
49

Exponential Separations in the Energy Complexity

of Leader Election

YI-JUN CHANG, University of Michigan, USA

TSVI KOPELOWITZ, Bar-Ilan University, Israel

SETH PETTIE, University of Michigan, USA

RUOSONG WANG, Carnegie Mellon University, USA

WEI ZHAN, Princeton University, USA

Energy is often the most constrained resource for battery-powered wireless devices, and most of the energy

is often spent on transceiver usage (i.e., transmitting and receiving packets) rather than computation. In this

article, we study the energy complexity of fundamental problems in several models of wireless radio networks.

It turns out that energy complexity is very sensitive to whether the devices can generate random bits and their

ability to detect collisions. We consider four collision detection models: Strong-CD (in which transmitters and

listeners detect collisions), Sender-CD (in which only transmitters detect collisions), Receiver-CD (in which

only listeners detect collisions), and No-CD (in which no one detects collisions).

The take-away message of our results is quite surprising. For randomized algorithms, there is an exponen-

tial gap between the energy complexity of Sender-CD and Receiver-CD:

Randomized: No-CD = Sender-CD � Receiver-CD = Strong-CD

and for deterministic algorithms, there is another exponential gap in energy complexity, but in the reverse

direction:

Deterministic: No-CD = Receiver-CD � Sender-CD = Strong-CD

Precisely, the randomized energy complexity of Leader Election is Θ(log∗ n) in Sender-CD but Θ(log(log∗ n))
in Receiver-CD, where n is the number of devices, which is unknown to the devices at the beginning; the

deterministic complexity of Leader Election is Θ(logN) in Receiver-CD but Θ(log logN) in Sender-CD, where

N is the size of the ID space.

There is a tradeoff between time and energy. We provide a new upper bound on the time-energy trade-

off curve for randomized algorithms. A critical component of this algorithm is a new deterministic Leader

Election algorithm for dense instances, when n = Θ(N), with inverse Ackermann energy complexity.

CCS Concepts: • Theory of computation → Distributed algorithms;

Additional Key Words and Phrases: Energy complexity, leader election, wireless network

A preliminary version of this article [11] was presented at the 49th Annual ACM Symposium on the Theory of Computing

(STOC) June 19–23, 2017. Supported by NSF grants CNS-1318294, CCF-1514383, CCF-1637546, and CCF-1815316. Research

performed while Ruosong Wang and Wei Zhan were visiting University of Michigan. Ruosong Wang and Wei Zhan are

supported in part by the National Basic Research Program of China, grants 2015CB358700, 2011CBA00300, 2011CBA00301

and the National Natural Science Foundation of China, grants 61202009, 61033001, 61361136003.

Authors’ addresses: Y.-J. Chang and S. Pettie, University of Michigan, Ann Arbor, MI; emails: {cyijun, pettie}@umich.edu;

T. Kopelowitz, Bar-Ilan University, Ramat Gan, Israel; email: kopelot@gmail.com; R. Wang, Carnegie Mellon University,

Pittsburgh, PA; email: ruosongw@andrew.cmu.edu; W. Zhan, Princeton University, Princeton, NJ; email: weizhan@cs.

princeton.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2019/10-ART49 $15.00

https://doi.org/10.1145/3341111

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3341111

49:2 Y.-J. Chang et al.

ACM Reference format:

Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. 2019. Exponential Separations in

the Energy Complexity of Leader Election. ACM Trans. Algorithms 15, 4, Article 49 (October 2019), 31 pages.

https://doi.org/10.1145/3341111

1 INTRODUCTION

In many networks of wireless devices the scarcest resource is energy, and the lion’s share of energy
is often spent on radio transceiver usage [4, 39, 43, 45]—transmitting and receiving packets—not on
computation per se. In this article, we investigate the energy complexity of fundamental problems
in synchronized single-hop wireless networks: Leader Election, Approximate Counting, and taking
a Census.

In all models, we consider time to be partitioned into discrete slots; all devices have access to
a single shared channel and can choose, in each time slot, to either transmit a message m from
some space M, listen to the channel, or remain idle. Transmitting and listening each cost one
unit of energy; we measure the energy usage of an algorithm on n devices by the worst case
energy usage of any device. For the sake of simplicity, we assume computation is free and the
message size is unbounded. If exactly one device transmits, all listeners hear the messagem, and if
zero devices transmit, all listeners hear a special message λS indicating silence. We consider four
collision detection models depending on whether transmitters and listeners can detect collisions.

Strong-CD. Each transmitter and listener receives one of three signals: λS (silence, if zero de-
vices transmit), λN (noise, if ≥ 2 devices transmit), or a message m ∈ M (if one device
transmits).

Sender-CD. (Often called “No-CD” [27]) Each transmitter and listener receives one of two signals:
λS (zero or ≥ 2 devices transmit), or a messagem ∈ M (if one device transmits). Observe
that the Sender-CD model has no explicit collision detection but still allows for sneaky
collision detection: if a sender hears λS , it can infer that there was at least one other sender.

Receiver-CD. Transmitters receive no signal. Each listener receives one of three signals: λS (si-

lence, if zero devices transmit), λN (noise, if ≥ 2 devices transmit), or a message m ∈ M
(if one device transmits).

No-CD. Transmitters receive no signal. Listeners receive one of two signals: λS (zero or ≥ 2 de-
vices transmit) or a messagem ∈ M.

Each of the four models comes in both randomized and deterministic variants. A key issue is
breaking symmetry. Whereas randomized models easily accomplish this by having devices flip
independent random coins, deterministic models depend on having pre-assigned unique IDs to
break symmetry.

Randomized Model. In the randomized model, all n devices begin in exactly the same state and
can break symmetry by generating private random bits. The number n is unknown and
unbounded. The maximum allowed failure probability of a randomized algorithm is at
most 1/poly(n). In a failed execution, devices may consume unbounded energy and never
halt [8, 28, 29].

Deterministic Model. All n devices have unique IDs in the range [N]
def
= {1, . . . ,N }, where N is

common knowledge but n ≤ N is unknown.

To avoid impossibilities, in the No-CD model it is promised that n ≥ 2. See Section 3.4 for a
discussion of loneliness detection.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

https://doi.org/10.1145/3341111

Energy Complexity of Leader Election 49:3

Table 1. Time-energy Tradeoff of Randomized Approximate Counting and Leader Election

Energy Complexity
Time Complexity Strong-CD or Receiver-CD Sender-CD or No-CD

O (no (1)) O (log(log∗ n)) O (log∗ n)
O (log2+ϵ n), 0 < ϵ ≤ O (1) O (log(ϵ−1 log log logn)) O (ϵ−1 log log logn)
O (log2 n) O (log log logn) O (log logn)

Notice that the Third Line is a Special Case of the Second Line When ϵ = 1/ log log n.

It could be argued that real-world devices rarely endow transmitters with more collision detec-
tion power than receivers, so the Sender-CD model does not merit study. We feel this thinking
gets the order backwards. There is a certain cost for equipping tiny devices with extra capabilities
(e.g., generating random bits or detecting collisions) so how are we to tell whether adding these
capabilities is worth the expense? To answer that question, we first need to determine the com-
plexity of the problems that will ultimately be solved by the network. The goal of this work is to
understand the power of various abstract models, not to cleave closely to existing real-world tech-
nologies simply because they exist. In this article, we consider the following three fundamental
distributed problems:

Leader Election. Exactly one device designates itself the leader and all others designate them-
selves follower. For technical reasons, we require that the computation ends when the
leader sends a message while every follower listens to the channel.

Approximate Counting. At the end of the computation, all devices agree on an estimate ñ of
the network size n such that ñ = Θ(n).

Census. At the end of the computation, some device announces a list of the IDs of all devices. We
only study this problem in the deterministic model.

Notice that any deterministic algorithm that solves Census is also capable of solving Leader

Election and Approximate Counting with the same runtime and energy cost.

1.1 New Results

In the randomized model, we show that the energy complexity of Leader Election and Approximate

Counting are Θ(log∗ n) in Sender-CD and No-CD but Θ(log(log∗ n)) in Strong-CD and Receiver-

CD. The lower bounds also apply to the contention resolution problem, and this establishes that the
recent O (log(log∗ n)) contention resolution protocol of Bender, Kopelowitz, Pettie, and Young [7]
is optimal. Our upper bounds offer a time-energy tradeoff. See Table 1 for the energy cost of our
algorithm under different runtime constraints.

For Leader Election, we establish matching bounds in all the deterministic models. In Strong-

CD and Sender-CD, Leader Election requires Ω(log logN) energy even when n = 2, and Census

can be solved with O (log logN) energy and O (N) time, for any n ≤ N . However, in No-CD and
Receiver-CD, the energy complexity of these problems jumps to Θ(logN) [29].

Finally, we prove that when the input is dense in the ID space, meaningn = Θ(N), Census can ac-
tually be computed with onlyO (α (N)) energy andO (N) time, even in No-CD. To our knowledge,
this is the first time inverse-Ackermann-type recursion has appeared in distributed computing.

1.2 Prior Work

Jurdzinski et al. [27] studied the deterministic energy complexity of Leader Election in the Sender-

CD model. They proved that dense instances n = Θ(N) can be solved with O (log∗ N) energy and
claimed that the complexity of the sparse instances is between Ω(log logN / log log logN) and

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:4 Y.-J. Chang et al.

O (logϵ N). While the lower bound is correct, the algorithm presented in Reference [27] is not.1

The most efficient published algorithm uses O (
√

logN) energy, also due to Jurdzinski et al. [30].
The same authors [28] gave a reduction from randomized Sender-CD Approximate Counting to
deterministic Leader Election over ID space N = O (logn), which, using Reference [30], leads to

anO (
√

log logn) energy algorithm for Approximate Counting. In Reference [29], the authors gave
a method for simulating Sender-CD protocols in the No-CD model and proved that deterministic
No-CD Leader Election takes Ω(logN) energy. Nakano and Olariu [40] showed that n devices in
the Sender-CD model can assign themselves distinct IDs in {1, . . . ,n} with O (log logn) energy in
expectation.

Recently, Bender et al. [7] gave a method for circuit simulation in the Strong-CD model, which
led to randomized Approximate Counting and Leader Election protocols using O (log(log∗ n)) en-

ergy and no (1) time. An earlier algorithm of Kardas et al. [32] solves Leader Election in the Strong-

CD model in O (logϵ n) time using O (log log logn) energy, in expectation but not with high prob-
ability.

Most of the previous work in the radio network model has been concerned with time, not energy.
Willard [46] proved thatO (log logn) time is necessary and sufficient for one device to successfully
transmit in the Strong-CD model with constant probability; see Reference [41] for tradeoffs be-
tween time and success probability. In the Sender-CD model, this problem requires Θ(log2 n) time
to solve, with probability 1 − 1/poly(n) [20, 31, 42]. Greenberg and Winograd [26] proved that if all
devices need to send a message, Θ(n logn (N)) time is necessary and sufficient in the deterministic
Strong-CD model.

In multi-hop radio networks, Leader Election and its related problems (e.g., broadcasting and
gossiping) have been studied extensively, where the bounds typically depend on both the diameter
and size of the network, whether it is directed, and whether randomization and collision detection
are available. See, e.g., References [1–3, 9, 12, 13, 15–17, 21, 35–37]. Schneider and Watterhofer [44]
investigated the use of collision detection in multihop radio networks when solving archetypal
problems such as MIS, (Δ + 1)-coloring, and broadcast. Their results showed that the value of
collision detection depends on the problem being solved.

Cornejo and Kuhn [14] introduced the beeping model, where no messages are sent; the only
signals are λN and λS : noise and silence. The complexity of Approximate Counting was studied in
Reference [8] and the “state complexity” of Leader Election was studied in Reference [25].

In adversarial settings, a jammer can interfere with communication. See References [18, 38] for
leader election protocols resilient to jamming. In a resource-competitive protocol [6], the energy
cost of the devices is some function of the energy cost of the jammer. See Reference [5] for resource-
competitive contention resolution and References [24, 34] for resource-competitive point-to-point
communication and broadcast protocols.

1.3 Organization and Technical Overview

To establish the two sharp exponential separations, we need eight distinct upper and lower bounds.
The O (logN) upper bound on deterministic No-CD Leader Election is trivial, and the matching
lower bound in Receiver-CD is provided in Reference [29]. The O (log(log∗ n)) upper bound from
Reference [7] on randomized Leader Election and Approximate Counting works only in Strong-

CD. This article contains proofs of all remaining upper and lower bounds. In addition, we offer a
simpler proof of the Ω(logN) lower bound in deterministic Receiver-CD and provide anO (α (N))
energy protocol for Census in deterministic No-CD when n = Θ(N).

1T. Jurdzinski (personal communication, 2016).

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:5

Lower Bounds. In Section 2, we begin with a surprisingly simple proof that protocols solving any
non-trivial problem in the deterministic Strong-CD model require Ω(log logN) energy if the de-
vices are adaptive and Ω(logN) if they are non-adaptive. It turns out that Receiver-CD algorithms
are essentially forced to be non-adaptive, so this yields Ω(logN) lower bounds for deterministic
Leader Election in Receiver-CD. The Ω(log logN) lower bound combines a decision tree represen-
tation of the algorithm with the encoding argument that Katona and Szemerédi [33] used to solve
the biclique covering problem of Erdős et al. [19].

In Section 3, we prove the Ω(log∗ n) and Ω(log(log∗ n)) lower bounds on randomized Approxi-

mate Counting and Leader Election. These lower bounds begin by embedding any algorithm into
an infinite universal DAG that is basically a decision tree with some reconvergent paths. The proof
is information theoretic. There are only two methods for devices in Strong-CD and Receiver-CD to
learn new information. The first method is via direct communication (in which one device success-
fully transmits a message and some subset of devices listen); the second method is via inference
(in which transmitting or listening devices detect a collision or silence, which informs their fu-
ture decisions). The information theoretic capacity of the first method is essentially unbounded,
whereas the second method is bounded by 1-bit per unit energy in Strong-CD and usually less in
Receiver-CD. We show that any algorithm with a reasonable time bound can be forced to learn an
approximation of n via the information theoretically well-behaved second method.

