
k-Regret Minimizing Set: Efficient Algorithms
and Hardness
Wei Cao1, Jian Li1, Haitao Wang3, Kangning Wang1, Ruosong
Wang1, Raymond Chi-Wing Wong6, and Wei Zhan1

1 Institute for Interdisciplinary Information Sciences, Tsinghua University, China
{cao-w13,wkn13,wrs13,zhan-w13}@mails.tsinghua.edu.cn,lijian83@mail.tsinghua.edu.cn

3 Utah State University, Logon, Utah, USA, haitao.wang@usu.edu
6 The Hong Kong University of Science and Technology, Hong Kong, China

raywong@cse.ust.hk

Abstract
We study the k-regret minimizing query (k-RMS), which is a useful operator for supporting
multi-criteria decision-making. Given two integers k and r, a k-RMS returns r tuples from the
database which minimize the k-regret ratio, defined as one minus the worst ratio between the
k-th maximum utility score among all tuples in the database and the maximum utility score of
the r tuples returned. A solution set contains only r tuples, enjoying the benefits of both top-k
queries and skyline queries. Since proposed in 2012, the query has been studied extensively in
recent years. In this paper, we advance the theory and the practice of k-RMS in the following
aspects. First, we develop efficient algorithms for k-RMS (and its decision version) when the
dimensionality is 2. The running time of our algorithms outperforms those of previous ones.
Our experimental results show that our algorithms are more efficient than previous ones on both
synthetic and real datasets up to three orders of magnitude. Second, we show that k-RMS is
NP-hard even when the dimensionality is 3. This provides a complete characterization of the
complexity of k-RMS, and answers an open question in previous studies. In addition, we present
approximation algorithms for the problem when the dimensionality is 3 or larger.

Keywords and phrases multi-criteria decision-making, regret minimizing set, top-k query

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.23

1 Introduction

One major task of a database system is to return “representative” records to a user. Usually,
there are two goals in the system. The first goal is to return a limited number of records to
a user when the utility function of this user is known. One query type achieving this goal is
top-k queries [15, 17, 20, 29, 30, 34], each returning k records that have the greatest scores
calculated based on these k records and the utility function of a user where k is a positive
integer. The second goal is to return a set of records which are interesting to a user even
though his/her utility function is unknown. One example of a query type for this goal is
skyline queries [4, 5, 17, 20, 22, 24, 31], each returning a set of records from the database
each of which is not dominated by other records in the database. Here, a record x is said to
dominate another record x′ if and only if each attribute value of x is not worse than that of
x′ and at least one attribute value of x is better than that of x′.

However, as described in [25, 26, 27], the above two popular queries could not achieve
these two goals simultaneously. First, a top-k query does not achieve the second goal since
it requires that a user is given an exact utility function indicating his/her preference, which
is not reasonable in some cases because in many situations, the user does not know how to

© Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond C. Wong, Wei Zhan;
licensed under Creative Commons License CC-BY

The 20th International Conference on Database Theory (ICDT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 k-Regret Minimizing Set: Efficient Algorithms and Hardness

specify his/her exact utility function. Second, a skyline query does not meet the first goal
because it returns an uncontrolled number of records. In the worst case, all records in the
database are returned as an output in a skyline query.

Recently, r-regret queries, a new type of queries meeting the above two goals, were
proposed [9, 25, 26, 27] and studied extensively due to its usefulness and its wide applicability,
where r is a positive integer. All applications originally applied to top-k queries and skyline
queries could also be applied to r-regret queries. Some typical applications are choosing
hotels for vacation and choosing items (e.g., cars) for purchase.

The purpose of an r-regret query is to return a set of r records in the database, minimizing
the “unhappiness” level of a user when seeing only these r records instead of all records in
the database, even though the utility function of this user is unknown. Given a positive
integer r and a database D containing a number of records, an r-regret query is to return
a set R of r records from D such that the greatest “unhappiness” level of a user, formally
called the maximum regret ratio of a user, is minimized when the user sees only records in
R. Here, the “unhappiness” level of a user, called the regret ratio of a user, ranging from 0
to 1, refers to how unhappy the user would be when seeing only the records in R, instead
of all records in D. Consider the user with his/her utility function f . The score of a record
x in D with respect to the utility function f is denoted by f(x). The greater the score of
a record is, the better the record is. Given a set R of records, the best record in R with
respect to the utility function f is defined to be the record in R with its greatest score with
respect to the utility function f . The regret ratio of this user is equal to 0 if the score of the
best record in the selection set R is equal to the one in the whole database D. It becomes
larger if the score of the best record in R is smaller than the one in D. The maximum regret
ratio of a user refers to the greatest possible regret ratio of a user (since different users can
have different utility functions).

Recently, Chester et al. [9] proposed a new version of r-regret queries called the k-regret
minimizing set (k-RMS) problem generalizing the concept of the “best” record to the concept
of the best k records. The original form of an r-regret query assumes that a user must be
satisfied with only the “best” record in D. Chester et al. [9] relaxed this assumption and
considered that a user is already satisfied with one of the best k records in D. Specifically,
given two positive integers r and k, and a database D containing a number of records, the
k-RMS problem is to return a set R of r records from D such that the maximum k-regret
ratio of a user is minimized. Here, the k-regret ratio of a user, ranging from 0 to 1, is equal
to 0 if the score of the best record in R is at least the score of the k-th best record in D.
It becomes larger if the score of the best record in R is smaller than the score of the k-th
best record in D. Clearly, when k = 1, k-RMS becomes the r-regret query (called 1-RMS,
or simply the RMS problem). In this paper, we have the following contributions.

1. For RMS in R2 (i.e., the dimensionality is 2), we propose an O(n logn) time exact
algorithm, where n is the number of records in the dataset D. The time complexity is
better than the previous best-known time complexity of O(rn2 + n2 logn) [9].

2. For k-RMS in R2, we present an O(n2 logn) time algorithm, which improves the
O(rn2k

1
3 + n2 logn) time complexity result in [9]. We also propose an approximation

algorithm of O(nk 1
3 log(1/ε) + n logn + nk

1
3 log1+δ n) time, where ε is the additive ap-

proximation error and δ is any positive constant. For typical parameters, it performs
much faster than the previous best-known algorithm [9]. To solve the problem, we also
give an efficient algorithm for the decision version of the problem, which is interesting in
its own right both theoretically and practically. A summary of our results is in Table 1.

3. Our extensive experimental results show that our algorithms are consistently faster than

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:3

the previous work [9] up to three orders of magnitude.
4. We show that for any positive integer k, the k-RMS problem is NP-hard when the

dimensionality of the database is 3 (or larger). This is the first-known hardness result
for the k-RMS problem in a fixed dimensional database. Although Chester et al. [9] prove
the NP-hardness of the RMS problem, it states that the hardness is due to both the high
dimensionality of the dataset and the large number of records in the dataset. It has been
open whether the problem is still NP-hard for fixed dimensional cases. Our result settles
the open problem and thus provides a complete characterization of the computational
complexity of the problem (together with our algorithms in R2).

5. For RMS in Rd, we show it is closely connected to the notion of ε-kernel, introduced by
Agarwal et al. [2]. Based on the connection, we derive an upper bound r−2/(d−1) of the
maximum regret ratio, improving the previous bound r−1/(d−1) in [26]. We also provide
an approximation algorithm for k-RMS when d ≥ 3.

Outline: The rest of the paper is organized as follows. In Section 2, we formally define the
problem. Section 3 gives our algorithms for k-RMS when the dimensionality is 2. Section 4
presents the NP-hardness result. Section 5 gives our algorithms in high-dimensional cases.
Section 6 discusses the related work. Due to the page limit, many details and proofs are
omitted but can be found in the appendix. In particular, Appendix D reports the experi-
mental results for our 2-dimensional case algorithms.

2 Problem Formulation

Let D be a database containing n records/points1 with d attributes/dimensions. Given a
point x in D, for each i ∈ [1, d], the i-th dimensional value of point x is denoted by x[i].
We assume that the values x[i] in the database are all non-negative real numbers, which is
the common assumption in related literatures [9, 26]. Each user is associated with a utility
function f denoted by a d-dimensional non-negative vector ω called a weight vector. Let W
be the set of all possible weight vectors.

Given a point x in D and a weight vector ω, the score of x with respect to ω is the dot
product of x and ω, denoted by 〈x, ω〉. That is, 〈x, ω〉 is equal to

∑d
i=1 x[i]ω[i]. If we know

the utility function f with the weight vector ω, this score 〈x, ω〉 is also written as f(x).
Given an integer k ≥ 1, we denote the k-th largest score of x with respect to weight vector
ω by kmaxx∈D〈x, ω〉.

Given a non-empty subset R of D and a weight vector ω, the k-regret ratio of set R with
respect to weight vector ω, denoted by k-regratio(R,ω), is defined to be

k-regratio(R,ω) = max
{

0, 1− maxx∈R〈x, ω〉
kmaxx∈D〈x, ω〉

}
.

If k-regratio(R,ω) is 0, the best score in R is at least as good as the k-th largest score
with respect to ω in the original dataset D. The maximum k-regret ratio of R, denoted by
k-regratio(R), is defined to be k-regratio(R) = supω∈W k-regratio(R,ω).

I Problem 1 (k-RMS [9]). Given two positive integers k and r, we want to find a set R of r
points from D such that k-regratio(R) is minimized.

1 In the following, we use term “records” and “points” interchangeably since they refer to the same
concept.

ICDT 2016

23:4 k-Regret Minimizing Set: Efficient Algorithms and Hardness

Problem Algorithm Time Complexity Deterministic Exact Related Material
Dec-RMS D-IntCov-1 O(n logn) yes yes Sect. 3.1.1

Dec-k-RMS D-Greedy-k O(n+m) † yes yes Sect. 3.2

RMS

E-Pre-1 O(rn2 + n2 logn) †† yes yes [9]
A-IntCov-1 O(n logn log(1/ε)) yes no Sect. 3.1.2
A-Greedy-k O(n logn+ n log(1/ε)) yes no Sect. 3.2
E-Greedy-1 O(n logn) no yes Sect. 3.3.2

k-RMS
E-Pre-k O(rn2k

1
3 + n2 logn) †† yes yes [9]

A-Greedy-k O((n+m) log(1/ε) + n logn+m log1+δ n) yes no Sect. 3.2
E-Greedy-k O(n2 logn) yes yes Sect. 3.3.1

Table 1 The running times of the previous algorithms and our new algorithms. The naming
of the algorithms: D- means the decision version, E- means an exact algorithm and A- means an
approximation algorithm. n = |D|, m = |LSk|, r = |R|. ε is the additive error of the approximate
regret ratio. δ can be any positive constant. † D-Greedy-k requires O(n logm + m log1+δ n) pre-
processing time, and runs in O(n + m) time for any threshold θ. †† In [9], the authors claim their
algorithm runs in O(rn2) time. However, a more careful examination shows their algorithm runs
in O(rn2 + n2 logn) time for RMS and O(rn2k

1
3 + n2 logn) time for k-RMS instead: The priority

queue requires O(n2 logn) time; the best known upper bound of the size of the k-level set is O(nk 1
3)

(rather than n, as [9] assumed).

This is an optimization problem. The following defines its decision version, called Dec-
k-RMS (we also use Dec-RMS to refer to the case k = 1).
I Problem 2 (Dec-k-RMS). Given two positive integers k and r, and a real value θ ∈ [0, 1],
determine whether there exists a set R of r points from D such that k-regratio(R) is at most
1− θ (if yes, find such a solution set R).

We will also give algorithms for Dec-k-RMS since they will be used as subroutines for
solving the optimization version (i.e., Problem 1). On the other hand, in some applications
where there is a pre-specified error threshold of k-regratio(·), it would be more suitable to
solve the decision version, and thus the decision problem may be interesting in its own right.

3 Efficient Algorithms in R2

In this section, we develop several algorithms for RMS and k-RMS in R2. Table 1 summarizes
our results. The experimental results for these algorithms are in Appendix D. Without loss
of generality, we assume that ‖ω‖1 = ω[1] + ω[2] = 1 for any weight vector ω ∈ W (scaling
does not change the k-regratio). Hence, we can write ω = (λ, 1− λ) for some λ ∈ [0, 1].

For each point p = (x, y) in D, we define a linear function fp(λ) = λx + (1 − λ)y with
λ ∈ [0, 1]. We reformulate both the decision version and the optimization version as follows.

1. (The decision version) In the decision version Dec-k-RMS, we are given a constant θ,
and we need to decide whether there is some set R ⊆ D of cardinality r such that the
following holds:

∀λ ∈ [0, 1], max
p∈R

fp(λ) ≥ θ · kmaxp∈Dfp(λ), (1)

where kmax is the operator that returns the k-th largest value.
2. (The optimization version) The optimization version k-RMS is to maximize θ in (1).

It is convenient to view the problem from a geometric perspective as follows. Each record
p ∈ D corresponds to a line fp(λ) (λ ∈ [0, 1]). All such lines form a line arrangement A(D).

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:5

O λ

fp(λ)

1

LS1
θ-LS1

λ1 λ2

Figure 1 The arrangement A(D) (black lines),
its 1-level set LS1 (red dashed line), θ-scaled 1-level
set (blue lines), and 3-level set (thick black line)

O λ

fp(λ)

1

Figure 2 Illustrating Example 2: θ-LSk is the
dashed thick curve

The k-level set of A(D) [6] is a piecewise linear curve (see Figure 1 for an example)

LSk(λ) = kmaxp∈Dfp(λ), for λ ∈ [0, 1].

Let m denote the number of segments of LSk(λ). It is known that m is bounded by
O(nk 1

3) and LSk(λ) can be computed in O(n logn + nk
1
3) expected time by a randomized

algorithm [6] or in O(n logm+m log1+δ k) time by a deterministic algorithm for any constant
δ > 0 [6]. Note that the 1-level set LS1 is always convex since it is the upper envelop of
A(D) (see the red-dashed curve in Figure 1). However, the convexity property does not
necessarily hold for any k > 1.

