lengths against logspace OBPs), that detects when

a PRG fails and outputs a next-bit predictor for the PRG.

62

Lemma s.1.5. For every error function (n) computable in space O(log n), there is a deter-
ministic algorithm that, given as input an OBP B of length n and width w, and the black-box

oracle access toa PRG G : {0,1} — {0,1}”, runs in space O(s + log(nw)), and either
1. Confirms that G < - n-fools B; Or

2. Outputs an OBP T of length at most n and width w that is an € | 2-next-bit predictor

for G.

Lemma can be proved using Theorem , as we described at the start of this
chapter. Here we present a simpler and more direct proof. We first define a series of poten-
tial distinguishers, with the property that each can be evaluated in logspace. Each distin-

guisher measures the bias of the next bit in the PRG upon reaching a particular state.
Definition 5.1.6. Given an OBP B of length n, forevery: < nandv € Vlet N, :

{0,1}" — {—1,0,1} be the function defined as:

1 ifB_,(x) =landx; =1

N,y(x) = ¢ 1 ifB_,(x) =landx;1; =0

0 otherwise.

Furthermore, N, is computable in logspace given B and v.

When x is uniformly random, B_,,(x) and x; are independent, and therefore E[N,| =
0 for all v. Consequentially, our verifier checks that |E¢[N,]| is small for all v, where we feed

the first 7 4- 1 bits of the PRG output to N,. We first show its soundness:

63

Lemma s.1.7. Given an OBP B of length n, suppose that for every i,y Eg[N,]| < e

vel;

Then G € - n-fools B.

Proof. As every edge from layer V; goes into layer V4, for every 7 < n we have

> [EBL] - ElBL

v€Vit1
< Z Z xf{]n[B—m(x) = 1A%y = 6] = xNIG)(rM)[B_w(x) =1 Ax = b]|.
veV; be{0,1}

Notice that by the definition of IN,, we have

E[N,] = Pr [BL,(x) =1Axq1 =1] — Pr [B,(x) =1 A x4y = 0]

x~U, x~U,

—2 Pr [Boo(x) =1 Axyy = 1] — E[BL,)]

x~U,

=E[B_,] -2 P(r/ [Boo(x) = LA %1 = 0],

and the above holds similarly under pseudorandomness generated by G. Therefore we fur-

ther have

> [E(5..] - Bl

€Vt

<> [ElB..] - ElBL| + > [EIN,] - EIN,]

2

veEV; veV;

E[N,]|.

G

With the assumption that) . [E¢[IV]| < ¢ and the fact that E[B_,,)| = E¢[B_,] = 1,
we conclude that) ., [E[B_,,] — Eg[B_,]| < ¢ - n. As the output labels are binary, this

means that |E[B] — Eg[B|| < € - n,ie. Ge - n-fools B. [

64

Proof of Lemma . Forevery 7 < n, the algorithm iterates through every v € V/; and
all the possible seeds for G, computes . [E¢[N,]| and checks if it is at most &. This can
be done in space O(s + log(nw)). If all such checks pass, we have by Lemma that G
e - n-fools B.

Otherwise, we find some 7 < nsuchthat)), [E¢[IV,]| > €. Let T'be an OBP of
length 7 that is the same as B from layer V; to V;, such that the output label on eachv € 7;
is Lif Eg[V,] > 0,and 0if EG[N,] < 0. Such an OBP is of size at most that of B, and can
be constructed in space O(s 4 log(nw)). We have

xNIG)(ra)[T(xl"l') = xz‘+ﬂ

= Z xNIG)(rUJ)[B%”(x) =1Ax =1+ Z xNI;(ru) [Bouled) = 1A %1 = 0
vEV; veEV;
EG[N,]>0 Eg[N,]<0

=3 (Bl + [gin])

2
>1(1+) O
> g).

veEV;

What remains is to construct an alleged PRG from the alleged hard function £; such
that given its next-bit predictor we can efficiently reconstruct the circuit that computes /.

Formally, we state the following theorem, which will be proved in the next section.

Theorem s.1.8. Given e > 0, and a family of functions f € DSPACE[m] where f = {f,,
{0,1}" — {0,1} }uen, there is a family of explicit generators G = {0,1} — {0,1}" with
s = O(logn) computable in space O(log n), and a deterministic logspace algorithm that,
given n € Nand a1/(8n)-next-bit predictor B for G of size at most n* which is evaluable in

space O(log n), ontputs a circuit C of size 2°™ for f,,, with my = ©(log n).

65

For now, let us see how Theorem follows from Lemma and Theorem

Proof of Theorem . Let G : {0,1}" — {0,1}” be the generator of Theorem with
error € and function family £, and let 7 = m, be the instance size of fused to construct G.
We then apply Lemma on Band Gwithe = 1/(4n). Of the two possible out-

comes:

1. Ifitis certified that G ¢ - n-fools B. In this case the algorithm computes and outputs

E¢[B] which approximates E[B] within additive error 1/4.

2. Otherwise we get for some 7 < 7 an explicit OBP 7 of length 7 and width w, such
that Pr, , [T(G(x)1.;) = G(x)i41] > 3(1 + €). In other words, Tlisane/2 =
1/8n next-bit predictor against G of size at most 7%, and 7 can be evaluated in space
O(log). Then by Theorem , we can construct in space O(log 7) a circuit C for

foninputs of size m = ©(log z) of size at most 2°™.]

5.2 EFFICIENTLY RECONSTRUCTIVE DERANDOMIZATION

We prove Theorem in four stages. Following the framework of [], we first as-
sume that fis a (worst-case) hard function, and construct a PRG via hardness amplifica-
tions and the Nisan-Wigderson PRGs []. The detailed steps are slightly different

from those in [], and we adapt the following strategy:

1. From f; construct (by low-degree extension) a function / that is hard-on-average on a
0.99 fraction of inputs.
2. From £, construct (by derandomized XOR Lemma) a function /” (with multiple

bits of output) that is hard-on-average on a 27" fraction of inputs.

66

3. From /", construct (by Goldreich-Levin) a function /” with single-bit output that is

hard-on-average ona1/2 + 272 fraction of inputs.

4. Use /" to instantiate a Nisan-Wigderson pseudorandom generator G : {0,1}' —

{0,1}” fors = O(m).

We make sure that 7, //, /" and G are all computable within O(log 7) space.

Furthermore, we prove that every step can be made logspace reconstructive, in the sense
that given a counterexample to the conclusion (i.e. a small circuit that obtains some advan-
tage) we can produce a counterexample to the assumption in deterministic logspace. This
requires modifying the standard reconstruction algorithms for the first three steps, all of
which use randomness-inefficient applications of the probabilistic method. Over the next
four subsections, we state and prove the necessary components of the reconstructive PRG,

and in Section , combine these results to conclude Theorem

5.2.1 DERANDOMIZATION TOOLBOX

First, we recall some notation related to the advantage of circuits.

Definition s.2.1. Given f: {0,1}" — {0,1}” and a circuit C, let

SUC(C,f) = Pr [C(x) = flx)].

x~U,

Form =1, let ADV(C, f) = 2SUC(C, f) — L

We will repeatedly make use of an averaging sampler in order to make probabilistic

method arguments randomness efficient. We first recall the definition of an averaging sam-

67

pler, and then recall the classical resultin [] that there exist highly efficient averag-

ing samplers, even with exponentially small error.

Definition s.2.2. Givenm € Nande,d > 0, wesay that SAMP : {0,1}* — ({0,1}™)" is

a t-query (m, €, 9)-averaging sampler with seed length { if for every g = {0,1}” — [0,1] we

have
p E [o(a)] — Elol| < e| >1- 2.
Glsees q;NSrAMP(Ug) |: z'E[t]Lg(q)] Lg]‘ - €:| -
Proposition s.2.3 ([). Givenm € Nande > 0, there existst = poly(m/<)

and a t-query (m, €, 2™)-averaging sampler with seed length 4m. Moreover, the sampler is

evaluable in space O(m).

Another tool that is repeatedly used in our proof is the combinatorial design, which is a
family of subsets Sy, . . .,.S, C [s] such that |S;| = as for some constantz € (0,1) and all
i € [n],while |S; N S| < 2a’sforalli # j. The design will be used at two places: once
in derandomized XOR Lemma (Section) and once in the Nisan-Wigderson PRG
(Section). While the application in Section only requires a linear-sized design,
the application in Section requires an exponential-sized design that is deterministically
constructible in linear pace. The later was formally given in [], so we concurrently

use it for both applications.

Proposition s.2.4 ([1). Foreverya € (0,1), thereis € (0,1) such that fors € N
one can deterministically generate in space O(s) a combinatorial design of sizen = 2% over
[s), that is, a family of subsets S\, . .., S, C [s| such that |S;| = asand |S; N S}| < 2a%s for all

1</<j<nm

68

5.2.2 DERANDOMIZING THE PoLYNOMIAL DECODER

For step (a) in Theorem , we need to convert a worst-case hard function to one with

constant average-case hardness.

Lemma s.2.5. Givenf : {0,1}" — {0,1}, thereisg : {0,1}" — {0,1} where m’ =
© (m) such that, for every circuit 1B such that SUC(B,g) > 0.99, there is a circuit C of size
mOW | B| such that

C(x) = flx), Vx € {0,1}".

Moreover, when f is computable in space O(m), g is also computable in space O(m), and there
is a deterministic O(m)-space algorithm that, given the circuit B which is evaluable in space

O(m), prints C, and C is also evaluable in space O(m).

The proof for Lemma is inspired by [|, where we encode f through Reed-
Muller codes and switch to boolean domain via Hadamard codes. However, since we only
need the resulting function to be average-case hard on a constant fraction of inputs, the
code can be directly decoded instead of list-decoded, and we derandomize the decoding
procedure with samplers.

We need the following two facts. The first is a folklore fact on constructing low-degree

extension, whose proof can be found at [, Proposition 2.2]:

Proposition 5.2.6. Given a finite field IF and a subset H C ¥, and oracle access to a function
[H" — {0,1}, one can compute in space O(log |F| + log £) an l-variable polynomial
p : F° — T that coincides with fon H', and the degree of p in each variable is smaller than

|H|.

69

The second fact concerns decoding Reed-Solomon codes:

Proposition s.2.7. Given a finite field F with |F| = N, whose elements can be canonically
listed as ay, . . ., an whereay, = 0, there exists a circuit DEC : TN — FN that satisfies the
following: If there exists a univariate polynomial q : F — T of degree at mostd < N, such

that g(a;) = b; for at least (N + d) /2 of i € [N], then

DEC(by, ...,bn) = (g(a1), - .., q9(an)).

Furthermore, DEC is of size poly(IN) and depth polylog(N), and can be uniformly constructed
in space O(log N) given the arithmetics in F.

Proof. The circuit DEC instantiates the Berlekamp-Welch algorithm [,]. The
algorithm involves solving systems of O(NN) linear equations on O(N) variables, for which

Csanky’s algorithm [] can be implemented in logspace-uniform-NC. O

Proof of Lemma . We assume without loss of generality that 7z is a power of 2. Let
¢ = m/logm,and F be a finite field of characteristic 2 and size m*. Take H C Ftobea
subset of size 7, and we identify the domain {0, 1} of fwith A" as 2" = |H|". The arith-
metics in [F can be done in time O(|F|) and space O(m), and so does the bijection between
{0,1}” and H* (and its reverse).

Letp : F* — F be the polynomial in Proposition ,and let g : F**1 — {0,1} be the

function defined as

g(xl, e ,xg,y) = <p(x1, e ,xg),y>,

where (-, -) stands for inner product in I, when taking the binary representation of the

70

two arguments in . It is clear that ¢ can be computed in space O(m), and the input of ¢
has length (¢ 4 1) log |F| = O(m) when represented in binary.
Now assume there is a circuit B such that SUC(B, g) > 0.99. We first construct the

circuit B’ : FY — T such that the 7-th bit of the output is

Bi(xi, ..., x0) = MAJ,cr(B(xy, ... x0,6; +2) — Blxy, ..., %0, 2)).

Here ¢; is the element in [F whose binary representation has 1 on the 7-th bit and 0 else-

where.

Claim 5.2.8. SUC(B',p) > 0.96.

Proof. Since SUC(B, g) > 0.99, there are at least a 0.96-fraction of (xy, . . ., x,) € F’such
that BB coincide with ¢ on more than 3/4 of y € F, which contains both z and (¢; + z) with
probability larger than 1/2 forarandom z € F. In such cases we have Bl (x1, ..., x) =

(p(x1, ..., x0),¢) forevery 7, and thus B (x1, . . ., x¢) = p(, - . ., x0). O

From B', we reconstruct the circuit C : {0,1}” — {0,1} as follows. Let SAMP :
{0,1}%" — (F*)* be the sampler in Proposition with e = 0.01 and thus # = poly(m).
We think of SAMP as sampling # random vectors v = (vy, ..., vy) € F¥, and given the input
x = (x1,...,%) € H for C, each vector v represents a line {x + Av | 1 € F}. On each line,
p(x + Av) is a univariate polynomial on A of degree at most £|H| = m?/log m, and we use
the decoder circuit DEC in Proposition to decode the Reed-Solomon code given by
B’ on the line. We let the value of C(x) to be the most common (breaking ties arbitrarily)

decoded value among the ¢ lines. Notice that this process depends on the seed of the sam-

71

pler, and we actually go through all the seeds and choose the one that makes C(x) correctly
compute fonall x € H".

Formally, we present this linear space reconstruction algorithm as Algorithm

Algorithm s.x: Reconstruction Algorithm in Lemma

¢ Let SAMP : {0,1}*” — (IF*) be the sampler of Proposition with e = 0.01.
fory € {0,1}*" do

3 letvl,...,vt<— SAMP(}/)

4 LetC : {0,1}" — {0, 1} be the circuit

»

C(tx) = MAT,cig (DEC,((B'(x + 10,))scz).

5 if C(x) = flx) forall x € {0,1}” then return C.

The circuit C constructed in the algorithm is of size 2¢|F|?|B| + m°®) = Y . |B|,
and has additional depth polylog(72) compared to that of B. Therefore C can be evaluated
in space O(m).

Now we prove that the algorithm always returns a valid circuit C. Notice that for uni-
formly random v € ¥, x 4+ Ao is also uniformly random after given xand 1 # 0. Since
SUC(B',p) > 0.96, it means that there are at least a 0.84-fraction of v € [’ such that
B’ coincide with p onx + Avforatleast3/4of A € F, 1 # 0. Recall that the degree of
g(A) = p(x + Av)isatmost /|H| = |F|/logm, and therefore by Proposition we

conclude that for every x € {0, 1},

Pr, [DEC((B'(x + 20))ice) = (ple + 20))ace] > 0.84,

in which case we have DEC, ((B'(x + Av)),er) = p(x). Viewing this probability as an expec-

tation of the indicator function on v, by the guarantee of the sampler in Proposition

72

we have

Pr Pr [DEC((B'(x + Av;))2er) = p(x)] > 0.51| >1—27*"

01,...,0~SAMP(Ug,,) | 7€[4]

By a union bound over x € {0,1}”, there mustexistay € {0,1}*” such thatC(x) =
plx) = flx) forallx € {0,1}”. Therefore the algorithm always returns such a circuit C.
Moreover, the algorithm can be implemented to run in space O(m), as we can enumerate
over seeds to the sampler and construct the circuit (as a function of the sampler output) in

space O(m), and test if the circuit correctly computes fin this space bound.]

5.2.3 DERANDOMIZING THE DERANDOMIZED XOR LEMMA

Our next step follows the approach of Impaggliazo and Wigderson [], who use a de-
randomized XOR lemma to produce from a function that is hard on a constant fraction of
inputs, a function that is hard on any exponentially small fraction of inputs. The construc-
tion is identical to the one in [], except that we modify the reconstruction algorithm

and analysis to make the circuit C constructible in deterministic space O(m).

Lemma s5.2.9. Foreveryy € (0,1), thereis an O(m)-space computable function G
{0,1y" — ({0,1Y")", wherem' = ©(m/y), that satisfies the following: Given f
{0,1}" — {0,1}, and a circuit B satisfying SUC(B,f* o G) > 2777, there exists a cir-

cuit C of size 2°0") - | B| such that

sSUc(C, f) > 0.99.

Moreover, when [is computable in space O(m), there is a deterministic O(m)-space algorithm

73

that, given the circuit B which is evaluable in space O(m), prints C, and C is also evaluable in

space O(m).

We first give the construction of the function G, which is called a direct-product genera-
torin []. Asin [], it consists of two components: an expander walk and a com-
binatorial design. For the expander walk, we need an explicit expander where the neighbors

of a vertex can be efficiently computed:

Proposition s.2.10 (see e.g. |). Thereisa constant A € (0,1), such that for every
m € N, there exists a 4-regular graph E,,, on the vertex set {0,1}" with spectral expansion
(second largest eigenvalue of the normalized adjacency matrix) at most A, such that given any

vertexv € {0,1}", its neighbors can be computed in time poly(m) and space O(log m).

Define the expander walk function EW : {0,1}*” — ({0,1}”)™ as follows: Given
theinputv € {0,1}”andd = (dy,....d,) € [4]”, the output is sequence of ver-
tices vy, . . ., 0y, in E,,, that starts with vy = v, and take v, to be the d,-th neighbor of
v;. On the other hand, let Sy, . . .,S,, C 5] be the first 7 sets in the combinatorial de-

sign from Proposition witha = y/2ands = m/a. Then we defined the function

G : {0,117+ = ({0,1}7)" as:

G(r,v.d) = ((rls,) DEW(v,d)1, ..., (r]s,) D EW(0,d),,).

Here 7|s is the part of » € {0,1}’ on indices S, and & is bit-wise XOR. From the definition
we have that G can be computed in time poly(72) and space O(m2). The input length of G is
m' =3m+2m/y = O(m]y).

74

Now given f : {0,1}” — {0,1}, assume there is a circuit B such that SUC(B, / o
G) > 277", Before we move on and show how to reconstruct the circuit C efficiently and
deterministically from B, let us first review the reconstruction step in []. For7 € [m],
x € {0,1}",2 € {0,1}* 7,0 € {0,1}" and d € [4)", let h(i,x,a,v,d) = (r,v,d) where
r € {0,1}* such that

7

s, =x D EW(v,d);and 7l = a.

The function b is called the restricting function of G. Givenx € {0,1}”, with 7,4, vand
d chosen uniformly at random, they build a circuit F that first simulates B to compute

B(h(z,x,a,v,d)) = (31, ..., Ym). Then it computes a number 7 defined as

t=|{j#il5#AGohixavd)}

)

and outputs y; with probability 277, while outputting a random bit with probability 1 —
27", To compute ¢, for eachj # 7, (G, o h(i,x,a,v,d)) is computed through a non-
uniformly constructed look-up table for fof size 2, containing the values of f{x;) for all
possible j-th output x; of G o b with the fixed 7,2, v and 4.

We could not resort to non-uniformity to construct the look-up table. Nevertheless,
when fis computable in space O(), we can compute the entire table in space O(7) and
hardwire it to the circuit. Even better, when 7, 2, v and d are given, each output x; of G 0 b
is fixed except for ym bits (corresponding to the coordinates in S; M §;), so we only need to
go through all 27 possibilities for these bits to compute the table.

The circuit F presented above uses a string R of |R| = O(m) random bits, including

i,a,v,d along withw € {0,1}”", the randomness used to decide the final output. It was

75

proved in [] that:

Proposition s.2.11 ([, Theorem 15]). Suppose that SUC(B,f* o G) > 277", There

exists ¢ > 0 (that depends on y), such that the fraction of inputs x € {0,1}" with
I;r[}—(x,R) =flx)] >1/2+277"/c

is more than 0.99.

Therefore, the final circuit C takes O(m - 27”) independent copies of F and outputs
their majority, and there exists a fixing of the randomness that provides the final determin-
istic circuit C. We could not afford to store exponentially many random bits if they are in-
dependently sampled. Instead, we employ the efficient sampler in Proposition that
uses only O(m) random bits as the seed to generate 290 samples, and we can enumer-
ate over all the seeds to find the one that makes SUC(C, /) > 0.99. As shown in the proof

below, such seed always exists.

Algorithm s5.2: Reconstruction Algorithm in Lemma

¢ Let SAMP : {0, 1}*1®1 — ({0, 1}1®)* be the sampler of Proposition with
e=2"""/(2c).

for y € {0,1}%* do

s | LetR,...,R, < SAMP(y).

4 LetC : {0,1}" — {0,1} be the circuit

N

C(x) =MAI(F(x,Ry),..., F(x,R))).

5 if SUC(C, f) > 0.99 then return C

Proof of Lemma . Let F : {0,1}*+RI — {0, 1} be the circuit described above, and

76

¢ > 0 be the constant in Proposition . We give the formal description of the linear-
space algorithm for the reconstruction procedure as Algorithm

By Proposition we have £ = poly(m/e) = 290" fore = 277 /(2c). From the
description we know that F has size |B| + 27 - m°Y, and therefore C has size #|F| +
mOW = 200m) .| B|. When B is evaluable in space O(m), C is clearly also evaluable in space
O(m).

By the guarantee of the averaging sampler in Proposition , forevery x € {0,1}":

E [F(xR,)] — E[F(x, R)]' < g} >1— 2728

Pr
R1,.. R~SAMP(Uy) | |7€[4]

By Proposition , there exists a subset / C {0,1}” such that |[V] > 0.99 - 27, such

that for every x € V-
ELF @ R)] 9] <12~ 27" e =1/2 - 22
Therefore for every x € V, itis implied that

E [F(x, R)] = flx)

i€[d]

Pr { §1/2—2€+5:| 21_2—2|R\’
Ri,..,Ri~SAMP(Uy)

which means that

Pr MAJ(F(x,Ry), ..., F(x,R,)) = fAx)] > 1272 > 1-1/|7].

Ri,...,R~SAMP(Uy)

By a union bound over x € ¥ there mustexistay € {0,1}*®l such that C(x) = Ax)

forallx € V, which satisfies SUC(C, /) > 0.99. Therefore the algorithm always returns a

77

valid C. Moreover, the algorithm runs in space O(m), as it enumerates the seeds of length
O(|R|) = O(m), constructs and evaluates the circuit C and makes oracle calls to £, which all

can be done in space O(m). O

5.2.4 DERANDOMIZING THE GOLDREICH-LEVIN THEOREM

Lemma s.2.12. Given f : {0,1}" — {0,1}", letg = {0,1}” x {0,1}” — {0,1} be
defined as g(x,7) = (Alx), 7). Then, given 8 > 0, thereis &' > Q(8° /m) so that, for every B

satisfying ADV(B, g) > 3, there is a circuit C of size at most |B| - (m/3)°W satisfying

Suc(C,f) > 4.

Moreover, when f is computable in space O(m), there is a deterministic O(m)-space algorithm
that, given the circuit I3 which is evaluable in space O(m), prints C, and C is also evaluable in

space O(m).

Note that the original Goldreich-Levin theorem [] does not guarantee (and in fact
does not give) an efficient deterministic reconstructor, as it is not randomness efficient. A
later work of Hoza and Klivans [] achieves this, though with a significantly more
involved proof. As such, we directly show this using small-bias spaces, which we define

now:

Definition s.2.13. A function G : {0,1} — {0, 1} is an e-biased generator if G(U,) is a

e-biased probability space over {0, 1}*, which formally means that for every T € {0,1}*,

Pr (T, G(y) =1] € [1/2 — ,1/2 + €.

U

78

We recall that small-bias generators exist with good seed length, and moreover these gen-

erators can be evaluated in small space:

Proposition s.2.14 ([). Givenk € Nande > 0, there is an O(t)-space evaluable

e-biased generator BIAS : {0,1} — {0, 1}* with seed length t = O(log(k/<)).

We require a basic Fourier-analytic lemma, that states that a small-bias space fools the

conjunction of £ parities.

Lemma s.2.15. Let BIAS : {0,1} — {0,1}* be an e-biased generator. Then for every

collection Ty, . .., Ty € {0,1} and vy, . .., v, € {0,1} we have

E 711'77' EBU[- K T;?V @vi SZE
ey | AT @0)| = B | AT @)

Proof. We have

AT @n)=1-2-27Y P-(T,n &)

i€[d] SCd] €S

2 s (@) o @)

SCd] icS =

and as BIAS fools all such parities to error ¢ in the summation over S C [d], we have that

the total error is at most 2¢. O

Proof of Lemma . If < 27, we can choose &' = 27 and the lemma trivially holds
for a circuit C outputting a constant. Therefore, from now on we assume that 9 > 277,

We formally state our algorithm as Algorithm 5.3, with & to be determined later. Note that

79

¢ = O(m), and therefore in the e-biased generator BIAS : {0,1} — {0,1}* we
haver = O(log(¢{m/e)) = O(m)withe = 27*""! and the algorithm runs in space
O(t+{ + m) = O(m).

Algorithm s5.3: Reconstruction Algorithm in Lemma

1 Let 0 < [log,(128m /8> +1)].

» Let BIAS : {0,1}* — {0,1}**™ be the generator of Proposition with
g =241

3 fory € {0,1} do

4 Letry,...,r < BIAS(y).

5 for (bl, ey bg) S {O, 1}8 do

6 LetC : {0,1}” — {0, 1}” be the circuit that for each 7 € [m]:

Ci(x) = MATjcigz0(V @ B(x,” @ ¢,)).