Upper Bounds. In Sections 4 and 5, we present all deterministic upper bounds: an O (log logN)
energy protocol for Census and an O (α (N)) energy protocol for dense Census, when n = Θ(N).
Notice that a protocol for Census also solves Leader Election. The first protocol combines van
Emde Boas–like recursion with a technique that lets a group of devices function as one device and
thereby share energy costs.

In Section 6, we present upper bounds on randomized Leader Election and Approximate Count-

ing. When time is not too constrained, the Sender-CD and Receiver-CD protocols have energy
complexity O (log∗ n) and O (log(log∗ n)). Our protocols naturally adapt to any time bound that is
Ω(log2 n), where the energy complexity gradually increases as we approach this lower limit. See
Table 1. These protocols are randomized and so do not assume distinct IDs; nonetheless, they use
the deterministic α (N) dense Census algorithm of Section 5.

2 DETERMINISTIC LOWER BOUNDS

In this section, we prove deterministic lower bounds for the Successful Communication problem,
which immediately leads to the same lower bounds for Leader Election. The goal of Successful

Communication is to have some time slot where exactly one device transmits a message while at
least one other device listens to the channel. Once a successful communication occurs, the algo-
rithm is terminated on all devices. Throughout the section, we focus on the special case of n = 2.
Each device knows that n = 2, but not the ID of the other device. In this case, the Strong-CD and
Sender-CD models are the same, and the Receiver-CD and No-CD models are the same. Theorem 1
has been proved in Reference [29]; in this section, we offer a simpler proof.

Theorem 1. The deterministic energy complexity of Leader Election is Ω(logN) in No-CD and
Receiver-CD, even when n = 2.

Proof. For the case of n = 2 in No-CD and Receiver-CD, the two devices receive no feedback
from the channel until the first successful communication occurs. Thus, to prove the theorem, it
suffices to show that the energy cost of any non-adaptive deterministic algorithm A for Success-

ful Communication is Ω(logN). In a non-adaptive algorithm, the sequence of actions taken by a
device is solely a function of its ID, not the information it receives from the channel.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:6 Y.-J. Chang et al.

Fig. 1. (a) Table for a non-adaptive algorithm. (b) Two binary decision trees Tα and Tβ for an adaptive algo-

rithm.

Let τ = τ (N) be the running time of A. This algorithm can be encoded by a table in the set
{T ,L, I }τ×N ; see Figure 1(a). The (j, i)-entry of the table is the action T (transmit), L (listen), or I
(idle) taken by the device of ID i at time j. Let Ei be the energy cost of device of ID i , which equals
the number of T and L entries in the ith column.

We now prove that maxi Ei ≥ logN . The proof is inspired by Katona and Szemerédi’s [33] lower
bound of the biclique covering problem. Encode the ith column by a binary string of length τ by
replacing T with 0, L with 1, and I with either 0 or 1. There are 2τ−Ei possible encodings for
column i . To solve Successful Communication, the two devices in the network must successfully
communicate at some time slot. Thus, for any two distinct IDs {α , β }, there must be a row r such
that the (r ,α)- and (r , β)-entries of the table contain oneT and one L. Therefore, no binary string
is an eligible encoding of two distinct columns. Since there are 2τ possible encodings, we have:

N∑
i=1

2τ−Ei ≤ 2τ , which implies

N∑
i=1

1

2Ei
≤ 1.

This implies maxi Ei ≥ logN . Moreover, the convexity of f (x) = 2−x implies N · 2−
∑N

i=1 Ei /N ≤ 1,
and so

∑
i Ei ≥ N logN . Thus, even on average the energy cost of A is Ω(logN). �

Theorem 2. The deterministic energy complexity of Leader Election is Ω(log logN) in Strong-CD

and Sender-CD, even when n = 2.

Proof. It suffices to show that the energy cost of any deterministic algorithm for Successful

Communication is Ω(log logN). Suppose we have an algorithmA for Successful Communication

running in τ time when n = 2. We represent the behavior of the algorithm on the device with ID
i as a binary decision tree Ti . Each node in Ti is labeled by T (transmit), L (listen), or I (idle).
An I -node has one left child and no right child; a T -node has two children—a left one indicating
collision-free transmission and a right one indicating a collision; an L-node has two children—a
left one indicating silence and a right one indicating that the device receives a message. Notice
that the algorithm terminates once a device reaches the right child of an L-node in the decision
tree.

The left-right ordering of children is meaningless but essential to making the following argument
work. Suppose that we runA on two devices with IDs α and β . Let t be the first time a successful
communication occurs. We claim that the paths in Tα and Tβ corresponding to the execution of
A have exactly the same sequence of t − 1 left turns and right turns. At any time slot before t the
possible actions performed by {α , β } are {I , I }, {I ,T }, {I ,L}, {L,L}, {T ,T }. In all cases, both α and β
branch to the left child, except for {T ,T }, where they both branch to the right child. At time t , the

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:7

actions of the two devices are {T ,L}, and it is only here that they branch in different directions.
See Figure 1(b).

We extend each Ti to a full binary tree of depth τ by adding dummy nodes. The number of nodes
in a full binary tree of depth τ is 2τ − 1, and so we encode Ti by a binary string of length 2τ − 1 by
listing the nodes in any fixed order (e.g., pre-order traversal), mapping eachT -node to 0, L-node to
1, and each I -node or dummy node to either 0 or 1. For any two distinct IDs {α , β }, there must be a
position in the full binary tree such that the corresponding two nodes in Tα and Tβ are oneT -node
and one L-node. Therefore, no binary string is an eligible encoding of Tα and Tβ . If a device with

ID i spends energy Ei , then the number of T -nodes and L-nodes in Ti is at most 2Ei − 1, and so Ti
has at most 2(2τ −1)−(2Ei −1) possible encodings. Thus,

N∑
i=1

2(2τ −1)−(2Ei −1) ≤ 22τ −1, which implies

N∑
i=1

1

22Ei −1
≤ 1.

This implies maxi Ei ≥ log(logN + 1). Moreover, the convexity of f (x) = 2−(2x−1) implies N ·
2−(2

∑N
i=1 Ei /N −1) ≤ 1, and so

∑
i Ei ≥ N log(logN + 1). Thus, even on average the energy cost of A

is Ω(log logN). �

3 RANDOMIZED LOWER BOUNDS

In this section, we prove energy lower bounds of randomized algorithms for Approximate Count-

ing. Since No-CD is strictly weaker than Sender-CD, the Ω(log∗ n) lower bound also applies to
No-CD. Similarly, the Ω(log(log∗ n)) lower bound for Strong-CD also applies to Receiver-CD.

Theorem 3. The energy cost of any polynomial time Approximate Counting algorithm with failure
probability 1/n is Ω(log∗ n) in the Sender-CD and No-CD models.

Theorem 4. The energy cost of any polynomial time Approximate Counting algorithm with failure
probability 1/n is Ω(log(log∗ n)) in the Strong-CD and Receiver-CD models.

In Section 3.1, we introduce the randomized decision tree, which is the foundation of our
lower bound proofs. In Section 3.2, we prove Theorem 3. In Section 3.3, we prove Theorem 4. In
Section 3.4, we demonstrate that our lower bounds proofs can be adapted to other problems such
as Leader Electionand prove the impossibility of loneliness detection (i.e., distinguishing between
n = 1 and n > 1) in randomized No-CD.

3.1 Randomized Decision Tree

The process of a device s interacting with the network at time slot t has two phases. During the
first phase (action performing phase), s decides on its action, and if this action is to transmit, then s
chooses a messagem ∈ M and transmitsm. During the second phase (message receiving phase), if
s chose to listen or transmit during the first phase, then s may receive a feedback from the channel
that depends on the transmissions occurring at this time slot and the collision detection model.
The phases partition the time into layers. We write layer t to denote the time right before the first
phase of time slot t , and layer t + 0.5 to denote the time right before the second phase of time slot
t . The choice of the message spaceM is irrelevant to our lower bound proof. The cardinality of
M may be finite or infinite.

For a device s , the state of s at layer t includes the ordered list of actions taken by s and feedback
received from the channel until layer t . There is only one possible state in layer 1, which is the
common initial state of all devices before the execution of an algorithm.

Our lower bounds are proved using a single decision tree T , which has unbounded branching
factor if |M| is unbounded. A special directed acyclic graph (DAG) G is defined to capture the

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:8 Y.-J. Chang et al.

behavior of any randomized algorithm, and then the decision tree T is constructed by “short-
cutting” some paths in G.

DAG G. The nodes in G represent all possible states of a device during the execution of any
algorithm. Similarly, the arcs represent all legal transitions between states during the execution of
any algorithm. Therefore, each arc connects only nodes in adjacent layers, and the root of G is the
initial state.

Let t ∈ Z+. A transition from a state u in layer t to a state v in layer t + 0.5 corresponds to one
of the possible |M| + 2 actions that can be performed in the first phase of time slot t (i.e., transmit

m for some m ∈ M, listen, or idle). The transitions from a state u in layer t + 0.5 to a state v in
layer t + 1 are more involved. Based on the action performed in the first phase of time slot t that
leads to the state u, there are three cases:

• Case: the action is idle. The state u has one outgoing arc corresponding to doing nothing.
• Case: the action is listen. The state u has |M| + 2 outgoing arcs in Strong-CD, or |M| + 1

in Sender-CD, corresponding to all possible channel feedbacks that can be heard.
• Case: the action is transmit. The state u has two outgoing arcs. The first (resp., second)

outgoing arc corresponds to the message transmission succeeding (resp., failing). If a failure
took place, then no other device knows which message was sent by the device, and so
the content of this message is irrelevant. Thus, all states u in layer t + 0.5 that correspond
to the action transmit and share the same parent have the same child node in layer t + 1
corresponding to a failure in transmitting the message. The arcs corresponding to failed
transmissions are what makes G a DAG rather than a tree.

Embedding an Algorithm. Any algorithmA can be embedded into G, as follows: First, appropri-
ate states, depending onA, are designated as terminal states. Without loss of generality, we require
that any terminal state must be in layer t for some t ∈ Z+. Each terminal state is labelled with a
specific output for the problem at hand. A device entering a terminal state u terminates with the
output associated with the state u. Any randomized algorithm is completely described by desig-
nating the terminal states together with their outputs and specifying the transition probabilities
from states in layer t to states in layer t + 0.5 for all t ∈ Z+.

Randomized Decision Tree T . The tree T is derived from G as follows: The set of nodes of T
is the set of nodes in G that are in layer t for some t ∈ Z+. For any two states u in layer t ∈ Z+
and v in layer t + 1 that are linked by a directed path in G, there is a transition from u to v in T .
It is straightforward to see that T is a rooted tree. See Figure 2 for an illustration of both G and
T in the Strong-CD model withM = {m1, . . . ,mk }. Notice that in the Strong-CD model, a device
transmitting a message mi to the channel at a time slot must not hear λS in the same time slot. If
the transmission is successful, it hears the message mi ; otherwise, it hears λN .

For a state u in layer t ∈ Z+, and for an action x ∈ {idle, listen, transmit}, we write pu�x to
denote the probability that a device in state u performs action x in the first phase of time slot t .

Time and Energy Complexity. An execution of an algorithm for a device is completely described
by a directed path P = (u1,u2, . . . ,uk) inT such thatut is in time slot t for each 1 ≤ t ≤ k , anduk is
the only terminal state in P . The runtime of the device isk . The amount of energy the device spends
is the number of transitions corresponding to listen or transmit in P . The time (resp., energy) of
an execution of an algorithm is the maximum time (resp., energy) spent by any device.

3.2 Lower Bound in the Sender-CD Model

In this section, we prove Theorem 3. LetA be anyT (n) time algorithm for Approximate Counting

in Sender-CD with failure probability at most 1/n. We show that the energy cost ofA is Ω(log∗ n).

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:9

Fig. 2. Upper: a portion of G. Lower: the corresponding portion in T .

Overview. The high-level idea of the proof is as follows: We will carefully select a sequence of
network sizes {ni } with checkpoints {di } such that di < ni < di+1 and T (ni) < di+1. There are two
main components in the proof. The first component is to demonstrate that, with probability 1 −
1/poly(ni), no message is successfully transmitted before time di when running A on ni devices,
i.e., every transmission ends in a collision. This limits the amount of information that could be
learned from a device. The second component is to prove that, for j > i , in order for a device
s to learn enough information to distinguish between ni and nj within T (ni) < di+1 time slots,
the device s must use at least one unit of energy within time interval [di ,di+1 − 1]. The intuition
is briefly explained as follows: Given that n ∈ {ni ,nj }, with high probability, every transmission
ends in a collision before time di , and so s has not yet obtained enough information to distinguish
between ni and nj by the time di − 1. The only way s can gain information is to use energy, i.e.,
listen or transmit. It is required that s terminates by timeT (ni) if the total number of devices is ni ,
and so s must use at least one unit of energy within time interval [di ,T (ni)] ⊆ [di ,di+1 − 1].

Truncated Decision Tree. The no-communication tree Tno-comm is defined as the subtree of T in-
duced by the set of all states u such that no transition in the path from the root to u corresponds
to receiving a message inM. In other words, Tno-comm contains exactly the states whose execution
history contains no successful communication. Notice that in Sender-CD each state in Tno-comm

has exactly three children, and the three children correspond to the following three pairs of action
performed and channel feedback received: (transmit, λS), (listen, λS), and (idle,N/A).

For each state u at layer t of the tree Tno-comm, we define the probability estimate pu inductively
as follows: If u is the root, pu = 1; otherwise, pu = pv · pv�x , where v is the parent of u, and x is
the action performed at time slot t − 1 that leads to the state u. Recall that pv�x is defined as the
probability for a device in v (which is a state in layer t − 1) to perform x at time slot t − 1. Intu-
itively, if no message is successfully sent in an execution ofA, the proportion of devices entering
u is well concentrated around pu , given that pu is high enough. See Figure 3 for an illustration of
no-communication tree Tno-comm and probability estimates in the Sender-CD model.

Given the runtime constraintT (n) forA, we select an infinite sequence of checkpoints as follows:
d1 is a sufficiently large constant to meet the requirements in the subsequent analysis; for each

i > 1, di is any number satisfying the two criteria (i) di ≥ 2222di−1

and (ii) di ≥ T (n′) + 1 for all

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:10 Y.-J. Chang et al.