We introduce scaled level sets, which generalizes the notion of k-level sets.

I Definition 1. (Scaled Level Set) Given a threshold θ > 0, define the θ-scaled k-level set
as the function θ-LSk(λ) = θ · LSk(λ) = θ · kmaxp∈Dfp(λ), for λ ∈ [0, 1].

We can reformulate the decision problem Dec-k-RMS as follows: Decide whether there
exists a subset R of r lines, such that the upper envelop of R covers the scaled level set (i.e.,
the function maxp∈R fp(λ) is above θ-LSk).

I Example 2. As an example of the decision problem Dec-k-RMS shown in Fig. 2, where
k = 3, θ = 0.9 and the dashed thick curve is θ-LSk, we aim to find r lines such that they
collectively cover the dashed thick curve from above. When r = 2, the two thick lines shown
in red form a solution. When r = 1, the thick blue line is the only valid solution.

In the sequel, we solve the decision problem in Section 3.2. In Section 3.3, we solve the
optimization problem, using the algorithms for the decision problem as subroutines. But as
warm-ups, we first give some simple but practical algorithms.

3.1 The Warm-up Algorithms
In this section we present algorithms for Dec-RMS and RMS. These algorithms are theoret-
ically not as efficient as the algorithms given later, but they are very simple and practical,
and may also provide some directions for the later improved ones.

3.1.1 Reducing Dec-RMS to Interval Coverage
Note that since LS1 (which is actually the upper envelop of A(D)) is convex, the scaled level
set θ-LS1 is also convex. Also note that m ≤ n in this case. We can compute LS1 (and thus
θ-LS1) in O(n logn) time [18]. We use λ0 = 0, λ1, . . . , λm−1, λm = 1 to denote all breaking

ICDT 2016

23:6 k-Regret Minimizing Set: Efficient Algorithms and Hardness

points of θ-LS1 (see Fig. 1). Our task is to cover θ-LS1 using at most r lines. For a line fp,
we let I(p) = {λ | fp(λ) ≥ θ-LS1(λ)}. The convexity of θ-LS1 implies that I(p) is a closed
interval (which may be empty). Moreover, the interval can be computed in O(logn) time
by binary search. Hence, we can compute the set of intervals {I(p)}p∈D in O(n logn) time.

To solve our problem Dec-RMS, it is sufficient to find a minimum number of intervals in
the above set whose union covers the range [0, 1]. This can be easily done in O(n) time by
a greedy method after the endpoints of the intervals of {I(p)}p∈D are sorted [1].

We call the above algorithm D-IntCov-1.

I Theorem 3. D-IntCov-1 solves the Dec-RMS problem in O(n logn) time and O(n) space
deterministically.

3.1.2 An Approximating Algorithm for RMS
To solve the optimization problem RMS, the high-level idea is to perform binary search on
a set of “candidate values” for the optimal regret ratio θ, and use our decision algorithms
to check whether θ-LSk can be covered by r lines from D.

We simply perform binary search directly on the interval [0, 1]. Initially, the candidate
range of θ is [0, 1]. Given θ ∈ [0, 1], we run the decision algorithm for Dec-k-RMS to check
whether the regret ratio of 1 − θ is achievable (i.e., whether θ-LSk can be covered). If the
answer is yes (resp., no), then we say that θ is feasible and the optimal value is at least
θ (resp., smaller than θ). We stop until the interval for the candidate θ values is shorter
than ε, a given tolerable error. The decision procedure is evoked for O(log 1

ε) times and the
regret ratio of solution is at most the optimal regret plus ε (we call such a solution an ε-
approximation). We refer to the algorithm as A-IntCov-1 (using D-IntCov-1 as the decision
procedure). We have the following theorem.

I Theorem 4. For any ε > 0, A-IntCov-1 can find an ε-approximation for RMS in
O(n logn log 1

ε) time.

3.2 The Decision Algorithm for Dec-k-RMS
In this section, we present an algorithm for the problem Dec-k-RMS (and thus also for
Dec-RMS). We actually solve the following more general problem. Given any θ ∈ [0, 1], the
problem is to compute a smallest subset R ⊆ D of lines such that the upper envelop of R is
above θ-LSk. We call our algorithm D-Greedy-k. We will prove the following theorem.

I Theorem 5. After O(n logm + m log1+δ k)-time preprocessing for any δ > 0, given any
θ ∈ [0, 1], our algorithm D-Greedy-k solves the problem Dec-k-RMS in O(n+m) time, where
n is the number of lines of D and m is the number of segments in the k-level set LSk.

Below we describe our algorithm. Our algorithm is quite elegant, simple, and easy to
implement (e.g., the most “complicated” data structure used in the algorithm is linked lists),
although the correctness proof is somewhat involved. As will be seen later, the algorithm is
interesting both theoretically and practically.

3.2.1 Preliminaries
Let l0 denote the vertical line λ = 0. As preprocessing, we sort in O(n logn) time all lines of
D by their intersections with l0 from top to bottom. Then we compute LSk in O(n logm+
m log1+δ k) time for any δ > 0 [6]. The total preprocessing time is O(n logn + m log1+δ k)
(since m = O(nk 1

3) and k ≤ n).

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:7

Given any θ > 0, the goal is to find a smallest subset R ⊆ D of lines such that the
upper envelop of R is above θ-LSk for λ ∈ [0, 1]. In the following, we give an O(n+m) time
algorithm for the problem (excluding the time of the preprocessing).

We first compute θ-LSk, which can be done in O(m) time since LSk has been computed
in the preprocessing. To simplify the notation, we use C to refer to θ-LSk. Let l1, l2, . . . , ln
be the lines of D sorted by their intersections with l0 from top to bottom. For each i ∈ [1, n],
let ai denote the intersection of li and l0. Let ln+1 denote the vertical line λ = 1.

I Lemma 6. For any 1 ≤ i < j ≤ n, if the slope of li is larger than or equal to that of lj,
then there exists an optimal solution R that does not contain lj (and thus lj can be ignored
for solving the problem).

Proof. See Appendix A for the proof. J

We run a pruning procedure on D to remove such lines lj as specified in the preceding
lemma. This can be done in O(n) time by scanning the lines of D in their index order. We
omit the details. The following algorithm will work on the remaining lines of D. But to
simplify the notation, we assume no lines have been pruned from D, and thus, the lines of
D following their index order are also sorted by their slopes in strictly ascending order.

For any two values λ1 and λ2 with λ1 ≤ λ2, we use C[λ1, λ2] to denote the portion of C
defined on the interval λ ∈ [λ1, λ2]. For any two points q1 and q2 on C, we also use C[q1, q2]
to refer to the portion of C between q1 and q2. Let P (C) denote the region of the plane
above C and between l0 and ln+1. For any set D′ of lines, we use U(D′) to denote its upper
envelop. For any point q in the plane, let λ(q) denote its λ-coordinate.

Note that C it is λ-monotone, i.e., any vertical line intersects C at most once. Therefore,
we can say something like “move a point on C from left to right”. Let C ′ be another λ-
monotone curve in the plane. We say that C ′ is above C[λ1, λ2] for some λ1 ≤ λ2 if for any
value λ′ ∈ [λ1, λ2], the intersection of lλ′ and C ′ is not lower than that of lλ′ and C, where
lλ′ is the vertical line λ = λ′. By this definition, C is above C itself.

For any 0 ≤ i ≤ n + 1, let Di = {l0, l1, . . . , li}. Our algorithm processes the lines of
Dn+1 = {l0, l1, . . . , ln+1} in their index order from l0 to ln+1. In general, suppose line li
has just been processed and we are about to process li+1 for some i with 0 ≤ i ≤ n. Our
algorithm maintains a set Ri = {lf(0), lf(1), . . . , lf(gi)} of gi + 1 lines of Di with f(0) <
f(1) < · · · < f(gi), for some integer gi ≥ 0, and a particular point p at bf(gi), such that Ri
and p have the following properties. Refer to Figure 3 for an example.

1. f(0) = 0, i.e., lf(0) is l0. Since l0 is vertical, we tilt it slightly such that it has a negative
slope, after which it is ambiguous to talk about the upper envelop of U(Ri). Similarly,
we tilt ln+1 slightly such that it has a positive slope.

2. Each line of Ri has a segment that appears in U(Ri). The segments of lines of Ri appear
on U(Ri) from left to right following the index order.

3. The portion of U(Ri) in the interval [0, λ(p)] is above C[0, λ(p)].
4. For each line lf(t) of Ri with 0 ≤ t ≤ i, it has a specific point bf(t) defined as follows.

If t = 0, then bf(t) (i.e., b0) is the intersection of C and l0. For convenience of discussion,
we also let C include the half-line of l0 above b0 and the half-line of ln+1 above an+1
(i.e., the intersection of C and ln+1). In this way, C is the boundary of the region P (C).
If t > 0, suppose point bf(t−1) has been defined on C. It holds that q is above bf(t−1),
where q is the intersection of lf(t) and the vertical line through bf(t−1). If we move q
rightwards on lf(t), then bf(t) is defined as the first point of P (C) we encounter after
which q will move out of P (C) (note that bf(t) is necessarily on C).

ICDT 2016

23:8 k-Regret Minimizing Set: Efficient Algorithms and Hardness

bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

Figure 3 Illustrating the set Ri =
{l0, lf(1), lf(2), lf(3), lf(4)} with gi = 4. The
red curve is C and the blue curve is U(Ri).
The point p is at bf(4).

bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

li+1

bi+1

Figure 4 Illustrating the case where li+1 (the dashed
line) intersects af(gi)bf(gi) with gi = 4. In this ex-
ample, Ri+1 = {l0, lf(1), lf(2), li+1} because li+1 inter-
sects af(1)bf(1) but is not above C[bf(1), bf(2)].

For each line lf(t) of Ri with 0 ≤ t ≤ i, bf(t) has been computed, and further, the (at
most two) edges of C that contain bf(t) are also maintained.

5. af(t)bf(t) intersects af(t−1)bf(t−1) for any t with 1 ≤ t ≤ i.
6. For any 2 ≤ t ≤ i, either af(t)bf(t) does not intersect af(t−2)bf(t−2), or they intersect but

lf(t) is not completely above C on the interval [λ(bf(t−2)), λ(bf(t−1))] (i.e., there is some
value λ′ ∈ [λ(bf(t−2)), λ(bf(t−1))] such that lf(t) is strictly below C at λ′).

7. For each 1 ≤ t ≤ i, the upper hull of the convex hull of C[bf(t−1), bf(t)] is maintained
in a linked list L(bf(t−1), bf(t)). More specifically, L(bf(t−1), bf(t)) stores the edges of the
upper hull of C[bf(t−1), bf(t)] from left to right.

8. λ(bf(0)) < λ(bf(1)) < . . . < λ(bf(gi)).

3.2.2 The Algorithm
Initially, for i = 0, we let R0 = {l0} and p = b0. In general, suppose we have processed the
line li and obtained Ri. In the following, we give the algorithm for processing the next line
li+1 and obtain the set Ri+1.

We first check whether li+1 intersects af(gi)bf(gi). If not, we simply ignore li+1 and let
Ri+1 = Ri.

If li+1 intersects af(gi)bf(gi), we consider a special case where li+1 ∩ af(gi)bf(gi) = bf(gi)
and bi+1 is bf(gi) (e.g., see Fig. 7 in Appendix A). If this case happens, then we simply ignore
li+1 and let Ri+1 = Ri. To determine whether bi+1 is bf(gi), we check whether we will go
outside P (C) after we cross bf(gi) if we move on li+1 rightwards. Since bf(gi) is known and
the edges of C that contain bf(gi) are also known, we can determine whether this special
case happens in O(1) time.

If li+1 intersects af(gi)bf(gi) and the special case does not happen (e.g., see Figure 4),
then we proceed to compute the point bi+1 as follows.

As f(gi) ≤ i < i+1, ai+1 is below af(gi). Since li+1 intersects af(gi)bf(gi) and the special
case does not happen, if q is the intersection of li+1 and the vertical line through bf(gi), then
q must be above bf(gi). Imagine that we move q rightwards on li+1. We define bi+1 as the
first point of P (C) we encounter after which q will move out of P (c) (e.g., see Figure 4). As
the special case does not happen, λ(bi+1) > λ(bf(gi)) holds.

To find bi+1, we simply move p rightwards on C until we meet an intersection between
li+1 and an edge of C. Hence, the running time for finding bi+1 is linear in the number of
edges of C between bf(gi) and bi+1. After bi+1 is computed, we set p to bi+1.

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:9

Next we compute the upper hull of (the convex hull of) C[bf(gi), bi+1] and store it in a
linked list L(bf(gi), bi+1). The list L(bf(gi), bi+1) can be constructed when we compute bi+1
by moving p from bf(gi) to bi+1. Since C is λ-monotone, L(bf(gi), bi+1) can be constructed
in linear time in the number of vertices of C[bf(gi), bi+1] (e.g., by Graham’s scan).

Finally, we determine the set Ri+1 as follows. We consider the lines of Ri in the re-
verse order of their indices. Consider lf(gi) first. If li+1 does not intersect the segment
af(gi−1)bf(gi−1) of lf(gi−1), we stop the procedure with Ri+1 = Ri ∪ {li+1}.

Otherwise, there are further two subcases. We check whether li+1 is above
C[bf(gi−1), bf(gi)]. To this end, observe that li+1 is above C[bf(gi−1), bf(gi)] if and only if
li+1 is above the upper hull of C[bf(gi−1), bf(gi)], which is stored in the list L(bf(gi−1), bf(gi)).
Later in Lemma 8 we will give an upper hull walking procedure to determine whether li+1 is
above the upper hull of C[bf(gi−1), bf(gi)].