7 if SUC(C,f) > ¢’ thenreturnC.

We view the output of BIAS as a tuple of £ vectors:
BIAS(y) = (1, ...,70), ;€ {0,1}"

For convenience, let 7 := (7, ..., 7¢) and b= (b1, ..., by). Forevery J C [{], let:
O N %
e/ e/

Note that in the original GL algorithm, all 7;’s are i.i.d. uniformly over {0, 1}”. We first
argue that our distribution over #/’s satisfies (approximately) the two properties used in the

analysis of the original algorithm:

Claim s.2.16. The following two properties hold:

8o

1. For every non-empty J, ¥ is 2=*"-close to U, in {,-distance.
2. For every non-empty J and] where] # J, (¥, #') is 272" close to Us,, in ly-distance.

Proof. Fori € [m], the i-th bit of #/ can be written as (7}, BIAS(y)) where T} indicates a

non-empty subset of bits. From Lemma we know that for every v € {0,1}”,

Notice that { 77} e[are linearly independent, and thus ({7}, 7)) ;[is uniformly dis-
tributed over {0, 1}”. Therefore taking the sum over v € {0, 1}” we have that #/ is 2¢ -
2" < 272" close to U, in ¢, distance.

When J # J' are both non-empty, { 77/} icn) U { 77y }icpm are still linearly independent.

For the same reason as above, (#/, ')is 2e - 22" = 272" close to U,,, in £; distance. O

Now recall that for 7 € [m] the 7th bit of the output of C is
Ci(x) = MAT 0 (6 @ B(x, ¥ @ ¢;)).

Thus C has size |C| < (|B| + O(¢)) - 2°m < |B| - O(2%m) = |B| - (m/9)°W as claimed.

To analyze the performance of C, let
§i={xe {0.1)": Pr [Bx,5) = gl.2)] = 1/2+ 5/2}.

By a standard averaging argument, |S| > (9/2) - 2.

81

Claim s.2.17. Foreveryx € Sandi € [m),

1
2m’

{: B,/ ®e) = glx,/ @e)}| < =(2' —1)| <

N | =

(71yeees r;)NBIAS Uy)

Proof. For the remainder of the proof we fix x and 7. Let 4 C {0, 1}” be the set of values
ronwhich B(x,) = g(x, 7). By the fact thatx € Swehave [4| > (1/2 +9/2) - 2

Furthermore, for each y € {0, 1}’ (where y is the input to BIAS) let
L) =1/ ®e € 4

and observe that {; = 1is equivalent to B(x,” @ ¢;) = g(x,” @ ¢;),i.c. B computes the

inner product with f{x) correctly on that input. Now observe that by Claim ,
E[g] =Prif(y) =1] > 1/249/2— 27" > 1/2+ 9/4.
y ¥

We now bound the variance of the number of such places where we compute the inner

product correctly. Let

& = Var (Z g) = _Covlg,4y)
J

I

<2Varfj —1—22 2m

5

S 23 + 226 . 2727}’1 S 2€+1

where the first inequality follows from Claim . Now the result follows by Cheby-

82

shev’s inequality and a union bound. For convenience let d = 2° — 1, and the probability

in the claim equals:

d do
Pr l;észl ggr[;zf—mgyd > (4—)]
1652 < 3257 < 64 <L
T (20 —1)2 T 2% T 920 T 2m

Notice that when B(x, # @ ¢;) = g(x,” ® ¢;) and for every j € [{], b; = g(x, r;), we have
Ve Bx,” ®e)=glx,”) ®glx,” ®e) = glv,e;) = filx).

Therefore using a union bound over 7 € [m] on Claim , we have that for every x € S,

Pr [C(x) = flw)

#~BIAS(U;)
bl

> B VZ'G[m],‘{/:[)’(x,r]@el-)—g(x,r/@ei)ﬂ>%(2[—1)

F~BIAS(U;)

U,
1

>~ Pr [Vj€[l],b;=glx,r)] >27".
2 i,

Thus, there is an assignment of y and & such that C computes f correctly on at least |S] -
2761 > gm . gp—t=2 inputs. Moreover, we can find such a circuit by enumerating the

assignments to y and Z, and verifying the success probability by evaluating C and fover all

83

x € {0,1}”. Therefore letting

§ =527 = Q5 m)

completes the proof. O

5.2.5 SPACE-EFFICIENT Ni1sAN-WIGDERSON PRG

We recall the argument of [] that there is a space-efficient implementation of the

Nisan-Wigderson [] PRG, using the linear-space constructible combinatorial design
(Proposition). While we rephrase their result in our notation, we make no changes to
the construction, as (in contrast to all other steps) the existing implementation satisfies our

desired reconstruction property.

Lemma s5.2.18. Givenp > O0andn € Nand a family of functionsf,, : {0,1}” —
{0,1} € DSPACE[m)|, there existsan m = ©(logn)and G : {0,1} — {0,1}" with
s = O(m) such that, given a circuit B which is a next-bit predictor for G with advantage e,

there is a circuit C of size |B| + O(n2™) satisfying

ADV(C,f,,) > e.

Moreover, there is a deterministic O(m)-space algorithm that, given the circuit IB which is

evaluable in space O(m), prints C, and C is also evaluable in space O(m).

Proof of Lemma . Fixa € (0,1) suchthata < p/2,andletf € (0,1) be the

constant in Proposition . Chooses = O(logn) such that 2% = n,andlet m = as.

84

LetS = (8, ...,S,) be the design of Proposition over [s] with parameter @, and let
fo 2 0,1} — {0, 1} be the function on inputs of size m = O(log 7).

We let G(x) := flxg,)flxs,) - . . flxs,). Now suppose B is an e-next-bit predictor for bit 7
of G, ie.

PrIB(G@) = Glx)n] > 5+

ThenletS := S;y and 7 := [s] \ S;11 and write the above inequality as

(s,07)~ U

Pr [B(G(xsUxp)r.) = flas)] > % +e.

For each fixing of x7, we let the circuit C to be C(x5) = B(G(xs U x7);. ;). Then we have

E[ADV(C, f,)] > €.

XT

Thus, the algorithm can enumerate over all possible assignments to x7in space | 7] =
O(m), and for each assignment check the advantage of C. Once the algorithm has found
the fixing of &7 such that the restricted circuit has advantage at least ¢, for every j < 7, the
J-th bit of the output of G(xs U x7), which is f{xg), depends on |[S N S| < 2a%s = pm

bits of x5, and hence we can output a (O(m)-space constructible) circuit for f{xs,) of size at

most O(2°"), and hence the total size of C is at most |B| + O(n2°™). O

5.2.6 PuUTTING IT ALL TOGETHER

Proof of Theorem . Given ¢, we first do the construction steps. For each m € N:

1. Letf : {0,1}" — {0, 1} be the function ¢ of Lemma applied to £,

8s

2. Let/’ : {0,1}” — {0,1}" be the function /™ o G of Lemma applied to /],

with the constant y to be chosen later.

3. Let/” : {0,1}” — {0, 1} be the function ¢ of Lemma applied to), with

the constant J to be chosen later.

4. Let G : {0,1}Y — {0,1}" be the function of Lemma applied to /. and B

with the constant p to be chosen later.

Notice that m2, m,, m3 and s are all © (m), and the functions //, /”, /" and G are all com-
putable in space O(m).

Suppose now we are given a 1/(87) next-bit predictor B for G of size n*. As 7 is given,
we decide the value of m3 = ©(logn) through Lemma , which in turn decides the

value of m = ©(log 7). The reconstruction steps go as follows:

4. By Lemma , we can construct in space O(m) a circuit Cs such that ADV(Cs, £,) >

1/(8n), and C; has size 53 = n* + O(n2™) < 2™ for some constant ¢; > 0.

3. By Lemma , where we now set & = 1/(8n), we can construct in space O(m)
a circuit C; such that SUC(Ca, f2,) > Q(8°/my) > 27", and C; hassizes, =

53+ (my/9)°W) < 297 for some constant ¢, > 0.

2. By Lemma , where we now set ¥ = ¢,p, we can construct in space O(m) a cir-
cuit C; such that SUC(Cy, £,) > 0.99and C, hassizes; = s, - 200m) < papm for

some constant ¢; > 0.

1. By Lemma , we can construct in space O(m) a circuit C such that C(x) = f,,(x)

o

foreveryx € {0,1}”,and C hassizes = 5 - m) < 29" for some constant ¢y > 0.

86

By choosing p = ¢/, we obtain the final result.

5.3 UNIVERSAL DERANDOMIZATION OF BPL

Here we state the main theorem of this section, that there exists a universal derandomizer

for logspace computation.
Theorem s.3.x. There is a deterministic Turing machine U such that:

* On input 1" and an OBP B of length and width at most n, the output U(1”, B) satisfy-

ing |U(1",B) —E[B]| < n™".

* For every space-constructible function S © N — N satisfying S(n) > logn, U runsin

space O(S(n)) if and only if BPL C DSPACE(S).

Notice that the condition BPL C DSPACE(S) is stronger than say, there exists a PRG
for BPL with seed length O(S). Therefore we cannot simply enumerate Turing machines

and use their outputs blindly as pseudorandomness. Instead, we use them as the outputs of

a specific BPL-complete search problem.

5.3.1 A Pseupo-DETERMINISTIC BPL-COMPLETE PROBLEM

Definition 5.3.2. The problem OBPROUNDING, with parameter ¢ € N is a promise search
problem that outputs a real number in 0, 1], defined as follows. Given an ordered branching

program B of length n and width poly(n), and a shifting parameter r with the promise that

n—[

6

|E[B] —k-n~ " +7| > —, Vk e Z,

87

the problem asks to output a real number 3 that satisfies |[E[B] — 9| < n=“t2. Further more,
we require 9 be pseudo-deterministic, that is, on every fixed input, the randomized algorithm

that computes OBPROUNDING must output the same 0 with probability at least 2/3.

The promise means that E[B] + 7is polynomially bounded away from every multiple
of n~T2. We introduce the promise and the shifting parameter 7 to prevent the case when

+

[E[B] is very close to some multiple of "%, and it becomes hard to determining whether

the expectation is above or below the cutoft. This is inspired by the approach of Saks and

Zhou [].
Proposition 5.3.3. OBPROUNDING, is BPL-complete under L reductions.

Proof. Fix arbitrary ¢ > 3. We first prove that OBPROUNDING, can be computed in BPL.

We sample 7%

random walks on the branching program B, and let y be the fraction of
these walks which reach the acceptance state. Let £ € Z be the largest value such that
y+7r>k-n" and return & = k- n~ "2 Since this algorithm clearly runs in randomized
logspace, it suffices to show that, for B and » that satisfy the promise, there is some fixed &

that the above algorithm identifies with probability over 2 /3. Note that by the promise, we

have that for some &, € Z,

—C —C

kwf‘“#%<E[B}+r<(k0+1)-n*f+2—”6 .

On the other hand, using concentration bounds we can show that with probability at least

2/3,

—C

n

((EB] +7) = (y +7)| = [E[B] - 7| < —.

In this case the algorithm always identifies & = kg since ko7~ < y+7r < (kg+1)-n 2

88

We now prove that OBPRoOUNDING, is BPL-hard. Recall the standard BPL-complete
problem: Given an OBP B of length and width 7, determine if E[B] < 1/3 or E[B] > 2/3,
where the promise is that one of these cases holds. We reduce this problem to OBPRouUND-

ING as follows. Let 75 : {0,1}% — {0,1} be the OBP defined as

Tp(x1, ..y x4) =MAJ(B(x1), ..., B(xg))

whered = O(clogn) such thatif E[B] < 1/3then E[T}] < n~°/6,andif E[B] > 2/3
then E[75] > 1 — n¢/6. Observe that T} has length and width polynomial in 7, and
is constructible in deterministic logspace given B. Let the input to OBPROUNDING, be

(T, n~°), which satisfies the promise. Hence if the answer is less than 1/2 we determine

that E[B] < 1/3, and otherwise determine that E[B] > 2/3. O

5.3.2 UNIVERSAL DERANDOMIZATION ALGORITHM

Intuitively, our universal derandomizer I enumerates over deterministic Turing machines
(£), space bounds 7, and shifting parameters 7. At each step, it simulate (7) on input (B_,,, 7)
for every state v in the OBP B. If (7) ever touches more than j spaces on the work tape, U
halts and increments 7 or /. Otherwise, we have a set of estimates {p_,,} = {(z)(1",B_,,)}
which can be generated on the fly in space O(j + log 7). We then verify whether these esti-
mates are close to the actual probabilities E[B_,,|, and return the estimate of the probabil-
ity of reaching the accepting state if they pass the check.

Note that given the OBP B, we can construct in logspace the probability transition ma-
trix corresponds to B. Therefore the verifier Algorithm 4.2 in Lemma is able to ac-

complish the verification job. The verifier there was randomized, but we can make it deter-

89

ministic by going over all possibilities of the O(log %) random bits, as the estimates {p_,, }
are not read-once. A simpler verifier with even better parameters can be found in [],

which we state below.

Proposition 5.3.4 ([1). There is a deterministic logspace algorithm V that takes as
an OBP B of length n and width poly(n), and the estimates {p_,, }. If for every state v of B,
|p—o — E[BL,]| < n72 the algorithm accepts, and moreover if the algorithm accepts, |p—,, —

E[B_,]| < n™! foreveryv.

We now give the formal description of the algorithm as Algorithm 5.4. By the soundness
of the verifier V, if U returns a value, it must be a good approximation of the acceptance
probability of B. Therefore it suffices to show that the machine halts and runs in the de-

sired space bound.

Algorithm s.4: Universal derandomizer U (B)

1« forj<-0,1...,do

fori < 0,1,...,/do

fort <+ 1,...,2n*do

letr<¢t-n7>/2;

Compute b <= V(B, {(2)(1", B=,, 7) bocr(B))s

whenever (7) uses more than j space or more than 2 time do
‘ Abort the simulation of (7) and pass to the next 7.

8 if 4 = 1 then return (7) (B, 7).

o W N w N

~

Lemma s.3.5. For every space-constructible function S : N — Nwith S(n) > logn, if

BPL C DSPACE(S), then U halts and runs in space O(S(n)).

Proof. We prove thatU(1”, B) halts and returns a value with 7 4 j < ¢ - S(») for an absolute
constant ¢ (in particular, 7,7 < 00), which suffices to establish the lemma by the composi-

tion of space-bounded algorithms.

90

By Proposition , there is a Turing machine (7) that computes OBPROUNDING, for
¢ = 5 in DSPACE(S). We now show that there exists » € {1-27°/2,2-n>/2,... 2n* -
n~>/2} such that

IE[B_,) —k-n>+7|>n"/6 (5.1)

for every £ and v. There are n* different values E[B_,,] over v in the vertex set V'(B) of the
branching program, and for each v, there is at most one assignment to 7 such that (5.1) fails
to hold for some £ € Z. As there are 27> possible values for 7, there must be one such that
(5.1) holds for all £ and .

Finally, let; = O(S(|B|)) be such that () (B_,,, 7) halts using at most 7 space for every
v. Such a exists per assumption and the fact that the input (B_,,, 7) satisfies the promise
of Proposition for every v. Thus, upon reaching the tuple (7,7, 7), the set of estimates
P—o = (i)(B_,, 7) must satisfy |p_,, — E[B_,]| < n > foreveryv € V(B). Then running
V(B,{p=s}oe v(p)) (where we wait for the test to request a particular value p_,, and then
recompute it from (7), avoiding the need to store all #* values) will result in V accepting,
and hence U halts in the claimed space bound. Moreover, the returned value 0 = () (B, »)

satisfies that |0 — E[B]| < »™ .. [
We can now conclude the proof of Theorem

Proof of Theorem . LetU be Algorithm s5.4. The fact that |L/(1*, B) — E[B]| < »n™!
follows from the soundness in Proposition applied to p_,, = (2)(B_,, 7).

The direction that I/ runs in space O(S(z)) if BPL C DSPACE(S) was proved in
Lemma . To prove the other direction, notice that i actually deterministically solves

OBPROUNDING, for¢ = 3, which by Proposition is BPL-hard. Therefore ifid €

91

DSPACE(S) then BPL C DSPACE(S).

92

Unitary Quantum Simulation

In this chapter we study the power of unitary quantum computing with bounded space.
Most of the results stated here will be focusing on logarithmic space, but they generally
work for any larger space bound as well.

The main problem we consider in this chapter is the simulation of space-bounded quan-
tum computing with general quantum channels, i.e. BQL. This is captured by the follow-

ing problem of powering matrices that represents quantum channels.

Definition 6.1. In the CHANNELPOWERING problem, given n = 25 4 quantum channel
® : L(C") — L(C”) in its natural representation K(®) € C*** and a positive integer T
in unary, it is promised that Tr[p - ® (p,)] is either in [0,1/3] or [2/3,1] for p, = [05)(0%),

and. the goal is to distinguish between the two cases.

Notice that in general a quantum algorithm is specified by 7"channels @y, ..., @ in-
stead of one, but we could simply add a register of O(log T) qubits that stores the time

stamp, and make

e @ [7)(t]) = Pulp) @ £+ 1) (£ +1].

93

The final measurement that measures the |0°) state is also general enough for BQL, as men-

tioned in Section 2.2. Therefore we have:
Theorem 6.2. CHANNELPOWERING is BQL-hard.

In the following sections, we will show how the CHANNELPOWERING problem is com-
puted with only unitary operators, how the error can be reduced in unitary logspace even
for the problem of outputting the measurement probabilities, and its relations with quan-

tum learning.

6.1 UNITARY QUANTUM LOGSPACE ALGORITHMS

In this section we survey some of the important problems that can be solved in BQuL,
which at the end leads to the resolution of BQL = BQyL. Note that in all these results,
the unitary quantum circuits we construct are uniform, and contains only unitary opera-
tors from a fixed universal gate set. We first state a simple but useful lemma regarding error

propagation in quantum computing:

Lemma 6.1.1. If 4,..., Ay, By, ..., By € C*"satisfy ||4; — B;|| < € forevery i, and bas

bounded spectral norm for all partial products, that is

||Az‘Az'+1"'Aj

|

BBiyi-Bf| <%, Vi<j

forsomex > 1, then ||Ay - - - A — By - - - Bi|| < kex®. In particular, when A; and B; are all

unitary, || Ay - - - Ay — By - - - By|| < ke.

94

Proof. We have

k
|4y -+ Ay — By By SZ||A1"'Az‘Bz'+1"'Bk_Al"'Az'—lBi'"B/eH
=1

k
< S v Al - 14— Bl - |Bes - Bil
i=1

< kex’. 0

STATE PREPARATION W start from the task of preparing any given pure quantum state
from the initial state |0°). A considerable amount of study has been conducted trying to
reduce the time complexity for state preparation, and these works usually requires huge
amount of ancilla qubits (and therefore requires large space); see [] for a exposure

on this topic. Here we provide a simple space-efficient construction, relying on the result of

[] which uses the space-efficient Solovay-Kitaev Theorem []:

Lemma 6.1.2. Given n = 25, a unit vectorv € C" and e > 0, we can construct a unitary
guantum circuit Q, on S qubits with time O(n - polylog(1/¢)) and space O(log(n /<)) such

that ||Q,|0%) — o], < .

Proof. The circuit is a composition of # — 1 two-level unitaries, that is, unitaries that op-

erate on two dimensions of the computational basis). More specifically, starting from the

a; V1= a;|?

initial state |0°), in the 7-th step the unitary U,, = is applied
\/ 1-— |éll“2 Z

on the 7-th and (7 + 1)-th dimension, where 2; = v;/\/|v;]> + [0;11]2 + - - - + |0,|%, s0 that

95

the state after the 7-th step is

(1)1, <.y Uy \/|UZ'+1|2 + -+ |Un|2,0, . ,O)

By [], each two-level unitary can be implemented up to error € /m with time O(m -

polylog(1/¢)) and space O(log(m/¢)). By Lemma the total error is at most €. [

We also note that the result in Lemma was known in [] with a slightly
different proof, and while the space complexity is not originally stated there, it is implicit

from their construction.

HAMILTONIAN SIMULATION Given a Hamiltonian A, which is a Hermitian matrix that
describes the evolution of the quantum system, the Hamiltonian simulation problem asks
to simulate the evolution ¢’” for arbitrary # > 0. Ta-Shma showed in [] how to per-
form Hamiltonian simulation with a space-efficient unitary quantum circuit, and it is in-

place (without any ancillas). We restate the result for Hermitian contractions:

Theorem 6.1.3 ([1). Given a Hamiltonian H € C"*" and e > 0, we can construct
a unitary quantum circuit U with time poly(n/c) and space O(log(n /<)), such that ||U —

| < e

For Hamiltonians with bounded spectral norms, the dependence on € was improved in a

series of works [s S]. Formally we have:

Theorem 6.1.4 ([1). Given a Hamiltonian H € C*** with |H|| < poly(n) and
€ > 0, we can construct a unitary quantum circuit U with time poly(n, log(1/¢)) and space

O(log(n/e)), such that ||U — || < e.

96

MATRIX-VECTOR PRODUCT AND MATRIX INVERSE Using the Hamiltonian simulation
algorithm and phase estimation (see e.g. [, Section 5.2]), Ta-shma [] gives an
efficient way to compute /~!|«) for any well-conditioned matrix / and unit vector |x),
based on the framework of []. Assuming that H is Hermitian and ||H|| > 1, we

sketch how the algorithm works as follows.

o First apply the phase estimation over the unitary ¢ so that it maps |#;) to |#;)|1),
pply the p Y 1%

where #; is an eigenvector of H with eigenvalue A.

* For each eigenvector apply the unitary transformation
1) — 271]0>M) +V1-— 272|1)H>

according to the eigenvalue 1 > 1.
* Uncompute the eigenvalues by reversing the phase estimation over i

When ||H]|| > x~ for some x > 1, we can simply apply the algorithm on xH. Also when H
0 H

is not Hermitian, the matrix does the trick. Finally, notice that by replacing 271

H 0

with 2 while assuming || H|| < x, the algorithm also works on computing H|#).

Theorem 6.1.5. Given a matrix H € C" with x = poly(n) such that | H||, |H || < «,
and an error parameter € > 0, we can construct unitary quantum circuits Qp and Qpy with

time poly(n /) and space O(log(n /<)), such that
(T, ® [0%){0) Qar(T, ® [0°)(0°]) — (x™"H) @ [0°)(0°]|| <&,

97

(L, @ 10) (0N Qi(L, ® [0°)(0°]) — (xH") @ [0)(0']|| < e,

where { = O(log(1/¢)) is the number of ancilla.

In other words, Qf and Q; are efficiently constructed block encodings [Jof x1H
and kH .
Based on Theorem , Fefferman and Lin [] showed that POoLY-CONDITIONED

MATRIXINVERSE, the problem of approximating one entry of H™! to constant error, is in

fact a complete problem for BQyL.

MaTRIXx POWERING When H is a contraction, thatis when ||H|| < x = 1,adirectly
corollary of Theorem is that we can actually compute the powers of H, by simply
repeatedly applying . Each application produces poly(7/¢) dimensions of junks and re-
quires 2¢ additional clean dimensions, and thus to compute H” for 7' = poly() the overall
space usage is still O(log(n/¢)).

Notice that the channel powering problem is essentially powering the natural represen-

tation matrix of a channel, as we have

Te[[0°)(0°] - @7 ([0%)(0%])] = (0¥ K(@)"]0*). (6.1)

And since the natural representation K(®) being a contraction corresponds to the chan-
nel @ being unital, takinge = O(1/7), by Lemma we get a BQuL algorithm for a

restricted version of CHANNELPOWERING on unital channels.

Theorem 6.1.6. UnN1T4r CHANNELPOWERING € BQyuL.

98

When « is larger, repeated applying ' H does not work because the error will also be
multiplies by x” which is too large. Instead, observed by Fefferman and Remscrim |]
is that there is a reduction from matrix powering to matrix inverse that maintains the well-

conditioned property: Let Z € CHTH)xn(TH1) gyych that

I, —H 0 0
0 I, —-H
Z = 0)
I, —H
0 0o I,
then
I, H K HT
o I, H
AR jag
L, H
0 - -~ 0 I,

Moreover, ||Z]] < 1+ xand [|[Z7}|| < 1+ Tx. Use the fact that PoLY-CONDITIONED
MATRIXINVERSE is in BQyL [], this gives a BQyL algorithm for powering matrices

with x = poly(n).

Theorem 6.1.7 ([1). Given a matrix H € C*** with x = poly(n) such that | H|| < x,
a positive integer T, two unit vectorsv,w € C" and an error parametere > 0, we can

construct a unitary quantum circuit W with time poly(n/e) and space 2° = O(log(n/e))

99

such that

[[{0°[10%) 2 — |w! H | < e.

When H = K(®) for a quantum channel on S qubits, by Proposition we have
|H|| < 2% = \/n, and thus by taking ¥ = /7 they conclude that CHANNELPOWERING €

BQuL. Combined with Theorem 6.2, this implies that

Theorem 6.1.8 ([]1). BQL = BQyL.

6.2 ERROR REDUCTION IN BQyuL

Just like in classical randomized computation, quantum algorithms in BQL can also be am-
plified to reduce the error rates. One example of such techniques is the Marriott-Watrous

amplification [].