Fig. 3. Upper: a portion of the tree T in Sender-CD. Lower: the corresponding portion in the no-

communication tree Tno-comm.

22di−1 < n′ < 2222di−1

. For example, ifT (n) is a non-decreasing function andT (n) ≥ n, then we can

simply set di = T (2222di−1

) + 1.2

Lemma 1. For each index i , there exists a number ni such that 22di < ni < 2222di

and for each state

u ∈ Tno-comm at layer at most di , either pu ≤ n−10
i or pu ≥ n−1/10

i .

Proof. Definem1 = 22di
+ 1; for 1 < k ≤ 3di , definemk =m

100
k−1
+ 1. It is straightforward to see

that 22di < m1 < m2 < · · · < m3di < 2222di

, so long as di is greater than some universal constant.
For each state u ∈ Tno-comm at layer at most di , there exists at most one mk with mk

−10 < pu <
mk
−1/10. Recall that Tno-comm has branching factor 3, and hence the number of states up to layer di

is less than 3di . By the pigeonhole principle, among the 3di distinct integersm1,m2, . . . ,m3di , there
exists one integer ni such that, for each state u ∈ Tno-comm at layer at most di , either pu ≤ n−10

i or

pu ≥ n−1/10
i . �

For each index i , the parameter ni is chosen to meet the statement of Lemma 1. Recall that
the goal of A is to calculate an estimate ñ that is within a multiplicative factor c of n, where
c > 1 is some constant. We select the first checkpoint d1 to be a large enough constant such that
c · ni < ni+1/c for all i . We define Ti as the subtree of Tno-comm that consists of all states u up to

layer di such that pu ≥ n−1/10
i . Notice that Ti ⊆ Ti+1 for all i .

Consider an execution of A on ni devices. Let t ∈ [1,di], and denote P (t)
i as the event that, for

each state u in layer t of the decision tree T , the number of devices entering u is within the range

ni · pu ± (t − 1) · n0.6
i if u is in layer t of Ti , and is 0 if u � Ti . We write Pi =

⋂di

t=1 P
(t)
i . Notice that

P (1)
i holds with probability 1.

Lemma 2. Let t < di and x ∈ {transmit, listen, idle}. Let v be a state in layer t of Ti such that the
number of devices entering v is within ni · pv ± (t − 1) · n0.6

i . Definem as the number of devices that

are in state v and perform action x at time t . The following holds with probability 1 −O (n−9
i). If

pv · pv�x ≥ n−1/10
i , thenm is within ni · pv · pv�x ± t · n0.6

i ; if pv · pv�x ≤ n−10
i , thenm = 0.

2It might be possible to reduce the height of the power tower. However, having any constant height is sufficient to prove

the desired lower bound, so we do not need to optimize the constant.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:11

Proof. According to our choice of ni , for each state u ∈ Tno-comm at layer at most di , either

pu ≤ n−10
i or pu ≥ n−1/10

i . Since pv · pv�x = pu for some u ∈ Tno-comm at layer at most di , either (i)

n−10
i ≥ pv · pv�x or (ii) pv · pv�x ≥ n−1/10

i is true.

First, consider the case n−10
i ≥ pv · pv�x . Notice that pv�x ≤ n−10

i /pv ≤ n−9.9
i , and recall t ≤

di < log logni . We upper bound the expected value ofm as follows.

E[m] ≤
(
ni · pv + (t − 1) · n0.6

i

)
· pv�x

≤ n−9
i + (t − 1) · n0.6

i · pv�x

≤ n−9
i + (t − 1) · n−9.3

i

< 2n−9
i .

By Markov’s inequality,m = 0 with probability at least 1 − 2n−9
i , as desired.

Next, consider the case pv · pv�x ≥ n−1/10
i . The value of E[m] is within pv�x · (ni · pv ± (t −

1) · n0.6
i), which is within the range ni · pv · pv�x ± (t − 1) · n0.6

i . Let δ = n−0.4
i /2. A simple calcu-

lation shows that δ · E[m] < n0.6
i and E[m] > n0.9

i /2. Notice that each device in the state v decides
which action to perform next independently. By a Chernoff bound, the probability thatm is within
1 ± δ factor of E[m] is at least 1 − 2 exp(−δ 2 · E[m]/3) ≥ 1 − 2 exp(−(n−0.4

i /2)2 · (n0.9
i /2)/3) > 1 −

O (n−9
i). Therefore, with such probability, m is in the range E[m](1 ± δ), which is within ni · pv ·

pv�x ± t · n0.6
i , as desired. �

Lemma 3. For an execution of A on ni devices, Pi holds with probability at least 1 − n−7
i .

Proof. For the base case, P (1)
i holds with probability 1. For each 1 < t ≤ di , we will show that

Pr[P (t)
i | P (t−1)

i] = 1 −O (n−8
i). Therefore, by a union bound on all t ∈ {1, . . . ,di }, we have:

Pr[Pi] = Pr

⎡⎢⎢⎢⎢⎣

di⋂
t=1

P (t)
i

⎤⎥⎥⎥⎥⎦
≥ 1 − di ·O (n−8

i) ≥ 1 −O (n−8
i log logni) ≥ 1 − n−7

i .

Let 1 < t ≤ di . Suppose that P (t−1)
i holds. This implies that, for each state v in layer t − 1 of Ti ,

the number of devices enteringv is within ni · pv ± (t − 2) · n0.6
i . The statement of Lemma 2 holds

for at most 3t−1 choices of statesv in layer t − 1 ofTi , and all 3 choices of x ∈ {transmit, listen, idle},
with probability at least

1 − 3 · 3t−1 ·O (n−9
i) ≥ 1 −O (n−9

i poly logni) ≥ 1 −O (n−8
i).

In particular, this implies that, with probability 1 −O (n−8
i), at time t − 1, the number of devices

transmitting is either 0 or greater than 1, which implies that no message is successfully sent.
Therefore, at layer t , all devices are confined in states within Tno-comm. Let u be the child of v
in Tno-comm such that the arc (v,u) corresponds to action x . Due to our choices of ni and Ti , if

u ∈ Ti , then pu = pv · pv�x ≥ n−1/10
i ; if u � Ti , then pu = pv · pv�x ≤ n−10

i . Therefore, in view of

the statement of Lemma 2, P (t)
i holds with probability at least 1 −O (n−8

i). �

Lemma 4. The no-communication tree Tno-comm has no terminal state u with pu � 0.

Proof. Suppose that u ∈ Tno-comm is a terminal state with pu � 0. Then there exists an index i
such that for all j ≥ i , u ∈ Tj . Among all {nj }j≥i , the decision of u is a correct estimate of at most
one nj . Therefore, the adversary can choose one network size nj′ from {nj }j≥i such that when
A is executed on nj′ devices, any device entering u gives a wrong estimate of nj′ . By Lemma 3,
with probability 1 − n−7

j′ > 1/nj′ , there is a device entering u, and hence the algorithm fails with

probability higher than 1/nj′ , a contradiction. �

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:12 Y.-J. Chang et al.

In the following lemma, we show how to force energy expenditure of devices.

Lemma 5. Define p (i)
idle

as the maximum probability for a device s that is in a state u in layer di of
Ti to be idle throughout the time interval [di ,di+1 − 1], where the maximum ranges over all states in

layer di of Ti . Then p (i)
idle
< 2−di .

Proof. For a device s to terminate within the time constraintT (ni), the device s must leave the
treeTno-comm by timeT (ni) < di+1 due to Lemma 4. Suppose that the device s is currently in a stateu
in layer di of Ti ⊆ Tno-comm. To leave the tree Tno-comm by timeT (ni), the device s must successfully
hear some messagem ∈ M by timeT (ni). SinceTi ⊆ Tno-comm, s has not heard any message by time
di − 1, and so at least one unit of energy expenditure in the time interval [di ,di+1 − 1] is required.

Recall that if Pi occurs, then all devices are confined in Ti up to layer di . If we executeA on ni

devices, then the probability that the runtime of a device exceedsT (ni) is at least Pr[Pi] · p (i)
idle

, and

so we must have 1/ni ≥ Pr[Pi] · p (i)
idle

. By Lemma 3, we have Pr[Pi] ≥ 1 − n−7
i > 1/2. Therefore,

p (i)
idle
≤ 1/(ni Pr[Pi]) < 2/ni ≤ 2 · 2−2di < 2−di , as desired. �

We are now in a position to prove the main result of this section.

Lemma 6. For any i ≥ 1, there exists a network size n satisfying di < n < di+1 such that if A is
executed on n devices, for any device s , with probability at least 1/2 the device s spends at least one
unit of energy in each of the time intervals [dj ,dj+1 − 1], 1 ≤ j ≤ i .

Proof. We select n = ni . Consider an execution ofA on ni devices, and let s be any one of the
ni devices. Let j ∈ {1, . . . , i}. We claim that, given that Pi holds, with probability 1 − 2 · 2−dj the
device s spends at least one unit of energy in the interval [dj ,dj+1 − 1]. Then, by a union bound
on all j ∈ {1, . . . , i}, the probability that the device s spends at least one unit of energy in each
of the intervals [dj ,dj+1 − 1], 1 ≤ j ≤ i , is at least 1 − (1 − Pr[Pi]) − 2

∑i
j=1 2−dj , which is greater

than 1/2 if d1 is chosen as a sufficiently large constant.
Next, we prove the above claim. Suppose Pi holds. In view of Lemma 5, if s enters a state in layer

dj of Tj , then s spends at least one unit of energy in the time interval [dj ,dj+1 − 1] with probability

1 − 2−dj . Thus, all we need to do is to show that the probability that s enters a state in layer dj of

Tj is at least 1 − 2−dj .
Recall that Tj is a subtree of Ti . Let u be a state in layer dj that does not belong to Tj . We have

pu < n−1/10
j . Since Pi holds, the number of devices entering the stateu is at most ni · n−1/10

j + (dj −
1) · n0.6

i . Since there are at most 3dj states in layer dj of Ti , the proportion of the devices that do
not enter a state in layer dj of Tj is at most

1

ni

(
ni · n−1/10

j + (dj − 1) · n0.6
i

)
· 3dj =

(
n−1/10

j + (dj − 1) · n−0.4
i

)
· 3dj < 2−dj ,

since ni ≥ nj ≥ 22dj
. �

If it is the case that T (n) ≤ exp(�) (n), for some constant �, where exp(i) is iterated i-fold appli-
cation of exp, then it is possible to set the checkpoints so arg maxi (di < n) = Θ(log∗ n), and so
Lemma 6 implies that the energy cost A is Ω(log∗ n). Therefore, we conclude Theorem 3 (which
is the case of T (n) = O (poly(n))).

3.3 Lower Bound in the Strong-CD Model

In this section, we prove Theorem 4. Let A be any T (n) time algorithm for Approximate Count-

ing in Strong-CD with failure probability at most 1/n. We show that the energy cost of A is
Ω(log log∗ n).

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:13

Overview. Similar to Section 3.2, we will construct a sequence of network sizes {ni } with check-
points {di } such di < ni < di+1 and T (ni) < di+1. Each index i is associated with a truncated deci-
sion tree Ti such that if we executeA on ni devices, then the execution history of all devices until
time di are confined to Ti with probability 1 − 1/poly(ni).

Suppose that the actual network size n is chosen from the set S = {n1, . . . ,nk }. The proof in
Section 3.2 says that it costs Ω(k) energy to estimate n, when n = nk . However, in the Strong-CD

model, the devices are capable of differentiating between silence and noise, and so they are able
to perform a binary search on S , which costs only O (logk) energy to estimate n.

The high-level idea of our proof of Theorem 4 is to demonstrate that this binary search strategy
is optimal. We will carefully select a path P in Tno-comm reflecting a worst-case scenario of the
binary search, and we will show that the energy consumption of any device whose execution
history follows the path P is Ω(log(log∗ n)).

Basic Setup. The definitions of the no-communication tree Tno-comm and probability estimate
pu are adapted from Section 3.2. In the Strong-CD model, each state in Tno-comm has exactly
four children, corresponding to all valid combinations of {λS , λN } and {transmit, listen, idle}:
(transmit, λN), (listen, λS), (listen, λN), and (idle,N/A). Notice that a device transmitting a mes-
sage never hears silence in the Strong-CD model. The definition of the checkpoints di and how
we select the network sizes ni are also the same as in Section 3.2.

Truncated Subtrees. The subtrees {Ti } are defined differently. For each index i , the subtree Ti ,
along with the sequence {mi,t }1≤t ≤di−1 indicating a likely status (noise or silence) of the channel
at time slot t when n = ni , is constructed layer-by-layer as follows:

Base Case. The first layer of Ti consists of only the initial state.
Inductive Step. For each 1 < t ≤ di , suppose that layer t − 1 of Ti has been defined. If there is

at least one state v in layer t − 1 of Ti with pv · pv�transmit ≥ ni
−1/10, set mi,t−1 = λN ;

otherwise, set mi,t−1 = λS . Let u be a state in layer t that is a child of a state w in Ti .
Let m ∈ {λN , λS ,N/A} and x ∈ {transmit, listen, idle} be the channel feedback associated
with the arc (w,u). We add u to layer t of Ti if the following two conditions are met: (i)
pu ≥ ni

−1/10 and (ii) x = idle orm =mi,t−1.

We discuss some properties of Ti . All states in Ti are in layers [1,di]. Let w be a layer (t − 1)
state in Ti , and let u1 and u2 be the two children ofv corresponding to (listen, λS) and (listen, λN).
Due to the definition of Ti , at most one of u1 and u2 is in Ti , and so each state in Ti has at most
three children. We do not have T1 ⊆ T2 ⊆ · · · in general.

We define the event Pi in the same way as in Section 3.2, but using the new definition of
Ti . We have the following lemma, whose proof is essentially the same as that of Lemma 3. The
only difference is that we need to show that for each time slot t , the designated channel feedback

mi,t ∈ {λN , λS } occurs with probability 1 − 1/poly(ni), given that the event P (t)
i occurs; this can

be achieved via a proof similar to that of Lemma 2.

Lemma 7. For an execution of A on ni devices, Pi holds with probability at least 1 − n−7
i .