If li+1 is not above C[bf(gi−1), bf(gi)], then we stop the procedure with Ri+1 = Ri∪{li+1}.
Otherwise, we remove lf(gi) from Ri and proceed on considering the next line lf(gi−1). In
addition, we perform a upper hull merge procedure to merge the two lists L(bf(gi−1), bf(gi))
and L(bf(gi), bi+1) to obtain a single list L(bf(gi−1), bi+1), representing the upper hull of
C[bf(gi−1), bi+1]. The merge procedure will be given later in Lemma 7.

The above processes the line lf(gi). Processing the next line lf(gi−1) (and other lines) is
done similarly, and we omit the details. Refer to Figure 4 for an example.

The above algorithm may remove some lines from Ri. For ease of reference, we let R′i be
the remaining Ri after the above algorithm and we still use Ri to refer to the original set.
After the above algorithm, we have Ri+1 = R′i ∪ {li+1}.

The algorithm finishes once ln+1 is processed, after which we will obtain the set Rn+1.
In Lemma 29 of Appendix A, we show that Rn+1 \ {l0, ln+1} is the optimal solution set R
for the problem Dec-k-RMS.

The subsequent two lemmas give the upper hull merge and walking procedures.

I Lemma 7. We can implement the upper hull merge procedure such that the total time of
the procedure in the entire algorithm is O(m+ n).

Proof. See Appendix A for the proof. J

I Lemma 8. We can implement the upper hull walking procedure such that the total time
of the procedure in the entire algorithm is O(m+ n).

Proof. See Appendix A for the proof. Note that the algorithm efficiency relies on that the
slopes of the lines of D in their index order are sorted increasingly. J

Lemma 28 in Appendix A shows that the algorithm runs in O(m+n) time. This proves
Theorem 5. The pseudocode is also in Appendix A.

By the similar binary search approach as in Section 3.1.2 with D-Greedy-k as the decision
procedure instead, we can obtain an approximation algorithm for k-RMS. We refer to this
algorithm as A-Greedy-k, whose performance is summarized below.

I Theorem 9. For any ε > 0, A-Greedy-k can find an ε-approximation for k-RMS in
O((n+m) log(1/ε) + n logn+m log1+δ n) time.

3.3 Optimization Algorithms
In this section, we solve the optimization problems RMS and k-RMS. As in Section 3.1.2, the
idea is to perform binary search on the candidate values of the optimal θ, with the regret

ICDT 2016

23:10 k-Regret Minimizing Set: Efficient Algorithms and Hardness

ratio 1−θ. Unlike the algorithm there that only gives approximating result, here we present
two exact algorithms. The first algorithm (Section 3.3.1) determines all candidate values
implicitly (there are too many such values so we cannot afford to compute them explicitly),
and performs binary search on them to find an optimal solution for k-RMS. The second
algorithm (Section 3.3.2) exploits the convexity of θ-LS1 and performs randomized binary
search over the candidate values, and it works quite efficiently but only on RMS.

3.3.1 An Exact Algorithm for k-RMS
I Lemma 10. The following statements are equivalent:

1. A set R covers θ-LSk for all λ ∈ [0, 1].
2. A set R covers θ-LSk for all λ ∈ X(D) := {0, 1} ∪ {λ | ∃ l1, l2 ∈ D, l1(λ) = l2(λ)}.

Proof. See Appendix C for the proof. J

The following lemma is a consequence of Lemma 10, and the proof is in Appendix C.

I Lemma 11. For k-RMS, the optimal θ is 0, 1 or in

Cand(D) :=
{

l(λ)
LSk(λ)

∣∣∣ l ∈ D,λ ∈ X(D)
}
.

Clearly, the set Cand(D) consists of O(n3) values. To solve the problem k-RMS, we can
call the decision algorithm D-Greedy-k to find the largest feasible θ ∈ Cand(D). Computing
the set Cand(D) explicitly would take Ω(n3) time. Instead, we present an approach that
only constructs Cand(D) implicitly.

First we compute and sort the set X(D). For each λ ∈ X(D), our algorithm maintains
an interval of indices Iλ ⊆ [1, n] so that if the optimal value θ is equal to the j-th largest
value of l(λ)/LSk(λ) for all l ∈ D, then j ∈ Iλ must hold. Initially, Iλ is set to [1, n] for each
λ ∈ X(D), and the interval will shrink during the algorithm.

The algorithm consists of multiple stages. In each stage, we use a line sweeping algorithm
on λ, keeping track of the lines l of D ordered by l(λ). For the i-th time the sweeping line
hits a λi ∈ X(D), we compute a value θi of θ (according to Lemma 11) determined by the
line ranked at the median of the interval Iλi , and assign it a weight wi = |Iλi |. In this way,
we compute a weighted subset S = {θi}i ⊆ Cand(D) of size O(n2). Next we compute the
weighted median of S: that is, a value θm ∈ S such that∑

{wi | θi < θm} ≤
1
2
∑
i

wi <
∑
{wi | θi ≤ θm}.

The weighted median can be found in O(|S|) time using the linear-time selection al-
gorithm [21]. Then we use D-Greedy-k to determine whether θm is feasible. If yes, we
update each Iλi with θi ≥ θm to be its lower-half interval; otherwise, we update each Iλi
with θi ≤ θ to be its upper-half interval. Hence, the reduced weight of all intervals of
S is 1

2
∑
{wi | θi ≥ θ} or 1

2
∑
{wi | θi ≤ θ}, which is larger than 1

4
∑
i wi in either case.

Therefore, each stage will reduce the total weight by at least 1/4. Since the initial total
weight, that is, the total size of all intervals Iλ is O(n3), we conclude that there are O(logn)
stages (the algorithm stops once the remaining total weight is O(1), after which we can use
D-Greedy-k to find the optimal θ from the remaining O(1) candidate values).

For the running time, each stage is comprised of an O(n2)-time line sweeping algorithm,
an O(n2)-time weighted median algorithm [21], and one call of D-Greedy-k taking O(n +
m) = O(n2) time. Thus, the total time of the algorithm is O(n2 logn). We refer to the
algorithm is as E-Greedy-k (for Exact Greedy Algorithm).

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:11

O λ

fp(λ)

1
(a) An example of the band B

O λ

fp(λ)

1
(b) Each line may provide at most
two segments in the band

O λ

fp(λ)

1

123
4

5 6
7

8
9
1011

1213
14

(c) The sampling method

Figure 5 Illustration of the band, the segments in it, and the sampling method

I Theorem 12. E-Greedy-k can compute an optimal solution for the k-RMS problem in
O(n2 logn) time.

3.3.2 An O(n log n) Time Exact Algorithm for RMS
For RMS, we derive a more efficient randomized algorithm, whose expected running time is
O(n logn). Lemma 11 still applies here, but we have a stronger Lemma 13 (which is not
applicable to k-RMS), whose proof is in Appendix C.

I Lemma 13. For RMS, the optimal value θ is in the set Cand(D) defined as

{0, 1} ∪
{

l(λ)
LS1(λ)

∣∣∣∣ l ∈ D and λ ∈ {0, 1}, or ∃ l′ ∈ D, l(λ) = l′(λ)
}
.

We partition Cand(D) into two subsets:

Cand1(D) = {0, 1}∪
{

l(λ)
LS1(λ) | l ∈ D and λ ∈ {0, 1}

}
,Cand2(D) =

{
l(λ)

LS1(λ) | ∃ l
′ ∈ D, l(λ) = l′(λ)

}
.

Notice that |Cand1(D)| ≤ 2n+ 2 = O(n). In the following, we first process Cand2(D). Our
approach is inspired by the random sampling technique of Matoušek [23].

We perform a randomized search over the values of Cand2(D), without constructing
Cand2(D) explicitly. The algorithm consists of multiple rounds and each round shrinks the
search range significantly. Initially, the search range of θ is [0, 1]. In general, suppose the
search range is [θ0, θ1] in the current round. We define a band B as the region bounded by
θ0-LS1, θ1-LS1, and the two vertical lines λ = 0 and λ = 1 (See Figure 5a). A candidate
value l(λ)

LS1(λ) in [θ0, θ1] corresponds to an intersection (λ, l(λ)) of two lines of D lying in the
band B. The current round of the algorithm works as follows.

We first compute the number of line intersections in B and then sample at most n out of
them. Note that the intersection of each line l ∈ D and B consists of at most two (maximal)
segments, and each segment has two endpoints on the boundary of B. Thus there are at
most 4 such endpoints on each line l ∈ D, and the total number of endpoints is O(n).
(See Fig. 5b). These endpoints can be calculated in O(logn) time for each line due to the
convexity of LS1. We then sort the O(n) endpoints on the boundary B in counterclockwise
order (See Fig. 5c), and for the i-th endpoint, we use si to denote the segment ending at it.

We traverse these endpoints in order along the boundary of B. During the traversal, we
maintain an ordered list L, and a counter N . For the i-th endpoint, let i′ be the index such
that si = si′ . If i′ is not in L, then we add i to L; otherwise we delete i′ from L and increase
N by the size of the set {j ∈ L | j > i′}.

ICDT 2016

23:12 k-Regret Minimizing Set: Efficient Algorithms and Hardness

I Lemma 14. After the traversal, the counter N is the number of candidates of θ = l(λ)
LS1(λ)

in [θ0, θ1].

I Example 15. As an example, consider the instance presented in Figure 5c. The endpoints
of segments are labeled counterclockwise. Starting from endpoint 1, we in turn add 1, 2, 3, 4, 5
into the list L. Then for endpoint 6, since s2 = s6 the list becomes {1, 3, 4, 5}, and N

increases by 3. For endpoint 7, we delete 4 from the list and increase N by 1.

The above computes the number of candidatesN . We assumeN > n. Next, we uniformly
and randomly pick n candidates out of theN candidate values in [θ0, θ1]. To this end, we first
uniformly (with replacement) pick a set S of n indices from {1, . . . , N}. Then we compute
the candidate values corresponding to these picked indices, which can be done by doing the
above traversal again. Specifically, during the traversal, suppose that after processing an
endpoint i, the counter N grows from N0 to N1. Then we add the following candidate values:
for every index k ∈ (N0, N1]∩S, we add the candidate value determined by the intersection
of the segment si and the segment corresponding to the (k−N0)-th largest endpoint in the
current ordered list L maintained during the traversal.

The above (at most) n candidate values of θ can be regarded as uniform samples from all
candidate values in the search range [θ0, θ1]. We sort and perform a binary search on these
values using the decision procedure D-Greedy-k (with k = 1) to find two adjacent values
θ′1 and θ′2 in the sorted list such that the optimal θ value is in the range (θ′0, θ′1]. Then, we
shrink the range [θ0, θ1] by updating θ0 = θ′0 and θ1 = θ′1, and proceed to the next round.

We proceed as above until there are at most n candidate values in the search range (i.e.,
N ≤ n). Finally, we run the following post-processing step. Let U be the union of the set of
these at most n candidate values in the search range and Cand1(D). By the above algorithm,
the optimal value θ is in U . Since |Cand1(D)| = O(n), |U | = O(n). We sort and perform
a binary search on the values of U using the decision procedure D-Greedy-k to eventually
compute the optimal θ value. This finishes our algorithm.

To analyze the running time, it is easy to see that the post-processing step takes
O(n logn) time. Below, we analyze the algorithm before the post-processing step.

We first consider the running time for each round. In each round, the algorithm computes
and sorts the line segment endpoints on the boundary of B, in O(n logn) time. Maintaining
the list L for a traversal of O(n) endpoints can be done in O(n logn) time using a balanced
binary search tree. Sorting and doing the binary search on the sampled n values takes
O(n logn) time, since the procedure D-Greedy-k is called O(logn) times. Thus, the total
running time of each round is O(n logn).

Next, we show that the algorithm has a constant p∗ > 0 probability to proceed into
post-processing within two rounds. Indeed, let p(n0, n1) denote the probability of reducing
the size of the candidate set from n0 to at most n1 in one round. We can obtain that
p(n0, n1) ≥ 1− n0 ·

(
n0−n1
n0

)n
, because the size after the round is larger than n1 only if our

algorithm did not pick any indices from some interval [i, i+ n1) (here the indices i refer to
the θ values of the candidate set after they are sorted). For large enough n, we can see that
p∗ = p(n2, n3/2) ·p(n3/2, n) ≥ (1−n2e−

√
n)2 is close to 1. Suppose the algorithm terminates

at round t (t is a random variable). For any r ≥ 3, it holds that Pr[t ≥ r] ≤ (1 − p∗)r−2.
Overall, the expected number of rounds is E[t] ≤ 2+

∑∞
r=3 Pr[t ≥ r] ≤ 2+

∑∞
r=3(1−p∗)r−2 =

O(1).
By the above analysis, our algorithm, named E-Greedy-1, has the following performance.

I Theorem 16. E-Greedy-1 computes an optimal solution for the problem RMS in O(n logn)
expected time.

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:13

4 NP-Hardness

The main results of this section are the NP-hardness results in Theorem 17 and Theorem 18.

I Theorem 17. RMS is NP-hard even in R3.

Note that RMS in Rd for d > 3 generalizes RMS in R3 (by adding a few dummy di-
mensions). Further, by duplicating each point k times in an RMS instance, we can create a
k-RMS instance with exactly the same optimal solution as the RMS instance. This implies
the following hardness result.

I Theorem 18. k-RMS is NP-hard for any fixed k ≥ 1 and d ≥ 3.

In the following, we will prove Theorem 17, by a reduction from the vertex cover problem
on a special planar graph, defined as follows.

A planar straight-line graph (PSLG) [28] is a graph G = (V,E) where V is a finite subset
of R2, and E is a subset of mutually disjoint open line segments with both endpoints in
V . A face of a PSLG is a connected component of R2 \ (V ∪ E). The unique unbounded
face is called the outer face, and all others are called inner faces. Similarly, vertices on the
boundary of the outer face are called outer vertices, and all others are called inner vertices.
Notice that in a PSLG, every inner face is an open polygon, and thus for every inner vertex
with degree t, there are t interior angles attached to it. We say that a PSLG is convex if
every inner face is convex, and the complement of the outer face is also convex.