Theorem 6.2.1 ([1). Given a unitary guantum circuit U with time T = poly(n)
and space S = log n, with a final measurement that outputs 0 with probability p, and
an error parametere > 0, we can construct a circuit U with time poly(n /<) and space
O(log(n /<)), with intermediate measurements, that outputs a value p that |p — p| < €

with probability 1 — 1/poly(n/e).

The drawback of the Marriott-Watrous amplification is that it uses intermediate mea-
surements. In [], Fefferman et al. proposed a unitary amplification algorithm for

decision problems, which also obtains the optimal exponential error reduction.

Theorem 6.2.2 ([). BQuL = QuL(1 — 27pY0) 2P yphich stands for

unitary quantum logspace with exponentially small error.

I00

Corollary 6.2.3. BQL = QuL(1 — 27pely(») p=pely(x)),

Built on these previous works on error reduction, here we present a simulation of BQL
with unitary quantum circuits in a strong sense, that is not limited to decision problems
and does not require promises on the measurement probabilities. We start with the numer-

ical form of CHANNELPOWERING:

Lemma 6.2.4. Given a matrix H € C**” with x = poly(n) such that | H|| < «, a positive
integer T, two unit vectors v,w € C” and an error parameter € > 0, we can construct a uni-
tary quantum circuit with time poly(n/€) and space O(log(n /<)) such that with probability

1 — 1/poly(n/e), it outputs |w' H v|? with additive error e.

Proof. Let W be the circuit in Theorem , which outputs 0 with probability p such
that

p— \wTHTvH <¢g/2,

and the problem here is to output the numerical value p. By Theorem , We can con-
struct a quantum circuit /77 with time poly(7/¢) and space O(log(z /<)) with intermedi-
ate measurements, which with probability 1 — 8 = 1 — 1/poly(n/<) outputs a value p such
that [p — p| < /4.

Since the resulting circuit /77 is not unitary, we would like to use Corollary to
compute unitarily each bit in the output value p of 77 while reducing the error. Assume
that every bit in p is 0 with probability either in [0,1/3] or [2/3,1], thenfor1 < 7 <
[log(1/¢)] + 2, we let I¥; be the unitary quantum circuit that computes the 7-th bit of
p with exponentially small error. Ideally, the outputs of 7#; combined together would e-

approximate |w' H v|%.

I0I

However, the value p outputted by the Marriott-Watrous amplification might be differ-
ent in each 7, so the final approximation assembled can be totally wrong (for instance,
whenp = 0.5, the outputs p = 0.1000...andp = 0.0111... might be assembled to
0.1111. . .). Moreover, the error reduction in [] may have unpredictable results, as
the promises on the distributions of the bits in p are not guaranteed (again whenp = 0.5,
the most significant bit of p is equally distributed on 0 and 1).

Fortunately, we can solves both problems by computing from the most significant bit to
the least significant bit. We maintain a value g € [0, 1] which is initialized to 0. For each
i = 1to [log(1/¢)] + 2 do the following: Run the modified circuit /¥; which outputs
the 7-th bit of (p — ¢) instead of p. To deal with case when p — ¢ is outside of [0, 2711),
if p — g < Oitoutputs0,andif p — ¢ > 27" it outputs 1. Let the output bit be b, and
updategtog + b; - 27

We claim that with probability 1 — poly(%/¢), | — p| < €/2. First notice that, if every
bit in p is 0 with probability in [0, 20] U [1 — 20, 1], then the error reduction will work as
intended, while with probability 1 — O(dlog(1/€)) = 1 — 1/poly(n/e) the value p is the
same in each circuit /7, so that g is also the same as p.

Now let 7 be the first index such that the z-th bit of p is 0 with probability in [29,1 — 24].
As the Marriott-Watrous amplification outputs incorrectly with probability at most 4, it
means that there are two valid outputs p; and p,, both are £ /4-close to p, and they coincide
in the first # — 1 bits but differs at the 7-th bit. Let ¢, be the value of g at that step, which

consists of the first /—1 bits of p; and p,, then |¢,+27"—p| < £/4. Therefore the remaining

bits of ¢ could only be 011 ...11,100 ... 00 or 100 . . . 01, which means |g,+2 7" —¢| < ¢/4

and thus |g — p| < €/2. Notice that on the 7-th (and the last bit when 4; = 1) the error

I02

reduction may fail and arbitrarily output 0 or 1, but it does not matter as both 0 and 1 are
viable in these cases.

As a conclusion, the value g is an e-approximation of |w H”v|* with probability 1 —
1/poly(n/¢e). The circuit that outputs g is clearly constructible with time poly(7/c) and
space O(log(n/¢)), and the circuit is unitary since the O(log(1/¢)) measurements that out-
put b, can be deferred directly, while each 17, can be uncomputed by implementing the

circuit in reverse.]

Corollary 6.2.5. Given a matrix H € C™" withx = poly(n) such that |H|| < «,
a positive integer T, two unit vectorsv,w € C" and an error parametere > 0, we can
construct a unitary guantum circuit with time poly(n /) and space O(log(n /<)) such that

with probability 1 — 1/poly(n /<), it outputs w' H v with additive errore.

o/\2 o/\2 w/ V2

H
Proof. Let H; = S0 = v = and wy = . Notice

1 1/v2 ’ i/vV2 1/V2

that ||H; || < max(x,1). Since we have

wHy = (4\wIH1TUl\2 — W' H > — 1) + % <4]wIH1TUH2 — |w H > — 1) ,

N =

computing |w! H7p|? up to error £ /2, and computing |w! H v |? and |w] H7v}|* each up to

error /8 gives w! ATy with error . [

Notice that one can instead achieve 1/poly(z/¢) error probability without using the ex-
ponential error reduction in [], by simply repeating the decision circuit in BQyL

for O(log(n/¢)) rounds. Nevertheless, it is enough for proving the following theorem,

103

which states that unitary quantum circuits can simulate any quantum algorithm in logspace

by computing its output distribution with polynomially small error.

Theorem 6.2.6. Given a quantum algorithm with time T = poly(n) and space S = logn

specified by the natural representations K(®y), . .., K(®7) € C”*7, where
pr=Pro®@r0---0 @, (|0%)(0%)

is its final state, a multi-outcome measurement {M,, . .., M,} withr = poly(n), and an
error parameter € > 0, we can construct a unitary quantum circuit U with time poly(n/¢)

and space S' = O(log(n /<)) such that for everyj € 7] it holds that

1(110%)]2 = Telp, 24| < <.

Proof. As shown at the start of this chapter, we can define a unified channel @ such that

D (p, @ [0){0]) = o @ |T)(T1,

and K(®) is simply a block matrix consists of K(®,), . .., K(®Pr). Note that [|[K(D)|| <

x = poly(n) by Proposition . Now we have
Trlp, M, = vec(M;) vec(p,) = (vec(M;)! @ (T%]) K(®)" (vec(p,) ® [0)) .
Foreveryj € [7], let m; = || vec(M;)||, < /n by Proposition . Therefore by letting

w = vec(M;) ® |T*)/m; and v = vec(p,) ® |0)

104

preparation
circuit

preparation
circuit

Qf

Figure 6.1: The quantum operator U in the preparation circuit controlled by an entry u; of #, in binary representation
with classical bits. We replace the classical control by first implementing the circuit Q] applying the controlled-U opera-
tor, and implementing Q] in reverse.

in Corollary , We get a unitary quantum circuit Q; with time poly(z/¢) and space
O(log(n/¢)) such that with probability 1 — 1/poly(z/¢), it outputs a value £ /(2+/nr)-
close to Tr[p, M| /m;, which implies an € /(27)-approximation of Tr[p,M}].

Consider the preparation circuit constructed in Lemma which prepares the unit

w = (/Telp M), [Telp, 0), ...\ [Telp, M,

with error £ /3. By construction, the preparation circuit can be viewed as a composition of

vector

7 — 1 unitary operators, each controlled by a different entry in . Since # is not explicitly
given, we instead control these unitary operators with the output qubits of Q;, but without
measurements. Each circuit Q; is applied in reverse after the control, so that the space can
be reused. See Figure 6.1 for an illustration.

It is clear that the entire circuit is with time poly(7/¢) and space O(log(%/¢)). The error

introduced by replacing each of th » — 1 unitary operators with circuits Q; and Qj_1 is at

10§

most £/(27) + 1/poly(n/¢c), therefore by Lemma the total error is at most

e/3+ (r—1)(e/(2r) +1/poly(n/c)) < e. O

6.3 EQUIVALENCE OF LEARNING AND DECIDING

In this section we show that, the existence of efficient classical simulation of quantum
learning is equivalent to that on decision problems, which by our beliefs are highly un-

likely. This is formally stated as the following theorem.

Theorem 6.3.1. Every quantum learning algorithm with time T and space S can be simu-

lated classically with time poly(25T) and space O(S + log T), if and only if BQL = BPL.

Note that here we state the theorem with respect to uniform learning algorithms. If we
want to extent the result to all non-uniform algorithms, the corresponding decision classes
also need to be changed to non-uniform ones, i.e. BQL/poly and BPL/poly. Below we

prove both directions of this equivalence.

Lemma 6.3.2. If there are functions t(-, -) and s(-, -), such that every unitary quantum
learning algorithm with time T and space S can be simulated classically with time (T, S)

and space s(T, S), then

BQuL C BPTISP(#(poly(z), O(log #)), s(poly(r), O(log »))).

Specifically, if every unitary quantum learning algorithm in time T and space S can be simu-

lated classically with time poly(25T) and space O(S + log T), then BQuL = BPL.

106

Proof. Suppose that we have a unitary quantum circuit with time 7(z) = poly(z) and
space S(z) = O(log z) that decides a partial function f : X — {0, 1}, where X C {0,1}".
Let U(x, 7) be the unitary gate at the 7-th step of the decision algorithm with input x, which
can be constructed in time poly(z) and space O(log 7).

We can convert the quantum circuit to a learning algorithm as follows. Use X directly
as the sample space, while the samples are always constant x for some fixed x € X. The
learning task is to distinguish between x € £7'(0) orx € f7*(1). Upon receiving the sample

%, the learning algorithm simply applies the following unitary operator on Cc?” @ CT,

)iy = (Ul 2)|9)) |2 + 1) mod T(n))

so that after 7(%) steps it computes in the first register the same state as in the quantum
circuit. Therefore it computes f{x) and distinguishes between the two cases. Using the
premises, we have a classical learning algorithm with time #(poly(%), O(log 7)) and space
s(poly(n), O(log #)) that accomplishes the same task. The classical learning algorithm can
be viewed as a randomized decision algorithm that computes f{x) by self-constructing the
stochastic matrices in the same time and space.

Alternatively, in the learning task we can have a potentially much smaller sample space
I' = {0,1} x [], by viewing the learning problem as computing fin the random-query
model (see Chapter 8). For each x € X, let distribution D, be the one that uniformly draws
i € [n] and outputs (x;,7). Let X = {D, | x € £'(0)} and Y = {D, | x € £!(1)}. Each
x; can be retrieved within O(7 log) samples with high probability, therefore the quantum
learning algorithm can compute each U(x, 7) with high probability in time poly(7) and

space O(log 72), and the rest of the proof is the same as above. [

107

Lemma 6.3.3. If CHANNELPOoWERING € BPTISP(¢(n),s(n)), where t(n) > Q(n) and
s(n) > Q(logn), then every guantum learning algorithm with time T and space S can be

simulated classically with time t(poly(2°T)) and space s(poly(2°T)).

Proof. Suppose that we have a quantum learning algorithm with time 7"and space § =
log 7 that distinguishes between two distribution families X and). Let ®(z) be the chan-
nel applied when receiving the sample 2, and let M be the final measurement. With the

sample distribution D, let

A= E [K(D(z))].

z~D

Note that 4 is also a natural representation (specifically, for the channel E,.p[®(2)]). Sim-
ilar to proof of Theorem , the probability of the learning algorithm outputting 0 is

E [vec(My)TK(®y) - - K(D1) vec(p,)]| = vec(M) A" vec(p,).

z~DT

What’s different from Theorem is that here A4 is not explicitly given. Instead, by
Chernoff bound each time an entry of 4 is requested, it takes poly(%7) samples z to ap-
proximate the entry to at most 1/poly(»T) error, so that the approximated matrix 4 dif-
fers from the actual matrix 4 by at most 14 — 4| < o((n*T)™). By Lemma and
Proposition , it means that |47 — A7|| < O(n™"). Therefore applying the channel
powering algorithm on A gives a classical learning algorithm that distinguishes & and) in
time #(poly(»7)) and space s(poly(nT)).

The above scheme has two problems. First, a fixed matrix 4 cannot be directly stored,
and if every time the same entry is requested, the entry is approximated as the average of

a different batch of samples, it may result in different requested values for the same en-

108

try (even though the difference is small with high probability), similar to the problem in
Lemma . However, unlike the case in Lemma , here the classical powering algo-
rithm is not explicitly given, and may not be robust against changing inputs.

The solution to this problem is the shift and truncate method by Saks and Zhou [],
which has found numerous applications in space-bounded algorithms [] and deran-
domization [,]. Concretely, let P = #(poly(»T)) be the largest number
of possible requests to entries of 4 in the powering algorithm, and take a uniform random
number { € [8P). For simplicity let L = 122 T'and N = 24n*T. When the entry 4 is
requested, the algorithm takes #(poly (7)) samples z; and calculate the average value of
the (7, k)-entries of K(®(2,)), so that |4 — 4| < 57 with probability atleast 1 — 277, The
value fed back for the request is

~ 1 ;

= LN- Re(a) + S—I)J 4]iv {N- Im(a) + SEPJ |

We claim that with high probability, this value coincides with the fixed value

]i\f {N Re(d;) + é)J +]i\f {N Im(A4y) + é)J .

For the real part, as [N - Re(2) — N - Re(4z)| < 55, thereis at most one possibility

8P

for {'such that LN -Re(a) + LJ # LN -Re(4y) + éJ , which is of probability 55, and

8P

the same holds for the imaginary part. By the union bound on the bad events during all P

requests, with probability

1 1 2
1—(27P+—4+—=—|P>=Z
(+8P+8P> 3

109

for every (7, k) the value Zj»k are always the same, and \Z i — Ag| < ‘/WE < (n*L)7Y 50
l4—4) < L7

Now by Proposition 2.3.6 we have ||4|| < /7, and thus |4 < ||4||+||4—4]|| < 2+
L7, Since || vec(M)||, < +/n by Proposition and || vec(p,)| = 1, by Lemma

we have

vec (M) (AT — A7) vec(p,)| < Vi - ET (L) < é

Since the error of the original quantum learning algorithm can be amplified to 1/4 so

that vec(M) 74" vec(p,) isin [0,1/4] or [3/4, 1], we conclude that with probability 2/3,
Vec(M)TZTvec(,oO) € [0,1/3] or [2/3,1].

and the two cases can be distinguished by the classical CHANNELPOWERING algorithms on

A. U

Corollary 6.3.4. If CHANNELPOWERING € BPL, then cvery guantum learning algorithm

with time T and space S can be simulated cassically with time poly(2°T) and space O(S +

log 7).

Theorem follows as we already know CHANNELPOWERING € BQyL. In addition,
as we also know that BQuL C uniformNC? C TlSP(nO(l), Iog2 n), we have the following

unconditional result:

Corollary 6.3.5. Every guantum learning algorithm with time T and space S can be simu-

Lated classically with time poly(2°T) and space O(S? + log” T).

Finally, we show that there are indeed cases when the quantum learning algorithm can be

simulated classically with efficiency. Specifically, when the learning task is to distinguish an

arbitrary family of distributions with a single distribution, we have the following result.

Theorem 6.3.6. IfY = {Y}, then any quantum learning algorithm that distinguishes
between X and Y within time T and space S can be simulated classically in time poly(25T)

and space O(S + log T).

Proof. Suppose that we have a quantum learning algorithm with time 7"and space §' =
log m that distinguishes between X" and {17}. Let @(z) be the unital channel applied when
receiving the sample z. We already know from Lemma that with the sample distri-
bution D, the output probability is vec(M) 14 Tvec(p,) whered = E, p[K(®(z))] €
C"**”*, Since the distribution Y s fixed, the corresponding matrix B = E,.y[K(®(z))] is

also fixed. Now for any D € X, we know that
|vec(M) (4" — B) vec(p,)| > 1/3.

By Proposition , we have ||4"]], ||B'|| < v/ forevery 7 < T. Thus by Lemma ,

1

1
— 4" =BT > —.
3nT

JnT

|4 — Bllr = [|4 — B =

which means there must exist 7,/ € [#*] such that |4,; — B;;| > $n °T 2.

The classical simulation algorithm iterates over all 7,; € [?]. For each choice of 7, ,
the algorithm approximates [E, [K(®(z));,], compares it to B; ;, and claims the samples are
drawn from a distribution in &’ if there exists 7, j such that

EK(0()y) ~ By| > 15075
z 106°77

I1I

Since each entry of K(®(z)) can be computed in time O(7) and space O(S) and has
magnitude at most 1, the Chernoff bound asserts that poly(%7') samples are enough for ac-
curacy (1002°7%)~" with probability 2/3, in which case the algorithm correctly distinguish
X and {Y}. [

6.4 BonNuUs: STREAMING ProoF FOR BQL

Now that we have the simulation results of BQL, we note that the proof in Section
can be easily modified to work with BQL as well. The definition of a streaming proof'is the
same as in Definition , and the only difference here is that we allow the prover to have

quantum computation power (but still in logspace and outputs a classical proof).

Theorem 6.4.1. A language is in BQL if and only if it has a streaming proof between a
quantum logspace prover and a classical logspace verifier where the verifier uses O(log n) ran-

dom bits.

The rest of this section is to prove Theorem . First, it is clear that any streaming
proof between a quantum logspace prover and a classical logspace verifier can be imple-
mented by a BQL algorithm, which simulates the honest prover and the verifier, with suc-
cess probability at least (3/4)* > 1/2 which can be amplified. It suffices to argue that
Unitary Matrix Powering Theorem 3.2, the logspace-complete problem for BQL, can be
solved by a streaming proof between a quantum logspace prover and a classical logspace

verifier, where the verifier uses O(log 7) random bits. We recall the problem definition here.

Definition 6.4.2 (Unitary Matrix Powering). The input include a unitary matrix M €

C***, a parameter T < poly(n) and a projective measurement I1 € C"*”. The promise

on the input is that |TIM" (e))||3 > 4/5 or |TIM (e1)||3 < 1/S, and the output is 1 in the

former case and 0 in the latter.

Towards this, we change the notion of Jd-good sequence of vectors for a matrix M to be

defined with ¢,-norm.

Definition 6.4.3. Let M be any n X n matrix and T < poly(n) be a natural number. Let
v; = M (e)) foralli < T. Let 9 € [0,1]. 4 sequence of vectors vy, vy, . . ., vy € R” issaid to

be d-good for M if for all i € [T], we bave ||V — v;||, < dand vy = e
We make use of the following claims.

Claim 6.4.4. There is a quantum logspace prover which given an n X n unitary matrix M
and parameters T < poly(n), d > 1/poly(n) as input, outputs a d-good sequence of vectors

for M with probability at least 3 [4.

Claim 6.4.5. Let1/poly(n) < & < (10*7%)~% There is a randomized logspace verifier
which given any n X n unitary matrix M and parameters T < poly(n) and 0 as input and
read-once access to a stream of vectors v, . . ., vy € R” (where each vector is specified up to

O (log(n)) bits of precision), does the following.
* If the sequence is 9-good for M, then the verifier aborts with probability at most 1/4.
o If ||t} — vrl|, > 1/5, then the verifier aborts with probability at least 3 [4.
Furthermore, this algorithm only uses O(log(n)) bits of randomness.

Let us see how to complete the proof using Claim and Claim .Givenann X n

unitary matrix M as input and a parameter 7' < poly(#), set & = min {(10*7%)7*,1/10}.

113

Run the prover’s algorithm from Claim using this value of 9 to produce a stream
vy, - - - , 7. Run the verifier’s algorithm from Claim on this stream to verify. If the
verifier does not abort, we have it return 1if || T[> > 0.6, return 0 if || T3 < 0.4
and return L otherwise. With the access to read IT from the input, this computation can

be easily done in classical logspace when v/ is given as a stream.

CoMPLETENESS: Claim implies that an honest prover outputs a d-good sequence
with probability at least 3 /4. Claim implies that an honest proof is aborted with
probability at most 1/4. Since ||/, — v7||, < & < 1/10 by assumption and IT is a projec-
tion, ||TTe’; — o], < 1/10. Hence, if || TTo7||5 > 4/5, then || T > (1/4/5—0.1)> >
0.6 and if ||TTo7||> < 1/5 then ||TT05)); < (3/1/5 + 0.1)> < 0.4. Thus, the verifier will

return the correct answer whenever the subroutine does not abort.

SounDpNESss: Consider the behavior of this verifier on an arbitrary proof. If the verifier
makes a mistake and returns the incorrect answer, it must be the case that either ||TTo||5 >
4/5 and ||TTo;)5 < 0.4, 0r || TTor|> < 1/5and ||[TTd%]|> > 0.6. In either case, we must
have ||v} — v7||, > min {\/7 —/0.4,1/0.6 — \/1/_5} > 1/5. Claim implies

that such a proof is aborted with probability at least 3 /4.

This completes the proof of Theorem . We now proceed to prove Claim and
Claim
Proof of Claim . The prover starts by outputting vy = ¢;. To output the intermediate
v;, note that o,(f) = (ij-M”el, so the prover can use Corollary to estimate v;(;) up to

error € in poly(z/¢) time and O(log (/<)) space with success probability 1 — p, where

p = 1/poly(n/e). Taking the average over O(p~" log 1) trials gives an estimate of v;(7) up

114

to error € + p with probability 1 — (427)~", and thus by union bound, we get a quantum
logspace prover which with probability at least 3 /4, estimate each v;(;) up to € + p additive
accuracy forall7 € [7] and; € [n].

Take ¢ = 1/poly(n) so thate + p < 9/n, and we have ||v} — v, < ||} —v]| -7 <9

This completes the proof of Claim)]

Proof of Claim . The verifier’s algorithm is exactly the same as Algorithm 4.2, and the

proofs for completeness and soundness are almost identical.

COMPLETENESS OF THE ALGORITHM: Suppose v, . . . , v’/ is a d-good sequence, then

|0} — v]], < dforalli € [T] and vy = ¢;. Since M is unitary, for all 7 € [7]

HM Uiy = U

R P S YO [ISP

o+l = 2ill2

< oy = oyl + o — vl < 20.

Thus, ||w||, < 279. Consider the quantity A = (z, w) that the algorithm estimates. Sim-
ilarly by Chebyshev’s Inequality, with probability at least 0.99, we have |(«, w)| < 2075.
This implies that with probability at least (0.99)" > 0.8, every iteration in Algorithm

does not abort.

SOUNDNESS OF THE ALGORITHM: Suppose a dishonest prover produces a stream of
vectors v, . . ., v such that ||vf. — v7]|, > 1/5. Assume that vy = ¢;. Lete = 1/(107).

We argue that for some 7 € [7], we must have ||w;||, > €. Assume by contradiction that

I1§

a1 o)y — o,

z

, < eforall7 € [T]. Then by triangle inequality we have

T
lor = ohll, = [1247(0h) — |, < S 76D ol — 2aT

z‘;l
< |
=1

T
<> e=T:=1/10.
=1

2

z

/ /
- HM v,y — U,

2

which contradicts the assumption that ||/, — v7||, > 1/5. Thus, we must have ||w||, > ¢.
Similarly by 4-wise independence and the Paley-Zygmund Inequality [] we conclude
that Pr[|{«,w)| > €/10] > ;. By repeating this experiment 11 times, we can ensure that

with probability at least 1 — (1 — 1/8)" > 3 /4, we find at least one instance so that

(@, w)| > /10 > 2073,

as 9 < (10*7%)". This implies that the algorithm aborts with probability at least 3/4. [

116

Part I1

Lower Bound Results

117

Overview of Part I1

In Part 11, we present our results that proves lower bounds for space-bounded computa-
tion. These results are roughly in two regimes: Polynomial lower bounds for traditional
computational problems with some fixed input, and exponential lower bounds for learning

problems.

TiME-SPACE TRADEOFFS FOR DECISION PROBLEMS

Proving strong lower bounds for explicit decision problems is always hard. The current
best lower bound on circuit size barely passes 37 after decades of research | , 1,
and the current best formula size lower bound is still under Q(7?) [, I

To get stronger unconditional lower bounds, we need to add other restrictions, and
the space constraint usually is a natural assumption. However, by Barrington’s theorem
[], even for width-5 branching programs, which corresponds to an unreasonably
small space less than 3 bits, the best lower bound for time could not pass the lower bound

formula size which is less than cubic. Actually, even this close-to-cubic barrier has not been

118

obtained when we allow mildly larger space. Under uniform models, Williams []
proved that SAT cannot be solved in O(%¢) time and O(%°) space with¢ = 2 cos(7/7) ~
1.8 and some € > 0, which is the best lower bound up to date. On the other hand, for non-

uniform models is it still open even to obtain something polynomially better than linear:

Open Problem 7.1. Find an explicit family of decision problems F = {0,1}" — {0,1},
such that any branching program with space S < polylog(n) that computes F requires time

T — n1+Q(l).