A difference between Strong-CD and Sender-CD is that in the Strong-CD model it is possible to
have terminal states in Tno-comm. However, there is a simple sufficient condition to guarantee that
a state u in Tno-comm is not a terminal state.

Lemma 8. Let u be any state in both Ti and Tj for some i � j. Then u is not a terminal state.

Proof. Suppose that u is a terminal state. The decision of u is a correct estimate of at most
one of {ni ,nj }. Without loss of generality, assume that the decision of u is an incorrect estimate

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:14 Y.-J. Chang et al.

of nj . When A is executed on nj devices, any device entering u gives a wrong estimate of nj . By
Lemma 7, with probability 1 − n−7

j > 1/nj , there is a device entering u, and hence the algorithm

fails with probability higher than 1/nj , a contradiction. �

Let k ≥ 3 be an integer. Consider the set {n1, . . . ,nk }. Our goal is to find an index î such that,
during an execution of A on nî devices, with probability 1 − 1/poly(nî), there exists a device
that uses Ω(logk) energy. This is achieved by constructing a high energy path P = (u1,u2, . . . ,ut̂),
along with a sequence of sets of active indicesK1 ⊇ K2 ⊇ · · · ⊇ Kt̂ in such a way that i ∈ Kt implies
ut ∈ Ti . The path P is a directed path in the tree Tno-comm, and ut belongs to layer t , for each t . The
number t̂ will de chosen later. We will later see that any device entering the state ut is unable
to distinguish between {ni }i ∈Kt

. The path P is selected to contain at least Ω(logk) transitions

corresponding to listen or transmit. Thus, choosing î as any index in Kt̂ implies ut̂ ∈ T̂i , and so
t̂ ≤ dî . Then, Lemma 7 and the definition of Pi imply that in an execution ofA on nî devices, with
probability 1 − n−7

î
, at least nî · put̂

− (t̂ − 1) · n0.6
î
= Ω(n0.9

î
) > 1 device enters the state ut̂ along

the path P , and any such device uses Ω(logk) energy.
One may attempt to construct the path P by a greedy algorithm that iteratively extends the path

by choosing the child statev with the highest probability estimate pv . The “regular update” in our
construction of P is based on this strategy. However, this strategy alone is insufficient to warrant
any energy expenditure in P .

We briefly discuss how we force energy expenditure. Recall that (i) i ∈ Kt implies ut ∈ Ti , and
(ii) any device entering ut is unable to distinguish between the network sizes in {ni }i ∈Kt

. Suppose
i ∈ Kdi

, and let s be any device in the state udi
. The probability that s remains idle throughout the

time interval [di ,di+1 − 1] must be small. The reason is that s needs to learn whether the underlying
network size is ni by the time T (ni) < di+1. Suppose that (u1, . . . ,ut) have been defined, and we
have t = di and i ∈ Kdi

. Then it is possible to extend (u1, . . . ,ut) in such a way that guarantees
one energy expenditure in the time interval [di ,di+1 − 1]. This corresponds to the “special update”
in our construction of P .

Construction of the High Energy Path. The path P = (u1, . . . ,ut̂) and the sequence K1 ⊇ K2 ⊇
· · · ⊇ Kt̂ are defined as follows: We initialize P̃ = (u1) with u1 being the initial state, and let K1 =

{1, 2, . . . ,k }.
Stopping Criterion. The following update rules are applied repeatedly to extend the current path

P̃ = (u1, . . . ,ut) to a longer path (u1, . . . ,ut ′) (for some t ′ > t) until the stopping criterion |Kt | < 4

is reached. Then, we set P = P̃ . We will later see in the calculation of the shrinking rate of |Kt | in
the proof of Lemma 14 that the stopping criterion implies |Kt ′′ | ≥ 2 for all 1 ≤ t ′′ ≤ t̂ in the final
path P = (u1, . . . ,ut̂). By Lemma 8, this implies that all states in P are not terminal states.

Regular Update. We apply this rule if t � di for all i ∈ Kt . Let x� ∈ {transmit, listen, idle} be
chosen to maximize put �x� . If x� = idle, append the child of ut that corresponds to

performing x� at time t to the end of P̃ , and set Kt+1 = Kt . In what follows, suppose
x� ∈ {transmit, listen}. If x� = transmit, letm� = λN . If x� = listen, letm� ∈ {λS , λN } be
chosen to maximize the number of indices j ∈ Kt withmj,t =m

�. Append the child of ut

that corresponds to performing action x� and receiving feedbackm� at time t to the end

of P̃ , and set Kt+1 = {j ∈ Kt |mj,t =m
�}.

Special Update. We apply this rule if t = di for some i ∈ Kt . Let t ′ ∈ {di + 1, . . . ,di+1} and
x� ∈ {transmit, listen} be chosen to maximize the probability for a device currently in
ut to be idle throughout the time interval [t , t ′ − 2] and to perform x� at time t ′ − 1.
If x� = transmit, let m� = λN . Otherwise, let m� ∈ {λS , λN } be chosen to maximize the
number of indices j ∈ Kt \ {i} withmj,t ′−1 =m

�. We letut ′ be the unique descendant ofut

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:15

Fig. 4. Left: regular update. Right: special update. The shaded region indicates the set of candidate endpoints

to extend the current path P̃ = (u1, . . . ,ut).

resulting from applying t ′ − t idle actions throughout the time interval [t , t ′ − 2] and then

performing action x� and receiving feedbackm� at time t ′ − 1. The path P̃ = (u1, . . . ,ut)
is extended to P̃ = (u1, . . . ,ut ′). For each t ′′ ∈ {t + 1, . . . , t ′ − 1}, we setKt ′′ = Kt \ {i}. For
the new endpoint ut ′ , we set Kt ′ = {j ∈ Kt \ {i} |mj,t ′−1 =m

�}.

See Figure 4 for an illustration of the update rules. The reason that i must be removed from
the set of the active indices in a special update is that Ti only contains states up to layer di . In
what follows, we prove properties of the high energy path P = (u1, . . . ,ut̂) resulting from the
above procedure. For each t ∈ {1, . . . , t̂ }, we define the invariant It as ut ∈ Ti for each i ∈ Kt . By
Lemma 8, if It holds and |Kt | ≥ 2, then ut is not a terminal state.

Lemma 9. Consider a special update for P̃ = (u1, . . . ,ut), where t = di . Let s be a device in ut . Let

p (i)
idle

be the probability that s remains idle throughout the time interval [di , . . . ,di+1 − 1]. Suppose

that It holds. Then p (i)
idle
< 1/2.

Proof. Since It holds and i ∈ Kt , the state udi
belongs to Ti . Lemma 7 implies that with proba-

bility 1 − n−7
i there is a device s in the state ut when we executeA on ni devices. With probability

p (i)
idle

, such a device s violates the time constraint T (nj), since T (nj) < dj+1. Thus, we must have

1/ni ≥ (1 − n−7
i)p (i)

idle
, which implies p (i)

idle
< 1/2. �

Lemma 10. Let t ∈ {1, . . . , t̂ }, and let i ∈ Kt . If Īt holds for all t̄ ∈ {1, . . . , t − 1}, then put
> n−1/10

i .

Proof. We first make the following two observations: (i) in a regular update for P̃ = (u1, . . . ,ut),

we have put+1 ≥
put

3 ; (ii) in a special update for P̃ = (u1, . . . ,ut) with t = dj , we have put ′ ≥
put

2·(dj+1−dj) (1 − p (j)
idle

) >
put

4dj+1
. Recall that ut ′ is the new endpoint of P̃ after the special update. Refer

to Lemma 9 for the definition of p (i)
idle
< 1/2.

Now, fix any t ∈ {1, . . . , t̂ } and i ∈ Kt . Notice that di ≥ t and i = O (log∗ di). We write Nr < t
and Ns < i to denote the number of regular updates and special updates during the construction
of the first t − 1 states of P . In view of the above two observations, we have:

put
≥ (1/3)Nr · (1/4di)Ns > (1/3)t · (1/4di)i > (22di

)−1/10 > n−1/10
i ,

as desired. �

Lemma 11. Consider a regular update for P̃ = (u1, . . . ,ut), and consider any j ∈ Kt . Suppose that
ut ∈ Tj , and Īt holds for all t̄ ∈ {1, . . . , t }. If x� = transmit, thenm� = λN =mj,t .

Proof. By Lemma 10, put+1 = put
· put �transmit > n−1/10

j . Since ut , the parent of ut+1, is already

in Tj , according to the definition of Tj , we must add ut+1 to Tj , and set λN =mj,t . �

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:16 Y.-J. Chang et al.

Lemma 12. Consider a special update that extends P̃ = (u1, . . . ,ut) to (u1, . . . ,ut ′), and consider
any j ∈ Kt ′ . Suppose that ut ′−1 ∈ Tj , and Īt holds for all t̄ ∈ {1, . . . , t ′ − 1}. If x� = transmit, then
m� = λN =mj,t ′−1.

Proof. The proof is the same as that of Lemma 11. By Lemma 10, put ′ = put ′−1
· put �transmit >

n−1/10
j . Since ut ′−1, the parent of ut ′ , is already in Tj , according to the definition of Tj , we must add

ut ′ to Tj , and set λN =mj,t ′−1. �

Lemma 13. For each t ∈ {1, . . . , t̂ }, It holds.

Proof. For the base case, I1 holds trivially. Assume that Īt holds for all t̄ ∈ {1, . . . , t − 1}, we
prove that It holds. For any j ∈ Kt , we show that ut ∈ Tj .

Suppose that ut is resulting from applying action x and hearing the channel feedback m. By

Lemma 10, put
= put−1 · put �x > n−1/10

j . Since Kt ⊆ Kt−1, by induction hypothesis, ut−1 ∈ Tj . In

what follows, we do a case analysis for all choices of x ∈ {transmit, listen, idle}.
If x = idle, then ut must be in Tj , regardless of the choice of mj,t−1, according to the definition

of Tj . If x = listen, then according to the construction of P , we havem =mj,t−1, and so ut is in Tj .
If x = transmit, we havem = λN by the construction of P , andm = λN =mj,t−1 due to Lemma 11
and Lemma 12, and so ut is in Tj . �

We are now in a position to prove the main result of this section.

Lemma 14. For any positive integer k , there is a network size n satisfying d1 ≤ n ≤ dk+1 such that
in an execution of A on n devices, with probability at least 1 − n−7, there is a device that performs
Ω(logk) listen steps.

Proof. First, we bound the shrinkage rate of the size of active indices Kt . Consider a reg-

ular update for P̃ = (u1, . . . ,ut). If x� = idle, then Kt+1 = Kt . If x� = transmit, then we also
have Kt+1 = {j ∈ Kt | mj,t =m

�} = Kt in view of Lemma 11. If x� = listen, then our choice of
m� in the regular update implies |Kt+1 | ≥ |Kt |/2. Next, consider a special update that extends

P̃ = (u1, . . . ,ut) to (u1, . . . ,ut ′). Similarly, if x� ∈ {idle, transmit}, then Kt ′ = Kt \ {i}, where i is
the index such that t = di ; see Lemma 12. For the case of x� = listen, our choice ofm� in the spe-
cial update implies |Kt ′ | ≥ (|Kt | − 1) /2. Therefore, any device whose execution history following
the path P = (u1, . . . ,ut̂) performs Ω(log |K1 | − log |Kt̂ |) listen steps.

The stopping criterion, together with our calculation of the shrinkage rate of |Kt |, implies that
|Kt̂ | ≥ 2. We let î be any element in Kt̂ , and set n = nî . By Lemma 13, ut̂ ∈ T̂i . Then, Lemma 7
implies that in an execution of A on nî devices, with probability 1 − n−7

î
, at least nî · put̂

− (t̂ −
1) · n0.6

î
= Ω(n0.9

î
) > 1 devices enter the state ut̂ along the path P , and any such device performs

Ω(log |K1 | − log |Kt̂ |) = Ω(logk) listen steps. �

Similarly, so long as T (n) ≤ exp(�) (n), for some constant �, where exp(i) is iterated i-fold appli-
cation of exp, it is possible to set the checkpoints such that k = Θ(log∗ (dk+1)), and so Lemma 14
implies that the energy cost A is Ω(log log∗ n). Therefore, we conclude Theorem 4.

3.4 Other Problems

In this section, we discuss lower bounds of other problems.

Successful Communication. We demonstrate how our lower bounds proofs can be adapted to the
class C of all problems that require each device to perform at least one successful communica-
tion before it terminates. In particular, this includes Leader Election and the contention resolution
problem studied in Reference [7]. Notice that Approximate Counting, in general, does not require
each device to perform a successful communication before it terminates.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:17

Consider the Sender-CD model. LetA be a polynomial time algorithm, and a device in an execu-
tion ofAmust perform at least one successful communication before it terminates. Let the runtime
of A be T (n). Let n = ni for some i . Consider a device s in an execution of A on ni devices. Let
tsuc be time of the first successful communication of s . Then tsuc ≤ T (ni) < di+1 with probability
1 − 1/ni . By Lemma 3, with probability 1 − n−7

i , by time di all devices are confined in Ti ⊆ Tno-comm

and no successful communication occurs throughout the time interval [1,di − 1]. Thus, tsuc ≥ di

with probability 1 − n−7
i . Since tsuc is within [di ,di+1) with probability 1 − 1/poly(ni), this number

can be seen as a very loose estimate of the network size n = ni , but this estimate is already good
enough for the device s to distinguish n = ni from other candidate network sizes in {nj }. Since we
only consider the set of network sizes {nj } in our proof for Theorem 3, the proof applies toA. For
the same reason, Theorem 4 also applies to all problems in the class C in Strong-CD.

Loneliness Detection. We consider the loneliness detection problem whose goal is to distinguish
between n = 1 and n > 1; see References [22, 23]. We show that this problem is impossible to solve
in No-CD. Intuitively, in No-CD, a transmitter cannot simultaneously listen to the channel, and so
a device never receives any feedback from the channel if n = 1. However, when n is large enough
relative to t , with high probability a device also does not hear any message in the first t time slots.
It seems hopeless to have an algorithm that detects loneliness.

Let T (n) be any time function. Let A be any algorithm in No-CD that accomplishes the fol-
lowing: If n > 1, with probability at least 1 − 1/n, all devices terminate by time T (n) and output
“n > 1.” If n = 1, then the only participating device s terminates by time t and outputs “n = 1” with
probability p. We show that either t = ∞ or p = 0.