Given an undirected graph G = (V,E), a vertex cover is a subset of vertices S ⊆ V

that cover all edges in E (i.e., every edge in E is incident on some vertex in S). The vertex
cover (VC) problem asks for a vertex cover of minimum cardinality. Das and Goodrich [10]
showed that the VC problem on a convex PLSG is NP-hard, and below we do the reduction
to prove Theorem 17.

We first define an intermediate problem, called the inner vertex cover problem (IVC), on
a class of so-called normalized PLSG graphs, and show that it is NP-hard in Section 4.1.
Then, we provide the reduction to RMS from IVC in Section 4.2.

4.1 IVC on Normalized PLSG
We define a PSLG to be normalized if it satisfies the following properties:

(convex) Every inner face is convex, and the complement of the outer face is also convex;
(low-degree) Every inner vertex has degree 2 or 3, and every outer vertex has degree 3.
(bounded-angle) Every interior angle attached to an inner vertex of degree 3 is in the
range [π/4, π).
(α-isometric) There exist a standard length l and a constant α > 0 such that every edge
with at least one endpoint being inner vertex has a length in range [l(1 − α), l(1 + α)],
and such an edge must also have at least one endpoint with degree 2.

Given a normalized PSLG, the inner vertex cover (IVC) problem on PSLG asks for a
vertex cover which contains all the outer vertices of G. We first show it is NP-hard as well,
by a reduction from vertex cover on convex PSLG. This is done by constructing a normalized
PSLG G4 from every convex PSLG G0, and the complete proof can be found in Appendix B.

I Lemma 19. IVC is NP-hard on a normalized PLSG.

ICDT 2016

23:14 k-Regret Minimizing Set: Efficient Algorithms and Hardness

4.2 Reduction to RMS
We construct a 3D point set D for RMS from any given IVC instance on a normalized PSLG
G4 = (V4, E4). Consider the eighth sphere S = {(x, y, z) ∈ R3

+ | x2 + y2 + z2 = ρ2}, and
we draw the PSLG G4 in the unit disk D inscribed in S. From the origin O, we project the
vertices and the edges V4 ∪ E4 onto S, and denote the projection mapping by η. Note that
straight lines in E4 are projected to arcs of great-circles, and thus the faces in the projection
image are still convex. In fact, when ρ is large enough, the image of the graph does not
deform a lot. Formally, we have Lemma 20, whose proof is in Appendix B.

I Lemma 20. For any two points A,B ∈ D, we have

ρ2

√
1− AB2

ρ2 − 1 ≤ 〈η(A), η(B)〉 ≤ ρ2
(

1− AB2

2ρ2

)
.

b
bc

b bc

A

η(A)

B
η(B)

O

S
D

Figure 6 Sphere projection for
G4 from the disk D

Let D be the projection image of V4. Thus, |D| = |V4|,
and D can be computed in polynomial time.

The convexity of the sphere S ensures that D forms
the 1-level of itself. Intuitively, the constraints on the
degrees, angles, and edges of G4 make sure that a point
of D outside a subset R ⊆ D could keep a regret ratio ε
if and only if all its neighbors are in R. A k-regret set R
is called a (k, ε)-set if the regret ratio is at most ε. We
claim that by properly choosing ε, a subset R ⊆ D is an
(1, ε)-set if and only if η−1(R) is an inner vertex cover of
G4, and this is implied by the following two lemmas.

I Lemma 21. There exists a constant ε such that for any
subset R ⊆ D, if η−1(R) is an inner vertex cover of G4, then R is an (1, ε)-set of D.

According to the proof of Lemma 21 in the appendix, we can set ε = 1 −√
1− l2(1 + α)2/(ρ2 − 1). Note that we can regard l as a small constant since D is a unit

disk, and ρ can be arbitrarily large.

I Lemma 22. There exists a constant α such that for any subset R ⊆ D, if η−1(R) is not
an inner vertex cover of G4, then R is not an (1, ε)-set of D.

Combining Lemmas 21 and 22 leads to Lemma 23.

I Lemma 23. G4 has an inner vertex cover of size k′ if and only if D has an (1, ε)-set of
size r, where D, ε, r can be obtained from G4 and k′ in polynomial time.

Theorem 17 thus follows.

5 Algorithms in High Dimensions

5.1 The Problem RMS
The concept of ε-kernel was introduced by Agarwal et al. [2]. By showing that RMS is
closely connected to ε-kernel, we obtain an approximation algorithm for RMS and an upper
bound of the maximum regret ratio, which improves the previous result [26].

A subset R of D is an ε-kernel if maxx∈R〈x,ω〉−miny∈R〈y,ω〉
maxx∈D〈x,ω〉−miny∈D〈y,ω〉 ≥ 1− ε, for any non-zero real

vector ω. Roughly speaking, an ε-kernel is a subset that approximately preserves the width
of the data set in every direction. It is well known that an ε-kernel of constant size can be
computed in linear time (when d = O(1)).

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:15

I Theorem 24. [2, 7, 35] Given D in Rd, one can compute an ε-kernel of D of size
O(ε−(d−1)/2) in O(|D|+ 1/εd) time.

We reduce the RMS problem to the ε-kernel problem as follows. Recall that due to
our assumption, all points of D are in the first orthant. We make 2d copies of D in every
orthant as follows. Define D± = {(p[1]x[1], . . . , p[d]x[d]) | (x[1], . . . , x[d]) ∈ D, p[i] ∈ {±1})}.
Suppose we have already found an ε-kernel R′ of D±; then we can project the subset back
to D by taking the absolute value in each coordinate, as follows. Define

abs(x) := (|x[1]|, . . . , |x[d]|), R = abs(R′) := {abs(x) | x ∈ R′}.

I Lemma 25. If R′ is an ε-kernel of D±, then R must have regret ratio at most ε in D.

Using the above reduction and observing that |R| ≤ |R′|, it is immediate to translate
Theorem 24 to an approximation algorithm for RMS in high dimensions.

I Corollary 26. Fixing the dimension d, one can compute a subset R ⊆ D of size r with
maximum regret ratio O(r−2/(d−1)) in O(2dn+ r2d/(d−1)) time.

The upper bound on the regret ratio is better than the previous upper bound
O(r−1/(d−1)) given in [26].

5.2 The Problem k-RMS
Given r and k, the goal of k-RMS is to compute a set R of r points from D such that the
maximum regret ratio is minimized. Let 1 − θ∗ denote the maximum regret ratio in the
optimal solution, for some θ∗ ∈ [0, 1]. The proof of Theorem 27 is in Appendix C.

I Theorem 27. There exists a polynomial time algorithm that can compute a set R of at
most r · (d · ln(2n) + 1) points from D with maximum regret ratio at most 1− θ∗.

6 Related Work

Due to the individual drawback of top-k queries and skyline queries, there exist a variety of
ways to combine these two queries in the literature. Top-k skyline select and top-k skyline
join were proposed in [17]. ε-skyline [33] controls the output size with respect to ε after the
utility function specified by the user is known. However, these studies still require that the
utility function should be known beforehand.

The RMS query we study in this paper has the attractive property that no information
on the utility function has to be provided by the user. Since its introduction in [26], it has
been extended and generalized to the interactive setting in [25] and the k-RMS problem in
[9]. [27] proposed an efficient algorithm for 1-RMS.

Computing k-level sets and obtaining tight size bounds are of fundamental importance
in computational geometry. For the two-dimension case, [12] provided the best-known upper
bound O(nk1/3). However, the best-known lower bound is Ω(nec

√
log k) [32], which is still

far from the upper bound, and closing the gap is an open problem for years. For algorithms
that compute the k-level sets, we refer the interested readers to [6] and the references therein.
Note that any improvement on computing the k-level sets may lead to improvement of the
time bounds of our algorithms for k-RMS.

The notion of ε-kernel coreset was introduced in the seminal paper by Agarwal et al. [2].
They applied their algorithm for constructing ε-kernel to several shape fitting problems.
Since then, the idea has been extended to many other settings such as clustering (e.g.,
[8, 14]), matrix approximation [11, 14] and stochastic points [19].

ICDT 2016

23:16 k-Regret Minimizing Set: Efficient Algorithms and Hardness

References
1 A greedy algorithm — the interval point cover problem. http://www.cs.yorku.ca/

~andy/courses/3101/lecture-notes/IntervalCover.html.
2 Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approximating extent

measures of points. Journal of the ACM (JACM), 51(4):606–635, 2004.
3 Pankaj K Agarwal and Micha Sharir. Arrangements and their applications. Handbook of

computational geometry, pages 49–119, 2000.
4 S Borzsony, Donald Kossmann, and Konrad Stocker. The skyline operator. In ICDE, pages

421–430, 2001.
5 C.Y. Chan, HV Jagadish, K.L. Tan, A.K.H. Tung, and Z. Zhang. Finding k-dominant

skylines in high dimensional space. In SIGMOD, 2006.
6 Timothy M Chan. Remarks on k-level algorithms in the plane. Manuscript, Department

of Computer Science, University of Waterloo, Waterloo, Canada, 1999.
7 Timothy M Chan. Faster core-set constructions and data stream algorithms in fixed dimen-

sions. In Proceedings of the 20th Annual Symposium on Computational Geometry, pages
152–159, 2004.

8 K. Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

9 Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides. Computing k-regret minim-
izing sets. Proceedings of VLDB, 7(5), 2014.

10 Gautam Das and Michael T Goodrich. On the complexity of approximating and illuminat-
ing three-dimensional convex polyhedra. In Algorithms and Data Structures, pages 74–85.
Springer, 1995.

11 A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and pro-
jective clustering via volume sampling. In Proceedings of the 17th ACM-SIAM symposium
on Discrete algorithm, pages 1117–1126, 2006.

12 Tamal K Dey. Improved bounds on planar k-sets and k-levels. In Foundations of Computer
Science, 1997. Proceedings., 38th Annual Symposium on, pages 156–161. IEEE, 1997.

13 Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Constructing arrangements
of lines and hyperplanes with applications. SIAM Journal on Computing, 15(2):341–363,
1986.

14 D. Feldman and M. Langberg. A unified framework for approximating and clustering data.
In Proceedings of the 43rd ACM Symposium on Theory of Computing, pages 569–578, 2011.

15 P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k bounded diversification. In
SIGMOD, 2012.

16 Michael R Garey and David S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

17 M. Goncalves and M.E. Vidal. Top-k skyline: A unified approach. In On the Move to
Meaningful Internet Systems 2005: OTM 2005 Workshops, pages 790–799. Springer, 2005.

18 John Hershberger. Finding the upper envelope of n line segments in o (n log n) time.
Information Processing Letters, 33(4):169–174, 1989.

19 Lingxiao. Huang, Jian. Li, Jeff. Phillips, and Haitao. Wang. ε-kernel coresets for stochastic
points. In ESA, 2016.

20 J. Lee, G. You, and S. Hwang. Personalized top-k skyline queries in high-dimensional space.
Information Systems, 2009.

21 C.E. Leiserson, C. Stein, R. Rivest, and T.H. Cormen. Introduction to algorithms. MIT
press, 2009.

22 X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative
skyline operator. In ICDE, 2007.

http://www.cs.yorku.ca/~andy/courses/3101/lecture-notes/IntervalCover.html
http://www.cs.yorku.ca/~andy/courses/3101/lecture-notes/IntervalCover.html

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:17

23 J. Matoušek. Randomized optimal algorithm for slope selection. Information Pro-
cessing Letters, 39(4):183 – 187, 1991. URL: http://www.sciencedirect.com/
science/article/pii/002001909190177J, doi:http://dx.doi.org/10.

1016/0020-0190(91)90177-J.
24 D. Mindolin and J. Chomicki. Discovering relative importance of skyline attributes. VLDB,

2009.
25 D. Nanongkai, A. Lall, A. D. Sarma, and K. Makino. Interactive regret minimization. In

SIGMOD, 2012.
26 Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton, and Jun Xu. Regret-

minimizing representative databases. Proceedings of the VLDB Endowment, 3(1-2):1114–
1124, 2010.

27 P. Peng and R. C.-W. Wong. Geometry approach for k-regret query. In ICDE, 2014.
28 Franco P Preparata, Michael Ian Shamos, and Franco P Preparata. Computational geo-

metry: an introduction, volume 5. Springer-Verlag New York, 1985.
29 L. Qin, J.X. Yu, and L. Chang. Diversifying top-k results. VLDB, 2012.
30 M.A. Soliman, I.F. Ilyas, and K. Chen-Chuan Chang. Top-k query processing in uncertain

databases. In IEEE 23rd International Conference on Data Engineering., pages 896–905.
IEEE, 2007.

31 Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline. In ICDE, 2009.
32 Géza Tóth. Point sets with many k-sets. Discrete & Computational Geometry, 26(2):187–

194, 2001.
33 T. Xia, D. Zhang, and Y. Tao. On skylining with flexible dominance relation. In Data

Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, pages 1397–1399.
IEEE, 2008.

34 M.L. Yiu and N. Mamoulis. Multi-dimensional top-k dominating queries. The VLDB
Journal, 18(3):695–718, 2009.

35 Hai Yu, Pankaj K Agarwal, Raghunath Poreddy, and Kasturi R Varadarajan. Prac-
tical methods for shape fitting and kinetic data structures using coresets. Algorithmica,
52(3):378–402, 2008.

ICDT 2016

http://www.sciencedirect.com/science/article/pii/002001909190177J
http://www.sciencedirect.com/science/article/pii/002001909190177J
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0190(91)90177-J
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0190(91)90177-J

23:18 k-Regret Minimizing Set: Efficient Algorithms and Hardness

APPENDIX

A Missing Proofs of the Algorithm D-Greedy-k for Dec-k-RMS

In this section, we present the missing details of our algorithm D-Greedy-k described in
Section 3.2. In particular, we give the proofs of Lemmas 6, 7 and 8, and we prove the
correctness and the time complexity of our algorithm. The pseudocode is also provided.

bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

li+1

Figure 7 Illustrating the special case: the dashed line is li+1. In this case, bi+1 is bf(4).