In fact, Open Problem 7.1 is so notoriously hard that in the past decades, remarkable
effort were put into works just to prove 7= Q(%-polylog(»)) with better poly-logarithmic
factors. Even for the most restrictive model of deterministic oblivious branching programs,
the best lower bound we have is 7 = Q(zlog®) for.S = O(n'~¢) by Babai, Nisan and

Szegedy [], and for the general randomized, non-oblivious branching programs, we

have the sophisticated lower bound 7= Q <n lolgoﬁ) ;) for § = O(n'~¢) by Beame, Saks,
Sun and Vee [].

Our results in Chapter 8 represents an attempt to improve these lower bounds and
answer Open Problem 7.1. We propose a new computation model called the coupon-
collector model, in reminiscence of the famous coupon-collector problem. In this model,
the inputx € {0,1}” is not given by querying specific coordinates, but is given as samples
(7, x;) for uniformly random 7. Clearly any algorithm in the standard model can be con-
verted to one in the coupon-collector model with an O() overhead in time by waiting for
the desired coordinate, but for certain problems like GaAp-HAMMING we can do much bet-

ter. As a result, it is completely non-trivial to prove superlinear lower bounds in this model.

In fact, we showed that if we allow equality dependencies among the input samples, any

119

time-space lower bound in the coupon-collector model can be directly translated to the
same lower bound on deterministic oblivious branching programs, up to logarithmic fac-
tors. Therefore, proving strong lower bounds in the our model is potentially a way to the
resolution of Open Problem 7.1. As a first step, we proved such bounds for a restricted
class of branching programs, along with a quadratic lower bound for general branching
programs with zero error when the samples are independent. The next reasonable step is to

improve the latter bound to the bounded-error case, which was recently proved in [].

TiME-SPACE TRADEOFFS FOR MULTI-OUuTPUT FUNCTIONS

Beside decision problems, we also consider the computation of multi-output functions,
which maps {0,1}” to {0,1}” for some 7 = poly(z). Borodin and Cook [] gave a
powerful method to prove polynomial time-space lower bounds for these problems, and in
particular showed that SORTING requires a tradeoff of 70§ > Q(»?). Actually all previous
classical time-space lower bounds for multi-output functions, whether their authors were
aware or not, are applications of this method by Borodin and Cook.

The Borodin-Cook method has a crucial drawback that it is a counting method over
some fixed distribution, and there for by Yao’s Minimax Principle it provides the same
lower bound for deterministic and randomized computation. On the other hand, if we
ignore the Borodin-Cook method, we essentially only have lower bounds for decision prob-
lems and thus are subject to Open Problem 7.1, which means that we do not have any ran-
domized vs. deterministic separation better than O(log” 7).

In Chapter 9 we resolve this discrepancy and prove a polynomial randomized vs. de-

terministic separation. We present an explicit multi-output function on [z]”, that can be

I20

computed by a randomized oblivious branching program with linear time and logarith-

mic space, but requires Q (')

time for deterministic oblivious logspace. The function
is a total function and thus prevents the trivial separation with sublinear randomized algo-
rithm [], and our lower bound proof is a combination of adversarial method and
the Borodin-Cook method.

Our results also suggest that the reason for this separation not being known is that the
candidate problem requires careful design. We show that for many natural candidates
for which we know better randomized algorithms, proving a separation could lead to the
surprising resolution of Open Problem 7.1. One such example is the SETINTERSECTION
problem (given two sets 4 and B, output elements in 4 N B), whose optimal randomized
algorithm uses random [] (or pseudo-random [,]) hash functions.
A time and space-efficient reduction from SETINTERSECTION to a decision problem shows
that, if we prove fully derandomization of these algorithms must introduce polynomial
overhead, then Open Problem 7.1 is solved.

Finally, we would like to mention that a quantum vs. randomized separation for multi-
output functions has been known for long, due to the quantum algorithm for SorTING
by Klauck [] with 725 = 6(713). The separation is extra strong in the sense that the
quantum algorithm uses only polylog(7) quantum memory for any S. On the other hand,
lower bounds for quantum time-space tradeoffs are more scarce and the proofs are more

ad-hoc. Currently, only two proof methods are known for quantum lower bounds: via

direct-product theorems [] and via the recording query technique |].

I21

TimEe-Srace LoweR BoUuNDSs FOR LEARNING

In a sharp contrast to traditional computational problems where it is hard even to prove
lower bounds with large polynomials, for learning problems we do have lower bounds ex-
ponential in the size of samples. One reason for that is because learning problems naturally
has an exponentially large space of inputs (albeit heavy with redundancy), and the stream-
ing nature of the problems also provides huge advantage for proving lower bounds.

Our result in Chapter 10 is a quantum extension of the result of [], which is also
where our techniques originates from. Therefore, it helps to give a quick recap of how the
classical lower bound in |] works. We using parity learning [] as an example,
s0 M(a, x) means the inner product of 2 and x in F,.

Consider a classical branching program that tries to learn an unknown and uniformly
randomx € {0,1}” from samples (4,), wherea € {0,1}” is uniformly random and
b = M(a,x). We associate every state v with a distribution Py;, over {0, 1}”, indicating the
distribution of x conditioned on reaching that state, and examine the evolution of the inner

product

(Px, P) = > Py(x) - Plx)

x€{0,1}»
with some target distribution P. Receiving a sample (2, &) implies that M(a, x) = b, hence

only the part of Py, supported on such x proceeds. If this part is close to 3 probability, we

b
v

say that 2 divides Pyj, evenly. Denoting the new distribution as P), after proper normal-

X

I22

ization the new inner product is

M(ax)=b M(ax)=b

Ideally, both Py, and the point-wise product vector Pyj, - P should have reasonably small
¢, norms. Due to the extractor property of M, mostof 2 € {0,1}” should divide both
vectors evenly, and thus the denominator is close to % while the enumerator is close to
2(Px, P). That means, given a uniformly random a, we get limited progress on the in-
ner product. On the other hand, from (U, P) = 27" with uniform distribution U'to
(P, P) = 2%" . 27", the branching program needs to make multiple steps of progression.
Therefore it happens with an extremely small probability.

To ensure that the above statement goes smoothly, we require the following properties

for every state v in the branching program:

* The ¢, norm HPX|U

, is small.
* The ¢, norm HPle . PH2 is small, which is implied if the £ -norm HPleHoo is small.
* The denominator in (7.1) is bounded away from 0 for every sample (4, 6).

These properties do not hold by themselves. Instead, we execute a truncation procedure

to the branching program stop whenever one of the properties fails. The proof then boils

down to proving a 2~*"") bound on the probability of reaching a state with large | Pxo

2}

from which by a standard union bound, we can prove that either 22 samples or Q ()

bits of memory are necessary.

123

To bound the probability of reaching a state with a large £,-norm, the basic idea is to fix
its distribution as the target distribution P, and bound the increment of the inner product
(Pxiu, P). Define a bad event to be a pair (v, a) of the state v and the upcoming part of the

sample @, such that (Py,, P) > 27", and for one of the two possible outcomes b,

S o) P > (§+z) Py P (72)

x€{0,1}"
M(a,x)=b

with some small constant d. In other words, the inner product (Pyj,, P) is large enough,
while not being divided evenly by 4. From (7.1) we know that the inner product gets at
most roughly doubled through a bad event. In contrast, in the good case, the inner product
either gets a mere (1+ 27%) multiplicative factor or is already smaller than the baseline 27,
Also, the extractor property of M ensures that for every state v, over uniformly random 4,

the bad event happens with at most 2-9(»)

probability.
We then define the badness level 4(v) of a state v keeps track of how many times the com-
putational path went through bad events before reaching v. The above observations on the

bad events imply that (omitting the smaller factors):

* For every state v, (Pyj,, P) is bounded by 280) . g,

* Heading to the next stage, 4(v) increases by 1 with probability 272,

Therefore at each stage, the total weight of states with badness level 4 is at most 2700
Thus any state with (Py,, P) > 227 . 27" muyst have 2~ %(") probability, which concludes
the proof for the classical lower bound.

Now, to prove our quantum lower bound, some of the notions above could be easily

124

transferred to the scenario with quantum memory:

* The state v is a quantum state in the complex linear space of quantum memory;

* The distribution Py, is still well-defined: It is the distribution of x when the quan-

tum memory is measured to v (see (10.1));

* We are still able to implement £, truncation: If Pyj, has large £,-norm, project the
entire system to the orthogonal subspace v+ of vand repeat, until there is no such

state v.

* We are also able to implement sample truncation, in a similar manner to ¢, trunca-
tion. As the criteria here depends on 4, we separately create a copy of the current
system for each 4, truncate the states v using projection when Pyj, is not evenly di-
vided by « in each copy, and then merge them back together. We prove that the error

introduced by this truncation is small.

However, their are two major problems that prevent us from copying the proof verbatim
into the quantum case. The first problem is the /., truncation. When we try to emulate
the classical implementation of /., truncation with quantum truncation, that is, to only
project to v+ the system conditioned on the specific x where Pyj, () is large, instead of for
every x, it may lead to huge changes to the distributions Pyj, on states # non-orthogonal to
v, even eliminating the entire system.

And the second problem is the definition of badness levels. If we define the badness level
B(v) for each state v individually by examining the bad events over the historical states, then
it is not clear how to measure the total weight of a badness level 4. Or we could have a more

operational definition of badness levels, but since the bad eventin (7.2) is not linear in v,

125

such an definition, which is a linear operator, inevitably introduces error that escalates fast
with the number of stages.

These problems occur when we are shooting for the quadratic quantum memory lower
bound. It turns out that if we limit the quantum memory to a small linear number, both

problems could be solved with ease.

l» TRUNCATION. When there is only small quantum memory and no classical memory,
the treatment for /o, truncation is straightforward. We remove all quantum states v with
distributions of large £, norm, by projecting the system to the orthogonal subspace v,
just like the process of ¢, truncation. As the overall distribution on x is uniform, any state v
with || Py, |lec > 2% - 27" must have weight at most 27, Therefore, as long as the dimen-
sion of the Hilbert space is much smaller than d, the error introduced in this truncation is
small.

With classical memory in presence, the actual o, truncation step is a bit more compli-
cated. We first apply the original classical £, truncation on the classical memory 7. Now

that || Py || is bounded for each classical memory state w, we can remove the quantum

states v with large || Pxj,. || o by projection as stated above.

BADNESs LEVELs. We are able to avoid the problems of defining the badness level on
quantum memory altogether, by keeping it a property on the classical memory only. To
do so we need to alter the definition of a bad event: it is now a pair (w, 2) of classical mem-
ory state w and sample z, such that there exists some quantum memory state v with Pyj, ,,
satisfying (7.2).

For each fixed classical memory state w, we still need to ensure that bad events happen

126

with a small probability. We prove it by showing that, if there are many different samples ,
each associated with some quantum state v, satistying (7.2), then there is some quantum
state v that simultaneously satisfies (7.2) with most of such 4 (which is impossible because
of the extractor property). This is ultimately due to the continuous nature of (7.2): Under
some proper congruent transformation, (7.2) becomes a simple threshold inequality on
quadratic forms over v. Now if it is satisfied by some v,, it is going to be satisfied by most

v for a much smaller threshold parameter 9, and hence the existence of a simultaneously
satisfying v. In this argument, we use Lemma and crucially relies on the fact that the

dimension is at most 2" for some small €.

127

Decision Problems:

The Coupon-Collector Model

The goal of this chapter is to introduce the coupon collector model on decision problems,
prove a relatively simple lower bound in this model, and relate it to the time-space lower
bounds for standard oblivious branching programs.

We first recall the classical coupon-collector problem, which asks how large 7'should be,
|

so that a uniformly random 7-tuple in [’ contains every element of [#] with high proba-

bility. Generalizing the goal to a subset 4 C [r], we have the following answer:

Proposition 8.1. Given any subset A C |n), for a uniformly random i € [n)?, the probabil-

itythat A ¢ {\,... ir} isat most n(1 + log|4|) T~

The proof follows directly from the fact that the expected waiting time for every element
in A to appear is Zjl'ﬂ 7' > n(1 + log |4]), and Markov’s inequality.
In the coupon-collector model of computation, at each step # € N a uniformly random

index 7, € [n](corresponding to a coupon) is provided. When the problem specifies an

128

inputx € {0,1}", at each step ¢ the value of the bitx;, € {0, 1} is also given along with

the random index 7. In this paper, we consider two cases for the joint distribution of the

indices:
Independent The indices 71, 75, . . . are mutually independent.
Recurring The only dependencies allowed among 7y, 75, . . . are equalities. More formally,

there is a partition p : Ny — N, such thatz, =) foreveryr € N, where

o

/

?
1,7y, . . . are mutually independent and uniformly random over [#].

For the rest of the paper, we refer to the two cases as independent distribution and recurring

distributions. Notice that the independent distribution is a special case of the recurring

ones.

8.1 ZERO-ERROR CouPON COLLECTOR

Consider the task of computing a function f/ : {0,1}” — {0, 1} with zero-error in the
coupon-collector model, where the algorithm is allowed to output 0, 1 or a special symbol
L. Foreveryx € {0,1}”, we require that the probability of outputting f{x) is at least 1/2,
and the probability of outputting 1 — f{x) is zero, where the probability is over the random-
ness used by the algorithm and the randomness from the coupon-collector model itself.

At the end of this section, we will prove the following theorem:

Theorem 8.x.1. Let f: {0,1}" — {0,1} be a boolean function with sensitivity s(f). Under
the coupon-collector model with the independent distribution, every branching program of
length T and width 25 > 5 which computes f with zero-ervor must satisfy TS > %n - s(f) for

sufficiently large n.

129

Recall the definition of sensitivity: Let s(f, x) the number of coordinates 7 € [r] such

that flx @ ¢;) # f(x), and the the sensitivity of fis s(f) = max, s(f, x). Applying Theo-

rem to functions with large sensitivities yields the quadratic time-space lower bound:

Corollary 8.1.2. Let fbe a boolean function on n-bits with sensitivity Q. (n) (For instance,
AND, XOR, Majority, s-t connectivity, etc.). Under the coupon-collector model with the inde-
pendent distribution, every branching program of length T and width 2° > n which computes

fwith zero-error must bave satisfy TS > Q(n*).

Remark. Theorem is tight up to logarithmic factors, in the sense that for every m < n,
the function x, @ - - - @ x,, with sensitivity m can be computed with zero-error within S space
and O(nmS " log n) time. We bricfly sketch the algorithm bere: Equally partition [m] into
O(mS™") parts, each of size O(S). For each part P, use O(nlog n) steps to record the values x;
forall indicesi € P. Ifanyi € P does not appear within these O(nlogn) steps, output 1.

Otherwise compute the partial parity @, p x;, and accumulate the partial parities.

In order to prove Theorem , we first look at the task of solving the original coupon-
collector problem with zero-error, that is, the collector can choose to claim success or fail-
ure when it stops. Whenever it claims success it must be the case that all coupons in a target
set A C [n] have been collected, and this happens with probability at least 1/2. Note that
in Proposition 8.1, if the collector blindly claims success at O(7 log 7) time, there is still

probability that the claim is false.

8.1.1 SET-LABELED BRANCHING PROGRAM

To show a lower bound for the zero-error coupon-collector problem, we first restrict the

computation model to a certain type of branching programs called set-labeled branching

130

programs.

Definition 8.1.3. In a set-labeled branching program, every non-leaf vertex has n outgo-

ing edges, labeled with each element in [n] exactly once which corresponds to the index of the
coupon it receives. Furthermore, every vertex v is labeled with a set H(v) C |nl, satisfying the
Jfollowing soundness condition: if an edge from vertex u to vertex v is labeled withi € [n], it
must bold that H(v) C H(u) U {z}. The start vertex must be labeled with @. For a target set

A C [nl, a leaf v dlaims success if A C H(v).

Theorem 8.1.4. Under any recurring distribution and for any set A C [n], every set-labeled
branching program of length n and width 2° > | A| that solves the zero-error coupon-collector

problem for the target set A must satisfy TS > in|A| for sufficiently large n.

Fix such a set-labeled branching program. We first prove an upper bound on the proba-

bility of the computation path reaching two given vertices:

Lemma 8.1.5. Forany two vertices u, v in a set-labeled branching program, wherew € 'V,

v € Vyand i < j. Under the coupon-collector model with any recurring distribution,

Prlreaching u N reaching v] < (J —!

:) |H(0)\H (x)]

n

Proof. Letp : Ni — N, be the partition in the recurring distribution. Let G be the
random variable that represents the set of indices received between layer V; and layer V7,
andlet ¢ = |{p(k) | 7/ < k& < j}|. Note that G is uniformly distributed over [2]‘. By
the soundness requirement of set-labeled branching programs, if the computation path

reaches # and then v, the set G corresponding to this path must satisfy H(v) € H(x) U G.

131

Therefore,
Pr[reaching # A reaching v] < Pr[H(v) C H(x) U G| = Pr[H(v) \ H(«) C G].

If ¢ < |H(v) \ H(x)| then the above probability is zero. Otherwise by (over)counting the

positions where the elements of |[H(v) \ H(x)| appear and the union bound we have

0
(€ = [H(v) \ H(x)])!

P\ HE\H(@)|
()
n

N O
< (]—Z) . 0

n

Pr[H(v) \ H(x) C G] < - HO\HW)

Remark. Forthe independent distribution, the above argument yield:

Prlreaching v | reaching n] < (];Z

|H(0)\H(x)|
S

The weaker result in Lemma , however, holds more generally for any recurring distribu-

tion. It is also strong enough for proving Theorem
Now we are ready to prove Theorem

Proof of Theorem . Suppose the length of the set-labeled branching program is 5. De-
fine the weight of a vertex v as W(v) = E[B_,,] = Prreaching v|. For a set of vertices A,
let W(A) = >, .4 Wi(v). Since the leaves are all in V7, forevery 0 < 7 < T'we have

W{(V;) = 1. The fact that the branching program succeeds on the target set 4 C [#]

132

translates to:

> W) =1/2. (8.1)
A

. . . 4 . .
We divide the branching program into 2! sta es, each consists of a consecutive part of
25

the layers. Forevery 0 < £ < %, let 7(k) be the smallest index 7 of a layer 7; such that

kS

W) > —.

2. Mz
|H(v)|>2kS

By (8.1) we know such a layer must exist. Now the £-th stage consists of the layers from

Viw) t0 Vigg1)—1- Let
Ay ={u € Vyyy | |H(u)| > 2kS}, By ={u € Vi | |H(u)| < 2kS}.

By the definitions of 7(k), we know that W(4,) > kS/|A|, W(B;) > 1 — kS/|4]|.

Now we show that every stage contains at least (/3 — 1) layers. Suppose for contradic-
tion that for some £, it holds that 7(£ + 1) — (k) < »/3 — 1. For any two vertices# € B,
and v € 44, by Lemma we have

Ley1 — 4+ 1
n

|[H(0)\H(u)|
) <37,

Pr[reaching # A reaching] < (
Since each layer consists of 25 vertices, we have

Prlreaching B; A reaching 4] < Z Pr[reaching # A reaching v] < 25.25.37%5,

uEBy,
UGA/H—I

133

Therefore, applying the union bound gives:

Pr[reaching Vi)—1 A reaching Vi(kﬂ)]
< Prlreaching V-1 \ Bi| + Prlreaching Vii1y \ Apt1]
+ Pr(reaching By, A reaching 4]

<1— WI(B) +1— W(dpy,) +25-25.37%

kS o (BADS +(2/3)¥ =1- S (2/3)* < 1.

<+
4| || 4]

The last step is because 1/|4| < 27°. However, since the computation path must pass
through both V;4y_; and V(.41), the probability above must be 1, which is a contradiction.

Thus we conclude that, for 7 large enough, 741 — 7, > n/3 — 1 > n/4. Therefore,

. . n|A
T> Z (Zpg1 — 22) > % O

0<k<|d|/28

8.1.2 REDUCTION TO SET-LABELED BRANCHING PROGRAMS

We will prove Theorem by reducing every decision problem to a set-labeled branching
program solving the coupon-collector problem with zero-error. The first step is to show

that in general, any such branching program is set-labeled.

Lemma 8.1.6. Under the independent distribution, for any set A C [n], every branching
program of length n and width 2° > | A| that solves the zero-error coupon-collector problem
for the target set A can be assigned on each vertex a label H(v) C [n] so that the branching

program is set-labeled.

134

Proof. Let P(v) be the collection of directed paths from the starting vertex to v. For every
directed path p let h(p) be the collection of indices labeled on the edges of p. Then we de-
fine H(v) = Nyep)h(p).

The starting vertex is clearly labeled with the empty set. To check the soundness, con-
sider an edge ¢ from vertex # to vertex v labeled with 7. For every pathp € P(«), the con-

catenation pe is a path in P(v), and h(pe) = h(p) U {7}. Therefore,

H(v) C () h(pe) = H(x) U {s}.
pEP(n)
Notice that every path from the starting vertex to a leaf corresponds to a collection of in-
dices 71, . . ., i1, that are given with probability n~T > 0under the independent distribu-
tion. Since the branching program collects 4 with zero-error, for every path to a leaf that
claim success, it must hold that 4 C {7, ..., 77}. Thus every successful leaf v is now la-

beled with H(v) D 4. [
Now we are able to prove Theorem

Proof of Theorem . Suppose there is a branching program P of length 7'and width 2°
that computes f'with zero-error. Letx € {0,1}” be an input such thats(f) = s(f, x), and
letd = {7 € [n] | Ax) # Ax?)}. We show below that from P, one can extract a simple
branching program P’ for the coupon-collector problem of width at most 25 and length 7,
which solves the zero-error coupon-collector problem for the target set 4. Since |4| = s(f),
by Lemma we know that 7§ >= %n - 5(f) for sufficiently large 7.

We construct P’ inductively to simulate PP on input x. For vertex v in P we use v’ to

denote its corresponding vertex in P’. The start vertex v} in P’ corresponds to the start

135

vertex vp in P. If in P there exists an edge from # to v labeled with (7, x;), and # is in P,
then add ¢ to P’ (if ¢/ is not already there), and add an edge from #’ to v/ labeled with 7.
Finally, every leaf v’ in P’ claims success if the output on v is f{xx), and otherwise claims
failure.

First notice that under the independent distribution, the probability of reaching a vertex
v’ in P’ is exactly the same as the probability of reaching v in P with the input x. Since the
probability that PP outputs f{x) on input x is at least 1/2, the probability that P’ claims
success is also at least 1/2.

We now show that conditioned on reaching a successful leaf v’ in P’, it must hold that
A C {7,...,ir}. Suppose not, then for some index 7 € A there is a path p’ from the
start vertex to v’ where no edge is labeled with 7. Consider the corresponding path p in P.
On input 2, the computation follows the path p with non-zero probability and outputs
flx) # flx @ e;), which contradicts the zero-error property of P. That concludes the proof

that P’ solves the zero-error coupon-collector problem for the target set 4. O

8.2 RELATION WITH OBLIVIOUS BRANCHING PROGRAMS

Note that the zero-error guarantee is crucial to Theorem , since for instance, the #-bit
AND function can be computed with constant error by a branching program of length
O(n) and width O(1). However, when specified to the parity function, the best trade-off
seems to be still quadratic even in the bounded-error setting. We propose the following

conjecture, which is still open at the time of writing this thesis:

Conjecture 8.2.1. Under the coupon-collector model with the independent distribution, any

branching program of length T and width 25 which computes xy @ - - - B x, with errorl/3

136

must satisfy TS = Q(n?).

Interestingly, there is another algorithm for computing parity (which actually computes
the Hamming weight) with bounded error, which is essentially different from the algo-
rithm mentioned in the previous remark: Equally partition [#] into O(S/ log 7) parts. For
each part P, record the number of steps # when a pair (7, x;) such that7 € Pandx; = 1is
received, and finally approximate the partial sum) _,_,x; with the integer closest to z2/T.
By Chernoff bound, 7'= O(#%S!log” 7) is enough so that the approximation of each part
is wrong with probability O(n™").

Notice that this algorithm does not work in the zero-error setting. While the previous
algorithm corresponds directly to a set-labeled branching program, it is not clear whether
this approximation algorithm is related to set-labeled branching programs or not.

We note that by the time this dissertation is finished, Dinur [] proved our Conjec-
ture affirmatively. In fact, for any total boolean function an lower bound holds with

respect to its total influence:

Theorem 8.2.2 ([). Letf : {0,1}" — {0,1} be a boolean function with total
influence I(f). Under the coupon-collector model with the independent distribution, every
branching program of length T and width 25 > n which computes f with at most 1/3 error

must satisfy TS > Q(n) I(f).

The conjecture (now a theorem) is also interesting as it could be seen as the first step to
prove strong lower bounds for oblivious branching programs. In this section, we present
two potential directions, both via proving lower bounds in the coupon-collector model.
LetSUR]J, ,, : []" — {0,1} be the surjectivity function: SUR]J,, () = 1ifand only
{#1,...,in} = [n].

137

Theorem 8.2.3. Forany m > 2n(logn + 1), any deterministic oblivious branching program
computing SUR], is also a branching program for zero-crror coupon-collector problem with

the target set [n] under some recurring distribution.