We simulate A in Sender-CD and apply the analysis in Section 3.2. Recall that in No-CD a
transmitter cannot simultaneously listen to the channel, and so for each terminal state u ∈ T \
Tno-comm such that the path P leading to u does not involve successfully listening to a message, the
output of u is identical to some state u ′ ∈ Tno-comm (which results from changing each successful
transmission to a failed transmission in the execution history).

For each stateu ∈ Tno-comm, there exists an index i such thatu ∈ Ti . By Lemma 3, in an execution
ofA on ni devices, with probability 1 − n−7

i , there is at least one device entering the state u. Thus,
no state in Tno-comm is a terminal state with output “n = 1.” However, in No-CD with n = 1 there
is no means for a listener to receive a message, and so we must have either t = ∞ or p = 0.

4 DETERMINISTIC UPPER BOUND

In this section, we present an optimal deterministic algorithm for Census in Sender-CD that si-
multaneously matches the Ω(log logN) energy lower bound of Theorem 2 and the Ω(N) time
lower bound of Reference [27, Theorem 1.6]. Notice that any Census algorithm also solves Leader

Election.

Theorem 5. There exists a deterministic Sender-CD algorithm that solves Census in O (N) time
with energy O (log logN).

Our algorithm is inspired by an energy-sharing technique introduced in Reference [27], which
is based on the concept of groups. We call an ID active if there is a device of such an ID; we also
write s to denote the device of ID s .

A group G is a set of active IDs meeting the following criteria: Each device belongs to at most
one group. Let G = (s1, . . . , sk) be the members of G, listed in increasing order by ID. The rank of
a device si ∈ G is defined as i . We assume each group G has a unique group ID. Similarly, we say
that a group ID x is active if there is a groupG whose ID is x . Each groupG has a device s ∈ G that
serves as the representative of G. We allow the representative of a group to be changed over time.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:18 Y.-J. Chang et al.

Each device s ∈ G knows (i) the group ID ofG, (ii) the current representative ofG, and (iii) the list
of all IDs in G.

4.1 A Simple Census Algorithm

In this section, we show how to use groups to distribute energy costs to devices. Consider
the following setting: All devices are partitioned into groups whose IDs are within the range

{1, . . . , N̂ }, and each group has size at least д. We present a No-CD deterministic algorithm

SimpleCensus(N̂ ,д) that elects a leader group G� such that the representative of G� knows the

list of IDs of all devices. The algorithm SimpleCensus(N̂ ,д) ends when the representative of G�

announces the list of IDs of all devices; the last time slot of SimpleCensus(N̂ ,д) is called the “an-

nouncement time slot.” The algorithm SimpleCensus(N̂ ,д) is executed recursively, as follows:

Base Case. If N̂ = 1, then there is only one groupG that contains all devices. By definition, each
device inG already knows the list of IDs of all devices inG. We setG� = G and let the representative
of G announce the list of IDs of all devices in G at the announcement time slot.

Inductive Step. Assume N̂ > 1. The algorithm invokes two recursive calls. For each group G, if
the rank of the current representative ofG is i , then the representative ofG in a recursive call will
be the device of rank i + 1 (or 1 if i = |G |). The two recursive calls are made on the two halves of the
ID space, S1 = {1, . . . , �N̂ /2�} and S2 = {�N̂ /2� + 1, . . . , N̂ }. The representative s of each group G
listens to the announcement time slots of the two recursive calls; after that, s learns the list of IDs
of all devices. The leader groupG� is selected as the one that contains the device of the smallest ID.
Then, we let the representative of G� announce the list of IDs of all devices at the announcement
time slot.

It is straightforward to see that the algorithm SimpleCensus(N̂ ,д) takes O (N̂) time and uses

O (� log N̂

д
�) energy. We summarize the result as a lemma.

Lemma 15. Suppose that all devices are partitioned into groups whose IDs are within the range

{1, . . . , N̂ }, and each group has size at least д. The algorithm SimpleCensus(N̂ ,д) elects a leader
group G� such that the representative of G� knows the list of IDs of all devices. The algorithm takes

O (N̂) time and uses O (� log N̂

д
�) energy.

4.2 An Optimal Census Algorithm

In this section, we prove Theorem 5. Without loss of generality, we assume that logN is an integer.
Our algorithm consists of O (log logN) phases. All devices participate initially and may drop out
in the middle of the algorithm. We maintain the following invariant Ii at the beginning of the ith
phase:

Invariant Ii . (i) All participating devices are partitioned into groups of size exactly 2i−1 in the
group ID space {1, . . . ,N }. (ii) For each device that drops out during the first i − 1 phases, its ID is
remembered by the representative of at least one group.

Termination. There are two different outcomes of our algorithm. For each index i , the algorithm
terminates at the beginning of the ith phase if either (i) there is only one group remaining, or (ii)
i = log logN + 1.

Suppose that at the beginning of the ith phase there is only one group G remaining; then the
algorithm is terminated with the representative ofG knowing the list of IDs of all devices. Suppose
that more than one group remains at the beginning of the (log logN + 1)th phase; as the groups
that survive until this moment have size logN , we can apply SimpleCensus(N , logN) to solve
Census in O (N) time with O (1) energy cost.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:19

Overview. At the beginning of the first phase, each device s forms a singleton groupG = {s}, and
so the invariant I1 is trivially met. Throughout the algorithm, the group ID of a groupG is always
defined as the minimum ID of the devices in G.

During the ith phase, each group attempts to find another group to merge into a group with
size 2i . Each group G that is not merged drops out, and the list of IDs in G is remembered by the
representative of at least one other group G ′ that does not drop out. In what follows, we describe
the algorithm for the ith phase. At the beginning of the ith phase, it is guaranteed that the invariant
Ii is met. We also assume that the number of groups is at least 2, since otherwise the terminating
condition is met.

Step 1—Merging Groups. The first step of the ith phase consists of the procedure DetLE(N),
which costs O (N) time and O (log logN) energy. For each device s , we write I (s) to denote the set
of all IDs that the device s has heard during the first i − 1 phases (including the ID of s). Notice that

I (s) ⊇ G if s belongs to the group G. The procedure DetLE(N̂) is defined recursively as follows:

Base Case. Suppose that the group ID space S has size N̂ = 2, and there are exactly two groups
G1 and G2. Using two time slots, the representatives s1 and s2 of the two groups exchange the
information I (s1) and I (s2), and then the two groups are merged.

Inductive Step. Suppose that the group ID space S has size N̂ > 2, and there are at least two

groups. Uniformly divide the group ID space S = {1, . . . , N̂ } into N ′ = �
√
N̂ � intervals S1, . . . , SN ′ ,

and each of them has size at most N ′ = �
√
N̂ �.

For each j ∈ {1, . . . ,N ′}, let zj be the number of groups whose ID is within S j . In the Sender-CD

model, testing whether zj = 1 can be done by letting the representatives of all groups whose ID are
in S j speak simultaneously. If zj � 1, invoke a recursive call to DetLE(N ′) on the group ID space
S j ; the recursive call is vacuous if z = 0.

Let G be the set of all groups that do not participate in the above recursive calls. That is,G ∈ G
if the ID ofG belongs to an interval S j with zj = 1. In the Sender-CD model, we can check whether
|G| = 1 in one time slot by letting the representatives of groups in G speak simultaneously. For
the case of |G| � 1, we invoke a recursive call to DetLE(N ′) on G, where the ID space is S ′ =
{1, . . . ,N ′} and the group ID of the group from S j is j. For the case of |G| = 1, we allocate one time
slot to let the representative s of the unique group G ∈ G announce I (s) to the representatives of
all other groups, and then G drops out from the algorithm.

Analysis. By the end of DetLE(N̂), for each group G whose representative is s , we have (i) G is
merged with some other groupG ′, or (ii)G drops out, and I (s) is remembered by the representative
s ′ of some other group G ′.

Let E (N̂) and T (N̂) denote the energy complexity and the time complexity of DetLE(N̂) on

group ID space of size N̂ . We have T (2) = E (2) = O (1) and

E (N̂) = E (�
√
N̂ �) +O (1)

T (N̂) = (�
√
N̂ � + 1) ·T (�

√
N̂ �) +O (�

√
N̂ �).

It is straightforward to show that E (N̂) = O (log log N̂) and T (N̂) = O (N̂).

Step 2—Disseminating Information and Electing New Representatives. Notice that only the repre-
sentatives of the groups participate in Step 1. Let G be a group whose representative is s . If G is
merged with some other group G ′ whose representative is s ′, then we need all members in G to
know I (s ′) and the list of members inG ′. IfG decides to drop out from the algorithm, then we need
all members inG to know about this information. We allocate N time slots for the representatives

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:20 Y.-J. Chang et al.

to communicate with other group members. The energy cost for the information dissemination is
O (1) per device.

To save energy, we need each device to serve as a representative for not too many phases. For the
first phase, each device s inevitably serves as the representative of its groupG = {s}. For i > 1, for
each groupG participating in the ith phase, there must be some member ofG that has only served
as a representative once. Among all members ofG ′ that have only served as a representative once,
we let the one that has the minimum ID to be the representative ofG during the ith phase. There-
fore, each device serves as a representative for at most two phases throughout the entire algorithm.

Time and Energy Complexity. We analyze the runtime and the energy cost of the entire algorithm.
The energy cost for a device s in one phase is O (log logN) if s serves as a representative, and is
O (1) otherwise. There are O (log logN) phases, and each device serves as a representative for no
more than two phases throughout the algorithm. Therefore, the energy cost of the algorithm is
O (log logN) per device. The runtime of the algorithm is O (N log logN), since each phase takes
O (N) time. The runtime can be further reduced toO (N) by doing the following preprocessing step:
Uniformly divide the ID space into N

log log N
intervals, and call SimpleCensus(log logN , 1) on each

interval. This takesO (N) time andO (log log logN) = o(log logN) energy. After the preprocessing,
each interval has a leader that knows the list of IDs of all devices in the interval. We only let the
leaders of the N

log log N
intervals participate in our algorithm. This reduces the size of the ID space

from N to N ′ = N
log log N

, and so the runtime is improved to O (N ′ log logN ′) = O (N).

5 DETERMINISTIC UPPER BOUND FOR DENSE INSTANCES

In this section, we present a deterministic algorithm that solves Census with inverse Ackermann
energy cost when the input is dense in the ID space, i.e., the number of devices n is at least c · N for
a fixed constant c > 0. This improves upon a prior work of Jurdzinski et al. [27] that usesO (log∗ N)
energy. For any two positive integers i and j, we define the two functions ai (j) and bi (j) as follows:

ai (j) =

{
j9 if i = 1,

a (j)
i−1 (j8) if i > 1,

bi (j) =
⎧⎨
⎩

2j if i = 1,

2j∏j−1
r=0 bi−1

(
a (r)

i−1 (j8)
)

if i > 1.

The notation f (r) is iterated r -folded application of f , which is defined as f (0) (x) = x and f (r) (x) =
f (f (r−1) (x)). We define the inverse Ackermann function α (N) to be the minimum number i such
that bi (55) ≥ N . This is not the standard definition of α , but it is identical to any other definition
from the literature, up to ±O (1). The goal of this section is to prove the following theorem:

Theorem 6. Suppose the number of devices n is at least c · N for a fixed constant c > 0. There is a
deterministic No-CD algorithm that solves Census in time O (N) with energy cost O (α (N)).

Our algorithm is based on the recursive subroutine DenseAlgoi (N̂ , j), which is capable of merg-
ing groups into fewer and larger ones using very little energy. The parameter i is a positive integer

indicating the height of the recursion. The parameter N̂ is an upper bound on the size of the group

ID space; for technical reasons, we allow N̂ ≥ 1 to be a fractional number. The parameter j is a

lower bound on the group size; we assume j ≥ 55. The precise specification of DenseAlgoi (N̂ , j) is
as follows:

Input. Prior to the execution of DenseAlgoi (N̂ , j), the set of all devices are partitioned into groups.

The size of the group ID space is at most N̂ . Each group has size at least j. The total number

of groups is at least N̂ / log j.
Output. Some devices drop out during the execution of DenseAlgoi (N̂ , j). The fraction of the

devices that drop out is at most 2/j of all devices. After the execution of DenseAlgoi (N̂ , j),

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:21

the remaining devices form new groups. The size of the group ID space is at most N ′ =
max{1, N̂/bi (j)}. Each group has size at least ai (j). The total number of groups is at least

N ′/logai (j). We allocate N ′ “announcement time slots” at the end of DenseAlgoi (N̂ , j).
At the kth announcement time slot, the representative of the group G of ID k announces
the list of all members of G.

We have more stringent requirements for the case of i = 1: (i) the fraction of the devices
that drop out is at most 1/j of all devices, and (ii) the total number of groups is at least
N ′/8 log j.

Complexity. The procedure DenseAlgoi (N̂ , j) takes O (N̂) time and consumes O (i) energy per
device.

In Sections 5.1 and 5.2, we present and analyze the subroutine DenseAlgoi (N̂ , j). We have the
following auxiliary lemma:

Lemma 16. Suppose the ID space of devices is S = {1, . . . ,N }, and there is a group G of size ϵN .
Then there is a deterministic algorithm that solves Census in O (N) time and O (1/ϵ) energy.

Proof. The algorithm is as follows: Partition the ID space S into k = ϵN = |G | intervals
S1, . . . , Sk , where each interval has size at most �1/ϵ�. Let si be the device in G that is of rank
i , and let Li be the list of IDs of all devices in Si . For each 1 ≤ i ≤ k , we let si learn Li by having si

listens for |Si | = O (1/ϵ) time slots, where each device in Si transmits once. Next, we allocate k − 1
time slots to do the following: For i = 1 to k − 1, let si transmit

⋃i
j=1 L(sj) and si+1 listen. After

that, sk knows the list of IDs of all devices, and we let sk announce the list while all other devices
listen to the channel. �

We are now in a position to prove Theorem 6. The proof is based on Lemma 16 and the procedure

DenseAlgoi (N̂ , j). Recall that the number of devices is promised to be at least cN . We choose

j∗ = max{55, 2 �1/c � } and let i∗ be the minimum number i such that N /bi (j∗) ≤ 1. To artificially
satisfy the input invariant, we imagine that each device simulates a group of log j∗ = O (1) devices.
Notice that the group ID space is {1, . . . ,N }, and the total number of groups is n ≥ cN ≥ N / log j∗.
Thus, the requirement for executing DenseAlgoi∗ (N , j

∗) is met. We execute DenseAlgoi∗ (N , j
∗),

which costs O (N) time and O (i∗) = O (α (N)) energy. During the execution, at most 2/j∗ fraction
of devices drop out. All remaining devices form 1 = max{1,N /bi∗ (j

∗)} group. After that, we can
solve Census by the algorithm of Lemma 16 using additional O (N) time and O (1) energy.