A.1 Proof of Lemma 6
Assume the slope of li is larger than or equal to that of lj . Then, since aj is lower than
or equal to ai, the line segment of li between the two vertical lines l0 and ln+1 must be
higher than or equal to the line segment of lj between l0 and ln+1. This implies that li
“dominates” lj . In other words, if there is an optimal solution set R that contains lj , we
can obtain another optimal solution set by replacing lj by li in R. The lemma thus follows.

A.2 Proof of Lemma 7
Suppowe we want to merge the two lists L(bf(gi−1), bf(gi)) and L(bf(gi), bi+1) to obtain a
single list L(bf(gi−1), bi+1), representing the upper hull of C[bf(gi−1), bi+1].

The merge procedure works by finding the upper tangent of the upper hulls of
C[bf(gi−1), bf(gi)] and C[bf(gi), bi+1]. Since the two upper hulls are defined on the λ-values in
two interior-disjoint intervals [λ(bf(gi−1)), λ(bf(gi))] and [λ(bf(gi)), λ(bi+1)], finding the up-
per tangent can be done easily by the standard approach by traversing on L(bf(gi−1), bf(gi))
from right to left and traversing L(bf(gi), bi+1) from left to right. During finding the tangent,
the edges of L(bf(gi−1), bf(gi)) (resp., L(bf(gi), bi+1)) to the right (resp., left) of the tangent
point are removed. After the tangent is found, L(bf(gi−1), bi+1) is simply the concatenation
of the remaining list L(bf(gi−1), bf(gi)), the tangent, and the remaining list L(bf(gi), bi+1).
Hence, the running time of the merge procedure is O(k′ + 1), where k′ is the total number
of edges removed from the original lists L(bf(gi−1), bf(gi)) and L(bf(gi), bi+1).

Once an edge is removed from either of the above two lists, it will never appear in any
upper hull maintained in future algorithm. Therefore, the total sum of the values k′ in
all upper hull merge procedures in the entire algorithm is at most k∗, where k∗ is the total
number of different edges in all upper hulls that have ever been maintained by our algorithm.

We claim that k∗ = O(n+m). Indeed, consider any edge e in any upper hull maintained
by our algorithm. e becomes an edge of an upper hull either when we move p rightwards

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:19

on C (i.e., e is an edge of the upper hull of C[bf(i), bi+1] for some i) or due to that e is
computed as the upper tangent of two upper hulls in an upper hull merge procedure. It is
not difficult to see that the total number of all such edges e in the above first case is O(m).
For the second case, note that each merge procedure generates at most one upper tangent
and the toal number of merge procedures in the entire algorithm is at most n. Thus, the
total number of all such edges e in the above second case is O(n). Hence, k∗ = O(m+ n).

The lemma thus follows.

A.3 Proof of Lemma 8
As discussed in the algorithm description, suppose we want to determine whether li+1 is
above the upper hull of C[bf(gi−1), bf(gi)], which is stored in the list L(bf(gi−1), bf(gi)).

Let U denote the upper hull of C[bf(gi−1), bf(gi)]. Let v(li+1) denote a vertex of U such
that the line through v(li+1) and parallel to li+1 is above U . Observe that li+1 is above U if
and only if li+1 is above v(li+1). Therefore, once we find v(li+1), we can determine whether
li+1 is above U in constant time. To find v(li+1), we can simply traverse U from right to
left, i.e., scanning the list L(bf(gi−1), bf(gi)) from right to left until we obtain v(li+1). Hence,
the running time is linear in the number of edges of U to the right of v(li+1). In addition,
we maintain the point v(li+1) for future use, as follows.

Suppose when our algorithm processes the line li+2, we also need to determine whether
li+2 is above U . Similarly, the key is to find the corresponding point v(li+2). Recall that
the slopes of the lines of D in their index order are sorted increasingly. Hence, the slope
of li+2 is larger than that of li+1. This implies that the point v(li+2) on U must be either
the same as vli+1 or to the left of it. Thus, to find v(li+2), we only need to scan the list
L(bf(gi−1), bf(gi)) leftwards starting from the vertex v(li+1). After v(li+2) is found, similarly,
we maintain v(li+2) for future use, but v(li+1) does not need to be maintained any more. In
this way, each edge of the list L(bf(gi−1), bf(gi)) will be traversed only once during the upper
hull walking procedure in the entire algorithm. We have shown in the proof of Lemma 7 that
the total number of edges in all upper hulls maintained by our algorithm is O(m+n). Hence,
the total time of the upper hull walking procedure in the entire algorithm is O(m+ n).

According to the above discussion, in general, suppose line li has just been processed by
our algorithm, other than the eight properties of Ri maintained by our algorithm, we also
maintain the vertex v(li) on the upper hull of C[bf(i−1), bf(i)], which is used for the upper
hull walking procedure as discussed above.

A.4 The Running Time and the Correctness of Our Algorithm
I Lemma 28. After the O(n logn + m log1+δ k)-time preprocessing that computes k-level
set LSk and sorts the lines of D, given any θ > 0, the running time of the algorithm is
O(n+m).

Proof. Consider a general step of the algorithm for processing line li+1. If li+1 does not
intersect af(gi)bf(gi), then li+1 is simply ignored. Thus, the step takes O(1) time in this
case.

If li+1 intersects af(gi)bf(gi), as discussed before, we can determine whether the special
case happens in constant time. If yes, then ln+1 is simply ignored, which takes O(1) time.

Otherwise, we find bi+1 by moving p on C, whose running time is linear in the number
of edges of C between bf(gi) and bi+1. Observe that the point p always moves rightwards
on C. Thus, the total time of this procedure in the entire algorithm is linear in the size of
C, which is O(m). We also need to construct the upper hull list L(bf(gi), bi+1), which also

ICDT 2016

23:20 k-Regret Minimizing Set: Efficient Algorithms and Hardness

takes linear time in the number of edges of C between bf(gi) and bi+1. Hence, the total time
of the above procedure for building the upper hull lists in the entire algorithm is O(m).

Next, the algorithm determines the set Ri+1, by consider the lines of Ri in the reverse
order of their indices. There are two major procedures: the upper hull walking procedure
and the upper hull merge procedure. We have already shown that both procedures take
O(m+n) time in total in the entire algorithm. Other than the above two major procedures,
determining the set Ri+1 takes O(|Ri| − |R′i|+ 1) time. Note that |Ri| − |R′i| is the number
of lines removed from Ri. An easy observation is that any line of Dn+1 can be removed from
Ri for some i at most once in the entire algorithm. Thus, the total time for determining the
set Ri+1 in the entire algorithm is O(n+m).

The lemma thus follows. J

With the next lemma, which proves the correctness of the algorithm, Theorem 5 follows.

I Lemma 29. The algorithm correctly solves the Dec-k-RMS problem, i.e., the set Rn+1 \
{l0, ln+1} is an optimal solution.

Proof. First, we show that our algorithm correctly maintains the eight properties of the set
Ri for all i = 0, 1, . . . , n+ 1.

Initially when i = 0, we have R0 = {l0} and p = b0. All properties trivially hold for R0.
In general, suppose Ri maintains the eight properties for some i. We show below that after
li+1 is processed, Ri+1 also has these properties.

According to our algorithm, if li+1 is ignored, then Ri+1 = Ri and p does not change.
Since nothing is changed, Ri+1 still has the eight properties. Otherwise, Ri+1 = R′i ∪{li+1}
and p = bi+1, where R′i consists of the first i′ + 1 lines in Ri for some 0 ≤ i′ ≤ gi, i.e.,
R′i = {lf(0), lf(1), . . . , lf(i′)}.

According to our algorithm, li+1 intersects af(i′)bf(i′) and is above C[bf(i′), bi+1]. Further,
if i′ ≥ 1, either li+1 does not intersect af(i′−1)bf(i′−1), or they intersect but li+1 is not above
C[bf(i′−1), bf(i′)]. Hence, properties (5) and (6) hold.

As bi+1 is computed, property (4) holds. According to our algorithm, the upper hull of
C[bf(i′), bi+1] has been computed and maintained in the list L[bf(i′), bi+1]. Hence, property
(7) holds. We have discussed before that λ(bi+1) > λ(bf(gi)). Hence, property (8) holds.

In addition, properties (1), (2), and (3) trivially hold. Therefore, all eight properties
hold for Ri+1.

In the following, we show that the algorithm correctly computes an optimal solution set
(i.e., Rn+1 \ {l0, ln+1}) for the problem Dec-k-RMS. To this end, we will prove that for each
0 ≤ i ≤ n+1, the set Ri = {lf(0), lf(1), . . . , lf(gi)} has the following additional key properties.

1. λ(bf(gi)) is the largest value λ in [0, 1] such that C[0, λ] is covered by the lines of Di.
2. For any t with 1 ≤ t ≤ gi and f(t) 6= n + 1, λ(bf(t)) is the largest value λ in [0, 1] such

that C[0, λ] is covered by at most t lines of Di.
3. For any t with 1 ≤ t ≤ gi and f(t) 6= n+ 1, {lf(1), lf(2), . . . , lf(t)} is the smallest subset

of Di that can cover C[0, λ(bf(t))].

Before proving the key properties, we show that if the key properties hold, Rn+1 \
{l0, ln+1} is an optimal solution set of Dec-k-RMS, i.e., it is a smallest subset of D that can
cover C[0, 1].

Indeed, since the upper envelop of all lines of D is above C, the lines of D can cover
C[0, 1]. After ln is processed, by the key property (1), the lines of Rn must cover C[0, 1],
i.e., λ(bgn) = 1. Thus, ln+1 intersects af(gn)bf(gn). According to our algorithm, after ln+1

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:21

is processed, ln+1 must be in Rn+1 (in fact f(gn+1) = n+ 1). This shows that Rn+1 covers
C[0, 1] and ln+1 is in Rn+1.

Consider the set Rn+1 and t = gn+1 − 1. According to our algorithm, af(gn+1)bf(gn+1)
must intersect af(t)bf(t). Note that f(gn+1) = n + 1. By our way of defining an+1, bn+1,
and bf(t), the point bf(t) must be on ln+1, i.e., λ(bf(t)) = 1. By the key property (3),
{lf(1), lf(2), . . . , lf(t)}, which is Rn+1 \ {l0, ln+1}, is the smallest subset of Dn+1 that can
cover C[0, λ(bf(t))] = C[0, 1]. This shows that Rn+1 \ {l0, ln+1} is an optimal solution set
for the problem Dec-k-RMS.

It remains to prove that the key properties hold on Ri for each i = 0, 1, . . . , n + 1. We
prove it by induction, as follows.

When i = 0, the key properties trivially hold on R0 = {lf(0)} since λ(bf(0)) = 0.
We assume that the key properties hold for Ri for some i with 0 ≤ i ≤ n. Next, we show

that the key properties also hold for i+ 1. Our goal is to prove the following: (1) λ(bf(gi+1))
is the largest value λ in [0, 1] such that C[0, λ] is covered by the lines of Di+1; (2) for any t
with 1 ≤ t ≤ gi+1 and f(t) 6= n+ 1, λ(bf(t)) is the largest value λ in [0, 1] such that C[0, λ]
is covered by at most t lines of Di+1; (3) for any t with 1 ≤ t ≤ gi+1 and f(t) 6= n + 1,
{lf(1), lf(2), . . . , lf(t)} is the smallest subset of lines of Di+1 that can cover C[0, λ(bf(t))].

According to our algorithm, there are three cases depending on whether and how li+1
intersects af(gi)bf(gi). We analyze the three cases below.

The first case If li+1 does not intersect af(gi)bf(gi), according to our algorithm, Ri+1 = Ri
and gi+1 = gi.

For the key property (1), assume to the contrary that it is not true. Then, there is a
value λ′ > λ(bf(gi+1)) = λ(bf(gi)) such that C[0, λ′] is covered by Di+1. To simplify notation,
let j = f(gi).

Let p be the point of C to the right of bf(gi) and infinitely close to bf(gi). Hence,
λ(bj) < λ(p) ≤ λ′. Since ai+1 is below aj and li+1 does not intersect ajbj , li+1 must be
strictly below p. Because C[0, λ′] is covered by Di+1, Di+1 must have a line l′ that is above
p. Since li+1 is not above p, l′ is not li+1 and thus is in Di. Clearly, l′ is above li+1 at λ(p).

Since λ(p) < λ′, the lines of Di+1 cover C[0, λ(p)]. We claim that the lines of Di cover
C[0, λ(p)]. Indeed, since l′ is in Di, the intersection of l′ and l0 is above ai+1. Further, since
l′ is above li+1 at λ(p), we obtain that l′ is above li+1 on the interval [0, λ(p)]. This means
that for any point q ∈ C[0, λ(p)] covered by li+1, q is also covered by l′. Therefore, since the
lines of Di+1 cover C[0, λ(p)], the lines of Di = Di+1 \ {li+1} also cover C[0, λ(p)].

However, since the key property (1) holds for i, λ(bj) is the largest value λ in [0, 1] such
that C[0, λ] is covered by the lines of Di. Because λ(bj) < λ(p), we obtain contradiction.

This proves that the key property (1) holds for i+ 1.
For the key property (2), assume to the contrary that it is not true for some t with

1 ≤ t ≤ gi+1 and f(t) 6= n+ 1. Then, there must be a subset R′ of at most t lines of Di+1
such that they cover C[0, λ′] for some λ′ with λ′ > λ(bf(t)). Since the key property (2) holds
for Di by our assumption, R′ must contain li+1.