Proof. Suppose at level # — 1 the oblivious branching program reads 7,,), for some function
p : Zy — [m]. Use p as the partition in the recurring distribution, then the computation
of the branching program for the coupon-collector problem is exactly the same as in the
oblivious branching program with a uniformly random input7 € [z]”. Proposition

shows that the probability of SURJ,, () = 1isatleast1/2. As the deterministic oblivi-
ous branching program always outputs correctly, as a branching program for the coupon-

collector problem it succeeds with zero-error. O

For any boolean function f: {0,1}* — {0,1} andm > n,letf* : [n]” x {0,1}" —
{0,1} be a partial function defined as follows: /*(7, y) is well-defined for7 € [r]” and
y € {0,1}”,ifand only if SUR], () = 1,and whenever; = 7 it musthold y; = .
When f*(7,) is well-defined, the value of £*(7, 3) is Ay, - - - -3,)» where for every 7 € [,/

issome; € [m] such thatz; = 7.

Theorem 8.2.4. Given any function f: {0,1}" — {0,1}, and for any m > 3n(logn + 1),
if there is a deterministic oblivious branching program computing f* of length T and width 2°
(on the inputs where f* is well-defined), then there is a branching program of the same length

and width, that computes f with error 1/3 in the coupon-collector model under some recurring

distribution.

Proof. Add dummy levels to the oblivious branching program to double the length, such

that if originally at level # the branching program reads either ij or y;, now it reads 7; at level

138

2t and y; at level 27 + 1. The oblivious branching program now can be regarded as the one
of length 7T'and width 2° that at each level # reads a pair (2,(;), y5(»)), for some function p :
Ny — [m].

Use p as the partition in the recurring distribution. For any fixedx € {0,1}”, the com-
putation in the coupon-collector model on input x is exactly the same as in the oblivious
branching program with a uniformly random 7 € [2]”,and inputy € {0,1}” defined
asy;, = x;. Forsuchzandy, f*(7,y) is well-defined if and only if SUR], (/) = 1,and
Proposition 8.1 indicates the probability that f*(z, y) is well-defined is at least 2/3. Since
whenever f*(z, y) is well-defined, the deterministic oblivious branching program correctly
outputs f{;, - - -, ;) = f(x), as a branching program under the coupon-collector model it

computes / with error 1/3. O

As a corollary, if in the coupon-collector model we were able to prove a time-space lower
bound that holds under any recurring distribution, either for the coupon-collector prob-
lem with zero-error, or for any bounded-error computation, we would immediately have
the same lower bound (up to logarithmic factors) on deterministic oblivious branching

programs, and thus solves Open Problem

139

Multi-Output Functions:

A Polynomial Separation

In this chapter we study the time-space tradeofts for multi-output functions. Previously all
lower bounds on such tradeofts were proved by the Borodin-Cook method [], which
we will revise in Section 9.1. However, as the Borodin-Cook method inherently give the

same lower bound for deterministic and randomized computation, the following question

remains unanswered for a long time:

Is there a polynomial separation between randomized and deterministic branch-

ing programs for time-space tradeoffs of multi-output functions?

Here we answer this question in the affirmative for oblivious branching programs, where
the queries made in the branching programs are independent of the input. In particular,
we design a total function (7, p)-NON-OCCURRING ELEMENTS (Definition) on [n]”

which outputs a subset of [z], such that:
* There exists a randomized oblivious algorithm with space O(log z), time O(z log)

140

and one-way access to randomness, that computes the function with probability

1— O(1/n);

* Any deterministic oblivious branching program with space S and time 7 that com-

putes the function must satisfy 725 > Q(n*°/ logn).

This will be proved in Section 9.2. The proofis is not technically hard, and the difficulty in
proving such a separation actually lies mostly in finding a proper total function where the

adversarial method works. We demonstrate this difficulty by showing that, for several natu-
ral candidate problems whose best known deterministic algorithms are polynomially worse
than randomized algorithms, proving a polynomial separation will lead to the resolution of

Open Problem

9.1 THE BorODIN-COOK METHOD

In this section we revise the Borodin-Cook method which was used in all previous works
for proving time-space lower bounds of multi-output functions. The original method by
Borodin and Cook [], used on the sorting problem, is quite complicated and not
modular enough to be applied to other problem. It was simplified by Beame [], and

from then on used to provide lower bounds for a variety of multi-output problems, in-

cluding algebraic problems like matrix multiplication and inversion [], frequency
moments over sliding windows [], and more recently, the memory game [],
printing and counting SAT assignments |] and multiple collision finding [],

just to name a few. For a formal but restrictive description of the method and more applica-

tions, see [, Chapter 10].

141

Here we give a brief framework of the proof method:

1. Fix a distribution D over the inputs (often uniform), and find a suitable number

a(S) such that given 4(S) bits in the input, only S bits of output are revealed on aver-
age.

2. Prove that, given any decision tree of depth 2(S) and ¢ - Sbits of output assigned to
each path in the tree, these outputs are correct with probability 290 ynder D, for

some large ¢ > 1.

3. Now split the branching program into stages of length 4(S), and by a union bound
over the 25 starting nodes of each stage, the above argument shows that most inputs
under D cannot generate ¢ - S bits output within a stage. This implies a lower bound

of the form ST/a(S) > Q(n).

Step 2 is the technical part of the proof, which usually involves certain counting arguments
as the distribution D is often a uniform distribution on some support. To give a concrete

taste of the method, we prove a lower bound for the following problem.

Definition 9.1.1. I the 2-STEPPOINTERCHASING (2-PC for short) problem, the input is a

Sfunction f: [n] — [n], and the output consists of (x, f{f(x))) forall x € [n).

Proposition 9.1.2. Any randomized oblivious branching program with space S and time T

that computes 2-PC must satisfy TS > Q7).

Proof. Consider a deterministic oblivious branching program .4 computing 2-PC. Divide
. . . 1 .
the branching program into £ stages where each stage consists of « = ¢V nS consecutive

layers, for ¢ = T/a.

142

Take any such stage £, and assume that the oblivious queries within the stage are on
fAx1), ..., flx,) wherexy, . .., x, are distinct elements in [#]. Let f : [#] — [#] be a uni-

formly random permutation, and let
I={icld|TF€a,Ax)=2x}.

Notice that || = |{4) N 4| where 4 = {x1,...,x,} hassize 4, and f{4) is a uniformly

random subset of [%] of size 2. Therefore,

pinzs< (") (9(,7)

alal(n — a)!

T (a—a =SS (n—a+9)

225 ea> S s
< < <S5
~S(n—a) — (S(n —ﬂ)) -

Now consider the probability

Pr [On input £, at least 35 distinct pairs of (x, f{f(x))) are outputted in stage £]. (9.1)

IS,

When |7] < S, let us fix the query answers in stage # and examine (9.1). Among the 35 pair
of outputs (x, f{f(x))) at least S of them satisfies thatx ¢ Iand f{f(x)) ¢ f{I). For those x,
fIflx)) is simply uniformly distributed over the not-revealed » — 4 elements, which means
-

that these answers are correct with probability at most (z — 2 — 5)

Thus by union bound over the 28 starting points of stage k£, we can bound the probabil-

143

ity in (9.1) by
28 (/Pr 1 > S|+ (n—a —S)S) <275

~.S,

Without loss of generality, assume that.S > log 7, then the above bound is smaller than
1/(27) < 1/(2¢). But on the other hand, since throughout the ¢ stages, 7 correct pairs
of answers are outputted, it means that as long as 3¢S < 7 there must be a stage £ such
that this probability is at least 1/¢, which is a contraction. Hence we have 34S > 7, which
translates to 725 > Q(»?).

Finally, notice that we actually proved that no deterministic oblivious branching pro-
gram could succeed with probability 1/2 on computing 2-PC when the input fis uni-
formly drawn over permutations S,,. By Yao’s Minimax Principle, we conclude that no
distribution over deterministic oblivious branching programs could computing 2-PC with

probability 1/2. O

Note that the final application of Yao’s Minimax Principle is not a coincidence. In fact,
by the design of Borodin-Cook method, we always first prove a lower bound on determinis-
tic branching programs over some input distribution D, and thus Yao’s Minimax Principle
is always applicable. Therefore, the Borodin-Cook method itself could not demonstrate a
randomized vs. deterministic separation. In the next section, we show how to combine the

Borodin-Cook method with the adversarial method to bypass this weakness.

9.2 POLYNOMIAL SEPARATION FOR OBLIVIOUS COMPUTATION

Here we define our total function (7, p)-NOE that demonstrate the polynomial separation

between randomized and deterministic oblivious branching programs.

144

Definition 9.2.1. Let n > 1and p be a prime factor of n. In the (n, p)-NON-OCCURRING
ELemENTS ((n, p)-NOE for short) problem, the input is an unordered list of n numbers X =

(x1,...,%,) € [n)". The output is a set Y C [n] such that:

* If for every c € [n), the number of times that c occurs in X is a multiple of p (0 included,
so there are at most n/p distinct occurring elements), then Y consists of the (at least n —

n/p) elements in [n] that do not occur in X;
* Otherwise Y = Q.

Theorem 9.2.2. There is a randomized oblivious branching program with space O(log n)
and time max{1, n/p*} - O(nlogn), that computes (n, p)-NOE with probability at least
1 — 2/n. Moreover, the algorithm can be implemented with one-way access to random bits.
On the other hand, any deterministic oblivious branching program with space S and time T

that correctly computes (n, p)-NOE must satisfy T*(S + log T) > Q(n° /p).

Takingn = p?, we get a polynomial separation with randomized upper bound § =
O(logn), T = O(nlog n) and deterministic lower bound 72§ > Q(n*5).

We note that our (7, p)-NOE problem could be perceived as a “promised” version of the
NoN-OcCURRING ELEMENTS problem (in which the output at all times consists of the
elements not occurring in X), and the latter problem has time-space tradeoff 7§ = ©(»?*)
for both deterministic and randomized branching programs []. The promise that
every elements occurs a multiple of p times can be efficiently checked with randomness
(Lemma), however there may as well be a deterministic algorithm that verifies the

promise in almost-linear time and poly-log space (subject to Open Problem 7.1). The above

145

facts imply that neither the NoN-OcCURRING ELEMENTS problem nor the promise itself
could demonstrate the desired separation.

We first prove the randomized upper bound for (7, p)-NOE, which consists of two
parts: the algorithm for checking the promise Lemma , and the algorithm for solving

NoN-OccURRING ELEMENTS under the promise Lemma

Lemma 9.2.3. There is a randomized algorithm using O(log n) space and O(log n) random

bits that reads X = (x1, . .. ,x,) € [n]" as a one-pass stream and satisfies that:
* Ifevery c € |n] occurs in X a multiple of p times, the algorithm always accepts;
* Otherwise, the algorithm rejects with probability at least 1 — 2]7_1/ 2 log 7.

Proof. The algorithm maintains a linear sketch of the frequencies of elements in [7]. Specif-
ically, let 2y, . . . , 2, be uniformly and independently drawn from IF,,. The algorithm com-
putes . a,, and accepts if the sum equals 0. If some ¢ € [#] occurs not a multiple of p
times, the factor before «, in the sum is non-zero, and the sum equals 0 with probability
1/p.

To reduce the random bit usage (the naive approach uses 7 log p random bits) we use

Reed-Muller codes. Instead of drawing 4, . . . , #, independently, the algorithm draws
8- --,B, € F,uniformly and independently, and let ay, . . ., #, be the values of monomi-
als

[g?[@gz”,ﬂd’" ()Sdl,,dm<d

m

1/2

By takingd = p

and m = 2logn/logp, the number of such monomials is at least

d” > n.Since mlogp = O(logn), the algorithm can draw and store 8, ..., 8, directly.

146

After reading x; = ¢ € [n], (c—1) is decomposed in base 4 to obtain dj, . . . , d,, in sequence,
while the algorithm computes o, = ﬁih‘@;lz . ﬂi’” and accumulates it to the sum) | a,,.
Now the sum) _, 2, is a total degree md polynomial in IF, on variables 4, ..., 8, ,
where the the coefficients are the frequencies of elements in [z] occurring in X. If every
¢ € [n] occurs in X a multiple of p times, the polynomial is always zero; Otherwise, the

polynomial is non-zero, and by the Schwartz-Zippel Lemma, the probability that the poly-

nomial evaluates to zero is at most md /p < 2p~/?logn.]

Lemma 9.2.4. Suppose X = (x1,...,x,) € n|" satisfies that every ¢ € [n] occurs in X either
0 or at least p times. Then there is a randomized oblivious algorithm using O(log n) space
and O(n*p~? log n) time, with one-way access to random bits, that solves NON-OCCURRING

EresmENTS on X with probability at least1 — 1/n.

Proof. Let R C [n] bearandom multi-set of size 7 = 3mp ™" Inn. As every occurring
element occurs at least p times, the probability that {x; | 7 € R} does not contain all

occurring elements in X is at most
n-(1—p/n) <n-e3"=n2 (9.2)

The algorithm goes for 7/p rounds, in each round independently samples such a multi-
set R of size 7, and queries x; for 7 € R. The algorithm also stores an number 7, which is

initialized as 0, and in each round ; is updated to
j =min{x, >j|7€ R}U{n+1}.

At the end of each round, the algorithm outputs every number strictly between the pre-

147

updated jand ;. By (9.2) and a union bound, with probability at least 1 — 1/7, in every
round {x; | 7 € R} contains all occurring elements (where there are at most 7/p of them).
In this case j goes through all occurring elements in order, and thus the outputs are exactly
the non-occurring ones.

The overall time complexity is 72 /p = O(n*p~*logn), and since elements in R can

be sampled sequentially to compute / and no need to be stored, the only space usage is for

storing 7 and ;/ which is O(log 7). O
Note that Lemma solves a decision problem and thus can be repeated for O(log 7)
times to amplify the success probability to 1 — 1/7. Then combined with Lemma , we

obtain the desired randomized oblivious upper bound of space O(log %) and time O((1 +
n/p*) - nlogn). We now show the deterministic lower bound, from which Theorem

follows.

Lemma 9.2.5. Any deterministic oblivious branching program with space S and time T that

correctly computes (n, p)-NOE must satisfy T*(S + log T) > Q(n’/p).

Proof. Divide the branching program into ¢ = 27/ stages, each of which contains 7/¢ =
n/2 queries. We first construct a partition P on [z] that consists of z/p parts of size p as

follows:
1. Initially,let P = @.

2. For each stage of the branching program, let Q; be the set of indices queried in the
k-th stage. Arbitrarily pick » = #*/(47p) disjoint sets of size p outside | J{P €
P} U Q, and add them into P.

3. Finally after going through all the stages, arbitrarily partition the remaining elements

in [7] into sets of size p.
Notice that during Step 2, the total number of elements in [J{P € P} never exceeds

n* 2T

As |Qi| < /2, this implies that Step 2 is always feasible.

We define a distribution D of X € [n]” as follows: For every part P € P, uniformly
and independently pick ¢ € [z] andletx; = cforalli € P. Notice that the (7, p)-NOE
problem is identical to NoN-OcCURRING ELEMENTS on supp(D). Now consider the
probability

XPrD [On input X, at least 7 distinct elements are outputted in stage £|. (9.3)

Since for each input X € supp(D) there are atleastz — »n/p > n/2 non-occurring
elements, there must exist a stage 4 such that the above probability is at least 1/ for m =
n/(20).

On the other hand, Step 2 in the construction of P implies that, given the query an-
swers in stage k (i.e. x; for all7 € (), there are at least 7 parts in P whose values in X are
still uniformly random. When the query answers are given, there are at most 25 different
collections of outputs in stage £ (dictated by the starting state of the stage), and if 2 dis-
tinct elements are outputted and thus non-occurring, each one of the 7 parts is consistent

with these outputs with probability 1 — 72/7. Therefore the probability in (9.3) is upper

149

bounded by

3

2 <1_ ﬁ)r:f. (1_ %)W <25 wh,
n

As the probability is at least 1/¢ > 1/ T, we have

3

loge - n
- > —log T T 1 > Q(n®/p). O
ez g = T(StlogT) 2 O(n'p)

9.3 SEPARATIONS THAT IMPLY DECISION LOWER BOUNDS

In this section we present several natural candidates of multi-output function for random-
ized vs. deterministic separations, and show that actually proving such separations will lead
to answering Open Problem 7.1. These results can be perceived in two ways: On one hand,
these are currently barrier results implying that proving separations for these natural prob-
lems is difficult, which is where the (7, p)-NOE problem in our main result stands out;
On the other hand, one may hope that future developments in proving lower bounds for
multi-output functions will help towards the final resolution of Open Problem

Before getting into the concrete examples, we note that every multi-output function
F:{0,1}” — {0,1}” can be converted to a decision problem ¥ : {0,1}" x [m] — {0,1}
defined as F(x,7) = F(x);. Therefore, if F can be computed in space O(log 7) and time
5(;1), then F can trivially be computed in space O(log #) and time 6(;%71) Our results in
this section holds non-trivially with better time complexity than 5(7}171) However, this im-
plication is still useful as it makes decision problems and single-output functions (whose
outputs are in [z], or generally have length 7 = polylog(7)) morally equivalent with re-

spect to Open Problem 7.1: Any lower bound for a single-output function that is polyno-

mially better than trivial implies a corresponding lower bound for a decision problem.

9.3.1 POINTER CHASING AND EXPANDERS

Recall the definition of the 2-STEPPOINTERCHASING problem, where the input is a func-
tion f: [#] — [n], and the output consists of (x, f{f{x))) forall x € [n]. For non-oblivious
algorithms, 2-PC can be easily solved in deterministic space O(log) and time O(z), by
querying fon each x and adaptively on f{x). On the other hand for oblivious algorithms,
we have the 728 > Q(%*) lower bound in Proposition , which provides an example
of polynomial separation between oblivious and non-oblivious time-space tradeoffs of total
functions.

The bound is also tight and can be achieved via the following simple algorithm: In each
round pick two random subsets X, ¥ C [»] with [X| = |¥] = v/nS. We store at most o(S)
pairs of (x, flx)) € X x Yby querying fon X, and output the corresponding (x, f{f(x)))
by querying fon Y. Each pair in a round is found with probability close to S/#, and thus
O(n/S) rounds suffices.

The above algorithm heavily relies on the fact that Yis decided entirely by randomness
and hardwired into the branching programs. A natural question is whether the same time-
space tradeoft holds for oblivious computation with weaker notions of randomness, or
even without randomness at all. In Theorem below, we show that proving impossi-
bility results to this question will give answers to Open Problem 7.1. We first need to intro-
duce the single-output function, EXPANDERMATCHING based on the explicit unbalanced

bipartite expanders by Guruswami, Umans and Vadhan [].
Definition 9.3.1. A bipartite graphT C [n] x [m] is a (k, a)-expander if for every subset

I51

L C [n] with |L| < k, the number of the neighbors of L is at least a - |L|.

Theorem 9.3.2 ([1). Forevery constant e > 0, given n € Nandk < n, there is
an explicitly constructed bipartite graph T, C [n] X [m] which is a (k,1)-expander, with

T = O(n) and m < O(k+).

The original result in [] is stronger than stated in Theorem , with the expan-
sion factor « arbitrarily close to the degree |I', , 4| /7 = polylog(7). For our application, we
only need expansion to be no less than 1. We use the graph to construct an explicit single-

output function as follows:

Definition 9.3.3. The (@, n, k)-EXPANDERMATCHING problem is a function [n]* x [m] —
[n] U {_L}, with m decided by Theorem . Given the input L € [n)fandy € [m], we
think of L as a subset of [n] with |L| < k. There exists a matching for L in T, ,, . because of the
(k, 1)-expander property, and we consider the lexicographically smallest matching M : L —
[m] in T, , 1. The output of the problem is M~ (y) if it exists, or L if not.

Theorem 9.3.4. For cvery constant a > 0, if (a, n, k)-EXPANDERMATCHING can be solved
by deterministic oblivious branching programs with space O(1) and time O(k), then for every
S < n, there is a deterministic oblivious branching program solving 2-PC with space 5(5) and

time O(\/n><]S).

Proof. We partition [»] into blocks B; LI - - - LI B, /& of size k, with £ to be optimally chosen
later. The deterministic oblivious algorithm for 2-PC consists of z/(£S) stages, where in
each stage we output (x, f{f{x))) all x in S consecutive blocks. In order to do so we need to

query fon f{B;), but as the queries are oblivious, we instead query fon the neighbors of y

foreachy € [m]. Since |f{B;)| < k, the matching for f{B;) provides all the answers for

x € B;. More concretely, the algorithm is described in Algorithm

Algorithm 9.1: The deterministic oblivious algorithm for 2-PC

v forl « 0,...,n/(kS) —1do
. | fory € [m]do

3 fori € [S] do
4 Apply (2, n, k)-EXPANDERMATCHING on f{B;4s) € [n]* and y;
5 Store the answer #; € [n] U {L}.
6 foreach v € [n] such that (v,y) € T, do
: Query flo)
8 if v = u, for somei € [S| then attach f{#;) to u,.
9 forx € Bygyy U -+ - U Biq)sdo
10 Query flx);
11 if flx) = u; for somei € [S] then output (x, A;)).

To prove the correctness, it suffices to show thateveryx €[] is outputted. This is
guaranteed in every block B, s, as when y goes through [], every element in f{B; ss) is
matched and appears as #, at some point.

The space complexity is clearly O(S) as the bottleneck is storing #; and flu;) fori € [S].
To identify the time complexity, notice that fis queried in all three inner loops. For each ¢
and y, the («, 7, k)-EXPANDER MATCHING algorithm makes O(kS) queries in total, while
querying f{x) forx € Bygyy LI - -+ L By also takes O(£S) time. Besides, for each £,
querying A{v) for every edge (v,y) € T, takes up |T,,4| = O(z) time. Therefore the
total number of oblivious queries is

% (m - O(kS) + 5(71)) =0 (/e””‘n + Z—;) :

Taking £ = /7/S, the above expression is upper bounded by O(+/73+%/5). O

I53

As a direct corollary of Theorem , if we managed to prove a polynomial separation
between randomized and deterministic oblivious time-space tradeoffs of 2-PC, it would
imply a strong lower bound for («, 7, k)-EXPANDERMATCHING for some & > 0 and thus

would answer Open Problem

9.3.2 ELEMENT DISTINCTNESS AND COLLISION FINDING

We recall the definition of the ELEMENTDISTINCTNESS problem.

Definition 9.3.5. In the ELEMENTDISTINCTNESS (ED for short) problem, the input is a
list of n elements from a fixed domain D, with |D| = poly(n). The output is 1 if all elements

are distinct, and O otherwise.

A randomized algorithm for ED with 725 = O(n*) was given in [], and it was
later improved to use only one-way access to randomness in [,]. Based on
the same algorithm, they also showed that the SETINTERSECTION problem (given two sets
A and B of size n, output 4 N B) can be solved 725 = O(n?), and the tradeofF is known
to be tight []. Different variants of this problem was also studied, such as memory
games [] and z-collision finding [], which share the same tight tradeoft for
randomized algorithms.

Here we present a general form of SETINTERSECTION, that covers all the variants when

two sets that contains no duplicates are given, and show its black-box relationship with ED:

Definition 9.3.6. In the SETCOLLISION problem, the input contains two sets A, B C D
given as unordered lists (ay, . . . ,a,) and (by, . .., b,) that contain no duplicated elements in
each list itself. The output consists of all collisions, that are triples (1,7, x) such that a; = b; =

X.

154

Theorem 9.3.7. If ED can be solved deterministically with space O(1) and time O(n), then
SETCOLLISION can be solved deterministically with space O(1) and time O(n*'?). Further-
more, if the algorithm for ED is oblivious, then for every S < n, there is a deterministic (non-

oblivious) algorithm that solves SETCOLLISION with space O(S) and time O(/n3]S).

Proof. We first present a simple divide-and-conquer algorithm A for solving SETCoLLI-
s1ON. The algorithm A(Z, 5, s') is described recursively as Algorithm 9.2, where for the sake

of simplicity we assume that £ is a power of 2:

Algorithm 9.2: Recursive algorithm A(¢, s, s") for SETCOLLISION

if / =1 then
if 4, = by then Output (5,5, 4,);
3 return.

-

»

4+ ifED(a,, ... a,01,bs,...,byys1) = 1then return.

s let V! < (/2;

¢ Sequentially execute A(¢,s,5), A, s + 0, 5), A(¢',s,5 + (') and
AW s+ 0 s+ 1').

It is easy to see that A({, s,s") outputs all the collisions between the two intervals
afs,...,s+¢—1 and by,....5 +0—1],

since whenever ¢ > 1 and there exists at least one collision (which is checked by the ED
call), the algorithm splits each interval into two sub-intervals of half length, and solve all
four pairs of sub-intervals with the four recursive calls. Hence A(#, 1, 1) solves SETCOLLI-
SION.

The space usage of A(z, 1,1) is O(1), since there are O(log 7) levels of recursion and

each recursive call locally uses (N)(l) space. To bound the time usage, the key observation is

IS5

that there are at most 7 collisions. Therefore, although there could be as much as (/¢)?
possible recursive calls to A at the level of recursion with interval length ¢, there are in fact
at most O(z) actual calls within each level, while the rest are prematurely stopped because
of the ED check. Taking the summation over ¢ = 2" forz = 0, ...,log#, the total time

usage of A(z, 1,1) bounded by

> om0+ Y (%) "L 0(2) = 0(x*?).
<3 logn £>1logn

When the space S'is larger, in order to leverage the space advantage and reduce the time
usage we need to parallelize the algorithm A. However, the core of algorithm A is the
black-box ED algorithm, whose instances cannot be parallelized if they are highly adap-
tive. Therefore from now on, we assume that the space-O(1) and time-O(z) ED algorithm
is oblivious.