5.1 Base Case

In this section, we present the base case i = 1 of the subroutine DenseAlgoi (N̂ , j) and show that
it meets the required specification. At the beginning, all devices are organized into groups of size

at least j, and the group ID space S has size at most N̂ . We partition the group ID space S into

k = �N̂ /2j+1� intervals S1, . . . , Sk such that each interval has size at most 2j+1. For each interval Sl ,
we run SimpleCensus(|Sl |, j) to merge all groups in the interval Sl into a single groupG, and let l be
the ID ofG. After that, for each groupG of size less than j9, all devices inG drop out. The execution

of SimpleCensus(|Sl |, j) takes O (|Sl |) time and O (1) energy. Thus, algorithm DenseAlgo1 (N̂ , j)

costsO (N̂) time andO (1) energy. It is clear that each group in the output has size at least j9 = a1 (j).
We show that the output meets the remaining requirements.

Size of Group ID Space. The size of the output group ID space is k = �N̂ /2j+1�. For the

case of N̂/2j+1 ≤ 1, we have k = 1. For the case of N̂ /2j+1 > 1, we have k = �N̂ /2j+1� <
N̂/2j = N̂ /b1 (j). Thus, the size of the group ID space k is always upper bounded by

N ′ = max{1, N̂/b1 (j)}.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:22 Y.-J. Chang et al.

Proportion of Terminated Devices. The number of devices that are terminated is at most

zterm = (j9 − 1)k < j9N̂ /2j . The total number of devices is at least zinit = jN̂ / log j. Thus,

the proportion of the terminated devices is at most f = zterm/zinit =
j8 log j

2j . As long as
j ≥ 55, we have f < 1/j.

Number of Groups. The total number of devices is at least zinit = jN̂ / log j. The size of each
output group is at most j2j+1. Since the proportion of the terminated devices is at most
1/j ≤ 1/55 < 1/2, the number of output groups is at least

zout = max{1,
(zinit/2)/(j2j+1)�} = max{1,
zinit/(j2
j+2)�}.

We show that the inequality zout ≥ max{1, N̂/(2j 8 log j)} ≥ N ′/8 log j holds. For the
case of zout = 1, the inequality is already met. If zout > 1, we have zout =
zinit/(j2

j+2)� ≥
zinit/(j2

j+3) = N̂ /(2j 8 log j), as desired.

5.2 Inductive Step

In this section, we consider the case of i > 1. The algorithm DenseAlgoi (N̂ , j) begins with an ini-

tialization step, which increases the group size from j to j9 by executing DenseAlgo1 (N̂ , j). After
that, it recursively invokes DenseAlgoi−1 (Xr ,Yr), for r from 1 to j�, where j� and the sequences
(Xr)r ∈[j�] and (Yr)r ∈[j�] will be determined. Each device participates in the initialization step and
exactly one recursive call to DenseAlgoi−1, so the energy cost per device isO (1) +O (i − 1) = O (i).

After the initialization step, each groupG has size j9. For each groupG, we extract j� subgroups
G1,G2, . . . ,G j� from the members of G, each with size exactly j8 (we will later see that j� ≤ j).
The subgroup Gr is responsible for representing G in the r th recursive call DenseAlgoi−1 (Xr ,Yr).
For 1 ≤ r < j�, as Gr and Gr+1 have the same size, we set up a bijection ϕr : Gr → Gr+1. For each
device s in the r th subgroup Gr , after s finishes the r th recursive call, if s has not dropped out
yet, ϕr (s) continues to play the role of s in the (r + 1)th recursive call. ϕr (s) learns all information
known to s by listening to an announcement time slot of the r th recursive call.

Parameters of Recursive Calls. If N̂ /2j < 2, then only one group remains after the initialization

step DenseAlgo1 (N̂ , j), and so we are already done without doing any more recursive calls. In what

follows, we assume N̂ /2j ≥ 2. The two sequences (Xr)r ∈[j�] and (Yr)r ∈[j�] are defined as follows:
We choose j� as min{j, arg minr (Xr+1 < 2)}.3

Xr =

{
N̂ /2j if r = 1,
Xr−1/bi−1 (Yr−1) if r > 1,

Yr =

{
j8 if r = 1,
ai−1 (Yr−1) if r > 1.

We verify that the requirement of executing the r th recursive call is met, for each 1 ≤ r ≤ j�.

Base Case. For r = 1, we show that the requirement of DenseAlgoi−1 (X1,Y1) is met after the

initialization step DenseAlgo1 (N̂ , j): (i) the number of groups is at least N̂ /2j

8 log j
= X1/ logY1;

(ii) the size of each group is j8 = Y1; (iii) the group ID space is at most N̂ /2j = X1.
Inductive Step. For 1 < r ≤ j�, we show that the requirement of DenseAlgoi−1 (Xr ,Yr) is met

after the previous recursive call DenseAlgoi−1 (Xr−1,Yr−1): (i) the number of groups is at

least
Xr−1/bi−1 (Yr−1)

log ai−1 (Yr−1) = Xr / logYr ; (ii) the size of each group is ai−1 (Yr−1) = Yr ; (iii) the group

ID space is at most Xr−1/bi−1 (Yr−1) = Xr .

It is also straightforward to see that the output (group size, number of groups, and group ID
space size) of the last recursive call DenseAlgoi−1 (X j� ,Yj�) already satisfies the requirement of

3We will later see that Xr represents the input group ID space for executing the r th recursive call. If Xr+1 < 2 for some

r < j , then we can terminate after the r th recursive call.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:23

the output of DenseAlgoi (N̂ , j), since we have X j/bi−1 (Yj) = N̂ /bi (j) and ai−1 (Yj) = ai (j). Next,

we show that the number of devices that drop out during the execution of DenseAlgoi (N̂ , j) is at
most 2/j of all devices. Let fi (j) be the fraction of devices the are terminated during the execution

of DenseAlgoi (N̂ , j). The analysis in Section 5.1 implies that f1 (j) ≤ 1
j
. We prove that fi (j) ≤ 2

j
.

1 − fi (j) ≥ (1 − f1 (j))

j�∏
r=1

(1 − fi−1 (Yr))

≥ (1 − 1/j)

j�∏
r=1

(1 − 2/Yr) (by induction hypothesis)

≥ (1 − 2/j).

Energy Complexity. During DenseAlgoi (N̂ , j), each device uses O (1) energy in the initialization
step. Consider a device s participating in the r th recursive call. If r > 1, then s uses O (1) energy
to learn the information of ϕ−1

r−1 (s). The execution of DenseAlgoi−1 (Xr ,Yr) costs O (i − 1) energy.

Thus, each device spends O (i) energy during the execution of DenseAlgoi (N̂ , j).

Time Complexity. Let Ti (N̂) be the runtime of DenseAlgoi (N̂ , j) (for any j). The analysis in Sec-

tion 5.1 implies that T1 (N̂) ≤ CN̂ for some constant C . We prove that Ti (N̂) ≤ 10CN̂ = O (N̂), for
all i .

Ti (N̂) = T1 (N̂) +

j�∑
r=1

Ti−1 (Xr)

≤ CN̂ +

j�∑
r=1

(10C)Xr (by induction hypothesis)

= CN̂ + 10C

j�∑
r=1

Xr

≤ CN̂ + 10C · 0.9N̂
= 10CN̂ .

To summarize, DenseAlgoi (N̂ , j) costs O (N̂) time and O (i) energy, and the constant hidden in

O (N̂) is an absolute constant independent of i .

6 RANDOMIZED UPPER BOUNDS

In this section, we present randomized algorithms for Approximate Counting matching the en-
ergy complexity lower bound proved in Section 3. In Reference [7], a randomized algorithm for
Approximate Counting in Strong-CD using O (log(log∗ n)) energy is devised. They showed that
any circuit of constant fan-in, with input bits encoded as noise = 1 and silence = 0, can be sim-
ulated with O (1) energy cost, and an estimate of the network size can be computed by such a
circuit. The circuit simulation of Reference [7] makes extensive use of collision detection. In this
section, we demonstrate a different approach to Approximate Counting based on our dense Census

algorithm, which can be implemented in all four collision detection models.

Theorem 7. There is an algorithm that, with probability 1 − 1/poly(n), solves Approximate Count-

ing in no (1) time with energy cost O (log∗ n) if the model is Sender-CD or No-CD, or O (log(log∗ n)) if
the model is Strong-CD or Receiver-CD.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:24 Y.-J. Chang et al.

6.1 Verifying the Correctness of an Estimate

In this section, we show how to use a dense Census algorithm to verify whether a given estimate
ñ of network size is correct. Suppose that there are n devices agreeing on a number ñ. We present
an algorithm Verify(ñ) that is able to check whether ñ is a good estimate of n. We require that
(i) a leader is elected if n/1.5 ≤ ñ ≤ 1.5n, and (ii) no leader is elected if ñ ≥ 1.9n or ñ ≤ n/1.9.4

The algorithm consists of two steps: The first step is to assign IDs in [N] to some devices, where
N = Θ(log ñ). The second step is to check whether ñ is a correct estimate via a dense Census

algorithm on the ID space [N] with a density parameter c to be determined.

Step 1—ID Assignment. We first consider the case where sender-side collision detection is avail-
able (i.e., Strong-CD and Sender-CD). We initialize Sbad = ∅. The procedure of ID assignment con-
sists of N time slots. For each i ∈ [N], at the ith time slot each device s � Sbad transmits a message
with probability 1/ñ to bid for the ID i . If a device s hears back its message at the ith time slot, then
s is the only one that transmits at the ith time slot, and so we let s assign itself the ID i .

We let β be an upper limit on the number of times a device can transmit, where β is a sufficiently
large constant. The purpose of setting this limit is to ensure that the energy cost is low. For each
device s , if s has already transmitted for β times during the first i time slots, then we add s to the
set Sbad at the end of the ith time slot, and s is not allowed to transmit in future time slots during
the ID assignment.

Next, we consider the case where sender-side collision detection is not available (i.e., Receiver-

CD and No-CD). In this case, a transmitter does not know whether it is the only one transmitting.
To resolve this issue, we increase the number of time slots from N to 2N .

Let i ∈ [N]. At the beginning of the (2i − 1)th time slot, each device s � Sbad joins the set Ai

with probability 1/ñ, and then each device s � Sbad ∪Ai joins the set Bi with probability 1/ñ.
We will assign the ID i to a device s if s ∈ Ai and |Ai | = |Bi | = 1. The following procedure allows

each device s ∈ Ai to test if |Ai | = |Bi | = 1: At the (2i − 1)th time slot, all devices in Ai transmit,
and all devices in Bi listen. At the (2i)th time slot, all devices in Bi that have successfully received a
message at the (2i − 1)th time slot transmit, and all devices in Ai listen. Notice that a device s ∈ Ai

successfully receives a message at the (2i)th time slot if and only if |Ai | = |Bi | = 1.
Similarly, we set β as an upper limit on the number of times a device can join the sets Ai and

Bi , i ∈ [N]. Any device s that has already joined these sets for β times is added to the set Sbad.
Define c = 0.325 if the model is Strong-CD or Sender-CD; otherwise, let c = 0.3252. The follow-

ing lemma relates the density of the ID space to the accuracy of the estimate ñ:

Lemma 17. Suppose that ñ ≥ 100. With probability 1 −min{n−Ω(1), ñ−Ω(1) }, the following condi-
tions are met: (i) when ñ ≥ 1.9n or ñ ≤ n/1.9, either |Sbad | > 0 or the number of IDs that are assigned
to devices is smaller than cN ; (ii) when n/1.5 ≤ ñ ≤ 1.5n, we have |Sbad | = 0 and the number IDs that
are assigned to devices is higher than cN .

Proof. We write A to denote the ID assignment algorithm, and write A′ to denote a variant
of the ID assignment algorithm that allows each device s ∈ Sbad to continue participating (i.e.,
there is no upper limit about the number of transmission per device). The algorithm A′ is much
easier to analyze thanA.5 It is straightforward to see that inA′ the probability that an ID i ∈ [N]
is assigned is Pr[Binomial(n, 1/ñ) = 1] (resp., Pr[Binomial(n, 1/ñ) = 1] · Pr[Binomial(n − 1, 1/ñ) =
1]) when the model is Strong-CD or Sender-CD (resp., Receiver-CD or No-CD).

We only prove the lemma for the case where the model is Strong-CD or Sender-CD; the other
case is similar. Observe that the following inequalities hold, given that ñ ≥ 100. If ñ ≥ 1.9n or

4In general, the constants 1.5 and 1.9 can both be made arbitrarily close to 1, at the cost of more time and energy.
5In the analysis of A′, we still maintain the set Sbad, but the devices in Sbad do not stop participating.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:25

ñ ≤ n/1.9, then

Pr[Binomial(n, 1/ñ) = 1] < 0.32 = c − 0.005 < c .

If n/1.5 ≤ ñ ≤ 1.5n, then

Pr[Binomial(n, 1/ñ) = 1] > 0.33 = c + 0.005 > c .

We use subscript to indicate whether a probability or an expected number refers toA orA′. For
instance, given an event A, the notation PrA[A] is the probability that A occurs in an execution of
A. We write X to denote the number of IDs in [N] assigned to devices. We define μ as EA′[X] =
N Pr[Binomial(n, 1/ñ) = 1].

Case 1. Suppose ñ ≥ 1.9n. We need to prove that PrA[|Sbad | = 0 ∧ X ≥ cN] = ñ−Ω(1) . Observe
that

PrA[|Sbad | = 0 ∧ X ≥ cN] = PrA′[|Sbad | = 0 ∧ X ≥ cN] ≤ PrA′[X ≥ cN].