Let j = gi. Since we have proved above that the key property (1) holds for i + 1, we
have λ′ ≤ λ(bj). Since li+1 does not intersect af(gi)bf(gi) and aj is above ai+1, lj is above
li+1 on the interval [0, λ(bj)]. Hence, for any point q ∈ C[0, λ(bj)] covered by li+1, q is also
covered by lj . Therefore, the lines in S = {lj}∪R′ \{li+1} also cover C[0, λ′]. Since |R′| ≤ t,
|S| ≤ t. Since S ⊂ Di and λ′ > λ(bf(t)), we obtain contradiction with that the key property
(2) holds for i.

By similar analysis, we can prove the key property (3) as well. The details are omitted.

ICDT 2016

23:22 k-Regret Minimizing Set: Efficient Algorithms and Hardness

The second case If li+1 intersects af(gi)bf(gi) and the special case happens, according to
our algorithm, as in the above case, Ri+1 = Ri and gi+1 = gi.

Let p be the point of C to the right of bf(gi) and infinitely close to bf(gi). Observe that
in this case li+1 is still strictly below p. Therefore, we can use the same analysis as in the
above first case to prove the three key properties. We omit the details.

The third case If li+1 intersects af(gi)bf(gi) and the special case does not happen, then
according to our algorithm, Ri+1 = R′i ∪ {li+1}, where R′i consists of the first i′ + 1 lines
in Ri for some 0 ≤ i′ ≤ gi, i.e., R′i = {lf(0), lf(1), . . . , lf(i′)}. Note that f(gi+1) = i + 1 and
λ(bf(gi+1)) ≥ λ(bf(gi)).

According to our algorithm, li+1 intersects af(i′)bf(i′) and is above C[bf(i′), bi+1]. Further,
if i′ ≥ 1, either li+1 does not intersect af(i′−1)bf(i′−1), or they intersect but li+1 is not above
C[bf(i′−1), bf(i′)].

For the key property (1), assume to the contrary that it is not true. Then, there is a
value λ′ > λ(bf(gi+1)) = λ(bi+1) such that C[0, λ′] is covered by Di+1.

Let p be the point of C to the right of bi+1 and infinitely close to bi+1. Hence, λ(bi+1) <
λ(p) ≤ λ′. By the definition of bi+1, li+1 is not above p.

Since the lines ofDi+1 cover C[0, λ′] and λ(p) ≤ λ′, the lines ofDi+1 also cover C[0, λ(p)].
Clearly, Di+1 must have a line l′ above p. Since li+1 is not above p, l′ is in Di.

Since l′ is above p and li+1 is not above p, l′ is above li+1 at λ(p). Further, since the
intersection of l′ and l0 is above ai+1, l′ is above li+1 on the interval [0, λ(p)]. This means
that any point q ∈ C[0, λ(p)] covered by li+1, q is also covered by l′. Therefore, since the lines
of Di+1 cover C[0, λ(p)], the lines of Di also cover C[0, λ(p)]. As λ(p) > λ(bi+1) ≥ λ(bf(gi)).
This contradicts with that the key property (1) holds on i.

This proves that the key property (1) holds on i+ 1.
Next we prove the key property (2). Depending on whether t = gi+1 or not, there are

two subcases.

1. If t = gi+1, then since we have proved that the key property (1) holds for Di+1, and
further, since the lines of Ri+1 \ {l0}, which has gi+1 lines, cover C[0, λ(bf(gi+1))], the
key property (2) trivially follows.

2. If t ≤ gi+1 − 1, suppose to the contrary that the key property (2) does not hold for t.
Then, t ≥ 1 and there exists a value λ′ larger than λ(bf(t)) such that C[0, λ′] is covered
by a set R′ of at most t lines of Di+1. By our assumption that the key property (2)
holds for i, λ(bf(t)) is the largest value λ in [0, 1] such that C[0, λ] is covered by at most
t lines of Di. Therefore, li+1 must be in R′.
Since t ≤ gi+1− 1, lf(t) is in R′i and 1 ≤ t ≤ i′. Recall that either li+1 does not intersect
af(i′−1)bf(i′−1), or they intersect but li+1 is not above C[bf(i′−1), bf(i′)]. We claim that
this is also true for any t with 1 ≤ t ≤ i′, i.e., either li+1 does not intersect af(t−1)bf(t−1),
or they intersect but li+1 is not above C[bf(t−1), bf(t)].
Indeed, if t = i′, the claim trivially holds. Otherwise, we first show that the claim
holds for i′ − 1. Assume to the contrary that this is not true. Then, li+1 intersects
af(i′−2)bf(i′−2) and li+1 is above C[bf(i′−2), bf(i′−1)]. Recall that either li+1 does not
intersect af(i′−1)bf(i′−1), or they intersect but li+1 is not above C[bf(i′−1), bf(i′)]. We
analyze the two cases below.

a. If li+1 does not intersect af(i′−1)bf(i′−1), then since ai+1 is below ai′−1, li+1 is below
bf(i′−1). On the other hand, since li′ intersects af(i′−1)bf(i′−1), li′ is above bf(i′−1).

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:23

Hence li′ is above li+1 at λ(bf(i′−1)). Further, as ai′ is above ai+1, li′ is above li+1 on
the interval [0, λ(bf(i′−1))].
Consequently, since li+1 intersects af(i′−2)bf(i′−2) and li+1 is above
C[bf(i′−2), bf(i′−1)], li′ also intersects af(i′−2)bf(i′−2) and is above C[bf(i′−2), bf(i′−1)].
But this contradicts with the sixth property of Ri+1, which says that either li′ does
not intersect af(i′−2)bf(i′−2), or they intersect but li′ is not above C[bf(i′−2), bf(i′−1)].

b. If li+1 intersects af(i′−1)bf(i′−1) but is not above C[bf(i′−1), bf(i′)], the analysis is
similar.
Let p be a point on C[bf(i′−1), bf(i′)] that is above li+1. Since li′ is above
C[bf(i′−1), bf(i′)], li′ is above p. Thus, li′ is above li+1 at λ(p). Since ai′ is above ai+1,
we obtain that li′ is above li+1 on the interval [0, λ(p)]. As p is on C[bf(i′−1), bf(i′)],
λ(p) ≥ λ(bf(i′−1)). Therefore, we also obtain that li′ is above li+1 on the interval
[0, λ(bf(i′−1))].
The rest of the analysis is the same as the first case, and we also obtain contradiction.

This proves that the claim holds for i′ − 1. By using the similar analysis inductively, we
can prove that the claim holds for any t with 1 ≤ t ≤ i′.
By the above claim, either li+1 does not intersect af(t−1)bf(t−1), or they intersect but
li+1 is not above C[bf(t−1), bf(t)]. We prove the key property (2) for the two cases below.

a. If li+1 does not intersect af(t−1)bf(t−1), let j = f(t − 1). Let p be the point on C to
the right of bj and infinitely close to bj . Hence, λ(bj) < λ(p) ≤ λ′. Since aj is above
ai+1 and li+1 does not intersect af(t−1)bf(t−1), li+1 is not above p.
Since C[0, λ′] is covered by R′, there must be a line l′ in R′ that is above p. Clearly,
l′ is not li+1. Thus, l′ is in Di. Since l′ is above li+1 at λ(p) and ai+1 is below the
intersection of l′ and l0, l′ is above li+1 on the interval [0, λ(p)]. This implies that for
any point q ∈ C[0, λ(p)] that is covered by li+1, q is also covered by l′.
Therefore, the lines of S = R′ \ {li+1} must cover C[0, λ(p)]. By our assumption that
the key property (2) holds for i, λ(bf(t−1)) = λ(bj) is the largest value λ in [0, 1] such
that C[0, λ] is covered by at most t − 1 lines of Di. Since |S| ≤ t − 1, S ⊆ Di, and
λ(p) > λ(bj), the above obtains a set S of at most t−1 lines of Di that cover C[0, λ(p)]
with λ(p) > λ(bj), which incurs contradiction.

b. If li+1 intersects af(t−1)bf(t−1) but li+1 is not above C[bf(t−1), bf(t)], then let p be a
point of C[bf(t−1), bf(t)] that is strictly above li+1. Let j = f(t− 1).
Since li+1 intersects ajbj and aj is above ai+1, li+1 is above bj . By the definition of
p, it holds that λ(p) > λ(bj).
Due to λ′ > λ(bf(t)) and λ(bf(t)) ≥ λ(p), λ′ > λ(p). Since C[0, λ′] is covered by the
lines of R′, C[0, λ(p)] is also covered by the lines of R′. Hence, there must be a line l′
of R′ that covers p. Clearly, l′ is not li+1. Thus, l′ is in Di.
The rest of the analysis follows exactly the same as the above case. We can obtain
contradiction again.

The above proves that the key property (2) holds for i+ 1.
Finally, we prove that the key property (3) holds for i+ 1.
Consider any t with 1 ≤ t ≤ gi+1 and f(t) 6= n + 1. Our goal is to show that

{lf(1), lf(2), . . . , lf(t)} is the smallest subset of Di+1 that can cover C[0, λ(bf(t))]. According
to our algorithm, the above set of lines cover C[0, λ(bf(t))].

If t = 1, then since λ(bf(t)) > 0, we need at least one line to cover C[0, λ(bf(t))]. There-
fore, (3) trivially holds. In the following, we assume t ≥ 2.

ICDT 2016

23:24 k-Regret Minimizing Set: Efficient Algorithms and Hardness

Suppose to the contrary that (3) is not true. Then, there is a subset R′ ⊆ Di+1 of at
most t−1 lines that cover C[0, λ(bf(t))]. By our assumption that the key property (2) holds
on Di, λ(bf(t−1)) is the largest value λ in [0, 1] such that C[0, λ] is covered by at most t− 1
lines of Di. According to the eighth property of Ri+1, λ(bf(t−1)) < λ(bf(t)). This implies
that li+1 must be in R′.

Regardless of whether t is gi+1 or not, in light of the claim we have proved above,
either li+1 does not intersect af(t−2)bf(t−2), or they intersect but li+1 is not above
C[bf(t−2), bf(t−1)]. We analyze the two cases below. The analysis is somewhat similar
to that for proving the key property (2), so we briefly discuss it.

1. If li+1 does not intersect af(t−2)bf(t−2), then let j = f(t − 2). Let p be the point on C
to the right of bj and infinitely close to bj . Hence, λ(bj) < λ(p) ≤ λ(bf(t)). Since li+1
does not intersect af(t−2)bf(t−2) and ai+1 is below af(t−2), li+1 is not above p.
Since C[0, λ(bf(t))] is covered by the lines of R′, there must be a line l′ in R′ that is
above p. Since li+1 is not above p, l′ is in Di. Since l′ is above p and li+1 is not, l′ is
above li+1 at λ(p). Further, since the intersection of l′ and l0 is above ai+1, l′ is above
li+1 on the interval [0, λ(p)].
By the same analysis as that for the key property (2), we can obtain that the lines of
S = R′ \ {li+1} cover C[0, λ(p)]. Since |R′| ≤ t − 1, |S| ≤ t − 2. Note that S ⊆ Di

and λ(bj) < λ(p). However, because the key property (2) holds for i, λ(bj) is the largest
value λ ∈ [0, 1] such that C[0, λ] is covered by at most t− 2 lines of Di. Thus, we obtain
contradiction.

2. If li+1 intersects af(t−2)bf(t−2) but li+1 is not above C[bf(t−2), bf(t−1)], then let p be a
point of C[bf(t−2), bf(t−1)] that is strictly above li+1. Let j = f(t− 2).
Since li+1 intersects ajbj and aj is above ai+1, li+1 is above bj . By the definition of p, it
holds that λ(p) > λ(bj).
Note that λ(p) ≤ λ(bf(t−1)) ≤ λ(bf(t)). Since C[0, λ(bf(t))] is covered by the lines of R′,
C[0, λ(p)] is also covered by the lines of R′. Hence, there must be a line l′ of R′ that is
above p. Since li+1 is not above p, l′ is not li+1 and thus is in Di. Further, l′ is above
li+1 at λ(p).
Again, by the similar analysis as before, we can obtain that the lines of S = R′ \ {li+1}
cover C[0, λ(p)]. We again obtain contradiction as the above first case.

This proves that the key property (3) holds for i+ 1.
The lemma thus follows. J

B Proofs of Lemmas for the NP-hardness in Section 4

B.1 Proof of Lemma 19
In this section, we show IVC is NP-hard on a normalized PLSG. We first outline the major
steps of our reduction, and then explain how we implement these steps in details.

1. VC on convex PLSG G0 can be reduced to IVC on convex PSLG G1, by adding an
enlarged ring of outer vertices and link each new outer vertex with the original one, as
illustarted in Figure 8a

2. IVC on G1 can be reduced to IVC on convex, low-degree PSLG G2. For each inner vertex
v, we adapt a vertex gadget from [16] shown in Figure 8b. In respect to the neighbor vi
we place wi on a small circle Cv centered at v, and ui is the midpoint of wi−1wi. Select

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:25

Algorithm 1: The Algorithm D-Greedy-k
Input : θ, the sorted list D = {l1, l2, . . . , ln} after the pruning procedure, and the

k-level set LSk of D.
Output: A smallest subset R ⊆ D of lines that cover θ-LSk.

1 begin
2 Compute C = θ-LSk based on θ and LSk.
3 a0 ← the highest point of l0 in the infinity.
4 b0 ← the intersection of l0 and C.
5 for i = 0 to n do
6 if i < n then
7 ai+1 ← the intersection of l0 and li+1.
8 else
9 ai+1 ← the intersection of C and ln+1.

10 if li+1 does not intersect af(gi)bf(gi) then
11 Ri+1 ← Ri.
12 else
13 if li+1 ∩ af(gi)bf(gi) = bf(gi) and bi+1 = bf(gi) then
14 Ri+1 ← Ri.
15 else
16 Compute bi+1 and the list L(bf(gi), bi+1) by moving p rightwards on C.
17 t = f(gi).
18 while t > 0 and li+1 intersects af(t−1)bf(t−1) do
19 if li+1 is above the upper hull of C[bf(t−1), bf(t)] then
20 Remove lf(t) from Ri.
21 Merge L[bf(t−1), bf(t)] and L[bf(t), bi+1] to obtain the list

L[bf(t−1), bi+1].
22 t← t− 1.
23 else
24 break.

