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Parallel Repetition for the GHZ Game: A Simpler Proof

Uma Girish∗ Justin Holmgren† Kunal Mittal‡ Ran Raz§ Wei Zhan¶

Abstract

We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game
reduces the value of the game to zero polynomially quickly. That is, we show that the value of
the n-fold GHZ game is at most n−Ω(1). This was first established by Holmgren and Raz [HR20].
We present a new proof of this theorem that we believe to be simpler and more direct. Unlike
most previous works on parallel repetition, our proof makes no use of information theory, and
relies on the use of Fourier analysis.

The GHZ game [GHZ89] has played a foundational role in the understanding of quantum
information theory, due in part to the fact that quantum strategies can win the GHZ game with
probability 1. It is possible that improved parallel repetition bounds may find applications in
this setting.

Recently, Dinur, Harsha, Venkat, and Yuen [DHVY17] highlighted the GHZ game as a simple
three-player game, which is in some sense maximally far from the class of multi-player games
whose behavior under parallel repetition is well understood. Dinur et al. conjectured that
parallel repetition decreases the value of the GHZ game exponentially quickly, and speculated
that progress on proving this would shed light on parallel repetition for general multi-player
(multi-prover) games.
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1 Introduction

The focus of this paper is multi-player games, and in particular their asymptotic behavior under
parallel repetition.

Multi-player games consist of a one-round interaction between a referee and k players. In this
interaction, the referee first samples a “query” (q1, . . . , qk) from some joint query distribution Q,
and for each i sends qi to the ith player. The players are required to respectively produce “answers”
a1, . . . , ak without communicating with one another (that is, each ai is a function only of qi) and
they are said to win the game if (q1, . . . , qk, a1, . . . , ak) satisfy some predicate W that is fixed and
associated with the game.

Suppose that a game G has the property that the maximum probability with which players can
win is 1 − ǫ, no matter what strategy they use. This quantity is called the value of G. The parallel
repetition question [FRS88] asks

How well can the players concurrently play in n independent copies of G?

More precisely, consider the following k-player game, which we call the n-wise parallel repetition

of G and denote by Gn:

1. The referee samples, for each i ∈ [n] independently, query tuples (qi
1, . . . , qi

k) ∼ Q. We refer
to the index i as a coordinate of the parallel repeated game.

2. The jth player is given (q1
j , . . . , qn

j ) and is required to produce a tuple (a1
j , . . . , an

j ).

3. The players are said to win in coordinate i if (qi
1, . . . , qi

k, ai
1, . . . , ai

k) satisfies W . They are said
to win (without qualification) if they win in every coordinate i ∈ [n].

One might initially conjecture that the value of Gn is (1 − ǫ)n. However, this turns out not to
be true [For89, Fei91, FV02, Raz11], as players may benefit from correlating their answers across
different coordinates. Still, Raz showed that if G is a two-player game, then the value of Gn is
2−Ω(n), where the Ω hides a game-dependent constant [Raz98, Hol09]. Tighter results, based on
the value of the initial game are also known [DS14, BG15]. For many applications, such bounds
are qualitatively as good as the initial flawed conjecture.

Games involving three or more players have proven more difficult to analyze, and the best known
general bound on their parallel repeated value is due to Verbitsky [Ver94]. This bound states that
the value of Gn approaches 0, but the bound is extremely weak (it shows that the value is at most

1
α(n) , where α denotes an inverse Ackermann function). The weakness of this bound is generally
conjectured to reflect limitations of current proof techniques rather than a fundamental difference
in the behavior of many-player games. In the technically incomparable but related no-signaling

setting however, Holmgren and Yang showed that three-player games genuinely behave differently
than two-player games [HY19]. Specifically, they showed that there exists a three-player game with
“no-signaling value” bounded away from 1 such that no amount of parallel repetition reduces the
no-signaling value at all.

Parallel repetition is a mathematically natural operation that we find worthy of study in
its own right. At the same time, parallel repetition bounds have found several applications in
theoretical computer science (see this survey by [Raz10]). For example, parallel repetition of 2
player games shares intimate connections with multi-player interactive proofs [BOGKW88], prob-
abilistically checkable proofs and hardness of approximation [BGS98, Fei98, H̊as01], geometry of
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foams [FKO07, KORW08, AK09], quantum information [CHTW04], and communication complex-
ity [PRW97, BBCR13]. Recent work also shows that strong parallel repetition for a particular
class of multiprover games implies new time lower bounds on Turing machines that can take advice
[MR21].

Dinur et al. [DHVY17] describe a restricted class of multi-player games for which Raz’s approach
generalizes (giving exponential parallel bounds). Specifically, they consider games whose query
distribution satisfies a certain connectivity property. For games outside this class, Verbitsky’s
bound was the best known. Dinur et al. highlighted one simple three-player game, called the
GHZ game [GHZ89], that in some sense is maximally far from the aforementioned tractable class
of multi-player games. In the GHZ game, the players’ queries are (q1, q2, q3) chosen uniformly at
random from {0, 1}3 such that q1 ⊕ q2 ⊕ q3 = 0, and the players’ goal is to produce (a1, a2, a3) such
that a1 ⊕ a2 ⊕ a3 = q1 ∨ q2 ∨ q3. Dinur et al. conjectured that parallel repetition decreases the value
of the GHZ game exponentially quickly, and speculated that progress on proving this would shed
light on parallel repetition for general games. The GHZ game has also played a foundational role in
the understanding of quantum information theory, due in part to the fact that quantum strategies
can win the GHZ game with probability 1. It is possible that improved parallel repetition bounds
will find applications in this setting as well.

In a recent work, Holmgren and Raz [HR20] proved the following polynomial upper bound on
the parallel repetition of the GHZ game:

Theorem 1.1. The value of the n-wise repeated GHZ game is at most n−Ω(1).

Our main contribution is a different proof of this theorem that, in our view, is significantly
simpler and more direct than the proof of [HR20]. Like [HR20], we actually do not rely on any
properties of the GHZ game other than its query distribution, and in particular we do not rely on
specifics of the win condition. Furthermore, unlike most previous works on parallel repetition, our
proof makes no use of information theory, and instead relies on the use of Fourier analysis.

1.1 Technical Overview

Let P denote the distribution of queries in the n-wise parallel repeated GHZ game. Let α = Θ(1/nε)
for a small constant ε > 0 and E = E1 × E2 × E3 be any product event with significant probability
under P, i.e., P(E) ≥ α. The core of our proof is establishing that for a random coordinate i ∈ [n],
the query distribution P|E (P conditioned on E) is mildly hard in the ith coordinate. That is,
given queries sampled from P|E, the players’ maximum winning probability in the ith coordinate
is bounded away from 1. Using standard arguments from the parallel repetition literature, this will
imply an inverse polynomial bound for the value of the n-fold GHZ game. The difficulty, as usual,
is that the n different queries in P|E may not be independent.

Our approach at a high level is to:

1. Identify a class D of simple distributions (over queries for the n-wise repeated GHZ game) such
that it is easy to analyze (in step 3 below) which coordinates are hard for any given D ∈ D.
By hard, we mean that the players’ maximum winning probability in the ith coordinate is 3

4 .

2. Approximate P|E by a convex combination of distributions from D. That is, we write

P|E ≈
∑

j

pjDj,
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where {Dj} are distributions in D, pj are non-negative reals summing to 1, and ≈ denotes
closeness in total variational distance.

3. Show that in the above convex combination, “most” of the Di have many hard coordinates.
More precisely, if we sample j with probability pj, then the expected fraction of coordinates
in which Dj is hard is at least a constant (say 1/3).

Completing this approach implies that if i ∈ [n] is uniformly random, then the ith coordinate of
P|E can be won with probability at most 1 − Ω(1). We elaborate on each of these steps below.

Bow Tie Distributions For our class of “simple” distributions D, we introduce the notion of a
“bow tie” distribution. We then define D to be the set of all bow tie distributions. A bow tie is a
set B of the form 




(x0, y0, z0),
(x0, y1, z1),
(x1, y0, z1),
(x1, y1, z0)





⊆ (Fn
2 )3

such that for each (x, y, z) in B, we have x + y + z = 0. In particular this requires that x0 + x1 =
y0 +y1 = z0 +z1. A bow tie distribution is the uniform distribution on a bow tie. Our name of “bow
tie” is based on the fact that bow ties are thus determined by {(x0, y0), (x0, y1), (x1, y0), (x1, y1)},
which we sometimes view as a set of edges in a graph. In this case, bow ties are special kinds of
K2,2 subgraphs, where K2,2 denotes the complete bipartite graph.