Thus, it suffices to show that PrA′[X ≥ cN] = ñ−Ω(1) . Let δ = c−Pr[Binomial(n,1/ñ)=1]
Pr[Binomial(n,1/ñ)=1] > 0. Then

PrA′[X ≥ cN] = PrA′[X ≥ (1 + δ)μ]. By a Chernoff bound, this is at most exp(−δμ/3) if δ > 1,
and is at most exp(−δ 2μ/3) if δ ≤ 1. Since c − Pr[Binomial(n, 1/ñ) = 1] > 0.005, we have: δμ =

(c − Pr[Binomial(n, 1/ñ) = 1])N ≥ 0.005N and δ 2μ = (c−Pr[Binomial(n,1/ñ)=1])2N
Pr[Binomial(n,1/ñ)=1] ≥ 0.0052N . Thus,

PrA′[X ≥ cN] = exp(−Ω(N)) = ñ−Ω(1) .

Case 2. Suppose n/1.5 ≤ ñ ≤ 1.5n. We need to prove that PrA[|Sbad | > 0 ∨ X ≤ cN] = ñ−Ω(1) .
Observe that

PrA[|Sbad | > 0 ∨ X ≤ cN] ≤ PrA[|Sbad | > 0] + PrA[X ≤ cN ∧ |Sbad | = 0]

≤ PrA′[|Sbad | > 0] + PrA′[X ≤ cN ∧ |Sbad | = 0]

≤ PrA′[|Sbad | > 0] + PrA′[X ≤ cN].

Thus, it suffices to show that both PrA′[X ≤ cN] and PrA′[|Sbad | > 0] are upper bounded by

ñ−Ω(1) . Let δ = Pr[Binomial(n,1/ñ)=1]−c
Pr[Binomial(n,1/ñ)=1] > 0. Then PrA′[X ≤ cN] = PrA′[X ≤ (1 − δ)μ]. By a Cher-

noff bound, this is at most exp(−δμ/3) if δ > 1, and is at most exp(−δ 2μ/2) if δ ≤ 1. Similarly,

Pr[Binomial(n, 1/ñ) = 1] − c > 0.005, and hence PrA′[X ≤ cN] = exp(−Ω(N)) = ñ−Ω(1) .
Next, we calculate PrA′[|Sbad | > 0]. The probability that a device s joins Sbad in A′ is

Pr[Binomial(N , 1/ñ) ≥ β] ≤ N β ñ−β .

By a union bound over all n devices, PrA′[|Sbad | > 0] ≤ N β ñ−βn = ñ−Ω(1) , since N = Θ(log(ñ)),
n/1.5 ≤ ñ ≤ 1.5n, and β = Ω(1).

Case 3. Suppose ñ ≤ n/1.9. We need to prove that PrA[|Sbad | = 0 ∧ X ≥ cN] = n−Ω(1) . Similar to

the first case, it suffices to show that PrA′[X ≥ cN] = n−Ω(1) . Notice that the same calculation for
the first case can be applied here, and so we already have PrA′[X ≥ cN] = ñ−Ω(1) . Thus, we only
need to focus on the situation where n is significantly larger than ñ.

Assuming n ≥ ñ2, we have

PrA′[X > 0] ≤ N Pr[Binomial(n, 1/ñ) = 1]

≤ N (n/ñ) (1 − 1/ñ)n−1

= exp(−Ω(n/ñ))

= exp(−Ω(
√
n)). �

Step 2—Checking the Correctness of Estimate.. We run a dense Census algorithm with ID space
[N] and parameter c . It is possible that a device is assigned to multiple IDs, and in such case the

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:26 Y.-J. Chang et al.

device simulates multiple devices of different IDs in the dense Census algorithm. If the number
of IDs that are assigned is at least cN , then after solving Census, all devices that are assigned IDs
know the list of all IDs in [N] that are assigned to devices.

We first consider the case where sender-side collision detection is available. Let s1 be the device
that has the smallest ID. We allocate a special time slot t∗, where s1 and all devices in Sbad transmit.
The device s1 elects itself as the leader if (i) s has collected a list of IDs of size at least cN during
the Census algorithm (i.e., the number of IDs that are assigned to devices is at least cN), and (ii) s
is able to hear back its message at time t∗, i.e., Sbad = ∅.

For the case where sender-side collision detection is not available, s1 cannot simultaneously
transmit and listen. To solve this issue, we let s2 be the device that holds the smallest ID in [N]
excluding the ones assigned to s1. Notice that a device can be assigned at most β IDs. We let s2

listen to the time slot t∗, and s2 elects itself as the leader if s2 hears a message from s1 and the ID
list resulting from the Census algorithm has size at least cN .

The correctness of Verify(ñ) follows from Lemma 18. The first step costs O (N) = O (log ñ) time
and O (β) = O (1) energy. The second step costs O (N) = O (log ñ) time and O (α (N)) = O (α (ñ))
energy. We conclude the following lemma:

Lemma 18. With probability 1 −min{n−Ω(1), ñ−Ω(1) }, the algorithm Verify(ñ) accomplishes the fol-
lowing in time O (log ñ) with energy O (α (ñ)). A leader is elected if n/1.5 ≤ ñ ≤ 1.5n, and no leader
is elected if ñ ≥ 1.9n or ñ ≤ n/1.9.

The asymptotic time complexity of the algorithm Verify(ñ) is the same as the algorithm in
Reference [7], which works in Strong-CD and is based on circuit simulation. However, the cir-
cuit simulation takes only O (1) energy while Verify(ñ) needs O (α (ñ)) energy.

6.2 Exponential Search

Let D = {d1,d2, . . .} be an infinite set of positive integers such that di+1 ≥ γ · di for each i ≥ 1,
where γ > 1 is some large enough constant. We define î as the index such that dî−1 < logn ≤
dî , where n is the network size. For the Strong-CD and the Receiver-CD models, we present an

algorithm ExpSearch(D) that estimates î within a ±1 additive error in O (log î) time.
We first define a 1-round subroutine Test(i) as follows: Each device transmits a message with

probability 2−di , and all other devices listen to the channel. For each listener s , it decides “i ≥
î” if the channel is silent, and it decides “i < î” otherwise. Each transmitter decides “i < î .” It is
straightforward to see that all devices make the same decision. We have the following lemma:

Lemma 19. Consider an execution of Test(i). The following holds with probability 1 − n−Ω(1) . If
i ≤ î − 2, then all devices decide “i < î .” If i ≥ î + 1, then all devices decide “i ≥ î .”

Proof. Recall that γ = Ω(1) is chosen to be sufficiently large. For any i ≤ î − 2, the prob-

ability that Test(i) returns “i ≥ î” is Pr[Binomial(n, 2−di) = 0] = n(1 − 2−di)n ≤ n(1 − 2
log n

γ)n =

n · (1 − n−1/γ)n ≤ n · exp(−n1−1/γ) = nΩ(1) . For any i ≥ î + 1, the probability that Test(i) returns

“i < î” is Pr[Binomial(n, 2−di) > 0] ≤ n · 2−di ≤ n · 2−γ log n = n−γ+1 = nΩ(1) . �

Based on the subroutine Test(i), the procedure ExpSearch(D) is defined as follows: The first
step is to repeatedly run Test(i) for i = 1, 2, 4, 8, . . . until we reach the first index i ′ such that all
devices decide “i ′ ≥ î” during Test(i ′). Then, we conduct a binary search using Test(i) on the set
{1, 2, 3, . . . , i ′} to find the smallest index i such that Test(i) returns “i ≥ î .” Due to Lemma 19, if all
Test(i) do not fail, then it is clear that such an index ĩ satisfies that ĩ ∈ {î − 1, î, î + 1}. We conclude
the following lemma:

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:27

Lemma 20. In the Strong-CD and the Receiver-CD models, the algorithm ExpSearch(D) finds an

index ĩ such that ĩ ∈ {î − 1, î, î + 1} in O (log î) time with probability 1 − n−Ω(1) .

6.3 Main Algorithm

In this section, we prove Theorem 7. We will present an algorithm that finds an estimate ñ that
is within a factor of 2 of the network size n, i.e., n/2 ≤ ñ ≤ 2n. Our algorithm EstimateSize(D)
takes an infinite set D = {d1,d2, . . .} of positive integers as an input parameter. We require that

di+1 ≥ γdi and d1 is sufficiently large such that
∑∞

k=d1
1/
√

2k ≤ 1 and
√

2d1 ≥ 100. We will later see

that different choices of D lead to different time-energy tradeoffs.
With respect to the set D, define î as the index such that dî−1 < logn ≤ dî . The elements in the

set D play the roles of “checkpoints” in our algorithm. The set D is independent of n, but î is a
function of n. In subsequent discussion, we assume n > 2d1 , and so the index î is well defined. The
reason that we are allowed to make this assumption is that for the case where n ≤ 2d1 = O (1), we
can run any Approximate Counting algorithm to find an estimate of n inO (1) time. The algorithm
EstimateSize(D) is as follows:

Initial Setup. For each integer k ≥ d1, a device s is labeled k with probability 1/
√

2k in such a

way that s is labeled by at most one number; this is the reason that we require
∑∞

k=d1
1/
√

2k ≤ 1.

We write Sk to denote the set of all devices labeled k . For the case that the model is Strong-CD or
Receiver-CD, we do ExpSearch(D), and let ĩ be the result of ExpSearch(D), and set k0 = dĩ−2. For
the case that the model is Sender-CD or No-CD, set k0 = d1.

Finding an Estimate. For k = k0,k0 + 1,k0 + 2, . . . , do the following task: The devices in Sk col-

laboratively run Verify(
√

2k). For the special case that a checkpoint is met, i.e., k = di for some i , do

the following additional task: Let Le (resp., Lo) be the set of leaders elected in Verify(
√

2k ′) for all
even (resp., odd) k ′ so far (i.e., k ′ ∈ [k0,k]). We let all devices in Lo simultaneously announce their

labels, while all other devices listen. If exactly one message k̃ is sent, the algorithm is terminated

with all devices agreeing on the same estimate ñ = 2k̃ . If the algorithm has not terminated yet,
repeat the above with Le .

Lemma 21. Define k̂ = �logn�. With probability 1 − exp(Ω(
√
n)), the following holds. For each

k ∈ [1, k̂ − 2], we have |Sk | ≥ 1.9
√
n/2 ≥ 1.9

√
2k . For each k ∈ [k̂ + 1,∞), we have |Sk | ≤

√
2n/1.9 ≤√

2k/1.9. For at least one of k ∈ {k̂ − 1, k̂ }, we have
√

2k/1.5 ≤ |Sk | ≤ 1.5
√

2k .

Proof. First, with probability 1 − n ·∑∞k=n+1 1/
√

2k = 1 − exp(−Ω(n)), no device has label
greater than n. Therefore, in what follows, we only consider the labels in the range {1, 2, . . . ,n}.

Consider the case k ≤ k̂ − 2. We have μ = E[|Sk |] = n ·
√

2−k ≥ n ·
√

2−(log n−1) =
√

2n. Using a

Chernoff bound with δ = 0.05, the probability that |Sk | ≤ 1.9
√

2k ≤ 1.9
√
n/2 ≤ (1 − δ)μ can be

upper bounded by exp(−δ 2μ/2) = exp(−Ω(
√
n)).

Consider the case n ≥ k ≥ k̂ + 1. We have μ = E[|Sk |] = n ·
√

2−k ≤ n ·
√

2−(log n+1) =
√
n/2. Us-

ing a Chernoff bound with δ = 1/1.9, the probability that |Sk | ≥
√

2k/1.9 ≥
√

2n/1.9 ≥ (1 + δ)μ
can be upper bounded by exp(−δ 2μ/3) = exp(−Ω(

√
n)).

Among the two numbers in {k̂ − 1, k̂ }, we select k ∈ {k̂ − 1, k̂ } such that n/
√

2 ≤ 2k ≤
√

2n. Then

the expected number μ = E[|Sk |] satisfies
√

2k/1.5 <
√

2k/
√

2 ≤ μ ≤
√

2 ·
√

2k < 1.5
√

2k . Similarly,

using a Chernoff bound, we can infer that the probability that |Sk | is not within
√

2k/1.5 and 1.5
√

2k

is at most exp(−Ω(
√
n)). �

Lemma 22. In an execution of EstimateSize(D), with probability 1 − n−Ω(1) , none of Verify(
√

2k)
fails.

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

49:28 Y.-J. Chang et al.

Proof. We assume that the statement of Lemma 21 holds, since it holds with probability

1 − exp(Ω(
√
n)). Similarly, with probability 1 − n ·∑∞k=n+1 1/

√
2k = 1 − exp(−Ω(n)), no device

has label greater than n. Therefore, in what follows, we only consider the labels in the range
{1, 2, . . . ,n}.

By Lemma 18, the failure probability of Verify(
√

2k) is at most min{
√

2k
−Ω(1)
, |Sk |−Ω(1) }. Define

k̂ = �logn�. If k ≥ k̂ + 1, then the failure probability of Verify(
√

2k) is at most
√

2k
−Ω(1)

= n−Ω(1) .

By Lemma 21, if k ≤ k̂ , then |Sk | = Ω(
√
n), and so the failure probability of Verify(

√
2k) is at most

|Sk |−Ω(1) = n−Ω(1) . By a union bound over all k ∈ {1, . . . ,n}, the probability that at least one of

Verify(
√

2k) fails is bounded by n · n−Ω(1) = n−Ω(1) . �

Lemma 23. In an execution of EstimateSize(D), with probability 1 − n−Ω(1) , all devices agree on an
estimate ñ such thatn/2 ≤ ñ ≤ 2n in timeT (n) = O (d2

î
) with energy cost E (n), where E (n) = O (log î)

in Strong-CD and Receiver-CD, and E (n) = O (î) in Sender-CD and No-CD.

Proof. We assume that all of ExpSearch(D) and Verify(
√

2k), for all k , do not fail, since the

probability that at least one of them fails is n−Ω(1) , in view of Lemma 20 and Lemma 22. We also
assume that the statement of Lemma 21 holds, since it holds with probability 1 − exp(Ω(

√
n)).