25 Ri+1 ← Ri ∪ {li+1}.

26 return R← Rn+1 \ {l0, ln+1}.

ICDT 2016

23:26 k-Regret Minimizing Set: Efficient Algorithms and Hardness

b

b

b· · · b

b

b

b

b

· · · · · ·

bc

bc

(a) Construction of
G1

bc

bc
bc

bc

bc

bc

b

b

b

b
b

b

bb

· · ·

v

vt

wt

v1

v2

v3v4

w1

w2

w3
w4

u1

u2

b

b

u3

u4

u5

bc

b
b

b

bb

· · · v

vt v1

v2

v3
v4

⇒

(b) The vertex gadget for inner vertices

b b b

⇒
bc

b b b

⇒

bc bc bcb

b
b

b

bc

wi

v

wi

v

(c) The edge gadget for
small angles (upper: v
is inner; lower: v is
outer)

Figure 8 Illustrations of PSLG reductions

three distinct vertices among the ui’s and connect them with v, while lifting them closer
to meet the angle bound. Proposition 31 in the appendix ensures that there exists such
a selection that the three interior angles at v are also in the range of [π/4, π].

3. IVC on G2 can be reduced to IVC on convex, low-degree, bounded-angle PSLG G3. In the
construction of G2 one could see that every interior angle is not larger than π, and those
angles equal to π at a degree 3 vertex v can be reduced a little by dragging v off. On
the other hand, angles smaller than π/4 only appear at ∠uiwiui+1. To eliminate these
angles we replace the opposite edges wiv by narrow rectangles (or narrow trapezoid if v
is an outer vertex), as shown in Figure 8c.

4. IVC on G3 can be reduced to IVC on a normalized PSLG G4 for any fixed parameter α > 0
by slicing the edges into odd number of small segments. Suppose Lmin is the smallest
length of edges in G3, and we set the standard length l = α

1 + α
Lmin. Then for each edge

of length L with one inner endpoint, slice it into bL/lc or bL/lc+ 1 isometric segments
by parity. It is clear that the length of these segments are in the range [l(1−α), l(1+α)].

Notice that in the normalized G4, the parameter α is independent with the angles, and
therefore we can replace the range [π/4, π) by [π/4, π− γ), where γ > 0 is a constant which
will be used in bounds later on.

Here we show the transformations on PSLG described in Section 4 indeed derive reduc-
tions. In the following proofs, Gi = (Vi, Ei).

I Proposition 30. IV C(G1) = V C(G0) + |V1| − |V0|.

Proof. Notice that |V1|−|V0| is the number of outer vertices. For an inner vertex cover of G1,
the part within G0 is still a vertex cover of G0, therefore IV C(G1) ≥ V C(G0) + |V1| − |V0|.
On the other hand, on a vertex cover of G0, adding all the new outer vertices forms an inner
vertex cover of G1. Thus IV C(G1) = V C(G0) + |V1| − |V0|. J

I Proposition 31. Within the construction of G2, for any inner vertex v there are three
distinct ui satisfying the angle bound on v.

Proof. Illustrated in Figure 9, where we consider the argument of vertices on Cv, and let
Arg(u1) = 0. Consider the first wi = wi1 which Arg(wi) > π. Without lost of generality we

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:27

b

b

b

bc

bc

bc

b

b

b
bc

bc

bc
bc

bc

v u1

wi1−1

wi1

ui1

ui1−1

wi1−2

v u1
ui1

wi1

wi1−1

ui2

wi2−1wi2

bc

Figure 9 Selection rules of ui’s

can assume that Arg(wi1)− π ≥ π −Arg(wi1−1), and that leads to the bound of ∠u1vui1 :

π ≥ ∠u1vui1 ≥
1
2(π −Arg(wi1−1)) ≥ π

2 .

Now consider two possibilities of Arg(ui1). If Arg(ui1) ≥ 5π
4 , we just select u1, ui1 and

ui1−1. In this case we have

π ≥ Arg(wi1−1) ≥ ∠u1vui1−1 ≥
1
2Arg(wi1−1) ≥ π

4

π ≥ ∠ui1−1vui1 ≥
5π
4 − π = π

4 .

Otherwise, consider the first wi = wi2 which Arg(wi) >
π

2 , and therefore i2 < i1. Now we
claim that selecting u1, ui1 , ui2 meets the requirements, since we have

π ≥ Arg(wi1−1) ≥ Arg(wi2) ≥ ∠u1vui2 ≥
1
2Arg(wi2) ≥ π

4

π ≥ 5π
4 −

1
2Arg(wi2) ≥ ∠ui2vui1 ≥

1
2(Arg(wi1)−Arg(wi2−1)) ≥ π

4 .

J

I Proposition 32. IV C(G2) = IV C(G1) + 1
2(|V2| − |V1|).

Proof. Given an inner vertex cover C1 ⊆ V1 of G1, we select vertices of the subset C2 ⊆ V2
by the following rules on every original v ∈ V1:

If v is an outer vertex or deg(v) = 2, maintain the status of v.
Otherwise:

If v ∈ C1, choose v and all related wi;
If v /∈ C1, choose all related ui.

Then one can verify that C2 is an inner vertex cover of G2, and

IV C(G2) ≤ |C2| = |C1|+
1
2 |{wi, ui}|.

On the other hand, consider any inner vertex cover C2 of G2. For each inner vertex v ∈
V1, denote the set R(v) containing v and all related ui, wi (if there are any). It immediately
turns out

|C2 ∩R(v)| ≥
{

(|R(v)| − 1)/2 if v /∈ C2
(|R(v)|+ 1)/2 if v ∈ C2.

ICDT 2016

23:28 k-Regret Minimizing Set: Efficient Algorithms and Hardness

Also, for (v, v′) ∈ E1 where neither v, v is in C2, the corresponding gadgets are connected
with a edge (w,w′) ∈ E2. Without loss of generality, assume that w ∈ C2. Since the three
ui vertices connected to v must be in C2, it also holds |C2∩R(v)| ≥ (|R(v)|+1)/2. Hence all
inner vertices v ∈ V1 satisfyings |C2 ∩ R(v)| ≥ (|R(v)|+ 1)/2, along with all outer vertices,
form an inner vertex cover of G1. Therefore

IV C(G1) ≤ |C2| −
∑
v

(|R(v)| − 1)/2 = |C2| −
1
2 |{wi, ui}|,

and by |{wi, ui}| = |V2| − |V1| the proposition get proved. J

I Proposition 33. IV C(G3) = IV C(G2) + 2g, where g is the number of edge gadgets added.

Proof. By exhausting all possibilities on a gadget, it is an easy observation that each edge
gadget always add two more vertices in the minimum inner vertex cover, so the result
holds. J

I Proposition 34. IV C(G4) = IV C(G3) + 1
2(|V4| − |V3|).

Proof. Consider an inner vertex cover C of G4. Among the pe vertices on an inner edge
e ∈ G3, at least

1
2pe of them should be chosen. Also if neither the two endpoints of e are in

C, at least 1
2pe + 1 of those padded vertices should be chosen. Thus

|C| ≥ |V3 ∩ C|+ #{vw ∈ E3 | v, w /∈ C}+ 1
2
∑

pe ≥ IV C(G3) + 1
2(|V4| − |V3|).

On the other hand, C can be constructed from a minimum inner vertex cover of G3 by
alternately select padded vertices, and in this case it is exactly IV C(G4) = IV C(G3) +
1
2(|V4| − |V3|). J

This finish the proof of Lemma 19.

B.2 Proof of Lemma 20
Proof. Notice that 〈η(A), η(B)〉 = ρ2 cos∠AOB, and by the law of cosine we have

cos∠AOB = OA2 +OB2 −AB2

2OA ·OB =
OB + OA2 −AB2

OB
2OA

≥
√
OA2 −AB2

OA
=
√

1− AB2

OA2 ≥

√
1− AB2

ρ2 − 1 .

On the other hand, notice that 2ρ sin 1
2∠AOB ≥ AB, we have

cos∠AOB = 1− 2 sin2 1
2∠AOB ≤ 1− AB2

2ρ2

. J

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:29

bc

b

ω

v

v3

b

(a)

b bc bc bb
v1 v ω w v2

(b)

b bc bc b

ω w v2v1 v
b

(c)

b

bc bc b

ω
w

v2

v1
v

b

≥ 1
2γ

v3b

(d)

Figure 10 Four possibilities for the selection of ω

B.3 Proof of Lemma 21
Proof. By the definition of k-regret set, we have to prove that

max
x∈R
〈x, ω〉 ≥ 〈(1− ε)x0, ω〉, ∀x0 ∈ D,∀ω ∈ R3

+. (2)

If x0 ∈ R, this trivially holds; so later on we assume that x0 /∈ R. Since η−1(R) is an inner
vertex cover, v = η−1(x0) is an inner vertex and the adjacent vertices of v are all in η−1(R).
Consider the degree of v:

If deg(v) = 2, then x0 is on the orthodrome between points x1 and x2. When (1− ε)x0
is in the triangle 4Ox1x2, the inequality (2) holds for all ω.
If deg(v) = 3, then x0 is on a spherical triangle with vertices x1, x2 and x3 by convexity.
When (1− ε)x0 is in the tetrahedron Ox1x2x3, the inequality (2) holds for all ω.

Notice that when (1− ε)ρ2 < mini〈x0, xi〉, where i = 1, 2 or i = 1, 2, 3, the requirements in
both cases can be ensured, and according to Lemma 20 we claim that R is an (1, ε)-set of
D when ε satisfies

1− ε ≤

√
1− l2(1 + α)2

ρ2 − 1 .

J

B.4 Proof of Lemma 22
Proof. When η−1(R) is not an inner vertex cover, there are only two cases: η−1(R) does
not choose an outer vertex, or an edge is not covered by η−1(R). To prove R is not an
(1, ε)-set, we shall find ω ∈ S and x0 ∈ D \R such that

max
x∈R
〈x, ω〉 < (1− ε)〈x0, ω〉

ICDT 2016

23:30 k-Regret Minimizing Set: Efficient Algorithms and Hardness

. And with Lemma 20, it can be done by find ω ∈ D and v ∈ V4 \ η−1(R) such that

1− 1
2ρ2 min

x∈η−1(R)
‖xω‖2 < (1− ε)

√
1− ‖vω‖

2

ρ2 − 1

Now suppose min ‖xω‖ = k1l, ‖vω‖ = k2l and plug in together with the value of ε. Notice
that ρ can be sufficiently large, so we only need the strict inequality k2

2 + (1 + α)2 < k2
1 to

hold.

1. If in G4, an outer vertex v /∈ η−1(R), shown in Figure 10a. Suppose the adjacent vertices
of v is v1, v2, v3, where v1 and v2 are also outer vertices. Then let ω be the point opposite
v3 at a distance l from v. Then k1 ≥ 1 + (1− α) and k2 = 1.

2. If an edge vw is not covered, that is, v, w /∈ η−1(E), and deg(v) = deg(w) = 2, suppose
the other two vertices adjacent to v and w are v1 and v2.

If deg(v1) = deg(v2) = 2 as in Figure 10b, choose ω to be the point on segment vw
with ‖vω‖ = 1

2 l. Since the angles attached to inner vertices in G4 are at least π4 , it

holds that k1 ≥ min{‖v1ω‖, ‖v2ω‖}/l ≥
3
2 − 2α, and k2 = 1

2.
If deg(v1) = 2 and deg(v2) = 3 as in Figure 10c, we choose ω to be point on segment
vw with ‖vω‖ = 1

5 l. For the same reason, we have k1 ≥
6
5 − α, and k2 = 1

5.

3. If an edge vw is not covered, and deg(v) = 3, deg(w) = 2, shown in Figure 10d. Suppose
the adjacent vertices are v1, v2 and v3. Then ω is set on the reverse bisector of ∠v1vv2,
at a distance 1

2 l from v. Since ∠v1vω = ∠v2vω are at least π + γ

2 , we know that

k1 ≥
‖v1ω‖
l
≥
√

1
4 + (1− α)2 + (1− α) sin 1

2γ, and k2 = 1
2.

As a conclusion, we list the following table for the requirements on α in the above four
possible cases, from which it is clear to see the validity of the proposition:

k1 ≥ k2 = α

2− α 1 α <
1
3

3
2 − 2α 1

2 α <
4−
√

13
3

6
5 − α

1
5 α <

10
37√

1
4 + (1− α)2 + (1− α) sin 1

2γ
1
2

4α
1− α < sin 1

2γ

J

C Other Missing Proofs

C.1 The Proof of Lemma 10
Obviously statement (1) implies (2). On the other hand, note that both θ-LSk and the upper
envelop of R are piecewise linear, with all breaking points contained in X(D). Therefore if

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:31

(2) holds, the upper envelop of R must be above θ-LSk. Hence, statement (2) implies (1) as
well. The lemma thus follows.

C.2 The Proof of Lemma 11
Notice that by Lemma 10, θ is optimized so that R covers θ-LSk within X(D). This implies
that θ-LSk and the upper envelop of R coincide at some λ ∈ X(D), so the lemma holds.

C.3 The Proof of Lemma 13
For the optimal θ such that a set R covers θ-LS1, the upper envelop of R and θ-LS1 must
coincide at some point. Let l ∈ R to be the line whose segment in the upper envelop contains
such a coincidence point. Suppose two endpoints of this segment are at λ1, λ2. Then at least
one of them is also a coincidence point, since otherwise θ-LS1 would be strictly above the
segment at one of λ1 and λ2, incurring contradiction.