The main property of a bow tie distribution D is that for every coordinate i for which (x0)i 6=
(x1)i (equivalently (y0)i 6= (y1)i, or (z0)i 6= (z1)i), the ith coordinate of D is as hard as the GHZ
game (i.e. players cannot produce winning answers for the ith coordinate with probability more
than 3

4 ). This follows by “locally embedding” the (unrepeated) GHZ query distribution into the ith

coordinate of D as follows. We first swap x0 ↔ x1, y0 ↔ y1, z0 ↔ z1 as necessary to ensure that

(x0)i = (y0)i = (z0)i = 0. (1)

An even number of swaps are required to do this by the assumption that x0 + y0 + z0 = 0, and bow
ties are invariant under an even number of such swaps. Thus Eq. (1) is without loss of generality.
Suppose f̄1, f̄2, f̄3 : Fn

2 → F2 comprise a strategy for the ith coordinate of D. Then a strategy
f1, f2, f3 : F2 → F2 for the basic (unrepeated) GHZ game can be constructed as

f1(b) = f̄1(xb)

f2(b) = f̄2(yb)

f3(b) = f̄3(zb).

The winning probability of this strategy is the same as the winning probability of f̄1, f̄2, f̄3 in
the ith coordinate because

(
(xb1)i, (yb2)i, (zb3)i

)
= (b1, b2, b3). Hence both probabilities are at most

3/4.

Approximating P|E by Bow Ties We now sketch how to approximate P|E by a convex
combination of bow tie distributions, where E is a product event E1 × E2 × E3. We assume for
now that the non-zero Fourier coefficients of each Ej are small. We will return to this assumption
at the end of the overview — it turns out to be nearly without loss of generality.
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We show that P|E is close in total variational distance to the distribution obtained by sampling
a uniformly random bow tie B ⊆ E, and then outputting a random element of B. The latter
distribution is equivalent to sampling (x, y, z) with probability proportional to the number of bow
ties B ⊆ E that contain (x, y, z). This number is





(∑
z′∈Fn

2
E1(y + z′)E2(x + z′)E3(z′)

)
− 1 if (x, y, z) ∈ supp(P|E)

0 otherwise,
(2)

where we identify E1, E2, and E3 with their indicator functions. Note that we are subtracting 1 to
cancel the term corresponding to z′ = z.

Intuitively, the fact that all Ej have small Fourier coefficients means that they look ran-
dom with respect to linear functions. Thus, one might guess that the above sum is close to
2n · µ(E1)µ(E2)µ(E3) for most (x, y, z) ∈ supp(P|E), where µ(S) = |S|/2n denotes the measure of
S under the uniform distribution on Fn

2 . If “close to” and “most” have the right meanings, then
this would imply that our distribution is close in total variational distance to P|E as desired.

Our full proof indeed establishes this. More precisely, we view Eq. (2) as a vector indexed by
(x, y, z) and establish bounds on that vector’s ℓ1 and ℓ2 norms as a criterion for near-uniformity. In
the process our proof repeatedly uses the following claims (see Lemma 4.1). For all sets S, T ⊆ Fn

2

that are sufficiently large, we have

E
z∼Fn

2
x∼Fn

2

[S(x) · T (x + z) · E3(z)] ≈ µ(S) · µ(T ) · µ(E3)

and

E
z∼Fn

2



(

E
x∼Fn

2

[S(x) · E2(x + z)]

)2

· E3(z)


 ≈ µ(S)2 · µ(E2)2 · µ(E3).

Most Bow Ties are Hard in Many Coordinates For the final step of our proof, we need to
show that the distribution of bow ties analyzed in the previous step produces (with high probability)
bow ties that differ in many coordinates.

We begin by parameterizing a bow tie by (x0, y0, x0 ⊕ x1) and noting that in the previous step,
we essentially showed that E contains 23n−O(log n) different bow ties. The O(log n) term in the
exponent arises from the fact that the events {Ej} have density in Fn

2 that is inverse polynomial in
n. A simple counting argument then shows that for a random bow tie, the min-entropy of x0 ⊕ x1

is close to n. This means that x0 ⊕ x1 is close to the uniform distribution in the sense that any
event occurring with probability p under the uniform distribution occurs with probability p · nO(1)

under the distribution of x0 ⊕ x1. Thus we can finally apply a Chernoff bound to deduce that with
all but 2−Ω(n) probability, x0 ⊕ x1 has Hamming weight at least n/3.

In other words, a bow tie sampled uniformly at random differs in at least a 1
3 fraction of coor-

dinates. By the main property of bow ties, this implies that the corresponding bow tie distribution
is hard on a 1

3 fraction of coordinates (indeed, the same set of coordinates).

Handling General Events For general (product) events E = E1 ×E2 ×E3 (where the sets {Ei}
need not have small Fourier coefficients), we can partition the universe Fn

2 × Fn
2 × Fn

2 into parts π
such that for most of the parts π, the event E restricted to π has the structure that we already

5



analyzed. For this to make sense, we ensure several properties of the partition. First, π should be
a product set (π = π1 × π2 × π3) so that E ∩ π is a product set as well, i.e. E ∩ π has the form
Ẽ1 × Ẽ2 × Ẽ3. Second, each πi should be an affine subspace of Fn

2 so that we can do Fourier analysis
with respect to this subspace. Finally π1, π2, and π3 should all be affine shifts of the same linear
subspace so that the set {(x, y, z) ∈ π : x + y + z = 0} has the same Fourier-analytic structure as
the parallel repeated GHZ query set {(x, y, z) ∈ (Fn′

2 )3 : x + y + z = 0} for some n′ < n.
We prove the existence of such a partition with n′ not too small (n′ = n − o(n)) by a simple

iterative approach, which is similar to [HR20].

1.2 Comparison to [HR20]

Our proof has some similarity to [HR20] — in particular, both proofs partition (Fn
2 )3 into subspaces

according to Fourier-analytic criteria and analyze these subspaces separately — but the resemblance
ends there. In fact, there are fundamental high-level differences between the two proofs.

The biggest qualitative difference is that our high-level approach decomposes any conditional
distribution P|E into components (bow tie distributions) for which many coordinates are hard.
[HR20] takes an analogous approach, but it establishes a weaker result that differs in the order
of quantifiers: it first fixes a strategy f , and then decomposes P|E into components such that f
performs poorly on many coordinates of many components. This difference is due to the fact that
[HR20] uses uniform distributions on high-dimensional affine spaces as their basic “hard” distribu-
tions. It is not in general possible to express P|E as a convex combination of such distributions
(for example if each Ej is a uniformly random subset of Fn

2 ). Instead, [HR20] expresses P|E as
a convex combination of “pseudo-affine” distributions. This significantly complicates their proof,
and we avoid this complication entirely by our use of bow tie distributions, which are novel to this
work.

The remainder of our proof (the analysis of hardness within each part of the partition) is entirely
different.

2 Notation & Preliminaries

A significant portion of these preliminaries is taken verbatim from [HR20].
We write exp(t) to denote et for t ∈ R.
Let n ∈ N. For a vector v ∈ Rn and i ∈ [n], we write v(i) or vi to denote the i-th coordinate

of v. For p ∈ N, we write ‖v‖p
def
=
(∑

i∈[n] |v(i)|p
)1/p

to denote the ℓp norm of v. For z ∈ {0, 1}∗,

hwt(z)
def
= ‖z‖1 denotes the Hamming weight of z.

We crucially rely on the Cauchy-Schwarz inequality.

Fact 2.1 (Cauchy-Schwarz). Let k ∈ N and a1, . . . , ak, b1, . . . , bk ∈ R. Then,
∑k

i=1 |ai · bi| ≤√∑k
i=1 a2

i ·
√∑k

i=1 b2
i .

2.1 Set Theory

Let Ω be a universe. By a partition of Ω, we mean a collection of pairwise disjoint subsets of Ω,
whose union equals Ω. If Π is a partition of Ω and ω is an element of Ω, we will write Π(ω) to
denote the (unique) element of Π that contains ω. Thus, we can view Π as a function Π : Ω → 2Ω.
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For a set S ⊆ Ω, we identify S with its indicator function S : Ω → {0, 1} defined at ω ∈ Ω by

S(ω) =

{
1 if ω ∈ S

0 otherwise.

For sets S, T ⊆ Ω such that T 6= ∅, we use S|T ⊆ T to denote the set S ∩ T when viewed as a
subset of T . In particular, S|T is an indicator function from T to {0, 1}.

2.2 Probability Theory

Probability Distributions. Let P be a distribution over a universe Ω. We sometimes think of P
as a vector in R|Ω| whose value in coordinate ω ∈ Ω is P (ω). In particular, we use ‖P −Q‖1 to denote
the ℓ1 norm of the vector P −Q ∈ R|Ω|, where P and Q are probability distributions. We use ω ∼ P
to denote a random element ω distributed according to P . We use supp(P ) = {ω ∈ Ω : P (ω) > 0}
to denote the support of the distribution P .