To understand how oblivious ED algorithm helps parallelization, consider the recursion
level with ¢ = /n. At this level, we need to answer ED(a, . .., 4,101, b0, .. ., byio—1)
forall # pairsof 5,5/ € {1,/n +1,...,n — \/n + 1}. We can call the oblivious ED
algorithm to solve the instance with s = s' = 1, and call it again to solve another instance
withs = /n,s = 1. Because the algorithm is oblivious, whenever 4, (resp. &;) is queried
in the first instance, 4, /5 (resp. &;) is queried in the second instance at the exact same time
step. That means the two algorithm instance can be interleaved, using double the space
while the queries to B do not need to be repeated. Take a step further, we can interleave the
4 instances of ED withs,s' € {1, \/n+1}, using 4 times the space but only doxble the time.

In our actual algorithm, we partition {1, /z +1,...,7 — /7 + 1} into \/m groups,

156

each of size v/S. With the idea stated above, for each pair of groups of s and s/, we can solve
all the ED instances within this pair (where there are S instances) with space O(S) and time
5(\/[5') As there are 72/S pairs of groups, the overall time usage all the ED instances at
level ¢ = \/nis 6(n3/S). More generally, using the same idea, we design a parallelized
version of A, which is the algorithm A* (¢, (s, 5;) /) described in Algorithm 9.3, that takes

as an argument a list of |/] < S pairs of s and s'.

Algorithm 9.3: Recursive algorithm A*(?, (s, %) /) for SETCOLLISION

¢ if £ = 1then
2 for: € Ido

3 ‘ if 4, = by then Output (s;, 5}, 4,,);
4 return.
s Solvee; < ED(ay,, ..., 4440-1,by, ..., byre—y) foralli € Tin parallel;

6 letl! < 1/2,Q + @;
» foreach 7 € Isuch thate; = 0 do

s | for (As,As) < (0,0),(¢,0),(¢,0), (¢, ¢)do

9 Add (s; + As, s + AS) to the queue Q;

10 if |Q| = Sor reaching the end of the algorithm then
- Execute A* (¢, Q);

12 Q<+ @.

It is clear from the description that A* (¥, (s;, ;) ;) functions the same as the sequential
execution of A({, s;,s) forall 7 € I. Our final algorithm for SETCOLLISION is to run se-
quentially A*(\/z, G x G'), forall G and G’ chosen from the /7 /S groups of size v/S that
partitions {1, y/z+1, ..., 7 — y/n+ 1}, and thus it correctly outputs all collisions between
set A and B. Each recursive call of A* uses O(Slog 7) space locally, plus the O(S) space to
compute at most S instances of ED in parallel. As there are O(log 7) levels of recursion, the
overall space usage is 0(S).

To bound the time usage, we first examine how much time is used to solve S instances

157

of ED in parallel. Fix the initial argument G and G’ at the start of the recursion and focus
on one level of recursion with interval length £. At this level, one instance of the ED algo-
rithm takes O(¢) time. Since the input intervals for these ED instances are either the same
or disjoint, each query is repeated for at most |G| - y/7/{ times at its parallel places after the
interleaving parallelization. Thus the time usage for solving ED is O(|G| - v/z) = O(v/nS).
As the rest of steps take O(S) < O(v/nS) time, altogether each recursive call of A* locally
takes O(v/nS) time, regardless of the level of recursion.

On the other hand, let us call a recursive call A*(¢, (s;,) ;er) completeif |I| = S, and
incomplete if |I| < S. Since there are at most 7 collisions, at each level of the recursion there
are at most O(7/S) complete calls, while each call produces at most one incomplete call in

the next level. Initially there are 7/ calls, and therefore the total number of calls to A* in

our final algorithm is O(n/S). So the total running time is O(\/7]S). O

Since SETCOLLISION has the randomized lower bound 725 = Q.(%%), Theorem
implies that any polynomial separation between randomized and deterministic time-space
tradeoffs of SETCOLLISION (or its variants such as SETINTERSECTION) would answer
Open Problem 7.1 on ELEMENTDISTINCTNESS.

Notice that in the reduction of Theorem , the input guarantee that both lists 4
and B are sets is only used so that ED decides the distinctness between the two lists. With-

out the guarantee, we can instead resort to the LISTDISTINCTNESS problem studied in

[I.

Definition 9.3.8. [z the LISTDISTINCTNESS problem (LD for short), the input contains two
unordered lists (ay, . . ., a,) and (by, . . ., b,) from a fixed domain D, with |D| = poly(n).

The output is 1 if there exist i,j € [n] such that a; = bj, and 0 otherwise.

158

LD is at least as harder as ED, and while ED can be solved in O(1) space and O(r*/2)

—Q(1)

time, no algorithm even with n°® space and n? time was known for LD. The proof of

Theorem can be altered to show that the problem of 7#-CoLL1s10N reduces determin-
istically to LD:
Definition 9.3.9. [n the n-COLLISION problem, the input is an unordered list (ay, . . ., a,)

of elements in D. The output consists of n distinct collisions, that are triples (i,], x) such that

[# jand a; = a; = x, or all of the collisions if there are less than n of them.

Strictly speaking, the #z-CoLLIsION problem is not a function, but rather a relational
problem, as the collection of outputted collisions is not uniquely determined. However, a

time-space lower bound of 725 = Q(n3) is still know for 2-COLLISION [].

Theorem 9.3.10. If LD can be solved deterministically with space O(1) and time O(n),
then n-COLLISION can be solved deterministically with space O(1) and time O(n®'?). Fur-

thermore, if the algorithm for LD is oblivious, then for every S < n, there is a deterministic

(non-oblivious) algorithm that solves n-COLLISION with space O(S) and time O(/n3/S).

Proof. Notice that the collisions found in the algorithms in Theorem are all distinct.
By setting a global counter for the number of collisions already found and outputted, the
algorithms and proofs in Theorem can be copied verbatim to show a reduction to LD
from the problem k-LisTCoLLISION, where the input consists of two unordered lists of
size 2 that may contain duplicates, and the output contains £ collisions (if exist) between
the two lists. If LD can be solved deterministically with space O(1) and time O(1), then the
deterministic algorithm for &-L1sTCoLLIsSION works in space 5(S) and time max{m, n} -
O(\/WS'), where 2 is the actual number of collisions outputted (S can be arbitrary when

the algorithm for LD is oblivious, and S = O(1) in the general case).

159

Now notice that the complete graph over 7 vertices can be partitioned into a set of com-
plete bipartite graphs, 2! of which being of size (7/2*, n/2") fort = 1,...,logn. We
apply #-L1sSTCOLLISION on each pairs of lists of size /2" defined by these bipartite graphs,
until 7 collisions are found. This clearly solves the z-CoLLIsION problem with space 5(5)

Suppose that the number of collisions actually outputted on each bipartite graph is

my, My, . . . respectively, then the total time usage is

ny ~/([|n ny ~ | n
max{ml,z}-0< Zs,)%—max{ﬂ’lz,g}-O(ZS')
ny ~ n
“L.0 -z
+max{m3,4} <”4S)+
log
~ I n 1 " = n
= 5(n3/) : O
Similarly, we have the corollary of Theorem that any polynomial separation be-

tween randomized and deterministic time-space tradeofts of #-COLLISION (or its variants

such as MEMORYGAME []) would answer Open Problem 7.1 on L1sTDISTINCT-

NESS.

160

Learning with Classical-Quantum

Hybrid Memory

In the final chapter of this dissertation, we study the learning problems with the presence
of quantum memory. Consider the parity learning problem: Let x € {0, 1}” be uniformly
random an hidden from the learner, the goal is to learn x from samples (2, &), where a €
{0,1}" is uniformly random and & = (4, x) under F,. In [] it was shown that either
Q(n?) space or 2% time (samples) is required to learn x classically. We will show that
when we have both classical and quantum memory, we then need either Q(7?) classical
space, or Q) quantum space, or 22 time.

More generally, following previous works | , s s , s

], we use a matrix M to represent the following learning problem. There is an

unknown elementx € X that was chosen uniformly at random. A learner tries to learn x
from samples (4,), where a2 € A is chosen uniformly at random and b = M(a, x). That

is, the learning algorithm is given a stream of samples, (a1, 41), (42, b2), . . ., where each

161

a, is uniformly distributed and for every ¢, 5, = M(a,, x). When M is a (k, £)-extractor
with error 277, we show in Theorem that either Q(k - ¢) bits of classical memory,
or Q(7) qubsits of quantum memory, or 2%¢) time is required for the learning problem

corresponding to M.

1o.1 CrassicaL-QuantuM HyBRID MODEL

10.1.1 CLASSICAL-QUANTUM SYSTEMS

Let us first rigorously define what it means by having classical and quantum hybrid mem-
ory. Consider a two-part quantum system on registers X and Y represented by the density
operator p.. We say X is classical, if for every |x) # [«') in the computational basis of X, we

have

(| @ Iy)pyy(|x) @ Iy) = 0.

In this case, we can identify the space of X with its computational basis, and remove the
Dirac notation when we talk about the values of X. The system p,, can also be written as a

direct sum
JOXY = @ﬁﬂx

Also notice that when X is classical, both o, and Pxiy for all quantum states |y) on Yare
diagonal. If Tr[pX‘y] > 0, it induces a distribution over the computation basis of X, defined

as

ijy = diagﬁXU/TrLoX‘y]. (10.1)

162

From now on whenever we use this notation, it is always implicitly assumed that the corre-
sponding TrkXU] is non-zero and the distribution exists.

We will typically consider the following scenario: There is a quantum memory register
Vin the complex linear space V), and a classical memory register ¥ ranging in the set of
classical memory states YV, along with some classical information X € &’ (the concept to be

learned) that is correlated with 77and 7. We will often make use of the following fact:

Claim 1o.1.1. Let py,,,,, be a classical-quantum system over classical X, W and quantum V.

Foreveryw € W, P;qw is a convex combination of P;(for some {lo)} CW.

|U7w

Proof. Let B be an orthogonal basis of V, so that we have (from the end of last section)

JOX\w = ZﬁXVJ,w'
|

veB

Therefore P;‘w is a linear combination of P';(‘v , for |v) € B, with non-negative coefficients.

Since they are all distributions, it must be a convex combination. O

Now we identify all possible operators on the classical-quantum hybrid memory space
YV ® W. A priori to the assumption that /7 s classical, we think of a quantum channel
operating on the system as working on the underlying space V ® C™I. Now we denote
Fvew to be the set of all such quantum channels @ that satisfy the following: for every
classical-quantum system p,,,,, in V @ W, Wis still classical in CD(,OVW). That is, for every

two states [0), [0') € V and every pair of distinct w, w’ € W, we have
(v, w|®(p,,,)|0, w') = 0.

163

Note that not all channels in Zgyy are physically realizable. For instance, with one-bit

classical memory and no quantum memory, the channel

is not a classical operator. However, since we are constrained to classical quantum systems,
this channel is effectively equivalent to an identity channel on one-bit classical memory.
Generally speaking, every channel in)y is equivalent to a channel controlled by WV that

maps V to V @ W. Below, we prove this observation and use it to show the following claim:

Claim 10.1.2. Let py,),,,, be a classical-quantum system over classical X, W and quantum V.
Let ® € Fpgw, and we use O(p) to denote the system after applying @ to VW and identity
to X. Then for every |v) € Vandw € W, Pf;'(:zu is a convex combination of ‘P;(|v’,w’ for some
{1} S Vand {w'} CIW.

. . . . , . . .
Notice that unlike Claim ,in Claim it is not always possible to write PX|(fzu

as a convex combination of 7, for |¢/) from an orthogonal basis of V.

X' w'

Proof. Since @ € Fpgy, the following channel is functionally equivalent to @ on classical-

quantum systems:

O ip— Y Doy, @ [w)(w]).

The physical meaning of @’ is to measure /¥ under the computational basis (which should

not change the functionality we care about) and apply P.

164

By defining the channel @,,(+) := ®(- ® |w) (w|), the above can be alternatively written

as:

Oip—= D Dylpy,).

weW

Now consider the Kraus representation of each @, that is, a finite set of linear operators

Eyp:V —V ®W such that

Dulppy,) = ZEwJeﬁmeL,ka ZEI,,kEw,/e =1I.
k k

We can write

P(p)x1e = P'(P)x100 = (Lx ® (0, w) @' (o) Iy © [0, w))

- Z Z(HX@ <U7 w|Ew’,k)ﬁme/ (]IX ®EL/’k|U, w))
weWw k

- Z Z HEL’,/e|U7 w>||2 P

wew k

where in each term of the summation, |¢/) ~ E!, |0, w). Similar to the arguments in

. D(p) . .
Claim P (e) is a convex combination of P, , ,.]
X|o,w X' w

10.1.2 BRANCHING PROGRAM wWITH HYBRID MEMORY

For a learning problem that corresponds to the matrix A4, a branching program of hybrid
memory with 7-bit classical memory, g-qubit quantum memory and length 7'is specified

as follows.

Ateachstage 0 < ¢ < T, the memory state of the branching program is described as
a classical-quantum system JO(V[)W over quantum memory space V = (C?)® and classical
memory space W = {0,1}”. The memory state evolves based on the samples that the
branching program receives, and therefore depends on the unknown elementx €5 X'. We
can then interpret the overall systems over X777, in which X consists of an unknown con-
cept x, resulting in a classical-quantum system Jog?VW. It always holds that the distribution

of x is uniform, i.e.,

1

2% = Toowlely) = T

Initially the memory V17 is independent of X and can be arbitrarily initialized. We assume
that it starts from the maximally mixed state

) 1

=]I®1]I ®1
JOXVW_Z,LX Y

T,
om

Ateach stage 0 < ¢ < T, the branching program receives a sample (2, b), wherea €z A
and b = M(a, x), and applies an operation D, , , € Fg)y over its memory state. Thus the

evolution of the entire system can be written as

(1) _ ()
JO,X{VW = ae@A ; Jo0) (] @ @t 11(a,0) (/OVtVWx)

Finally, at stage # = 7, a measurement over the computational bases is applied on ﬁ(V72V> and

the branching program outputs an element x € X as a function of the measurement result

(v,w) € {0,1}77". The success probability of the program is the probability thatx = x

166

which can be formulated as

Z (x, 0, w]/og;Wbc, v, w).
xeX we{0,1}4,weW
*(v,w)=x

1o.2 LINEAR QUANTUM LOWER BOoUND

Let us first prove a linear quantum memory lower bound for learning algorithms without
classical memory. This will not be used as a part of our actual proof of the main theorem,
but since the proof is fully information theoretical, it is simple enough to be included.

We first define the quantum extractor property that we need, which is a simplified ver-
sion of the ones considered in []. Given a matrix M : A x X — {—1,1}, consider
two independent sources 4 and X uniformly distributed over A and X respectively. Sup-
pose there is some quantum register /" whose state depends on 4 and X, and they together

form a classical-quantum system

Paxvy = EB Plax

a€EAxEX

where PVl is the state of /"when A = 2 and X = x. For any function fon 4 X X, we say
that V' depends only on A4, X) if foranya, 4’ € Aandx,x’ € X, whenever fla,x) =
Ad') wehavep,,, = py, .. Inparticular, V" depending only on 4 is equivalent to V'
being independent of X, or p), = p,, @ p,,.

We say that M is an X-strong (g, 7)-quantum extractor, if for every classical-quantum

system p .., as above, with the g-qubit quantum subsystem J”that depends only on 4, it

holds that

<27
Tr

HFM(A,X)XV —URpy@py,

1/2 0
Here U = is the uniform operator over one bit, and p,,, 4,
0 1/2 ’

quantum system constructed by adding a new classical register which stores the value of

s the classical-

M(A,X), and then tracing out 4. In other words,

Puax)xy = @ Z Phayx

be{—-11}xeX acA
M(ax)=b

Notice that if we choose /" to be trivial, the above inequality immediately implies that
[E[M(4, X)]| <27
As an example, the results in [] imply that the inner product function on # bits,
where A = X = F% and
M(a,x) = (=1)*7,

is an X-strong (k, n — k)-quantum extractor for every 2 < £ < 2.
In this section we prove the following theorem, which provides a linear lower bound on

quantum memory when applied to :

Theorem 10.2.1. Let X, A be two finite sets with n = log, | X|. Lete M : Ax X — {—1,1}
be a matrix which is a X-strong (q, r)-quantum extractor. Let p be a branching program for
the learning problem corresponding to M, described by classical-quantum systems jogﬁ)V, with

q/2-qubit gquantum memory V and length T, and without classical memory. Then the success

168

probability of p is at most

27"+ 8T\ /n+q-277%

The proof of Theorem is significantly simpler than the proof of our main theo-
rem for hybrid memory, which will be presented in the next section. We first need to define

the following measure of dependency:

Definition 10.2.2. Let py,, be a classical-quantum system over classical X and quantum V.

The dependency of Von X in p 5 defined as

Fxv) = n;}/n {LOXV —Px® TVHTr

where Ty is taken over all density operators on V. Notice that in this definition taking vy =

Pyis almost optimal as we have

H/OXV_ﬁX®ﬁV o S H/OXV_JOX®TV SO HPV_TV

S ZH/OXV —Px @ TVHTr' (r0.2)

When V consists of g qubits, we have the following relationship between our depen-

dency measure and quantum mutual information:

Lemma 10.2.3. %f’(X, V?<L(X;V)<q-ZXV)+2/Z (X D).

Proof. On one hand, using the inequality on quantum relative entropy and trace distance

(seee.g. [, Theorem 1.15]), we have

1 1
L V)=S$ (/’XV | £y ®JOV) > EHPXV —Px B py ; > Eg(X’ V).

169

On the other hand, Fannes-Audenaert inequality [] tells us that for every x € X, the

difference between the von-Neumann entropies of any two states p and 7 on Vis bounded

ot b (3l =)

where b(g) = —¢log, ¢ — (1 — £) log,(1 — ¢) is the binary entropy function. Since the state

by
()~ S < g5l

of V conditioned on X = xis p Wx/ PriX =« = 2"p 0 We have

LGY) = E_[Sle,) —S(2%y,)]

1 1
<30 B o= 2l + B (3l =2,

)

Tr’

IN

1 1
Eq ’ H/OXV ~FPx ®f’VHTr +h (EH’DXV —Px Opy

IN

T T \/ZHPXV —Px O Py

1
51 HJOXV —PxQpy

as b is concave and h(¢) < 24/e. Now let 7 be the optimal density operator in the defini-

tion of & (X; V). Plugging in (10.2), we conclude that

LXV)<qg-ZXV)+2/Z(X 7). O

Lemma 10.2.4. For every classical-quantum system p .., with the g-qubit quantum subsys-

tem V that depends only on A, we have
L (X, M(4,X),V)<2(n+gq) 277~

Proof. Sincel, (X; V) = 0, it suffices to bound I, (X; M (4, X) | V) <L, (M(4,X); X, V).

170

To bound the later, we first notice that since M is a strong (g, 7)-quantum extractor,

< HJUM(A,X)XV_ U®py ®f’VHTr + |E[M(4, X)]|

<2.277.
As the total dimension of X and Vis 2”%7, by Lemma we have

1 (X; M(4,X), V) <1, (M(4,X);X, V)

< (n+q)-E(MAX);: X, V) +2/8 (M(4,X); X, V)

S(n—i—q)-z_”/z.]

IN

Lemma 10.2.5. Forevery classical-quantum system p .., with q/2-qubit quantum subsystem

V that depends only on A and M(A4, X), we bave
X V)< 4\/ntq-27"7%

Proof. Let W = PLao @ Loy where p_, is the density matrix of "when 4 = zand
M(A4,X) = b. Then Wis a g-bit quantum system that depends only on 4. Since V' can
be decided from M(A4, X) and W, we have

P V) <2, (X V) < 2L, (X M(4, X)), W) <10(n +4) - 2777, O
We are now ready to prove Theorem . Let @, , ; be the quantum channel applied

171

on V at stage ¢ with sample (2, b), and recall that the evolution of the system Jog(t)V can be

expressed as

(H'l — E Z|x X‘ ®(DtaM(a 16)(/0V]x)

x€X

Proof of Theorem . We are going to bound the increment of &, which is the short-
hand for & v (X; V). For now let us focus on some stage #, and let 7 be the density operator
that minimizes £, = HpXV THT Notice that ﬁX = p, = 27"y for every .

Since 7 is a fixed quantum state, we can prepare 7 and apply @ 4 44(4,.x) on 7 to obtain a

new quantum register /7, which depends only on 4 and 41(4, X). Notice that

D | @ q>t,a,M(ﬂ,x><r)] :

xeX

Pxr = IE

and therefore by contractivity of quantum channels under trace norms, we can show that

H’DHI JOXVHTrSaNAZHcD”M“ (p(t)) “ZM“)(T)’Tr

< SR~ < [—pe]), =

xeX

Hence we have

+1)
r+1 > ’LOI ®ﬁV7H

t+1)
V/

<E+F28(XT)

- + ’LOXV’ —Px@Ly||r

<E+8/ntq-27%

172

Since &, = 0, we conclude that
£ <8T\/n+gq- 274,

This value bounds the difference of the success probability of p, and that of a quantum

branching program whose memory is independent of X. The later is clearly at most 277,

which finishes the proof.]

10.3 TRUNCATION OF CLASSICAL-QUANTUM BRANCHING PROGRAMS

Now we start to prove our actual lower bound, which states as follows for any branching

program using both classical and quantum memory. Since the inner product function on
n bitsisa (Q (), Q(n))-extractor with error 27 |], the theorem implies either
Q(n?) classical space or Q(7) quantum space is necessary for sub-exponential-time parity

learning.

Theorem 10.3.1. Let X, A be two finite sets with n = log, |X|. Lete M : Ax X — {—1,1}
be a matrix which is a (K, 0')-L, extractor with error 27 for sufficiently large k', (' and 7/,

where V' < n. Let

Let p be a branching program for the learning problem corresponding to M, described by
classical-quantum systems jog(l)VW, with q-qubit quantum memory V, m-bit classical mem-
ory Wand length T. If m < (K — 1), q < r — 7 and T < 272, the success probability of

pisat most O(2177).

173

From now on weletk = # — 1and ¢ = 1(¢' — 137 — 2). Then we have the following

inequalities to be used later:

g+r+1—7 < =27 (10.3)

2+9r—n < —r. (10.4)

(k—7r)l > 2m+4r+1. (10.5)

Like the proofsin [,], our proof heavily depends on the notion of truncating

the branching program, which we will explain below.

10.3.1 TRUNCATED CLASSICAL-QUANTUM SYSTEMS

Here we describe how to truncate a partial classical-quantum system p Ja according to
some property G(v, w) of desire on p io L€ goal is to remove the parts of py;,,,, where G

is not satisfied. We execute the following procedure:

1. Maintain a partial system ﬁ;(VW initialized as o, and subspaces VV,, C V initialized

as) foreachw € W.
2. Pickw € Wand |v) € V), such that TrLOS(‘v,w} > 0and G(v, w) is false.

3. Change the partial system Jo;(VW into the following system by projection:

(I[X ® (HVW - |U’ w)(v, w|))J0;(VW(HX ® (HVW - |U’ w) <U’ w’))a

174

and change V), to its subspace orthogonal to |v), that is

{le) € Vi | (o) = 0}.

. . G
4. Repeat from step 2 until there is no such w and |v). Denote the final system as ﬁ|XVW'

In step 2 we pick w and |v) arbitrarily as long as it satisfies the requirements, however we
could always think of it as iterating over w € WV and processing each P, Separately.

. G .
The choices of |v) for each w do affect the final system f’L(VWi Yet as we will see later, these
choices are irrelevant to our proof.

Below, we give two useful lemmas on truncated systems.

Lemma 10.3.2. Forevery |v) € Vandw € W such that Tr[p;;v o) >0, there exists |V') in

the remaining subspace V,, such that

Proof. Tt suffices to prove the lemma with one round of the truncation procedure executed.

Suppose the |v;, wy) is picked in step 2, resulting in the partial system

Py = (]IX® Ly — |1, wi) (o1, w1|))ﬁXVW(HX® (L — |01, wy) (o1, w1|))

175

We can write

Prow = (Le @ (0 0]) Py (L © |0, w))

= (L ® ({v, w| — (v, wlor, wi) (1, w1])) pryy (Lx @ (|0, w) — |01, wr) (01, wilv, w))).

* Ifw # wy, then

./o;(|u,w = (HX ® <U’ w‘)./oXVW(]IX ® |U, w>) :./)X\U,w'

And the lemma holds directly by choosing [¢/) = |v).

* If w = wy, then with (v, wi|o, w) = (v1]v) = 4, we have

Prve = (L ® (o] = 2wr]) () (L © (2} = 2len))|w)).

By the fact that Tr[pﬁv’w] > 0, we must have |[v) # |01). Therefore if we let [o/) ~
|v) — A|v1), which is the normalized projection of |v) onto the orthogonal subspace

. Meanwhile, since (v;|¢') = 0

of |v1), the above equality implies that P;‘W = P,

X' w

we have JOiYIv’,w = Pxivt w? which completes the proof.]

A direct corollary of the above lemma is that if G(v, w) only depends on the distribution

P,

o> then G(v, w) holds for every |v) € Vand w € W in the truncated system ﬁkGVW, even

when |v) is not in the remaining subspace V,,.

Lemma 10.3.3. Foreachw € W, let|v1), ..., |va) be the states picked in step 2 within V,.