C.4 The Proof of Lemma 14
For each λ ∈ Cand2(D) which is determined by an intersection of two lines l(λ) = l′(λ)
for l, l′ ∈ D, the corresponding segments in B must have four endpoints with indices i′ <
j < i < j′ where i and i′ belong to l while j and j′ belong to l′. Thus, we will increase
the counter N for exactly one time, i.e., when i′ is deleted from L and we find that j < i′.
Therefore, there exists a bijection between all candidate values and all increments of the
counter N . So the lemma holds.

C.5 The Proof of Lemma 25
Observe that in our setting,

max
x∈D±

〈x, ω〉 − min
y∈D±

〈y, ω〉 = 2 max
x∈D±

〈x, ω〉 = 2 max
x∈D
〈x, abs(ω)〉.

The same is true if we replace D and D± in the above equation by R and R±, respectively.
Since R′ is a subset of R±, we have

max
x∈R′
〈x, ω〉 − min

y∈R′
〈y, ω〉 ≤ max

x∈R±
〈x, ω〉 − min

y∈R±
〈y, ω〉 = 2 max

x∈R
〈x, abs(ω)〉.

By the definition of ε-kernel, for any vector ω, it holds that

1− ε ≤ maxx∈R′〈x, ω〉 −miny∈R′〈y, ω〉
maxx∈D±〈x, ω〉 −miny∈D±〈y, ω〉

≤ maxx∈R〈x, abs(ω)〉
maxx∈D〈x, abs(ω)〉 .

The lemma thus follows.

C.6 The Proof of Theorem 27
We present our algorithm for Theorem 27 in Section 5.2.

Suppose there exists a set of r′ points in D whose maximum regret ratio is 1−θ for some
θ ∈ [0, 1]. We first present an algorithm that can find a set R of at most r′ · (d · ln 2n + 1)
points from D with maximum regret ratio at most 1− θ.

In the d-dimensional space Rd, we fix an arbitrary (d − 1)-dimensional simplex A with
vertices A1, A2, . . . , Ad whose last coordinates are all 0. For a nonnegative weight vector ω

ICDT 2016

23:32 k-Regret Minimizing Set: Efficient Algorithms and Hardness

with ‖ω‖1 = 1, we can regarded it as the barycentric coordinates of the point
∑
ω[i]Ai in

A. For any point x ∈ D, we define a (d − 1)-dimensional simplex Sx as the simplex with
following vertices:

(A1[1], . . . , A1[d− 1], x[1]), (A2[1], . . . , A2[d− 1], x[2]), . . . , (Ad[1], . . . , Ad[d− 1], x[d]).

See Figure 11 for d = 3.
For any ω ∈ A (ω in barycentric coordinate), define Rω as the vertical ray originating

from ω with direction (0, 0, . . . , 0, 1). An observation is that the ray intersects Sx at a point
whose height (i.e., the last coordinate) is exactly equal to 〈x, ω〉. Thus we can define the
k-level set LSk accordingly: LSk consists of the k-th highest intersection points of Rω with
{Sx | x ∈ D}, for all ω ∈ A (see Figure 11 for d = 3). For convenience, depending on the
context, we also consider Sx and LSk as functions of ω (i.e., as the height of the intersection
point with Rω).

A1

ω

x[1]

x[2]
x[3]

b

b

b

A2

A3

Rω

Figure 11 Illustrating two triangles defined by two points x in D in R3.

For each x ∈ D, let Hx denote the hyperplane containing Sx. For each x ∈ D, let xθ
denote the point whose i-th coordinate is θ · x[i] for each i ∈ [1, d], and we define Sxθ and
Hxθ accordingly. For a set H of hyperplanes, we use A(H) to denote the arrangement of
H (See [3] for a survey on arrangements). Using the algorithm in [13], we can compute the
hyperplane arrangement A = A({Hx, Hxθ}x∈D) in O((2n)d) time.

We reduce our problem to the set cover problem as follows. There are at most (2n)d faces
with dimension d− 1 in A. Let the (d− 1)-faces of A contained in θ-LSk be the elements to
be covered in the set cover instance. Each set in the set cover instance corresponds to Sx for
each x ∈ D, and the elements it covers are those (d− 1)-faces below Sx. Using the classical
greedy algorithm [21], we can solve the set cover problem in nO(d) time with approximation
ratio ln(2n)d + 1 = d ln(2n) + 1. Let R be the set of points of D corresponding to the
solution of the set cover. Recall that there exist a set of r′ points in D whose maximum
regret ratio is at most 1 − θ. The approximation ratio of the set cover solution guarantees
that |R| ≤ r′ · (d ln(2n) + 1). This finishes our algorithm.

In the following, we use the above algorithm as a subroutine to give an algorithm for
Theorem 27

Similar to Lemma 11, the optimal regret ratio 1− θ∗ must correspond to a vertex in the
arrangement A′ = A({Sx}x∈D). Formally, the value θ∗ must be in the set

Cand(D) :=
{
Sx(ω)
LSk(ω) | x ∈ D, {Sx ∩Rω} ∈ V (A′) or ω ∈ {A1, . . . , Ad}

}
,

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:33

where V (A′) denotes the set of vertices of A′. Notice that |Cand(D)| ≤ n · (|A′|+ d) = nO(d)

and Cand(D) can be computed in nO(d) time.
For each θ ∈ Cand(D), we apply the above algorithm on θ, and we say that θ is a feasible

value if the size of the solution R obtained by the algorithm is at most r · (d ln(2n) + 1). Let
θ′ be the maximum feasible value. We return the solution R′ obtained by our algorithm on
θ′ as the solution to our original problem k-RMS. On the one hand, since θ′ is feasible, we
know that |R′| ≤ r · (d ln(2n) + 1). On the other hand, observe that θ∗ must be a feasible
value. Since θ′ is the largest feasible value, we have θ′ ≥ θ∗. Therefore, 1− θ′, which is the
maximum regret ratio of R′, is at most 1− θ∗. Theorem 27 is thus proved.

D Experimental Evaluation

We compare our algorithms in Section 3 and the previous algorithm in [9] for the problems
in R2. All experiments were conducted on a machine with Intel Core i5 CPU @ 2.90GHz
and 16GB memory running Mac OS X operation system. The codes were written in C++.

D.1 Algorithms and Datasets

We implemented the following three algorithms for solving the optimization problems RMS
and k-RMS: E-Pre-k [9], A-IntCov-1, and A-Greedy-k. For the two approximation al-
gorithms A-IntCov-1 and A-Greedy-k, we set the additive error ε to be 10−11, which might
be sufficient for most real world applications.

Note that if some point x ∈ D is Pareto dominated by some other point x′ ∈ D (i.e.,
x[1] ≤ x′[1] and x[2] ≤ x′[2] and x 6= x′), then x will never appear in the optimal set of R 2.
Those x’s which are not Pareto dominated form the skyline [4] of D. The algorithms have
been optimized to consider only the points on the skyline as candidates for R. Since all
algorithms need the k-level set and the skyline information, we do not include the running
time for computing the k-level set and skyline information in the running time of each
individual algorithm. For the same reason, the input points are already sorted by their
slopes.

Datasets: We use three datasets. The first two are synthetic, and the last one is a real
dataset and can be downloaded from http://www.cru.uea.ac.uk/cru/data/hrg/tmc/.

1. Dataset 1 was generated according to the following procedure: Each point is in the
form of (x, y − αx) where x and y are two independent uniform random value in [0, 1].
Here, we set α = 1.75. Then, a normalization is performed to ensure the points lying in
[0, 1]× [0, 1].

2. Dataset 2 was generated following the procedure described in [4]. It is a fairly standard
data generator used in skyline-related settings.

3. Dataset 3 is a real dataset. We use a linear combination of temperature in December,
January, and February as the first dimension, and that in June, July and August as the
second dimension. In our experiments, we vary n (= |D|). The size of Dataset 3 is equal
to n where we chose the first n points in the dataset.

2 It might appear in the optimal R, but R \ {x} has the same regret ratio in that case.

ICDT 2016

http://www.cru.uea.ac.uk/cru/data/hrg/tmc/

23:34 k-Regret Minimizing Set: Efficient Algorithms and Hardness

Size of n
10

3
10

4
10

5
10

6

N
u
m
b
er

o
f
p
o
in
ts

o
n

10
0

10
1

10
2

10
3

10
4

Skyline

k-level set

(a) Skyline and k-level: Dataset 1
Size of n

10
3

10
4

10
5

10
6

R
eg
re
t
ra
ti
o

10
-4

10
-3

10
-2

10
-1

Regret ratio

(b) Regret ratio: Dataset 1
Size of n

10
3

10
4

10
5

10
6

E
x
ec
u
ti
on

ti
m
e(
m
s)

10
-1

10
0

10
1

10
2

E-Pre-k
A-IntCov-1
A-Greedy-k

(c) Execution time: Dataset 1

Size of n
10

3
10

4
10

5
10

6

N
u
m
b
er

o
f
p
o
in
ts

o
n

10
0

10
5

Skyline

k-level set

(d) Skyline and k-level: Dataset 2
Size of n

10
3

10
4

10
5

10
6

R
eg
re
t
ra
ti
o

10
-4

10
-3

10
-2

10
-1

Regret ratio

(e) Regret ratio: Dataset 2
Size of n

10
3

10
4

10
5

10
6

E
x
ec
u
ti
o
n
ti
m
e(
m
s)

10
0

10
5

E-Pre-k
A-IntCov-1
A-Greedy-k

(f) Execution time: Dataset 2

Size of n
10

3
10

4
10

5

N
u
m
b
er

o
f
p
o
in
ts

o
n

10
0

10
1

10
2

10
3

Skyline

k-level set

(g) Skyline and k-level: Dataset 3
Size of n

10
3

10
4

10
5

R
eg
re
t
ra
ti
o

10
-4

10
-3

10
-2

10
-1

Regret ratio

(h) Regret ratio: Dataset 3
Size of n

10
3

10
4

10
5

E
x
ec
u
ti
on

ti
m
e(
m
s)

10
-1

10
0

10
1

E-Pre-k
A-IntCov-1
A-Greedy-k

(i) Execution time: Dataset 3

Figure 12 Results of experiments

D.2 Results of Experiments

Figure 12 shows the results for k = 1 (so we can compare all six algorithms). Each row
shows the results on a dataset. The first column indicates the size of the skylines and the
k-levels. The second column presents the optimal regret ratios. The third column shows the
execution time of each algorithm on each dataset.

We ran our algorithms on different n’s, varying from 103 to 2× 106. For each chosen n,
three kinds of datasets were generated accordingly and each algorithm was run 10 to 103

times depending on the size of the input, while execution times were taken the average. Here,
we set r = 3. The reason is that this choice yields a regret ratio that can be significantly
lower, as shown below. Note that all the plots in Figure 12 are in the log-log scale. We
sometimes set a lower bound on plotted data to make them lie within the plots.

In each of the synthetic datasets, the skyline is as large as from 103 to 104 when n takes
its maximum value, and this helps distinguish the efficiencies of the algorithms. Besides,
the regret ratios calculated from each dataset are in a desired range: it is typically as small
as from 10−4 to 10−2, and this justifies that the k-regret minimizing sets are indeed very
good “representations” of the original dataset for all preferences.

In all three datasets, both of our new algorithms beat E-Pre-k. The running time differs
from 1.5 to 4 orders of magnitude when n is large.

To further investigate the cases where r and k vary, we try different r and k values
and compare E-Pre-k and A-Greedy-k. We use Dataset 2, which is the benchmark in this
setting. The results are shown in Figure 13. We can see from the figure that regardless of
what r and k are, the running time for A-Greedy-k is at most approximately 100ms (even
when n takes its maximum value), while the running time of E-Pre-k exceeds 104ms in the
corresponding settings. Our algorithm is at least 100 times faster in almost all instances.

W. Cao, J. Li, H. Wang, K. Wang, R. C. Wong and W. Zhan 23:35

Size of n
10

3
10

4
10

5
10

6

E
x
ec
u
ti
on

ti
m
e(
m
s)

10
0

10
1

10
2

k = 3, r = 3
k = 3, r = 5
k = 3, r = 20
k = 5, r = 3
k = 20, r = 3

(a) When r and k change: A-Greedy-k
Size of n

10
3

10
4

10
5

10
6

E
x
ec
u
ti
on

ti
m
e(
m
s)

10
1

10
2

10
3

10
4

10
5

k = 3, r = 3
k = 3, r = 5
k = 3, r = 20
k = 5, r = 3
k = 20, r = 3

(b) When r and k change: E-Pre-k

Figure 13 Further comparison

As a result, we recommend the algorithm A-Greedy-k to be used in practice for the
k-RMS problem. The algorithm D-Greedy-k is recommended as the decision algorithm.
Hence, the algorithm D-Greedy-k is both theoretically and practically interesting.

ICDT 2016

	Introduction
	Problem Formulation
	Efficient Algorithms in R2
	The Warm-up Algorithms
	Reducing Dec-RMS to Interval Coverage
	An Approximating Algorithm for RMS

	The Decision Algorithm for Dec-k-RMS
	Preliminaries
	The Algorithm

	Optimization Algorithms
	An Exact Algorithm for k-RMS
	An O(nlogn) Time Exact Algorithm for RMS

	NP-Hardness
	IVC on Normalized PLSG
	Reduction to RMS

	Algorithms in High Dimensions
	The Problem RMS
	The Problem k-RMS

	Related Work
	Missing Proofs of the Algorithm D-Greedy-k for Dec-k-RMS
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	The Running Time and the Correctness of Our Algorithm

	Proofs of Lemmas for the NP-hardness in Section 4
	Proof of Lemma 19
	Proof of Lemma 20
	Proof of Lemma 21
	Proof of Lemma 22

	Other Missing Proofs
	The Proof of Lemma 10
	The Proof of Lemma 11
	The Proof of Lemma 13
	The Proof of Lemma ??
	The Proof of Lemma ??
	The Proof of Theorem 27

	Experimental Evaluation
	Algorithms and Datasets
	Results of Experiments