Random Variables Let Σ be any alphabet. We say that X : Ω → Σ is a Σ-valued random
variable. If Σ = R, we say that the random variable is real-valued. If X is a real-valued random
variable, the expectation of X under P is denoted Eω∼P [X(ω)]. Often, the underlying distribution
P is implicit, in which case we simply use E[X]. If X is a Σ-valued random variable and P is a
probability distribution, we write PX or X(P ) to denote the induced probability distribution of

X under P , i.e., PX(σ) = (X(P ))(σ)
def
= P (X = σ) for all σ ∈ Σ. In particular, we say that X

is distributed according to PX and we use σ ∼ X(P ) to denote a random variable σ distributed
according to PX . The distribution P is often implicit, and we identify X with the underlying
distribution PX .

Events. We refer to subsets of Ω as events. We use standard shorthand for denoting events. For
instance, if X is a Σ-valued random variable and x ∈ Σ, we write X = x to denote the event
{ω ∈ Ω : X(ω) = x}. Similarly, for a subset F ⊆ Σ, we write X ∈ F to denote the event
{ω ∈ Ω : X(ω) ∈ F}. We use P (E) to denote the probability of E under P . When P is implicit,
we use the notation Pr(E) to denote P (E).

Conditional Probabilities Let E ⊆ Ω be an event with P (E) > 0. Then the conditional

distribution of P given E is denoted (P |E) : Ω → R and is defined to be

(P |E)(ω) =

{
P (ω)/P (E) if ω ∈ E

0 otherwise.

If E is an event, we write PX|E as shorthand for (P |E)X .

Measure under Uniform Distribution For any set S ⊆ Ω, we sometimes identify S with the
uniform distribution over S. In particular, we use x ∼ S to denote x sampled according to the
uniform distribution on S. For S, π ⊆ Ω such that π 6= ∅, we use µπ(S) = |S∩π|

|π| to denote the
measure of S under the uniform distribution over π. When π = Ω, we omit the subscript and
simply use µ(S).
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2.3 Fourier Analysis

Fourier Analysis over Subspaces For any (finite) vector space V over F2, the character group

of V, denoted V̂ , is the set of group homomorphisms mapping V (viewed as an additive group) to
{−1, 1} (viewed as a multiplicative group). Each such homomorphism is called a character of V.
For functions mapping V → R, we define the inner product

〈f, g〉 def
= E

x∼V
[f(x)g(x)] .

The character group of V forms an orthonormal basis under this inner product. We refer to the
all-ones functions χ : V → {−1, 1}, χ ≡ 1 as the trivial character or the zero character and denote
this by χ = ∅.

For all characters χ 6= ∅, since 〈χ, ∅〉 = 0, we have Ex∼V [χ(x)] = 0, in particular, χ(V) is a

uniform {±1}-random variable. Let ∅ 6= S ⊆ V be a set. Then µV(S) ,
|S∩V|

|V| = Ŝ(∅), where we

identify S with its indicator function S : V → {0, 1} as mentioned before. For χ ∈ V̂, we have

Ex∼S [χ(x)] = Ŝ(χ)

Ŝ(∅)
.

Fact 2.2. Given a choice of basis for V, there is a canonical isomorphism between V and V̂.

Specifically, if V = Fn
2 , then the characters of V are the functions of the form

χγ(v) = (−1)γ·v

for γ ∈ Fn
2 .

Definition 1. For any function f : V → R, its Fourier transform is the function f̂ : V̂ → R defined
by

f̂(χ)
def
= 〈f, χ〉 = E

x∼V
[f(x)χ(x)] .

Since the characters of V are orthonormal and V is finite, we can deduce that f is equal to∑
χ∈V̂ f̂(χ) · χ.

Theorem 2.3 (Plancherel). For any f, g : V → R,

〈f, g〉 =
∑

χ∈V̂
f̂(χ) · ĝ(χ).

An important special case of Plancherel’s theorem is Parseval’s theorem:

Theorem 2.4 (Parseval). For any f : V → R,

E
x∼V

[
f(x)2

]
=
∑

χ∈V̂
f̂(χ)2.

Fourier Analysis over Affine Subspaces Fix any subspace V ⊆ Fn
2 and a vector a ∈ Fn

2 . Let
U = a + V denote the affine subspace obtained by shifting V by a. For every function f : V → R,
we associate it with a function fa : U → R defined by fa(x) = f(x + a) for all x ∈ U . This is a
bijective correspondence between the set of functions from U to R and the set of functions from V
to R. Under this association, we can identify χ ∈ V̂ with χa : U → {−1, 1} where χa(x) = χ(x + a)

8



for all x ∈ U . This defines an orthonormal basis Ûa := {χa : U → {−1, 1} | χ ∈ V̂} for the vector
space of functions from U to R. We call this the Fourier basis for U with respect to a. This basis
depends on the choice of the shift a ∈ U . However, for all possible shifts b ∈ U and character
functions χ ∈ V̂, the functions χa and χb only differ by a sign. To see this, observe that

χa(x) = χ(a + x) = χ(b + x) · χ(a + b) = χb(x) · χ(a + b)

We will sometimes ignore the subscript and simply use χ ∈ V̂ to index functions in the Fourier
basis of U . This is particularly the case when the properties we are dealing are independent of
choice of basis (for example, the absolute values of Fourier coefficients of a function).

2.4 Multi-Player Games

In parallel repetition we often work with Cartesian product sets of the form (X1 × · · · × Xk)n. For
these sets, we will use subscripts to index the inner product and superscripts to index the outer
product. That is, for X = X1 × . . . × Xk we view elements x of X n as tuples (x1, . . . , xk), where
xi ∈ X n

i . We use xj
i or xi(j) to refer to the jth coordinate of xi. We use xj to denote the vector

(xj
1, . . . , xj

k).
If {Ei ⊆ Xi}i∈[k] is a collection of subsets, we write E1 × · · · × Ek to denote the set {x ∈ X :

∀i ∈ [k], xi ∈ Ei}. We say that f : (X1 × · · · × Xk)n → (Y1 × · · · × Yk)n is a product function if
f = f1 × · · · × fk for some functions fi : X n

i → Yn
i .

Definition 2 (Multi-player Games). A k-player game is a tuple (X , Y, Q, W ), where X = X1 ×· · ·×
Xk and Y = Y1 × · · · × Yk are finite sets, Q is a probability measure on X , and W : X × Y → {0, 1}
is a “winning” predicate. We refer to Q as the query distribution or the input distribution of the
game.

Definition 3 (Deterministic Strategies). A deterministic strategy for a k-player game G = (X , Y, Q, W )
is a function f = f1 × · · · × fk where each fi : Xi → Yi. The success probability of f in G is denoted
and defined as

val(G, f)
def
= Pr

x∼Q

[
W
(
x, f(x)

)
= 1

]
.

The most important quantity associated with a game is the maximum probability with which
the game can be “won”.

Definition 4. The value of a k-player game G = (X , Y, Q, W ), denoted val(G), is the maximum,
over all deterministic strategies f , of val(G, f).

It is often easier to construct probabilistic strategies for a game, i.e. strategies in which players
may use shared and/or individual randomness in computing their answers.

Definition 5 (Probabilistic Strategies). Let G = (X , Y, Q, W ) be a k-player game. A probablistic

strategy for G is a distribution F of deterministic strategies for G. The success probability of F in
G is denoted and defined as

val(G, F)
def
= Pr

x∼Q
f∼F

[
W
(
x, f(x)

)
= 1

]
.

A standard averaging argument implies that for every game, probabilistic strategies cannot
achieve better success probability than deterministic strategies:

9



Fact 2.5. Replacing “deterministic strategies” by “probabilistic strategies” in Definition 4 yields

an equivalent definition.

The main operation on multi-player games that we consider in this paper is parallel repetition:

Definition 6 (Parallel Repetition). Given a k-player game G = (X , Y, Q, W ), its n-fold paral-

lel repetition, denoted Gn, is defined as the k-player game (X n, Yn, Qn, W n), where W n(x, y)
def
=∧n

j=1 W (xj, yj). For x ∈ X n, we refer to xi ∈ X n
i as the input to the i-th player.

To bound the value of parallel repeated games, it is helpful to analyze the probability of winning
in a particular instance of the game under various modified query distributions.

Definition 7 (Value in jth coordinate). If G = (X , Y, Q, W n) is a game (with a product winning
predicate), the value of G in the jth coordinate for j ∈ [n], denoted val(j)(G), is the value of the game
(X , Y, Q, W ′), where W ′(x, y) = W (xj , yj).

Definition 8 (Game with Modified Query Distribution). Let G = (X , Y, Q, W ) be a game. For a
probability measure P on X , we write G|P to denote the game (X , Y, P, W ). For an event E on
X , we write G|E to denote the game (X , Y, QE , W ).