Then

H/OXVIw _ﬁfVlw

d
v 30/ Trle, Wl el
=1

Proof. In Corollary , take p to be p X and IT to be

d d
Iy ® H (HV— |Ul'> <Ul'|) =Ir® (HV— Z |Ui><vi|) .

Then ITpIl = Jo‘XGV]w and Tr[I1e] = Trlpy,,, | — S Ttley,, .- Therefore we have

1 < \J4THR — 4Tr(IToP

< \/8(Trl¢] — Tr[ILp)) Tip)

H/OXVIw _ﬁ|)§;V|w

= J 8 Z TrVle_,w]Trkaw]

d
<33/ Ttley, ol Trlogy,) 0
=1

Since Tr[pXVlw] < 1always holds, by summing over all w € W we get the following

corollary:

Corollary 10.3.4. Let |v, w1), . . ., |va, wa) be all of the memory states picked in step 2. Then

|G
HPXVW —Pxrw

d
Tr S 3 Z TI’LOXM"W[].
=1

10.3.2 TRUNCATED BRANCHING PROGRAM

The properties that we desire for the partial system p v onsist of three parts:

177

* Small Z, norm: Let G, (v, w) be the property that

17%

|2 < 2€ X 2—;1/2.

|v,w
* Small L, norm: Let G (v, w) be the property that

H]);qu S 22€+9r .o

* Even division: Forevery a € A, let G,(v, w) be the property that

(M, P,)| <27.

= Xow!/ I —

Now we define the truncated branching program, by specifying the truncated partial
classical-quantum system T)(?VW for each stage #. Initially let ng,zW = Jogf;W. For each stage
0 < ¢ < T, the truncation consists of three ingredients (below we ignore the superscripts

on P for convenience):

. . t, 1)|G:
1. Remove parts where HPX\WHZ is large. That s, let z'g(;) = TQV‘WZ

2. Remove parts where || Py, is large. This is done by two steps.
% o0 50 g y P

- First, letg € {0,1}*®" be an indicator vector such that g(x, w) = 1ifand
only if
) (t:%) 7 oA—n
Tr[r([‘:j)] > 0and Py, (x) < 227277,

X

(t7o

Let 7\, = (gg' ® Iy) r)(;V*;V(ggT @ Iy), where gg' is the projection operator

178

actingon X ® W.

- To make sure that the distributions did not change a lot after the projection
g¢', foreach 0 < ¢ < T, let G,(v, w) be the property that

Tr[ryol] > (1—27)Tr[z47)]

(t,00) __(£,0)|GooAG:
Let 7y = Txrw

3. Foreacha € A, remove (only for this) parts where Pyj, ,, is not evenly divided by

a. Thatis, foreacha € A, let Tgé,j;V = Tg;,;;;\cﬂ.

Then, if r < T, foreacha € A we evolve the system by applying the sample operations

. . . t,
D, , ; as the original branching program on Tg(;,)/V, so that we have

(t+1) _)
T);VW = aeI%A ;) (x| @ D, (a,x) (TVW]x)

10.3.3 BOUNDING THE TRUNCATION DIFFERENCE

In order to show that the success probability of the original branching program ﬁ(‘) is low,
the plan is to prove an upper bound on the success probability of the truncated branching
program 79, and bound the difference between the two probabilities.
Here we bound the difference by the trace distance between the two systems ﬁ}?VW and
(¥)

Ty We will show that the contribution to the trace distance from each one of the trun-

cation ingredients is small, and in addition the evolution preserves the trace distance.

179

TRUNCATION BY G,

Lemma 10.3.5. Forevery0 < t < T, |v) € Vandw € W such that G,(v, w) is violated

Py H2 > 2% 2772) we must have Tr[r(t) | <2727,

(that is, || P o Yoo

The lemma says, for any direction |v, w) picked by the truncation procedure, the weight

will be small and the truncation will not change the state significantly.
Proof. This is our main technical lemma and we defer the proof to Section 10.4. O

Since there are at most 277 such directions picked in the truncation procedure, we con-

clude the following corollary.
Corollary 10.3.6. Forevery 0 < t < T, we have }|r§§V*2V — TE;)VWHTr < 3.2177,

Proof. Recall that ng;;V = ng/'% Since dim(V ® W) = 277", the truncation lasts for at

most 2777 rounds. Since in every round the picked |v, w) has Tr[rga)v] <272 .27% by

s w

Corollary we have
Il <3207 VI T =32 0

TRUNCATION BY G,

Lemma 10.3.7. Forevery0 <t < Tand w € VW we have

(t,%) s,
> P () <27

xeX
glx,w)=0

180

Proof. By Claim , P)’((lt;) is a convex combination of P)’(‘ . From Lemma we
know that Gz() holds for every |v) and w, and thus by convexity of ¢,-norms we know

that GZ(‘ ") also holds. That means

) (e%) ¢ Al
E @] =l <22
X~ X|
Therefore, by Markov’s inequality we have
Z P}(*) Pr PTT *)() > 22£+5r . 2—n] < el n
x€X P§(<|:,*)
g(xw)=0

Corollary 10.3.8. Forevery 0 < t < T and everyw € W, we have z'g;;)w < TE;V]*)w’ and

Trlzyy] > (1—27%) - Telzyyn) |

(£.% 57
Moreover, we have HTXVW — TXVWHT <27

Proof. Since X and W are both classical and Tﬁ(;gV (ggT ® Iy) T)EV*,ZV(ggT ® L), we have

T T = D, W ®n,

xeX
g(x,w)=0

which is positive semi-definite. Recalling (10.1) that

* £k (£,%)
Tr[T(thx,)w] (x, w\TXW]x w) = diag 7X|)() = Py,

w

() Telz)],

181

we have

x ,0 (¢ *) —Sr
Tr[rgmzﬂ] — Tr[TgmL] = Z Z P ([7;*)] <27 Tr[TX‘]
xeX xeX
g(,w)=0 g(o,w)=0

z tx)
And therefore, as 7§W°3V — z'g(V,ZV is positive semi-definite, we have

(2,0) (2,%)
H Txvw — Txvw

Z Tr — Tr| TXVI <27 Z Tr T);‘*) <270
weW weW

Lemma 10.3.9. Forevery0 < ¢t < T, |v) € Vandw € W suchthat Goo (v, w) is

PT(AO)

Mol oo 226597 277) or G, (v, w) is violated (that is, Tr[rga’z)w] <

violated (that is,

‘ o0

(1— 2*’)Tr[7§;|’:)w]), we must have Tr['rgaj)w] <2-27%. Tr[rggz)].

Proof. If Goo (v, w) is violated, let x € X be the one such that Pf‘v w() > 227 If

¢(x,w) = 0 then P’O 0)() = 0, while if g(x, w) = 1 then by Corollary ,

t,0 Tr T()
P (5) < % QST < (1)L M g
Tr[TX|w]
Hence we always have
(#:0)
P
Tr[z&;‘f)w} = X;:f;)() Tr[rj(;lo)] < 2.2~ 4r Tr[(ZO]
7 P)rqv,w(x)

where the first inequality comes from the fact that TX|O) > T)((|v)w and (10.1).

182

If G,(v, w) is violated, since we know from Corollary that

Tr[Tg(‘] Tr[(| to) ;aLHT < 275 Ty [T);V*I)]
<277 (1-2707 Tr[TXW]
therefore from Tr[rgavo)w] <(1-)Tr[o] we deduce that
Trlro) < (27 = 1) - (Teleio) — Teleiol])

<@ -2 (1-27)7 Tz

<2-277 Tife?). 0

(£,00) (£,0)

Corollary 10.3.10. Forevery 0 < t < T, we have HTXVW Tyl <5207

|Tr
(2,00) (£,0)|Goo NG . .

Proof. Recall that 7y, = 7y . Foreachw € W, the truncation picks at most

dim V = 27 states |v, w), each with Tr[rga’j)w] <2-27%. Tr[z’g(tl’z)]. Therefore by applying

Lemma for each w € W, we have

(2,0)
H7XVW - 7XVW

Tr

<3-) 20 V22 T[] <520 O

wew

TRUNCATION BY G,

Notice that in the truncation step from %) to 719°), the distribution P’ m1ght change
and not satisfy G, anymore. However, with the truncation by G,, any such distribution

that changes too much is eliminated, and we have the following guarantee.

Lemma 10.3.11. Forevery0 <t < T, |v) € V and w € W, we have

£,00) ‘ —n/2
||P§(| H (1—-27" L ol y=n/2
Proof. By Lemma , there exists |¢/) € V such that P)’qv . p}r(((u,”u)} _ <r R The
truncation by G, ensures that Tr[f;[;)w] > (1—)Tr[z’X‘v), and therefore

(1_2—7’)—1.26‘2—7!/2.

- | diag 75y I . | diag 7y wllz
Tr[75°)] (1 - 277)Tr[z!

X' w

15 1y = P

TX|U w]

[]

Lemma 10.3.12. Forevery partial classical-quantum system tyy over X & V such that

17

A —n
, <202 12 bolds for every |v) € V, we have

> <277
Pr |30 € VI, Pyl 2 27 <2

Proof. Notice that we can think of 7, = Try[7yy] to be I . This is because we can first
assume that 7y is full rank (otherwise change V to its subspace and the conclusion in this
lemma still holds), and if we have diagonalization QTTVQ = Iy for some non-singular Q,

then consider the new system

oy = (Ix ® QN (Ix ® Q),

and the set of distributions {75, } and {P;IU} over [v) € V are the same, since P)Z;|u = Py
for o) ~ Qlv). With 7 = Iy we have Tr[zy,] = 1forevery [s) € V,and thus P}, =

diag 7,

Let A" C Abethesetofa € Asuch that there exists [v) € V with [(M,, P},)| > 27".
Foreacha € A’, let

g, = TrX[(DiagMﬂ ®]IV)TXV]

which is a Hermitian operator on V. There exists [v) € V) such that

[(eloalo)] = [{M., diag 7o) | = [(Ma, P,)| 2 277,

which means that ||, ||, > 27". Now let |#) be a uniformly random unit vector in V, and

by Lemma we know that for some absolute constantc,

Pr || (#loulu)| > 2—"] 1= 22 ¥ > 27— > 12,
The second last inequality comes from Eq. (10.3), while the last inequality is because of the
assumption that 7 is sufficiently large.

Since the above holds for every 2 € A, it implies that Pr,e a7y [| (#|0,|n)| > 277is
at least 1/2. Tt means that there exists some |#) € V such that |(«|c,|#)| > 277 forat

least half of 2 € A’. On the other hand, since M is a (¥, ¢')-extractor with error 277, and

HP; , < 2% 277/2 thereareat most 27 fraction of 2 € A such that (x|, |u)| =
(M, P,)| = 27 7. That means
PrjacA]<2-27¥ <277
a€r A
Here ¥ — 1 > 27, by the definition of 7. O

Corollary 10.3.13. Forevery0 <t < T, we have E,c, 4 Hr§§;W T;;;;”T <277

185

Proof. For eachw € W, the partial system Tgm) satisfies the condition of Lemma

since for every |v) € V,

|| r(fOO)HZ < 1_ 9= . 2£ . 2—n/2 < 2(’ . 2—}1/2.

Xlo,w

(f o)
as X|uw

Notice that for eachz € A such that there does not exist [v) € V with (M,

7 (that is, when G, (v, w) holds for every |v) € V), the sub system T(o *) is not touched in

)| >

the truncation by G, and we have TXW) = TXV]) Therefore

HT T(t,oo)
= .A Xvrw — ‘Xvw

r

=2 E e — 7l
W

we

(2,00)

)= 27| Trlry)

< 14
<Y Pr [Bl) e viiag. Py el
wew
<2¥ N Tz <27 O
wew

EVOLUTION PRESERVES TRACE DISTANCE

Lemma 10.3.14. Forevery0 < t < T, we bhave HT;,J/F;)V ﬁ)(t;;,)/

()

< Eiepa HTXVW

Proof. Recall that

(1) (0
JOXVW o ae.[%A ; |x> <x‘ ® q)[7ﬂ7M(ﬂ7X) (IOVVWJC) ,

= E D19 © st (inr,)

a€r A
LxeX

186

Therefore by triangle inequality and contractivity of quantum channels under trace norms,

||)é;;;);;;VHTr = . (t,a,M(a,x) (T%ZV)V) - q)t,a,M(a,x) (/O(Vt)pmx))
Tr
= dER.AZ H thﬂx TVVV)}x) (Dt,a,M(ﬂ,x) (Vt)lex) .
< aGR.AZ HTVW|x ﬁVtVV]xHTr
x€EX
_)

ﬂE.A

We are finally ready to prove Theorem

Proof. First, combining Corollaries s s and and Lemma
we have

H (z+1) (#+1)

Ty JoXVW o8- 2077 4 27 4 27

Since TEP;W = Jogé);W, by triangle inequality we know that HTE(?W - JOE(?WHTr <7T-10-

2972 < 10 - 2977, and thus

75— pepm ||y, < 10297 482777 4 275,

This bounds the difference between the measurement probabilities of rngV’OV;) and Jog;W

under any measurement, specifically the difference between the success probability of the

branching program p and the following value on z:

T, T, (T,00) ~
Yoo leowldgwew) = Y T Py @ e, w)),
x€X we{0,1},weW ve{0,1}1,weW
X(v,w)=x

. T,00 _ T, . _
Since HPr<) H < 22497 277 and Tr[r(’oo)] < 1, the above value is at most 22+ . 277,
Xlow 1loo xrw

Therefore the success probability of the branching program p is at most (recall that 2¢ +

r—n< —r)
10 - 2777 + 8. 2q—2r + Z—Sr + 22€+9r - O(Zq_r). 0

10.4 TARGET DISTRIBUTION AND BADNESS

. . . (7)
In this section we prove Lemma . The first step is to analyze how P}; evolves ac-

|o,w

cording to the rule

(t+1) _)
T);VW = agA ;) (x| @ D, (a,x) (TVW]x) .

We introduce the following notations. For everyz € Aand b € {—1,1}, let

— 1 —
Ly==-1+6-M,),

[\

which is a 0-1 vector that indicates whether M(a, x) = b. Let

Tgé;l/? = (Diag fa,b ® HVW)%(;;;V, (10.6)

188

so that we can write

(#4+1)

(10.7)

2,1 ,a,—1
Txrw = ﬂgA [(HX ® ®t,471)(T§VVV)) + (Ix ® r 1) (TEEVW))} :
Thus Claim implies that P)’(T:Z is a convex combination of P)r((‘[;’:), for some 4, b, w'

and |o').

10.4.1 TARGET DISTRIBUTION

0]
\

Before considering the target distribution, let us first establish that the £,-norms of P§;

cannot be too large:

Lemma 10.4.1. Forevery0 <t < T, |v) € V, w € W, we have
1Pl < 4-2°- 2772

. 0 . .
Proof: When ¢ = 0 the statement is clearly true as 7% © always uniform.

Xlo,w
Now assume # > 0. By Lemma and Lemma we know that
HP;;(;’IZ,) , S (1 . 27;’)71 . 2@ . 2771/2

foreveryw' € W,[v)) € Vanda € A as Tg;;;))

. — .
is truncated from 7y,,;, . Since

(-1a)y . T .
G, (P, ")) is true, meaning that the distribution is evenly divided by #, we further have

|o/ w

X' w

N Hfﬂ»b ’ P)T((f;w)

[

P51 2 <2(1-27)7 || Py

1

, <4202

p)

|o,w

(t—1,a

. o . .) _ .
Since Py, is a convex combination of P)qu/ ., » by convexity its £,-norm is bounded by

4.20.07 /2, O

From now on we use P to denote a fixed target distribution (which we will later choose

to be the distribution in Lemma), such that
2L 272 < ||P||, < 4- 28272

We want to bound the progress of (P)r((‘j »» D) which starts off as 27" at # = 0, and becomes

at least 22¢ - 2= when ="

Nlow = P. Note that by Cauchy-Schwarz we always have

<P§(<t) P> S HP;(E'?J,W

lo,w?

LIIP|, <16-2% .27 (10.8)

In order to bound the progress, we introduce some new notations. For any superscript

(such as (¢, 4)) on the partial systems, we use oy to denote 7yy(Diag P ® 1). Notice

that
Trloxew] = Tr[7xp. Diag P| = Trlzx,.0] - (P;QW, P).
Similarly, P}’qw can be deduced from P)rqw via
Tr[TX|U w] P;qv w(x> ’ P(x)
Popw®) = /= Py, . (x) - Plx) = —FF——. 10.9
Xlo, () TF[U'X\U,W] Xlo, () () <P§(‘U7W’P> ()
Therefore we can bound the ¢, norm of quv,w as
1l < e Pl 121
7 <P§'\v,w’ P> 7

190

10.4.2 BaD EVENTS

Now we can identity the places where (% Y P) increases by a lot, which happens when

X|o,w?

the inner product is not evenly divided by some 2 € A (we will see the reason in the analysis

later). Formally, at stage 0 < ¢ < T, we say (w, a) is bad if

(t.a) _ () r __,
o) € Vst (Mo, Py,)| > 27 and (P, P) > 3 27" (r0.10)
Lemma 10.4.2. Forevery0 <t < Tandw € W, we have
Pr [(w,a) is bad) < 27*.
a€r A
Proof. Since 'r)(é;;,, is truncated from Tgﬁ, Lemma shows that for every |v) € V),
w € Wanda € Athereis|v/) € V such that
(t,2) (£,00)
P;(\v,w e ("
and by (10.9) it also implies that
(t,a) (¢,00)
‘ng\v,w = X' w*
Now fix some w € W, and let A’ C A be the set of of 2 € A such that
(t:00) — (t:00) r __,
lv) € V,s.t. |(4,1)}'(‘07w>| > 2""and <P§|07W,P> > 5-2 .

Then A’ contains all 2 such that (w,) is bad, and our goal is to bound the fraction of A’

in A.

191

In the rest of the proof we temporarily omit the super script and write 7(6:0) and)
simply as 7 and ¢. For the same reason as in Lemma we can assume that 7y, = I,

and thus
(olov1ele) = Tlornal = (P s Py and Telogara] = (P, P) < 1622 - 27"

where the last inequality is by Lemma and Cauchy-Schwarz, in the same way as

(10.8).

Suppose that we have diagonalization 7y, = U'DU, where Ulis unitary and D is diag-
onal and non-negative. Let 1 C 'V be the subspace spanned by U'|e) over the computa-
tional basis vectors |¢) € V such that {¢|D]e) > 274 - 2726 . 277 So for every |v) € V' we

have

(P 0r P) = Trlogpy,) > 274272277,

lo,w>

We claim that for every 2 € A, there exists [v) € V' such that [(M,, P,)| > L.

27" To prove the claim, let IT be the projection operator from V' to V', and then (Iy ®

IT) o1 (Lx®IT) can be conceptually seen as a truncated partial system J‘XGVIW where G(v, w)

holds when Tt[oy,] > 27%72 - 27 for the fixed w. By Lemma we have

|7 = avtall, < 3-27- \/ 2742 Trloyy,) < 12-207% .27,

Sincea € A’,assumefor |#) € Vwehave|(M,, Py,)| > 27" and Trloy,] =

4% Xlu,w

192

<P)7(|,,WP> > % 27", Let |v) ~ IT|u), then we have
7S
_ _ € TXuw Xlu,w
||P§(I”,w Pg(lv,w |1 N HP;-qmw PA‘;(‘”»WHI N TI[JX\u w] Tr[a'lc]
’ Xlu,wd 1y
o #¢ A¢ g
< Xlww Xu,w + Xuw X||,2w
Tr(oxi,] Tr[cr)qu,w] - TI'[G'X‘%W] Tr[JX]u,w] .
|G
TX|u,w a'X|u,w 1 1 G
- o + - - Trlo
Tr[aX'”’w] Tr[aX'”zw] Tr Tr[JX‘M,w] TI‘[G’AL(GM w] [X|”7w]

G
o HJX\u,w - ail,g”’w Tr TI‘[O"X‘MW] - Tr[JXM,w]
Tr[JXWJI)] Tr[a'Xht,w]
|G
ZHJX‘”vw B G'X|u,w Tr
- Trloxiu,u]
|G
ZHJXVIW - a-XVlw Tr

TI‘[G’X‘”’w]

< 48 - 29-2r < l 277
2
where the last step is due to g < » — 7. Thus
1 -7
‘<M47‘p§(|v,w>’ > |<M471)§(|u,w>’ - H1)§-(|u,w - ‘p;(\v,le > E -2
Similarly to the proof for Lemma ,foreacha € A’ let

7, = Try[(Diag M, ® U'D™V2U) - oy, - (Ix @ U'D™Y20)]

which is a Hermitian operator on V. For each |v) € V, let /) ~ Ut DY/? Ulv). Recall that

193

TV = U DU, and therefore

_ diag (Ix ® (v])rxre(Lx ® |v))
Xlow — <U|0'mw|v>
diag (Iy ® (/| U D™V U)oypn,(Ix @ U'D™Y2U1Y'))
- (o/|Ut D2 Uy, UT D12 U

= diag (Iy ® <v'|UTD_1/2U)a'XV]w(]IX ® U'D™V2UW'Y).

And that means

(V|7m.]) = (M, diag (Iy ® (WU D™ U)ag(Ix lﬁD_l/ZU]v'>)> = (Mo, Py,)

We showed above that there exists |v) € V', and thus |o/) € V' such that

[/ malo')| = |0, Py | = 5 27,

which means that for Iz, I1, the restriction of 7, on V', we have ||[I1z,IT||, > 1 - 27"
Now consider a uniformly random unit vector |¢/) in }’, and by Lemma we know

that for some absolute constant c,

Pr | (e/lale/)] = I e A= T R

D | =

Therefore, for the random vector |v) ~ U'D™2Ulv') where |¢/) is uniform in V', we

conclude that

Pr{[(0,. P,,)| 2 27| >

N =

194

On the other hand, as |¢/) € V', italso holds that [v) €)/, therefore (P}, P) > 2% .

lo,w?

2726 277 is always true. Thus there exists a [v) € V that simultaneously satisfies

by A . —
<P§(P> 22 4 2 26'2 and |<Mﬂ7])§(\v,w>| 22’

|v7w’

foratleast1/2 of 2 € A’. Since

HP}'(‘W |Oo . Hp||2 < 4.3 /2 ol 2_7,/27

‘2 <) HP;(|U,W

1
<P§(|U,w7 P>

. . — — / .
and M is a (K, {')-extractor with error 27", there are at most 2 fraction of 2 € A such

that [(M,,, P, ,)| > 277, which means that

ar % X' w

Pr [(w,a)isbad] < Pr[ae A]<2-27% =27%
a€rA a€rA

10.4.3 BADNEss LEVELs

At stage ¢, for each classical memory state w € VW we count how many times the path to
it has been bad, which is a random variable depending on the previous random choices of
a € A. This s stored in another classical register B, which we call badness level and takes

values 8 € {0, ..., T}. Itisinitially set to be 0, that is, we let

0 0
T = Ty @ [0)(0]5.

We ensure that the distribution of B always only depends on /7 and is independent of

X and V conditioned on ¥, using the following updating rules on the combined system

195

Txywp for each stage 0 < ¢ < T
* The truncation steps are executed independently of B. Therefore, for eachz € A we
let

7'XVWB Z me®|w w|®D1agP]§‘ (ro.11)
weWw

* The value of B updates before the evolution step, where foreacha € Aandb €

{—1,1} welet

TE;V% = (DiagL,; ® Iy ® U,)TXVWB(]IXV ® Ul).
Here U, is a permutation operator, depending on Tgé%,, actingon W ® {0, ..., T}
such that

|w)|(B+ 1) mod(T+ 1)) if (w,a)is bad,
|w)|8) otherwise.

Ue|w)|B) =

* For the evolution step, we apply the channels @, , ;, on the memories /% and V" to get
Tgft;—;;l? = eEA [(HX ® Dra1 ® Ip) (Tgft;l/lV)B) + (L ®@ @1 @ L) (Tgft;WJ;))] .
a€R

Notice that the evolution step might introduce dependencies between X, V”and B. How-
ever, such dependencies are eliminated later due to how we handle the truncation steps
(), and thus do not affect our proof.

We can check that the combined partial system Tg(t)VWB defined above is always consis-

tent with the partial system TEQ/W that we discussed in previous sections, in the sense that

196

TrB[ng/WB] T)(E)VW always holds:

* For the truncation step, it is straightforward to check that

(t,2) (t.a)
Trg 7] = § TXV] (w] = Ty

weWw

* The permutation operator U, acts on VV as identity since

Trg [Uslw,) (w, f|UL] = |w){uw].