2.5 GHZ Distribution

Let X = X1 × X2 × X3 and Y = Y1 × Y2 × Y3 where Xi = Yi = F2. Let Q denote the uniform
distribution over {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Define W : X × Y → {0, 1} at x ∈ X , y ∈ Y
by W (x, y) = 1 if and only if x1 ∨ x2 ∨ x3 = y1 + y2 + y3 (mod 2). The GHZ game refers to the
3-player game (X , Y, Q, W ), which has value 3/4. The n-fold repeated GHZ game refers to the
n-fold parallel repetition of (X , Y, Q, W ). Our parallel repetition results easily generalize with any
other (constant-sized) answer alphabet Y ′ and any predicate W ′, as long as the game (X , Y ′, Q, W ′)
has value less than 1.

We typically use X = (X1, X2, X3) ∈ X n to denote a random variable distributed according to
Qn where Xi ∈ X n

i denotes the input to the i-th player.

3 Partitioning into Pseudorandom Subspaces

We make use of the notion of affine partition similar to the one defined in [HR20]. We say that Π
is an affine partition of (Fn

2 )3 of codimension at most d if Π is a partition on (Fn
2 )3 and:

• Each part π ∈ Π has the form aπ + V3
π where Vπ is a subspace of Fn

2 and aπ ∈ (Fn
2 )3, and

• Each Vπ has codimension at most d.

The main take-away from this section is Proposition 3.1, which states the following: Given the
query distribution to the n-fold GHZ game, and a product event E ⊆ (Fn

2 )3 with large enough
probability mass, we can find an affine partition Π of (Fn

2 )3 such that on a typical part π ∈ Π,
the non-zero Fourier coefficients of the indicator functions E1|π1 , E2|π2, E3|π3 are small. Recall that
Ei|πi : πi → {0, 1} is the indicator function of the set Ei ∩ πi ⊆ πi.

Formally, the proposition is as follows:

10



Proposition 3.1. Let P = Qn. Let E = E1 × E2 × E3 ⊆ (Fn
2 )3 be such that P(E) = α. For all

δ > 0, there exists an affine partition Π of (Fn
2 )3 of codimension at most 3

δ3 such that the following

holds. With probability at least 1 − δ
α over π ∼ Π(P|E), for all i ∈ [3] and non-zero χ ∈ V̂, we have∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ, where π is of the form π1 × π2 × π3 for affine shifts π1, π2, π3 of some subspace V of

Fn
2 .

Recall that Π(P|E) is the distribution induced by sampling x ∼ P|E and outputting the part
of Π to which x belongs. Note that in the statement of the proposition, we don’t specify a choice

of Fourier basis for πi. This is because for any set S ⊆ πi, the quantity
∣∣∣Ŝ(χai)

∣∣∣ is independent of

choice of ai ∈ πi so we simply write
∣∣∣Ŝ(χ)

∣∣∣. The proof of Proposition 3.1 is similar in nature to the

proof of Lemma 6.2 in [HR20], but is much simpler and is deferred to the Appendix A.

4 Key Fourier Analytic Lemmas

We crucially make use of the following lemma.

Lemma 4.1. Let V ⊆ Fn
2 be a subspace and a1, a2, a3 ∈ Fn

2 be such that a1 + a2 + a3 = 0. Let

π = π1 × π2 × π3 where πi = ai + V. Let A ⊆ π1, B ⊆ π2, C ⊆ π3 be sets such that for all non-zero

χ ∈ V̂, we have
∣∣∣Ĉ(χ)

∣∣∣ ≤ δ1. Then,

∣∣∣∣∣∣
E

z∼π3
x∼π1

[A(x) · B(x + z) · C(z)] − µπ1(A) · µπ2(B) · µπ3(C)

∣∣∣∣∣∣
≤ δ1.

If furthermore for all non-zero χ ∈ V̂, we have
∣∣∣B̂(χ)

∣∣∣ ≤ δ2, then

∣∣∣∣∣ E
z∼π3

[(
E

x∼π1
[A(x) · B(x + z)]

)2

· C(z)

]
− µπ1(A)2 · µπ2(B)2 · µπ3(C)

∣∣∣∣∣ ≤ δ2
2 + δ1.

Recall from Section 2.2 that µπi(S) , |S∩πi|
|πi| . In the statement of this lemma, we don’t specify

a choice of Fourier basis for π2 and π3. Since the properties
∣∣∣Ĉ(χa3)

∣∣∣ ≤ δ1 and
∣∣∣B̂(χa2)

∣∣∣ ≤ δ2 are

independent of the choice of a2 and a3, we simply write
∣∣∣Ĉ(χ)

∣∣∣ ≤ δ1 and
∣∣∣B̂(χ)

∣∣∣ ≤ δ2.

Proof of Lemma 4.1. We expand the indicator functions of the sets A, B, C in their Fourier basis
with respect to a1, a2, a3 as follows.

E
z∼π3
x∼π1

[A(x) · B(x + z) · C(z)]

=
∑

χ,χ′,χ′′∈V̂
E

z∼π3
x∼π1

[
Â(χa1) · χa1(x) · B̂(χ′

a2
) · χ′

a2
(x + z) · Ĉ(χ′′

a3
) · χ′′

a3
(z)
]

=
∑

χ,χ′,χ′′∈V̂
E

z∼π3
x∼π1

[
Â(χa1) · B̂(χ′

a2
) · Ĉ(χ′′

a3
) · χ(x + a1) · χ′(x + z + a2) · χ′′(z + a3)

]

=
∑

χ,χ′,χ′′∈V̂
E

x′,z′∼V

[
Â(χa1) · B̂(χ′

a2
) · Ĉ(χ′′

a3
) · χ(x′) · χ′(x′ + z′) · χ′′(z′)

]
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The second equality follows from definition. The third follows from the fact that when we vary over
x ∼ a1 + V and z ∼ a3 + V, the distribution of (x + a1, x + z + a2, z + a3) is the uniform distribution
over V3 ∩ {(x, x + z, z) | x, z ∈ Fn

2}. Since the Fourier characters form an orthonormal basis, when
we take an expectation over x′, z′ ∼ V, the only terms that survive correspond to χ = χ′ = χ′′.
This implies that

E
z∼π3
x∼π1

[A(x) · B(x + z) · C(z)] =
∑

χ∈V̂

[
Â(χa1) · B̂(χa2) · Ĉ(χa3)

]

= µπ1(A) · µπ2(B) · µπ3(C) +
∑

∅6=χ∈V̂

[
Â(χa1) · B̂(χa2) · Ĉ(χa3)

]
.

The last equality is because µπi(S) = Ŝ(∅) for any S ⊆ πi. Thus, we have

∣∣∣∣∣∣
E

z∼π3
x∼π1

[A(x) · B(x + z) · C(z)] − µπ1(A)µπ2(B)µπ3(C)

∣∣∣∣∣∣
≤

∑

χ∈V̂\∅

∣∣∣Â(χa1) · B̂(χa2) · Ĉ(χa3)
∣∣∣ .

Since all Fourier bases differ only up to a sign, the R.H.S. of the above is independent of choice of
a1, a2, a3. Henceforth, we omit the subscript. Thus,

∣∣∣∣∣∣
E

z∼π3
x∼π1

[A(x) · B(x + z) · C(z)] − µπ1(A)µπ2(B)µπ3(C)

∣∣∣∣∣∣

≤
∑

χ∈V̂\∅

∣∣∣Â(χ)
∣∣∣ ·
∣∣∣B̂(χ)

∣∣∣ ·
∣∣∣Ĉ(χ)

∣∣∣

≤
∑

χ∈V̂\∅

∣∣∣Â(χ) · B̂(χ)
∣∣∣ · δ1

≤
√√√√

∑

χ∈V̂\∅
Â(χ)2 ·

√√√√
∑

χ∈V̂\∅
B̂(χ)2 · δ1 ≤ δ1.

The second-last inequality is due to the Cauchy-Schwarz Inequality. The last inequality follows
from the fact that B and A are {0, 1}-indicator functions and by Parseval’s theorem, their sum
of squares of Fourier coefficients is at most 1. This completes the proof of the first statement in
Lemma 4.1.

For the second statement, we again expand the indicator functions of the sets A, B, C in the
Fourier basis with respect to a1, a2, a3 as follows.

E
x∼π1

[A(x) · B(x + z)] =
∑

χ,χ′∈V̂
E

x∼π1

[
Â(χa1) · B̂(χ′

a2
) · χa1(x) · χ′

a2
(x + z)

]

=
∑

χ,χ′∈V̂
E

x∼π1

[
Â(χa1) · B̂(χ′

a2
) · χ(a1 + x) · χ′(a1 + a3 + x + z)

]

=
∑

χ,χ′∈V̂
E

x∼π1

[
Â(χa1) · B̂(χ′

a2
) · χ(a1 + x) · χ′(a1 + x) · χ′(a3 + z)

]
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Here, we used the facts that a1 + a2 + a3 = 0 and that χ′ is a group homomorphism. As we
vary x ∼ a1 + V, the distribution of a1 + x is uniform over V. Since the Fourier characters are
orthonormal, the only terms that survive in the above expression correspond to χ = χ′. Thus,

E
x∼π1

[A(x) · B(x + z)] =
∑

χ∈V̂
Â(χa1) · B̂(χa2) · χ(a3 + z).

We now consider:

(∗) := E
z∼π3

[(
E

x∼π1
[A(x) · B(x + z)]

)2

· C(z)

]

= E
z∼π3






∑

χ∈V̂
Â(χa1) · B̂(χa2) · χ(a3 + z)




2

· C(z)




= E
z∼π3




∑

χ,χ′,χ′′∈V̂
Â(χa1) · B̂(χa2) · Â(χ′

a1
) · B̂(χ′

a2
) · Ĉ(χ′′

a3
) · χ(a3 + z) · χ′(a3 + z) · χ′′(a3 + z)




Recall that there is a canonical group isomorphism between V and V̂. Under this isomorphism, the
χ + χ′ + χ′′ ∈ V̂ satisfies (χ + χ′ + χ′′)(a3 + z) = χ(a3 + z) · χ′(a3 + z) · χ′′(a3 + z) for all z ∈ a3 + V.
Since the characters form an orthonormal basis, the only terms that survive in the above expression
correspond to χ + χ′ + χ′′ = 0. This implies that

(∗) =
∑

χ,χ′∈V̂
Â(χa1) · B̂(χa2) · Â(χ′

a1
) · B̂(χ′

a2
) · Ĉ((χ + χ′)a3)

Recall that Ŝ(∅) = µπi(S) for any set S ⊆ πi and i ∈ [3]. Thus,

∣∣∣∣∣ E
z∼π3

[(
E

x∼π1
[A(x) · B(x + z)]

)2

· C(z)

]
− µπ1(A)2 · µπ2(B)2 · µπ3(C)

∣∣∣∣∣

≤
∑

∅6=χ∈V̂
Â(χ)2 · B̂(χ)2 ·

∣∣∣Ĉ(∅)
∣∣∣ +

∑

χ 6=χ′∈V̂

∣∣∣Â(χ) · Â(χ′) · B̂(χ) · B̂(χ′) · Ĉ(χ + χ′)
∣∣∣ .

We omitted the subscripts on Fourier characters, as the R.H.S. of the above is independent of choice

of Fourier basis. We now bound the first term by δ2
2 as follows. We bound

∣∣∣Ĉ(∅)
∣∣∣ by 1. The given

assumption that
∣∣∣B̂(χ)

∣∣∣ ≤ δ2 for all χ ∈ V̂ \ ∅ implies that

∑

∅6=χ∈V̂
Â(χ)2 · B̂(χ)2 ·

∣∣∣Ĉ(∅)
∣∣∣ ≤

∑

∅6=χ∈V̂
Â(χ)2 · δ2

2 ≤ δ2
2.
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We bound the second term as follows.

∑

χ 6=χ′∈V̂

∣∣∣Â(χ) · Â(χ′) · B̂(χ) · B̂(χ′) · Ĉ(χ + χ′)
∣∣∣ ≤

∑

χ,χ′∈V̂

∣∣∣Â(χ) · Â(χ′) · B̂(χ) · B̂(χ′)
∣∣∣ · δ1

=



∑

χ∈V̂

∣∣∣Â(χ) · B̂(χ)
∣∣∣




2

· δ1

≤ δ1.

The last inequality follows from Cauchy-Schwartz and Parseval as in the previous bound. This
completes the proof of Lemma 4.1.

5 Main Proof

We use the following Parallel Repetition Criterion which is similar to, but weaker than the one
from [HR20] for the GHZ game and has a slightly simpler proof.

Let G refer to the n-fold parallel repetition of the GHZ game. Let P = Qn.

Lemma 5.1 (Parallel Repetition Criterion). Let c ∈ (0, 1] be a constant and ρ(n) : N → R be a

function such that ρ(n) ≥ exp(−n). Suppose for all large n ∈ N and all subsets E1, E2, E3 ⊆ Fn
2

such that P(E) ≥ ρ(n) where E = E1 × E2 × E3, we have Ei∼[n]

[
val(i)(G|E)

]
≤ 1 − c. Then,

val(G) ≤ ρ(n)Ω(1).

This lemma is proved in [HR20] under the weaker assumption that there is some coordinate
i ∈ [n] for which val(i)(G|E) ≤ 1 − c. The proof is slightly simpler under our stronger assumption

that Ei∼[n]

[
val(i)(G|E)

]
≤ 1 − c. We prove this in Section 5.1.

Given this criterion, our goal of showing an inverse polynomial bound for val(G) reduces to
showing the following. Let E = E1 × E2 × E3 be any event such that P(E) = α ≥ 1

n1/100 and n be

large enough. It suffices to show that Ei∼[n]

[
val(i)(G|E)

]
≤ 0.95. We do this as follows.

Let δ = α20

n1/40 . Proposition 3.1 implies the existence of a partition Π of (Fn
2 )3 into affine subspaces

of codimension at most O
(

1
δ3

)
= o(n) such that:

• Every π ∈ Π is of the form a + V3 where V ⊆ Fn
2 is a subspace and a ∈ (Fn

2 )3.

• With probability at least 1 − δ
P(E) ≥ 1 − o(1) over π ∼ Π(P|E), we have

∣∣∣Êi|πi(χ)
∣∣∣ ≤ δ for all

i ∈ [3] and non-zero χ ∈ V̂, where V is the subspace of Fn
2 for which π is an affine shift of V3.

Under the distribution Π(P|E), the probability that π is sampled equals (P|π)(E)·P(π)
P(E) by Bayes’

rule. This implies that the probability that π ∼ Π(P|E) satisfies (P|π)(E) ≤ P(E)/10 is at most
1/10. We will focus on π = π1 × π2 × π3 that satisfy both these properties, namely, the measure of
E under P|π is significant, furthermore, for all i ∈ [3], all non-zero Fourier coefficients of the sets
Ei restricted to πi are small.
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Definition 9. We say that π is good if

(P|π)(E) ≥ α/10, and for all non-zero χ ∈ V̂ and i ∈ [3], we have
∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ. (3)

By a union bound, a random π ∼ Π(P|E) will be good with probability at least 1− 1
10 − δ

α . Fix
any such good π = π1 × π2 × π3 ∈ Π, and let V be the subspace such that π is an affine shift of V3.

For all z ∈ E3 ∩ π3, define a (partial) matching Mz between π1 and π2 as follows. For x ∈
π1 ∩ E1, y ∈ π2 ∩ E2, z ∈ π3 ∩ E3 such that x + y = z, put an edge (x, y). Let Lz (resp. Rz)
be the left (resp. right) endpoints of Mz. Let G = ∪z∈E3∩π3Mz be the bipartite graph between
π1 and π2 obtained by combining edges from the matchings for z ∈ E3 ∩ π3. Let E(G) denote
the set of edges in G. For every edge e ∈ E(G), we can identify e with a valid input to the
n-fold GHZ game that is contained in E ∩ π. Namely, we associate (x0, y0) ∈ E(G) to the input
(x0, y0, x0 +y0) ∈ supp(P)∩E ∩π. This is a bijective correspondence because of the way we defined
the graph G. Under this correspondence, the uniform distribution over edges of G corresponds to
the distribution P|E, π. We now introduce the important notion of a bow tie.

Definition 10 (Bow Tie). We say that a subset of edges b ⊆ E(G) is a bow tie if b = {x0, x1} ×
{y0, y1} for some x0 6= x1 ∈ π1, y0 6= y1 ∈ π2 such that x0 + y0 = x1 + y1 (or equivalently
x0 + y1 = x1 + y0). Alternatively, for z0 = x0 + y0 and z1 = x0 + y1, we have (xi, yj, zk) ∈ supp(P)
for all (i, j, k) ∈ supp(Q).

Let b = {x0, x1} × {y0, y1} be a bow tie. As before, we identify b with the indicator vector
b ∈ {0, 1}E(G) of the edges of b, that is, b(e) = 1 iff e ∈ {(xi, yj) : i, j ∈ {0, 1}}. We use b̃ to denote
the uniform distribution on the edges of the bow tie, when viewed as inputs to the n-fold GHZ

game. More precisely, b̃ denotes the uniform distribution on {(xi, yj , xi + yj) | i, j ∈ {0, 1}}.
We say that b differs in the i-th coordinate for i ∈ [n] if x0(i) 6= x1(i), or equivalently, y0(i) 6= y1(i),

or equivalently, z0(i) 6= z1(i).

Let b be a bow tie and I ⊆ [n] be the coordinates on which b differs. The following claim shows
that val(i)(G|b̃) ≤ 3/4 for all i ∈ I. The proof is deferred to Section 5.2

Claim 5.2. Let b = {x0, x1} × {y0, y1} be a bow tie. Let I ⊆ [n] be the subset of coordinates on

which b differs. Then, val(i)(G|b̃) ≤ 3/4 for all i ∈ I.