Recalling (10.6) that TXVI/Ib/) = (Diag léZ » @ 1Ip) TXV,)/V, we have TrB[T);;Hb/)B] = z'g;;,/,b/)

* The evolution step can be checked directly from the formula without B by (10.7):
A= E 0@ @) (555) + @r® @) (755.7) |
a€R

So all previously proved properties about TQ/W are preserved. In addition, we prove the

following two properties about badness levels.
Lemma 10.4.3. Forevery0 <t < T, |v) € V and w € W, we have
T
XTZW Z 218 . 2—7L . (1 - 2—7‘)—31’.
=0

Proof. We prove it by induction on #. For # = 0 the lemma is true as <P§((\2 Py =2""and

(5)

197

Suppose the lemma holds for some # < 7. By an argument similar to Lemma
and applying Lemma multiple times, we know that for every [v) € V,w € Wand

a € A, there exists [¢/)and |¢0"") € V such that

(%) ()

(0) (t,0) o e
<Prv,w7p>:<P§(|v’,w7P> S (1_2) 1<P§(|v’,w7p>:(1_2) 1<P§(|v”,w7p>’
and therefore
T
)((|tvaw7 Z ng Lo (1 _ 2—?‘)—31‘—1‘ (10.12)

=0
Also, the truncation step by G, implies that | (M, % <l ¥ ow)| < 277 Thatis, forboth & €

{-1,1},

()

1= 277 <2||Ly P ||, 14277
Therefore we have, unconditionally
(t,a,6) <fa b PE(<|[:L7P> 1 (t,)
(Pjow + P) = W <21-27)7 (P D) (10.13)
a,b X\u w

When the inner product is evenly divided, i.e. |(M,, %))| < 277, we further have

)= Xlow

- (6a) 1 (t,a)
Loy Pypu P) < (14 277)(Pyp 0 P) <

|o,w>

(1—27) P P,

|o,w>

.
N | =

which means that

g (t,2)

(t,a,b) <14 b X P> (t,a)
Py + P) = T 2, = <(1=27)7 Py P)- (10.14)
a,b X|vw

Now there are three cases to discuss:

* If (w, a) is bad, we have P§| (ﬂ) (ﬂ — 1) forevery 4 > 0. Notice that

P, (T) = 0ast < T,and thus (10.12) and (10.13) imply that

Blw

-1
(Pivus BY < D PoB) - 271277 (1= 27) 7
=0
T
<> m @2 a2,
£=0
* If (w, a) is not bad and (M, X|v w>| < 277, we have P Wb) o (B) = (ﬂ) for every

B8 > 0. Then () and () imply that

(t,a,b)

<P)’(pP) < PE(\Z(;@) T I (1— 2—7)—3:—3

lo,w >

(t,a,b)

1 1

Py (8) - 2027 (1— 2*7)*3(&1).

0

T

* If (w,a) is not bad and | (1, X|U w>| > 277, by the definition of badness () we

must have (2%, - P) < % - 27", Thus by (),

X|o,w?

=0

T
(P P) < (=270 27 <3 P (0) 2027 (1= 27) .

The last inequality follows from Zﬁ 0 (t”) (B) - 2627 (1 —27) 3D > 277(1 —
277)73(+1) Hence we obtain the same conclusion from all three cases.

For the evolution step, since B is classical we can view X and B as a whole and apply

199

. (t41)
Claim on P§(3| » Which asserts that 7% XB| is a convex combination of P)T(B| , for
some 4, b, w' and |¢'). Noted that even though in 7V, X and B are not independent, we

can still use the linearity of partial trace to conclude that
T
P < SR F (=2,
£=0

Lemma 10.4.4. Forevery0 < 8 <t < T we have

Ee <27%(p).

Proof. We prove it by induction on ¢. For # = 0 the lemma holds as TE;O) = 10)(0]|. Also
notice that the lemma is trivially true for every # when £ = 0.

Now suppose the lemma holds for some . By definition we have

7g+1) = E [z (,a.1) —{—Tgﬂ 1)] = E Trp|U, TV[V?UT]

a€rA a€p A

Therefore
Z E [U >U1|w,ﬂ>].

By Lemma we know that for every w € W, the probability that (w, 4) is bad for

a €x Ais at most 27, In other words, for every 8 > 0,

w,), wp. >1—27*
g =y

lw,f—1), wp. <27*

200

where the probability is taken over the random choice of 4. It means that

Bls™18) < (w, flrig lw,) + 275 (w, B — ziy lw, 8 — 1)

weWw wew

= (B7y”18) +27* - (B — 15|18 - 1).

Notice that

ZTr (M) Diang(‘ < ZTr Dlagpé‘)
weW wew

and thus we conclude that

@75 18) < @7 18) + 27 (B -1 18— 1)
<ok (2) 4ok HE (@ ‘ 1) — oK (t; 1).

With the lemmas above in hand, we can finally prove Lemma

o 0 ©
Proof for Lemma . For the target distribution P = qutv’w we have (P%,

X|v,w7P> >

22.277 o by Lemma s

T
ijr?([)) (1 B 2—r)—3t > 92l

0

)
Il

Sincer < T'< 2%, we have (1 — 277)7% < 2, and thus

201

On the other hand, for every £ > ¢, by Lemma ,
Tr[ry,) - Pa(8) < (Bl75)18) < (270 < 277,

Blw

and thus by (10.5),

T
Tr[ry,) < Trle] <270y 27t 0f <. p-nt < pmim . poir
=t

202

References

[Aar20] Scott Aaronson. Shadow tomography of quantum states. SIAM J. Comput.,
49(s), 2020.

[Abror] Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general
sequential machines. J. Comput. Syst. Sci., 43(2):269-289, 1991.

[Adl78] Leonard M. Adleman. Two theorems on random polynomial time. In z9th An-
nual Symposium on Foundations of Computer Science, pages 75—83. IEEE Computer
Society, 1978.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. Journal of Computer and System Sciences, 58:137—

147, 1999.

[Audoy] Koenraad MR Audenaert. A sharp continuity estimate for the von neumann
entropy. Journal of Physics A: Mathematical and Theoretical, 40(28):8127, 2007.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC'. /. Comput. Syst. Sci., 38(1):150-164, 1989.

[BC82] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a gen-
eral sequential model of computation. SIAM J. Comput., 11(2):287-297, 1982.

[BCC*14] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Exponential improvement in precision for simulating sparse
hamiltonians. In Symposium on Theory of Computing, STOC 2014, pages 283-292.
ACM, 2014.

[BCC*15] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Simulating hamiltonian dynamics with a truncated taylor
series. Physical review letters, 114(9):090502, 2015.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-
optimal error for read-once branching programs. In Proceedings of the 5 oth Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 353-362.
ACM, 2018.

203

[BCK1s] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian sim-
ulation with nearly optimal dependence on all parameters. In IEEE 5 6th Annual
Symposium on Foundations of Computer Science, FOCS 2015, pages 792—809. IEEE
Computer Society, 2015.

[BCM13] Paul Beame, Raphaé¢l Clifford, and Widad Machmouchi. Element distinct-
ness, frequency moments, and sliding windows. In s4th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, pages 290-299. IEEE Computer
Society, 2013.

[Beag1] Paul Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput., 20(2):270-277, 1991.

[BGNV18] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-
efficient algorithms for subset sum, k-sum, and related problems. SIAM J. Comput.,

47(s):1755-1777, 2018.

[BGY18] Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for
learning finite functions from random evaluations, with applications to polynomi-
als. In Conference On Learning Theory, COLT 2018, volume 75 of Proceedings of
Machine Learning Research, pages 843-856. PMLR, 2018.

[Blu84] Norbert Blum. A boolean function requiring 37 network size. Theor. Comput.
Sci., 28:337-345, 1984.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudorandom bits. SIAM J. Comput., 13(4):850-864, November 1984.

[BNS92] Lészlé Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols, pseu-
dorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci.,

45(2):204-232, 1992.

[Bog18] Andrej Bogdanov. Small bias requires large formulas. In 45th International
Co[loqm’um on Automata, Languages, and Programming, ICALP 2018, volume 107
of LIPIcs, pages 22:1-22:12. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2018.

[BSSVo3] Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-
off lower bounds for randomized computation of decision problems. [ACA,

50(2):154-195, 2003.

204

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SLAM J.
Comput., 26(5):1411-1473, 1997.

[CC17] Amit Chakrabarti and Yining Chen. Time-space tradeoffs for the memory game.
arXiv preprint arXiv:1712.01330, 2017.

[CCHL21] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential
separations between learning with and without quantum memory. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 574—
585. IEEE, 2021.

[CCvMo6] Jin-yi Cai, Venkatesan T. Chakaravarthy, and Dieter van Melkebeek. Time-
space tradeoft in derandomizing probabilistic logspace. Theory Comput. Syst.,
39(1):189-208, 2006.

[CDST22] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating
iterated multiplication of stochastic matrices in small space. Electron. Colloguinm
Comput. Complex., TR22-149, 2022.

[CGJ19] Shantanav Chakraborty, Andrds Gilyén, and Stacey Jeftery. The power of block-
encoded matrix powers: Improved regression techniques via faster hamiltonian sim-
ulation. In 46th International Colloquium on Automata, Languages, and Program-
ming, I[CALP 2019, volume 132 of LIPIcs, pages 33:1—33:14. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2019.

[CH22] Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization
of small space. Theory of Computing, 18(21):1-32, 2022.

[CJWW22] Lijie Chen, Ce Jin, R. Ryan Williams, and Hongxun Wu. Truly low-space
element distinctness and subset sum via pseudorandom hash functions. In Proceed-
ings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages
1661-1678. STIAM, 2022.

[Csay6] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618-
623, 1976.

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard func-
tions: eliminating randomness at almost no cost. In STOC 21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 283—-291. ACM, 2021.

205

[CWoi1] Anthony Carbery and James Wright. Distributional and L7 norm inequalities for
polynomials over convex bodies in R”. Mathematical Research Letters, 8(3):233—
248, 2001.

[Din2o] Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs and
their applications. In EUROCRYPT 2020, 3 9th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, volume 12105 of Lecture
Notes in Computer Science, pages 405—434. Springer, 202.0.

[Din23] Itai Dinur. Time-space lower bounds for bounded-error computation in the
random-query model. Electronic Colloguinm on Computational Complexity: ECCC,
2023.

[DQW22] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Authentication in the
bounded storage model. In EUROCRYPT 202z - 415t Annual International Con-
ference on the Theory and Applications of Cryptographic Technigues, volume 13277 of
Lecture Notes in Computer Science, pages 737-766. Springer, 2022.

[DST17] Dean Doron, Amir Sarid, and Amnon Ta-Shma. On approximating the
eigenvalues of stochastic matrices in probabilistic logspace. Comput. Complex.,

26(2):393—420, 2017.

[DT23] Dean Doron and Roei Tell. Derandomization with minimal memory footprint.
Electron. Colloguinm Comput. Complex., TR23-036, 2023.

[FKL*16] Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Mori-
mae, and Harumichi Nishimura. Space-efhicient error reduction for unitary quan-
tum computations. In 437d International Colloguium on Automata, Languages,
and Programming, [CALP 2016, volume s 5 of LIPIcs, pages 14:1-14:14. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016.

[FL18] Bill Fefferman and Cedric Yen-Yu Lin. A complete characterization of uni-
tary quantum space. In gth Innovations in Theoretical Computer Science Confer-
ence, ITCS 2018, volume 94 of LIPIcs, pages 4:1—4:21. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2018.

[FR21] Bill Fefferman and Zachary Remscrim. Eliminating intermediate measurements in
space-bounded quantum computation. In STOC *21: §3rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1343-1356. ACM, 2021.

206

[FvdGog] Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguisha-
bility measures for quantum-mechanical states. /EEE Transactions on Information
Theory, 45(4):1216-1227, 1999.

[GHM™21] Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan.
Parallel repetition for the GHZ game: A simpler proof. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM z0z1, volume 207 of LIPIcs, pages 62:1—62.:19. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 202.1.

[GHM"22] Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan. Par-
allel repetition for all 3-player games over binary alphabet. In 54th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2022, pages 998—1009. ACM,

2022.

[GKLR21] Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-
sample lower bounds for learning parity with noise. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM zo0z1, volume 207 of LIPIcs, pages 60:1-60:19. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 202.1.

[GKR1s] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating com-
putation: interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1-64,

2015.

[GKR20] Sumegha Garg, Pravesh K. Kothari, and Ran Raz. Time-space tradeofts for
distinguishing distributions and applications to security of goldreich’s PRG. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Technigues, APPROX/RANDOM zozo0, volume 176 of LIPlcs, pages 21:1-21:18.
Schloss Dagstuhl - Leibniz-Zentrum ftr Informatik, 2020.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, STOC ’89, page 25-32, New York, NY, USA, 1989. Association for
Computing Machinery.

[GL19] Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in
log-space. In Proceedings of the Thirtieth Annual ACM-SLAM Symposium on Dis-
cretedlgorithms, SODA 2019, pages 606—620. SIAM, 2019.

207

[GMRZ22] Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan. Polynomial bounds
on parallel repetition for all 3-player games with binary inputs. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2022, volume 245 of LIPIcs, pages 6:1-6:17. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2022..

[GR22] Uma Girish and Ran Raz. Eliminating intermediate measurements using pseudo-
random generators. In 13h Innovations in Theoretical Computer Science Conference,
ITCS 2022, volume 215 of LIPlcs, pages 76:1-76:18. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 202.2.

[GRT18] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower
bounds for learning. In Proceedings of the s oth Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, pages 990—1002. ACM, 2018.

[GRT19] Sumegha Garg, Ran Raz, and Avishay Tal. Time-space lower bounds for two-
pass learning. In 34th Computational Complexity Conference, CCC 2019, volume
137 of LIPIcs, pages 22:1-22:39. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, 2019.

[GRZ21a] Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2021, volume 207 of LIPIcs, pages 52:1—
52:14. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2021.

[GRZ21b] Uma Girish, Ran Raz, and Wei Zhan. Quantum logspace algorithm for power-
ing matrices with bounded norm. In 48h International Colloquinm on Automata,
Languages, and Programming, [CALP 2021, volume 198 of LIPlcs, pages 73:1-
73:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. Is untrusted randomness helpful? In r4zh
Innovations in Theoretical Computer Science Conference, ITCS 2023, volume 251
of LIPIcs, pages 56:1—-56:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2023.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials.
Information processing letters, 43(4):169—-174, 1992.

[GUVo9] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbal-
anced expanders and randomness extractors from parvaresh-vardy codes. /. ACM,
56(4):20:1-20:3 4, 2009.

208

[GZ19] Jiaxin Guan and Mark Zhandry. Simple schemes in the bounded storage model.
In EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, volume 11478 of Lecture Notes in Com-
puter Science, pages 500—524. Springer, 2019.

[HHLog] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Physical review letters, 103(15):150502, 2009.

[HK18] William M. Hoza and Adam R. Klivans. Preserving randomness for adaptive
algorithms. In Adpproximation, Randomization, and Combinatorial Optimization.
Algorithms and Technigues, APPROX/RANDOM 2018, volume 116 of LIPlcs,
pages 43:1-43:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

[HM21] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoft for find-
ing multiple collision pairs. In 16th Conference on the Theory of Quantum Compu-
tation, Commaunication and Cryptography, TQC 2021, volume 197 of LIPIcs, pages
1:1-1:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

[Hozig] William M. Hoza. Typically-correct derandomization for small time and space.
In 34th Computational Complexity Conference, CCC 2019, volume 137 of LIPIcs,
pages 9:1-9:39. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, volume 207
of LIPIcs, pages 28:1-28:23. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2021.

[Hoz22] William M. Hoza. Recent progress on derandomizing space-bounded computa-
tion. Bulletin of EATCS, 138(3), 2022.

[HS65] Juris Hartmanis and Richard Edwin Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285-306, 1965.

[ICC17] Raban Iten, Roger Colbeck, and Matthias Christand]l. Quantum circuits for
quantum channels. Physical Review A4, 95(s):052316, 2017.

[Impos] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In
36th Annual Symposium on Foundations of Computer Science, pages 538—545. IEEE
Computer Society, 1995.

209

[INWo4] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for
network algorithms. In Proceedings of the 2 6th Annual ACM Symposium on Theory
of Computing, pages 356-364. ACM, 1994.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings
of the 14th Annual IEEE Conference on Computational Complexity, pages 237-240.
IEEE Computer Society, 1999.

(IWo97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential cir-
cuits: Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, pages 220-229. ACM, 1997.

[Jef22] Stacey Jeffery. Span programs and quantum space complexity. Theory Comput.,
18:1—49, 2022.

[KK12] Roy Kasher and Julia Kempe. Two-source extractors secure against quantum
adversaries. Theory Comput., 8(1):461-486, 2012.

[Klao3] Hartmut Klauck. Quantum time-space tradeofts for sorting. In Proceedings of the
3s5th Annual ACM Symposium on Theory of Computing, pages 69—76. ACM, 2003.

[KRT17] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse
parities. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 1067-1080. ACM, 2017.

[KSdWo7] Hartmut Klauck, Robert Spalek, and Ronald de Wolf. Quantum and classical
strong direct product theorems and optimal time-space tradeofts. SLAM J. Comput.,

36(5):1472-1493, 2007.

[KvMoz] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy collapses. SLAM
J. Comput., 31(5):1501-1526, 2002.

[LMoo] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic func-
tional by model selection. The Annals of Statistics, 28(s), October 2000.

[LMToo] Klaus-Jorn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals
deterministic space. J. Comput. Syst. Sci., 60(2):354—367, 2000.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8(3):261-277, 1988.

[LRZ23] Qipeng Liu, Ran Raz, and Wei Zhan. Memory-sample lower bounds for learn-
ing with classical-quantum hybrid memory. In §5th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2023. To Appear, 2023.

[LV21] Jiahui Liu and Satyanarayana Vusirikala. Secure multiparty computation in the
bounded storage model. In Cryprography and Coding - 18th IMA International
Conference, IMACC 2021, volume 13129 of Lecture Notes in Computer Science,
pages 289—325. Springer, 2021.

[LY22] Jiatu Liand Tiangi Yang. 3.1z — o(z) circuit lower bounds for explicit functions.
In s4th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022,
pages 1180-1193. ACM, 2022.

[LZ23] Xin Lyuand Weihao Zhu. Time-space tradeofts for element distinctness and set
intersection via pseudorandomness. In Proceedings of the 2023 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2023, pages 5243-5281. SIAM, 2023.

[Maug2] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. J. Cryptol., 5(1):53-66, 1992.

[MM18] Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic
lower bounds for space bounded learning. In 9th Innovations in Theoretical Com-
puter Science Conference, ITCS 2018, volume 94 of LIPIcs, pages 28:1-28:20. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

[Mon1o] Ashley Montanaro. Nonadaptive quantum query complexity. Inf. Process. Lett.,
110(24):1110-1113, 2010.

[MVBSos] Mikko Métténen, Juha] Vartiainen, Ville Bergholm, and Martti M Salomaa.
Transformation of quantum states using uniformly controlled rotations. Quantum
Information € Computation, 5(6):467—-473, 2005.

[MWos] Chris Marriott and John Watrous. Quantum arthur-merlin games. Comput.
Complex., 14(2):122-152, 2005.

[MW18] Dylan M. McKay and R. Ryan Williams. Quadratic Time-Space Lower Bounds
for Computing Natural Functions with a Random Oracle. In roth Innovations in
Theoretical Computer Science Conference (ITCS z019), volume 124 of Leibniz Inter-
national Proceedings in Informatics (LIPlcs), pages 56:1—56:20, Dagstuhl, Germany,
2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[NCro] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[Nisgo] Noam Nisan. Psuedorandom generators for space-bounded computation. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages
204-212. ACM, 1990.

[NNo93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM J. Comput., 22(4):838-856, 1993.

[NWo4] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer
and System Sciences, 49(2):149-167, October 1994.

[OPo4] Masanori Ohya and Dénes Petz. Quantum entropy and its use. Springer Science &
Business Media, 2004.

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness for
log-space. Electronic Colloguinm on Computational Complexity: ECCC, 2023.

[PZ32] R.E.A.C.Paley and A. Zygmund. A note on analytic functions in the unit circle.
In Mathematical Proceedings of the Cambridge Philosophical Society, volume 2.8,
pages 266—272. Cambridge University Press, 193 2.

[Razr7] Ran Raz. A time-space lower bound for a large class of learning problems. In §8zb
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
732-742. IEEE Computer Society, 2017.

[Raz18] Ran Raz. Fastlearning requires good memory: A time-space lower bound for
parity learning. /. ACM, 66(1), dec 2018.

[RPRZ13] Wojciech Roga, Zbigniew Puchata, Lukasz Rudnicki, and Karol Zyczkowski.
Entropic trade-off relations for quantum operations. Physical Review A,
87(3):032308, 2013.

[RSo8] Alvin C. Rencher and G. Bruce Schaalje. Linear models in statistics. John Wiley &
Sons, 2008.

[RT22] Ran Razand Avishay Tal. Oracle separation of BQP and PH. [ACAM,

69(4):30:1-30:21, 2022.

[RVWor] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics, 155(1),
January 2001.

[RY22] Gregory Rosenthal and Henry Yuen. Interactive proofs for synthesizing quantum
states and unitaries. In 132h Innovations in Theoretical Computer Science Conference,
ITCS 2022, volume 215 of LIPlcs, pages 112:1-112:4. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 202.2.

[RZ20] Ran Razand Wei Zhan. The random-query model and the memory-bounded
coupon collector. In 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, volume 151 of LIPlcs, pages 20:1—20:11. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik, 2020.

[Sako6] Michael Saks. Randomization and derandomization in space-bounded com-
putation. In Proceedings of the 1 1th Annual IEEE Conference on Computational
Complexity, pages 128—149, 1996.

[Savo8] John E. Savage. Models of computation - exploring the power of computing.
Addison-Wesley, 1998.

[Sha81] AdiShamir. The generation of cryptographically strong pseudo-random se-
quences. In CRYPTO, page 1. U. C. Santa Barbara, Dept. of Elec. and Computer
Eng., ECE Report No 82-04, 1981.

[Shog4] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
tactoring. In 35th Annual Symposium on Foundations of Computer Science, pages
124—-134. IEEE Computer Society, 1994.

[SNA*17] Chao Shen, Kyungjoo Noh, Victor V Albert, Stefan Krastanov, Michel H
Devoret, Robert J Schoelkopf, SM Girvin, and Liang Jiang. Quantum channel con-
struction with circuit quantum electrodynamics. Physical Review B, 95(13):134501,
2017.

[Stiss] W Forrest Stinespring. Positive functions on c*-algebras. Proceedings of the Ameri-
can Mathematical Society, 6(2):211-216, 1955.

[STVo1] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators
without the XOR lemma. /. Comput. Syst. Sci., 62(2):236-266, 2001.

[SZ99] Michael E. Saks and Shiyu Zhou. BPySpace(S) € DSPACE(S%/2). J. Comput.
Syst. Sci., $8(2):376-403, 1999.

[Ta-13] Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace. In
Symposium on Theory of Computing Conference, STOC’13, pages 881-890. ACM,

2013.

213

[Talr7] Avishay Tal. Formulalower bounds via the quantum method. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC zo17,
pages 1256-1268. ACM, 2017.

[Uhl76] Armin Uhlmann. The “transition probability” in the state space of a *-algebra.
Reports on Mathematical Physics, 9(2):273-279, 1976.

[Vid18] Thomas Vidick. The quantum circuit model. UCSD Summer school notes, 2018.

[vMW12] Dieter van Melkebeek and Thomas Watson. Time-space efficient simulations of
quantum computations. Theory Comput., 8(1):1-51, 2012.

[Watgg] John Watrous. Space-bounded quantum complexity. J. Comput. Syst. Sci.,
59(2):281-326, 1999.

[WB86] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction for algebraic block
codes, December 30 1986. US Patent 4,633,470.

[Wilo8] R.Ryan Williams. Time-space tradeofts for counting NP solutions modulo inte-
gers. Comput. Complex., 17(2):179-219, 2008.

[Wili16] R.Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. In 3 15t Conference on Computational Com-
plexity, CCC 2016, volume so of LIPIcs, pages 2:1—2:17. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2016.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pages 8o—91. IEEE Computer Society, 1982.

[YZ22] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without
structure. In 637d IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, pages 69-74. IEEE, 2022.

[YZ23] Huacheng Yu and Wei Zhan. Randomized vs. deterministic separation in time-
space tradeofts of multi-output functions, 2023. In Preparation.

[ZLY22] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan. Quantum state preparation
with optimal circuit depth: Implementations and applications. Physical Review
Letters, 129(23):230504, 2022.

214

	Abstract
	Introduction
	Randomness with Bounded Space
	Quantum computation with Bounded Space
	Learning with Bounded Space
	Dissertation Organization and Bibliographic Details

	Preliminaries
	Vectors and Matrices
	Quantum Information
	Some Useful Inequalities
	Computational Models and Complexity Classes

	I Algorithmic Results
	Overview of Part I
	Robustly Randomized Algorithms
	Simple Relations with Other Classes
	Streaming Proof for BPL
	Query-Complexity Separations

	Certified Hardness vs. Randomness for Logspace
	Logspace Verifier for PRG
	Efficiently Reconstructive Derandomization
	Universal Derandomization of BPL

	Unitary Quantum Simulation
	Unitary Quantum Logspace Algorithms
	Error Reduction in BQUL
	Equivalence of Learning and Deciding
	Bonus: Streaming Proof for BQL

	II Lower Bound Results
	Overview of Part II
	Decision Problems: The Coupon-Collector Model
	Zero-Error Coupon Collector
	Relation with Oblivious Branching Programs

	Multi-Output Functions: A Polynomial Separation
	The Borodin-Cook Method
	Polynomial Separation for Oblivious Computation
	Separations that Imply Decision Lower Bounds

	Learning with Classical-Quantum Hybrid Memory
	Classical-Quantum Hybrid Model
	Linear Quantum Lower Bound
	Truncation of Classical-Quantum Branching Programs
	Target Distribution and Badness

	References