Let B denote the set of all bow ties. Consider the distribution on edges defined by first sampling
a uniformly random bow tie from B, and then a uniformly random edge from the bow tie. We now
provide an alternate description of this distribution. For each z ∈ E3 ∩ π3, define 1z ∈ {0, 1}|E(G)|

as follows. For each e = (x, y) ∈ E(G), define 1z(e) = 1 if x and y are both matched in Mz but
not to each other, and define 1z(e) = 0 otherwise. Alternatively, 1z is the indicator of the set
((Lz × Rz)\Mz)∩ E(G). Let v := Ez∼E3∩π3[1z ]. Note that v has |E(G)| coordinates, each of which
have non-negative values, so v induces a distribution on E(G). Consider this distribution ṽ = v

‖v‖1

on E(G) defined by normalizing v. We show that this distribution is an alternate description of
the aforementioned distribution.

Claim 5.3. v = |E3 ∩ π3|−1 · (
∑

b∈B b). In particular, we can think of the distribution ṽ := v
‖v‖1

on E(G) as obtained by sampling a uniformly random bow tie b in G and outputting a uniformly

random edge of b.
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The proof of this is deferred to Section 5.3. Our goal now is to show that the distribution
ṽ is close to the uniform distribution over edges of G. To do so, we study some properties of
G. Observe that |E(G)| , |V|2 · Ex∼π1

z∼π3

[E1(x) · E2(x + z) · E3(z)]. We apply Lemma 4.1 with

parameters A = E1 ∩ π1, B = E2 ∩ π2, C = E3 ∩ π3. Since π ∈ supp(Π(P|E)), the set π ∩ supp(P) is
non-empty, therefore, we may choose a ∈ supp(P) so that π = a+V3. This, along with Equation (3)
implies that the first hypothesis of Lemma 4.1 is satisfied. Lemma 4.1 implies that

∣∣∣|E(G)| − |V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3)
∣∣∣ ≤ |V|2 · δ. (4)

We make use of the following bounds on the ℓ1 and ℓ2 norms of v. The proofs of these are by
Fourier analysis and are deferred to Sections 5.4 and 5.5.

Claim 5.4.

‖v‖1 ≥ |V|2 ·
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) − 3 · δ

)

− |V| ·
(
µπ1(E1) · µπ2(E2) + 2 · δ · µπ3(E3)−1

)
(5)

Claim 5.5.

‖v‖2
2 ≤ |V|2 ·

(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3) + 10 ·

√
δ
)

(6)

We now bound ‖ṽ‖2 = ‖v‖2

‖v‖1
by plugging in appropriate bounds on δ and dividing Eq. (6) by

Eq. (5). Our choice of δ = α20/n1/40, and our assumption that α/10 ≤ (P|π)(E) (which in turn
is at most mini∈[3] (µπi(Ei))) implies that δ is much smaller than any µπi(Ei). In particular, we
highlight that

√
δ = o

(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3)

)

δ = o
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)

)

δ = o
(
µπ1(E1) · µπ2(E2) · µπ3(E3)

)

Furthermore, since |V| = 2Ω(n) and 1 ≥ µπi(Ei) = Ω(α) = n−O(1), we have

|V| · µπ1(E1) · µπ2(E2) = o
(
|V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)

)
.

Thus the dominant term on the right-hand side of Eq. (5) is |V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3),
and the dominant term on the right-hand side of Eq. (6) is |V|2 ·µπ1(E1)3 ·µπ2(E2)3 ·µπ3(E3). More
precisely, we have

‖v‖1 ≥ (1 − o(1)) · |V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) (7)

‖v‖2
2 ≤ (1 + o(1)) · |V|2 · µπ1(E1)3 · µπ2(E2)3 · µπ3(E3). (8)

This implies that

‖ṽ‖2
2 =

‖v‖2
2

‖v‖2
1

≤ 1 + o(1)

|V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3)
(9)

In comparison, Eq. (4) gave that

|E(G)| ∈ (1 ± o(1)) · |V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3).
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Thus we can rewrite Eq. (9) as

‖ṽ‖2 ≤ 1 + o(1)√
|E(G)| (10)

This, together with the fact that by construction ‖ṽ‖1 = 1, is sufficient to deduce that ṽ is close

to the “uniform distribution” vector ũ
def
= ( 1

|E(G)| , . . . , 1
|E(G)|). More formally, we have:

Fact 5.6. Suppose that ṽ ∈ Rm is an m-dimensional vector such that ‖ṽ‖1 = 1, and ‖ṽ‖2 = 1+β√
m

for some β ∈ [0, 1]. Then

‖ṽ − ũ‖1 ≤
√

3β,

where ũ denotes the vector ( 1
m , . . . , 1

m).

The proof of Fact 5.6 is deferred to Section 5.6
Applying Fact 5.6 to Eq. (10) shows that dTV(ṽ, ũ) = o(1). In other words, a uniformly random

edge of a uniformly random bow tie is distributed close to uniformly on E(G).
We now show that a typical bow tie differs in a considerable fraction of coordinates.

Claim 5.7. Pri∼[n]
b∼B

[b differs in i-th coordinate] ≥ 1/3 − o(1).

The proof of Claim 5.7 is deferred to Section 5.7.
Claim 5.2, along with Claim 5.7 implies that Pri∼[n]

b∼B

[val(i)(G|b̃) ≤ 3/4] ≥ 1/3 − o(1) ≥ 0.3. For

those i ∈ [n] and b ∈ B such that b doesn’t differ at the i-th coordinate, we bound val(i)(G|b̃)

by 1. This, along with Claim 5.3 implies that Ei∼[n]

[
val(i)(G|ṽ)

]
≤ Ei∼[n]

b∼B

[val(i)(G|b̃)] ≤ 0.75 ×
0.3 + 1 × 0.7 ≤ 0.925. Since dTV(ũ, ṽ) ≤ o(1) and ũ corresponds to P|π, E, this implies that

Ei∼[n]

[
val(i)(G|π, E)

]
= 0.925 + o(1) ≤ 0.93. Since π ∼ Π(P|E) is good with probability at least

1 − δ · α−1 − 1/10 ≥ 0.9 − o(1) ≥ 0.8, we have Ei∼[n]

[
val(i)(G|E)

]
≤ E

i∼[n]
π∼Π(P|E)

[
val(i)(G|E, π)

]
≤

0.8 × 0.93 + 0.2 × 1 < 0.95. This, along with Lemma 5.1 completes the proof.

5.1 Proof of Lemma 5.1

Proof of Lemma 5.1. Let P = Qn. Choose the largest integer m ≥ 0 such that 32−m ≥ ρ(n) · 2
c .

Note that m = Θ(log(1/ρ(n))). Fix any deterministic product strategy f̄ = (f̄1, f̄2, f̄3) for the
players where f̄i : Fn

2 → Fn
2 denotes the strategy for the i-th player. Let Yi = f̄i(Xi) ∈ Fn

2

denote the output of player i on input Xi. Let {j1, . . . , jm} ⊆ [n] be a set of coordinates. Let Wi

denote the event of winning the GHZ game in the ji-th coordinate under the strategy f̄ and let
W≤i := W1 ∧ . . . ∧ Wi. Observe that

val(G, f̄ ) ≤
m−1∏

i=0

Pr [Wi+1 | W≤i] .

We show how to construct a sequence of coordinates so that every term in the above product
is at most 1 − c/2. This would imply that val(G) ≤ (1 − c/2)Θ(log(1/ρ(n)) = ρ(n)Ω(1). Fix any
i ∈ {0, . . . , m − 1} and assume that we have found j1, . . . , ji. Let X ∼ P and X≤i denote X
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restricted to the coordinates {j1, . . . , ji}. Let Y≤i denote the outputs of the players restricted to
the coordinates {j1, . . . , ji}. Let Z≤i = (X≤i, Y≤i). Since W≤i is a function of Z≤i, we have

Pr [Wi+1 | W≤i] = E
z≤i∼Z≤i|W≤i

[Pr [Wi+1 | Z≤i = z≤i]] ≤ E
z≤i∼Z≤i|W≤i

[
val(ji+1) (G|Z≤i = z≤i)

]
. (11)

Let F = F (z≤i) denote the event that P [Z≤i = z≤i|W≤i] ≥ c
2 · 1

N where N = 32i ≥ supp(Z≤i). We
argue that F occurs with probability at least 1 − c/2. This is because we are sampling z≤i with
probability P[Z≤i = z≤i|W≤i], hence the measure of z≤i for which P[Z≤i = z≤i|W≤i] ≤ c

2 · 1
N is at

most c
2 . Fix any z≤i such that F holds. Our choice of m implies that 1

N · c
2 ≥ ρ(n). Note that we

can express the distribution P|Z≤i = z≤i as P|E where E = E1 × E2 × E3 for E1, E2, E3 ⊆ Fn
2 and

P(E) ≥ ρ(n). The hypothesis of Lemma 5.1 implies that Ej∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ 1 − c. This

implies that

E
z≤i∼Z≤i|W≤i

j∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ Pr

z≤i∼Z≤i|W≤i

[¬F ] + E
z≤i∼Z≤i|W≤i,F

j∼[n]

[
val(j) (G|Z≤i = z≤i)

]

≤ c
2 + 1 − c = 1 − c

2 .

By linearity of expectation, we can fix a j ∈ [n] such that E
z≤i∼Z≤i|W≤i

[
val(j) (G|Z≤i = z≤i)

]
≤ 1− c

2 .

Note that j /∈ {j1, . . . , ji} since we already win the game on these coordinates. This, along with
Eq. (11) completes the proof.

5.2 Proof of Claim 5.2

Proof of Claim 5.2. Let i ∈ I. Since the bow tie b differs in the i-th coordinate, we have

{x0(i), x1(i)} = {y0(i), y1(i)} = {z0(i), z1(i)} = {0, 1}.

We may thus assume without loss of generality that x0(i) = y0(i) = 0. Define embeddings φ1 :
F2 → {x0, x1}, φ2 : F2 → {y0, y1} and φ3 : F2 → {z0, z1} at a ∈ F2 by φ1(a) = xa, φ2(a) = ya

and φ3(a) = za. It follows for all a ∈ {0, 1} and j ∈ [3], we have (φj(a))(i) = a. In particular,
for φ = φ1 × φ2 × φ3, the distribution φ(Q) is exactly the distribution b̃. Given any strategies
f̄1, f̄2, f̄3 : Fn

2 → Fn
2 for the players for the n-fold GHZ game restricted to the query distribution

b̃, the functions φ1, φ2, φ3 induce a strategy for the GHZ game as follows. Define fj : F2 → F2 by
fj(a) = (f̄j(φj(a)))(i). The success probability of the strategy f1 × f2 × f3 on the distribution Q is
exactly the success probability in the i-th coordinate of the strategy f̄1 × f̄2 × f̄2 on the distribution
b̃. It follows that val(i)(G|b̃) ≤ 3/4.

5.3 Proof of Claim 5.3

Proof of Claim 5.3. Fix any e ∈ E(G), e = (x0, y0). This implies that x0 ∈ E1 ∩ π1, y0 ∈ E2 ∩ π2

and z0 := x0 + y0 ∈ E3 ∩ π3. Note that v(e) = Prz∼E3∩π3 [(x0, y0) ∈ (Lz × Rz) \ Mz]. For any
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z1 ∈ E3 ∩ π3,

e ∈ (Lz1 × Rz1) \ Mz1 ⇐⇒ x0 + z1 ∈ E2 ∩ π2, y0 + z1 ∈ E1 ∩ π1, z1 6= z0

⇐⇒ x0, x1 ∈ E1 ∩ π1, y0, y1 ∈ E2 ∩ π2, z1 6= z0 ∈ E3 ∩ π3

where x1 := y0 + z1, y1 := x0 + z1

⇐⇒ {x0, x1} × {y0, y1} is a bow tie

where x1 := y0 + z1, y1 := x0 + z1.

This implies that for all e = (x0, y0) ∈ E(G) and z1 ∈ E3 ∩ π3, we have 1z1(e) = 1 if and only
if b = {x0, x1} × {y0, y1} is a bow tie. Observe that as we vary z1 ∈ E3 ∩ π3, we obtain all
possible bow ties that contain the edge e, i.e. the bow ties b for which b(e) 6= 0. This implies that
v , Ez1∼E3∩π3 [1z] = |E3 ∩ π3|−1 · (

∑
b∈B b) .

5.4 Proof of Claim 5.4

For ease of notation, we define weight functions as follows.

Definition 11 (Weight functions). Let P = Qn. For z ∈ π3, let

wtπ(z) := Pr
X∼P

[(X1 ∈ E1 and X2 ∈ E2)|(X ∈ π and X3 = z)] = E
x∼π1

[E1(x)E2(x + z)] .

Proof of Claim 5.4. Let z ∈ E3 ∩π3. Note that wtπ(z) = µπ1(Lz) = µπ2(Rz). Observe that ‖1z‖1 =
|E(G)∩(Lz ×Rz)\Mz |. We apply Lemma 4.1 with parameters A = Lz∩π1, B = Rz∩π2, C = E3∩π3.
The first hypothesis of Lemma 4.1 is satisfied due to Eq. (3). Lemma 4.1 implies that

|E(G) ∩ (Lz × Rz)| , |V|2 · E
z′∼π3
x∼π1

[
Lz(x) · Rz(x + z′) · E3(z′)

]

≥ |V|2 · (µπ1(Lz) · µπ2(Rz) · µπ3(E3) − δ)

, |V|2 ·
(
wtπ(z)2 · µπ3(E3) − δ

)
.

Similarly, |Mz| , |V|·Ex∼π1 [E1(x) · E2(x + z)] = |V|·wtπ(z). We apply Lemma 4.1 with parameters
A = E1, B = E2, C = E3. All the hypothesis are satisfied due to Eq. (3). Lemma 4.1, along with
conditioning z ∼ π3 on z ∈ E3 implies that

∣∣∣∣ E
z∼E3∩π3

[
wtπ(z)2

]
− µπ1(E1)2 · µπ2(E2)2

∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1. (12)

∣∣∣∣ E
z∼E3∩π3

[wtπ(z)] − µπ1(E1) · µπ2(E2)

∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1.

Substituting this in the previous inequalities and taking an expectation over z ∼ E3 ∩ π3,

‖v‖1 = E
z∼E3∩π3

[‖1z‖1] = E
z∼E3∩π3

[|E(G) ∩ (Lz × Rz)| − |Mz|]

≥ |V|2 ·
(

E
z∼E3∩π3

[
wtπ(z)2

]
· µπ3(E3) − δ

)
− |V| · E

z∼E3∩π3

[wtπ(z)]

≥ |V|2 ·
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) − 3 · δ

)

− |V| ·
(
µπ1(E1) · µπ2(E2) + 2 · δ · µπ3(E3)−1

)
.
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5.5 Proof of Claim 5.5

Proof of Claim 5.5. Define wtπ(·) as in the proof of Claim 5.4. Let z, z′ ∈ E3 ∩ π3. Observe that
〈1z , 1z′〉 = |E(G) ∩ ((Lz ∩ Lz′) × (Rz ∩ Rz′)) \ (Mz ∪ Mz′)|. We apply Lemma 4.1 with parameters
A = Lz ∩ Lz′ ∩ π1, B = Rz ∩ Rz′ ∩ π2 and C = E3 ∩ π3. The first hypothesis is satisfied due to
Eq. (3). Lemma 4.1 implies that

〈1z , 1z′〉 =
∣∣E(G) ∩ ((Lz ∩ Lz′) × (Rz ∩ Rz′)) \ (Mz ∪ Mz′)

∣∣

≤ |V|2 · (µπ1(Lz ∩ Lz′) · µπ2(Rz ∩ Rz′) · µπ3(E3) + δ) .

Taking an expectation over z′ ∼ E3 ∩ π3 and applying Cauchy-Schwartz yields that

E
z′∼E3∩π3

[〈1z , 1z′〉]

≤ |V|2 · E
z′∼E3∩π3

[µπ1(Lz ∩ Lz′) · µπ2(Rz ∩ Rz′) · µπ3(E3) + δ]

≤ |V|2 ·
(√

E
z′∼E3∩π3

[µπ1(Lz ∩ Lz′)2] ·
√

E
z′∼E3∩π3

[µπ2(Rz ∩ Rz′)2] · µπ3(E3) + δ

)
.

Observe that µπ1(Lz ∩Lz′) = Ex∼π1 [Lz(x)E2(x + z′)] for all z′ ∈ E3 ∩π3. We now apply Lemma 4.1
with parameters A = Lz ∩ π1, B = E2 ∩ π2, C = E3 ∩ π3. All the hypotheses are satisfied due to
Eq. (3). Lemma 4.1, along with the aforementioned observation implies that

∣∣∣∣ E
z′∼E3∩π3

[
µπ1(Lz ∩ Lz′)2

]
− µπ1(Lz)2 · µπ2(E2)2

∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1.

An analogous inequality holds for |Rz ∩ Rz′|. Substituting this in the previous inequality and using
the fact that

√
a + b ≤ √

a +
√

b, we have

E
z′∼E3∩π3

[〈1z, 1z′〉]

≤ |V|2 ·
((

µπ1(Lz) · µπ2(E2) +

√
2·δ

µπ3 (E3)

)
·
(

µπ2(Rz) · µπ1(E1) +

√
2·δ

µπ3 (E3)

)
· µπ3(E3) + δ

)

≤ |V|2 ·
(
µπ1(Lz) · µπ2(Rz) · µπ1(E1) · µπ2(E2) · µπ3(E3) + 8 ·

√
δ
)

= |V|2 ·
(
wtπ(z)2 · µπ1(E1) · µπ2(E2) · µπ3(E3) + 8 ·

√
δ
)

.

We now take an expectation over z ∼ E3 ∩ π3 and use Eq. (12) to conclude that

E
z,z′∼E3∩π3

[〈1z, 1z′〉] ≤ |V|2 ·
(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3) + 10 ·

√
δ
)

.

5.6 Proof of Fact 5.6

Proof of Fact 5.6.

‖ṽ − ũ‖2
2 = 〈ṽ − ũ, ṽ − ũ〉

= ‖ṽ‖2
2 + ‖ũ‖2

2 − 2〈ũ, ṽ〉

=
1 + 2β + β2

m
+

1

m
− 2

m

=
2β + β2

m
≤ 3β

m
.
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Finally, we bound the ℓ1 distance in terms of the ℓ2 distance:

‖ṽ − ũ‖1 ≤ ‖ṽ − ũ‖2 · √
m ≤

√
3β.

5.7 Proof of Claim 5.7

Proof of Claim 5.7. It suffices to show that a random b ∼ B differs in less than n/3 coordinates
with probability at most 2−Ω(n) = o(1).

The Chernoff bound implies that Prx0,x1∼Fn
2

[hwt(x0 + x1) < n/3] ≤ 2−Ω(n). We condition on

x0, x1 ∈ π1 to conclude that Prx0,x1∼π1 [hwt(x0 + x1) < n/3] ≤ 2−Ω(n) · 22n

|V|2 .

Let b = {x0, x1}× {y0, y1} be a bow tie. By definition, we have y1 = x0 + x1 + y0. In particular,
the bow tie b is uniquely identified by x0, x1, y0. This implies that the probability that a random
b ∼ B differs in less than n/3 coordinates is precisely

|V|3
|B| Pr

x0,x1∼π1
y0∼π2

y1=x0+x1+y0

[{x0, x1} × {y0, y1} ∈ B and hwt(x0 + x1) < n/3]

≤ |V|3
|B| Pr

x0,x1∼π1
[hwt(x0 + x1) < n/3]

≤ |V|3
|B| · 2−Ω(n) · 22n

|V|2

Recall that v = Ez∼E3∩π3[1z ] = 1
µπ3 (E3)·|V|

∑
z∈E3∩π3

1z, where for each e,
∑

z∈E3∩π3
1z(e) equals

the number of bow ties containing the edge e. Since each bow tie contains 4 edges, we have that
‖v‖1 = 4

µπ3 (E3)·|V| · |B|. Then, equation (7) implies that

|B| ≥ 1

8
· |V|3 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)2 ≥ 1

8
· |V|3 · α6.

This implies that |V|3
|B| ≤ 8/α6. Recall that α ≥ n−O(1) and the co-dimension of V is o(n). This

implies that 22n

|V|2 = 2o(n). This along with the above calculation implies that the probability that

a uniformly random b ∼ B differs in less than n/3 coordinates is at most 8·2−Ω(n)

α6 · 2o(n) = 2−Ω(n).
This completes the proof.

A Proof of Proposition 3.1

Recall the statement of the Proposition:

Proposition A.1. Let P = Qn. Let E = E1 × E2 × E3 ⊆ (Fn
2 )3 be such that P(E) = α. For all

δ > 0, there exists an affine partition Π of (Fn
2 )3 of codimension at most 3

δ3 such that the following

holds. With probability at least 1 − δ
α over π ∼ Π(P|E),

for all i ∈ [3] and non-zero χ ∈ V̂ ,
∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ (13)

where π is of the form π1 × π2 × π3 for affine shifts π1, π2, π3 of some subspace V of Fn
2 .
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Recall that Ei|πi : πi → {0, 1} denotes the indicator function of Ei restricted to the subspace
πi ⊆ Fn

2 . The main idea behind the proof of the above proposition is to keep dividing the space based
on Fourier coefficients that violate the required condition. A simple potential function argument
shows that this cannot be repeated too many times.

For ease of notation, we introduce the following notation. Let V be a subspace of Fn
2 , a1, a2, a3 ∈

Fn
2 , a = (a1, a2, a3) and π = π1×π2×π3 where πi = ai+V. Let χ ∈ V̂ . We define χ3

a : π → {−1, 1}3

for all wi ∈ πi by

χ3
a




w1

w2

w3


 def

=




χa1(w1)
χa2(w2)
χa3(w3)


 =




χ(a1 + w1)
χ(a2 + w2)
χ(a3 + w3)


 .

Proof of Proposition A.1. We will show that the desired property, namely Equation (13) holds with
probability at least 1 − δ over π ∼ Π(P). Since P(E) = α, conditioning on the event E implies
that this property holds with probability at least 1 − δ

α over π ∼ Π(P|E).
We construct the desired partition Π iteratively, starting with Π1 = {(Fn

2 )3}. At each step
t ≥ 1, if with probability more than δ over π ∼ Πt(P), Equation (13) does not hold, then we
refine the partition Πt as follows. Consider any π ∈ Πt and let π = a + V3 for some subspace

V ⊆ Fn
2 and a ∈ (Fn

2 )3. Choose i ∈ [3] and χ ∈ V̂ \ {∅} such that
∣∣∣Êi|πi(χ)

∣∣∣ is maximized.

We partition the subspace π into subspaces πz
def
= {x ∈ π : χ3

a(x) = z} for each z ∈ {−1, 1}3.
Let Πt+1 = {πz : π ∈ Πt, z ∈ {−1, 1}3}. This refinement step produces an affine partition of
codimension one more than before. We argue that this refinement does not occur too often, by a
potential function argument.

Define a potential function Φ =
∑3

i=1 Φi where Φi is defined for an affine partition Π by

Φi(Π)
def
= E

π∼Π(P)
π=π1×π2×π3

[∣∣∣Êi|πi(∅)
∣∣∣
2
]

= E
π∼Π(P)

π=π1×π2×π3

[
µπi(Ei)

2
]

.

By definition, for every Π, it holds that 0 ≤ Φ(Π) ≤ 3. We show that in each step of the refinement,
Φ increases by at least δ3, and hence the process must stop after at most 3/δ3 steps. This is proved
as follows.

Consider any step t of the refinement. Consider any subspace π = a + V3 ∈ supp(Πt(P))
that contributes to the potential function at time t. The subspace π is partitioned into subspaces
πz : z ∈ {−1, 1}3 at time t. Since P is uniform over {y ∈ (Fn

2 )3 : y1 + y2 + y3 = 0}, we have
πz ∈ supp(Πt+1(P)) if and only if z1 · z2 · z3 = 1. Hence, to analyze the change in potential function
from time t to t + 1, it suffices to focus on subspaces πz such that z1 · z2 · z3 = 1. Furthermore,
the distribution Πt+1(P) assigns equal probabilities to the subspaces πz for each z ∈ {−1, 1}3 such
that z1 · z2 · z3 = 1.

Let i ∈ [3], and χ ∈ V̂ \ {∅} be used to partition π in the construction of Πt+1 from Πt.
Sample a uniformly random z ∈ {−1, 1}3 such that z1 · z2 · z3 = 1 and consider the corresponding

subspace πz. For any j ∈ [3], the quantity Êj|πj (∅) is updated to either Êj|πj (∅) + Êj |πj (χaj ),

or to Êj|πj (∅) − Êj |πj (χaj ), depending on the value of zj ∈ {−1, 1}. Since under the distribution
Πt+1(P), the subspaces πz for z ∈ {−1, 1}3 : z1 · z2 · z3 = 1 are equally likely (in particular zj = 1

and zj = −1 are equally likely), this quantity is updated to Êj |πj (∅) + Êj |πj (χaj ) with probability
1
2 and Êj|πj (∅) − Êj |πj (χaj ) with probability 1

2 . This implies that the contribution of πj to the
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change in potential from time t to t + 1 is exactly

1

2

((
Êj|πj (∅) + Êj |πj (χaj )

)2
+
(
Êj |πj (∅) − Êj|πj (χaj )

)2
)

−
(
Êj |πj (∅)

)2
=
(
Êj|πj (χ)

)2
.

Adding the above equation for all j ∈ [3] implies that the change in potential due to π is
∑

j∈[3]

(
Êj|πj (χ)

)2
. Note that the refinement is performed only when with probability at least

δ over the choice of π ∼ Πt(P), it holds that for some i ∈ [3],
∣∣∣Êi|πi(χ)

∣∣∣ ≥ δ. This implies that the

overall change Φ(Πt+1) − Φ(Πt) is at least δ · δ2 = δ3. This completes the proof.
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