Define k̂ = �logn�. A consequence of Lemma 21 is that (i) there exists k ∈ {k̂ − 1, k̂ } such that

Verify(
√

2k) elects a leader, and (ii) for eachk � {k̂ − 1, k̂ }, Verify(
√

2k) does not elect a leader. Recall
that î is defined as the index i such that di−1 < logn ≤ di , and so the algorithm EstimateSize(D)
must end by the iteration k = dî with a correct estimate of n.

In what follows, we analyze the runtime and the energy cost of EstimateSize(D). Since each

Verify(
√

2k) takes O (k) time, the total time complexity is dî ·O (dî) = O (d2
î
).

The energy cost per device in Sk to make the call Verify(
√

2k) is O (α (|Sk |)) = O (α (n)), which
will never be the dominant cost. In Sender-CD and No-CD, the asymptotic energy cost of
EstimateSize(D) equals the number of times we encounter a checkpoint k = di for some di ∈ D,
which is O (î).

Next, we analyze the energy cost in Strong-CD and Receiver-CD. Due to ExpSearch(D) during
the initial setup, the number of checkpoints encountered is reduced to O (1), as we start with
k0 = dĩ−2, where the index ĩ is the result of ExpSearch(D) and satisfies ĩ ∈ {î − 1, î, î + 1}. Therefore,
the asymptotic energy cost of EstimateSize(D) equals the energy cost of ExpSearch(D), which is
O (log î). �

In addition to solving Approximate Counting, the algorithm EstimateSize(D) also solves Leader

Election. Notice that by the end of EstimateSize(D), a unique device s announces its label while
all other devices listen to the channel.

Setting the Checkpoints. Lemma 23 naturally offers a time-energy tradeoff. We demonstrate how
different choices of the checkpoints D give rise to different runtime and energy cost specified in
Table 1. For the base case, the first checkpoint d1 is always chosen as a large enough constant to

meet the three conditions:di+1 ≥ γdi ,
∑∞

k=d1
1/
√

2k ≤ 1, and
√

2d1 ≥ 100. In subsequent discussion,

we only focus on how we define di inductively.
To obtain O (log2 n) runtime, we set di = γdi−1 for some constant γ . Recall that î is defined as

the index i such that di−1 < logn ≤ di , and so dî ≤ γ logn. Thus, the runtime isO (d2
î
) = O (log2 n).

With such checkpoints, the energy cost in Sender-CD and No-CD is O (î) = O (log logn); the en-
ergy cost in Strong-CD and Receiver-CD is O (log î) = O (log log logn).

For 0 < ϵ ≤ O (1). To obtainO (log2+ϵ n) runtime, we set di = d
1+ϵ/2
i−1 . Notice that dî ≤ log1+ϵ/2 n.

Thus, the runtime is O (d2
î
) = O (log2+ϵ n). With such checkpoints, the energy cost in Sender-CD

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

Energy Complexity of Leader Election 49:29

and No-CD isO (î) = O (log1+ϵ/2 log logn) = O (ϵ−1 log log logn); the energy cost in Strong-CD and

Receiver-CD is O (log î) = O (log(ϵ−1 log log logn)).
Theorem 7 is proved as follows: Setting di = b

di−1 for any constant b > 1 yields a polyno-
mial time algorithm achieving the desired energy complexity, as O (î) = O (log∗ n) and O (log î) =
O (log log∗ n). To obtain no (1) runtime while maintaining the same asymptotic energy complexity,

we can use di = 22(log di−1)ϵ

, for some constant 0 < ϵ < 1. Since î is chosen such that dî−1 < logn,

we have dî ≤ 22(log log n)ϵ

, and so the runtime is O (d2
î
) = O (221+(log log n)ϵ

) = no (1) .

7 CONCLUSION AND OPEN PROBLEMS

In this article we exposed two exponential separations in the energy complexity of Leader Election

on various wireless radio network models. The upshot is that randomized algorithms in {Strong-

CD, Receiver-CD} are exponentially more efficient than those in {Sender-CD, No-CD}, but de-
terministic algorithms in {Strong-CD,Sender-CD} are exponentially more efficient than those in
{Receiver-CD,No-CD}. This exponential separation also occurs in the closely related problem of
Approximate Counting.

There are a few intriguing problems that remain open in the context of single-hop networks. For
example, is Θ(α (N)) the correct complexity of Leader Election and Census for dense instances?
What is the true complexity of Approximate Counting? In general, it should exhibit a three-way
tradeoff between energy, time, and a given error probability. Can n anonymous devices assign
themselves IDs in {1, . . . ,n} with o(log logn) energy [40] in the worst case?

Little is known about the energy-complexity of fundamental graph problems in arbitrary (multi-
hop) networks. Recently, Chang et al. [10] studied the energy complexity for broadcasting in multi-
hop networks. It is an interesting future work direction to investigate the energy complexity for
other fundamental graph problems.

REFERENCES

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. 1991. A lower bound for radio broadcast. J. Comput. System Sci. 43, 2

(1991), 290–298.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. 1991. Efficient emulation of single-hop radio network with collision detection

on multi-hop radio network with no collision detection. Distrib. Comput. 5, 2 (1991), 67–71.

[3] R. Bar-Yehuda, O. Goldreich, and A. Itai. 1992. On the time-complexity of broadcast in multi-hop radio networks: An

exponential gap between determinism and randomization. J. Comput. System Sci. 45, 1 (1992), 104–126.

[4] M. Barnes, C. Conway, J. Mathews, and D. K. Arvind. 2010. ENS: An energy harvesting wireless sensor net-

work platform. In Proceedings of the 5th International Conference on Systems and Networks Communications. 83–87.

DOI:https://doi.org/10.1109/ICSNC.2010.18

[5] M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young. 2016. How to scale exponential backoff: Constant throughput,

polylog access attempts, and robustness. In Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms

(SODA’16). 636–654. DOI:https://doi.org/10.1137/1.9781611974331.ch47

[6] M. A. Bender, J. T. Fineman, M. Movahedi, J. Saia, V. Dani, S. Gilbert, S. Pettie, and M. Young. 2015. Resource-

competitive algorithms. SIGACT News 46, 3 (2015), 57–71. DOI:https://doi.org/10.1145/2818936.2818949

[7] M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. 2016 (also to appear in SIAM Journal on Computing). Contention

resolution with log-logstar channel accesses. In Proceedings of the 48th ACM Symposium on Theory of Computing

(STOC’16). 499–508. DOI:https://doi.org/10.1145/2897518.2897655

[8] P. Brandes, M. Kardas, M. Klonowski, D. Pajak, and R. Wattenhofer. 2016. Approximating the size of a radio network

in beeping model. In Proceedings of the 23rd International Colloquium on Structural Information and Communication

Complexity (SIROCCO’16). 358–373.

[9] K. Censor-Hillel, B. Haeupler, D. E. Hershkowitz, and G. Zuzic. 2017. Broadcasting in noisy radio networks. In Pro-

ceedings of the ACM Symposium on Principles of Distributed Computing (PODC’17). 33–42. DOI:https://doi.org/10.1145/

3087801.3087808

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

https://doi.org/10.1109/ICSNC.2010.18
https://doi.org/10.1137/1.9781611974331.ch47
https://doi.org/10.1145/2818936.2818949
https://doi.org/10.1145/2897518.2897655
https://doi.org/10.1145/3087801.3087808
https://doi.org/10.1145/3087801.3087808

49:30 Y.-J. Chang et al.

[10] Y.-J. Chang, V. Dani, T. P. Hayes, Q. He, W. Li, and S. Pettie. 2018. The energy complexity of broadcast. In Proceedings

of the ACM Symposium on Principles of Distributed Computing (PODC’18). ACM, New York, NY, 95–104. DOI:https://

doi.org/10.1145/3212734.3212774

[11] Y.-J. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan. 2017. Exponential separations in the energy complexity

of leader election. In Proceedings of the 49th ACM SIGACT Symposium on Theory of Computing (STOC’17). ACM, New

York, NY, 771–783. DOI:https://doi.org/10.1145/3055399.3055481

[12] B. S. Chlebus, D. R. Kowalski, and A. Pelc. 2012. Electing a leader in multi-hop radio networks. In Proceedings of the

16th International Conference on Principles of Distributed Systems (OPODIS’12). Springer, 106–120.

[13] A. E. F. Clementi, A. Monti, and R. Silvestri. 2003. Distributed broadcast in radio networks of unknown topology.

Theoret. Comput. Sci. 302, 1 (2003), 337–364.

[14] A. Cornejo and F. Kuhn. 2010. Deploying wireless networks with beeps. In Proceedings of the 24th International Sym-

posium on Distributed Computing (DISC’10). Springer, 148–162.

[15] A. Czumaj and P. Davies. 2016. Brief announcement: Optimal leader election in multi-hop radio networks. In Pro-

ceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC’16). 47–49. DOI:https://doi.org/

10.1145/2933057.2933076

[16] A. Czumaj and P. Davies. 2017. Exploiting spontaneous transmissions for broadcasting and leader election in radio

networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC’17). 3–12. DOI:https://

doi.org/10.1145/3087801.3087825

[17] A. Czumaj and W. Rytter. 2003. Broadcasting algorithms in radio networks with unknown topology. In Proceedings

of the 44th IEEE Symposium on Foundations of Computer Science (FOCS’03). 492–501.

[18] S. Daum, S. Gilbert, F. Kuhn, and C. Newport. 2012. Leader election in shared spectrum radio networks. In Proceedings

of the 31st ACM Symposium on Principles of Distributed Computing (PODC’12). 215–224.

[19] P. Erdős, A. Rényi, and V. T. Sós. 1966. On a problem of graph theory. Studia Sci. Math. Hung. 1 (1966), 215–235.

[20] M. Farach-Colton, R. J. Fernandes, and M. A. Mosteiro. 2006. Lower bounds for clear transmissions in radio networks.

In Proceedings of the 7th Latin American Symposium on Theoretical Informatics (LATIN’06). 447–454. DOI:https://doi.

org/10.1007/11682462_42

[21] M. Ghaffari and B. Haeupler. 2013. Near optimal leader election in multi-hop radio networks. In Proceedings of the

24th ACM-SIAM Symposium on Discrete Algorithms (PODC’13). 748–766.

[22] M. Ghaffari, N. A. Lynch, and S. Sastry. 2012. Leader election using loneliness detection. Distrib. Comput. 25, 6 (2012),

427–450. DOI:https://doi.org/10.1007/s00446-012-0172-x

[23] M. Ghaffari and C. Newport. 2016. Leader election in unreliable radio networks. In Proceedings of the 43rd International

Colloquium on Automata, Languages, and Programming (ICALP’16) (Leibniz International Proceedings in Informatics

(LIPIcs)), Vol. 55. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 138:1–138:14. DOI:https://

doi.org/10.4230/LIPIcs.ICALP.2016.138

[24] S. Gilbert, V. King, S. Pettie, E. Porat, J. Saia, and M. Young. 2014. (Near) optimal resource-competitive broadcast

with jamming. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’14).

257–266. DOI:https://doi.org/10.1145/2612669.2612679

[25] S. Gilbert and C. Newport. 2015. The computational power of beeps. In Proceedings of the 29th International Symposium

on Distributed Computing (DISC’15). Springer, 31–46.

[26] A. G. Greenberg and S. Winograd. 1985. A lower bound on the time needed in the worst case to resolve conflicts

deterministically in multiple access channels. J. ACM 32, 3 (1985), 589–596.

[27] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2002. Efficient algorithms for leader election in radio networks. In

Proceedings of the 21st ACM Symposium on Principles of Distributed Computing (PODC’02). 51–57. DOI:https://doi.org/

10.1145/571825.571833

[28] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2002. Energy-efficient size approximation of radio networks with no

collision detection. In Proceedings of the 8th International Conference on Computing and Combinatorics (COCOON’02).

279–289. DOI:https://doi.org/10.1007/3-540-45655-4_31

[29] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2002. Weak communication in radio networks. In Proceedings of

the 8th International European Conference on Parallel Computing (Euro-Par’02). 965–972. DOI:https://doi.org/10.1007/

3-540-45706-2_137

[30] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2003. Weak communication in single-hop radio networks: adjusting

algorithms to industrial standards. Concurr. Comput.: Pract. Exper. 15, 11–12 (2003), 1117–1131. DOI:https://doi.org/

10.1002/cpe.783

[31] T. Jurdzinski and G. Stachowiak. 2002. Probabilistic algorithms for the wakeup problem in single-hop radio networks.

In Proceedings of the 13th International Symposium on Algorithms and Computation (ISAAC’02). 535–549. DOI:https://

doi.org/10.1007/3-540-36136-7_47

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

https://doi.org/10.1145/3212734.3212774
https://doi.org/10.1145/3212734.3212774
https://doi.org/10.1145/3055399.3055481
https://doi.org/10.1145/2933057.2933076
https://doi.org/10.1145/2933057.2933076
https://doi.org/10.1145/3087801.3087825
https://doi.org/10.1145/3087801.3087825
https://doi.org/10.1007/11682462_42
https://doi.org/10.1007/11682462_42
https://doi.org/10.1007/s00446-012-0172-x
https://doi.org/10.4230/LIPIcs.ICALP.2016.138
https://doi.org/10.4230/LIPIcs.ICALP.2016.138
https://doi.org/10.1145/2612669.2612679
https://doi.org/10.1145/571825.571833
https://doi.org/10.1145/571825.571833
https://doi.org/10.1007/3-540-45655-4_31
https://doi.org/10.1007/3-540-45706-2_137
https://doi.org/10.1007/3-540-45706-2_137
https://doi.org/10.1002/cpe.783
https://doi.org/10.1002/cpe.783
https://doi.org/10.1007/3-540-36136-7_47
https://doi.org/10.1007/3-540-36136-7_47

Energy Complexity of Leader Election 49:31

[32] M. Kardas, M. Klonowski, and D. Pajak. 2013. Energy-efficient leader election protocols for single-hop radio networks.

In Proceedings of the 42nd International Conference on Parallel Processing. 399–408.

[33] G. Katona and E. Szemerédi. 1967. On a problem of graph theory. Studia Scient. Math. Hung. 2 (1967), 23–28.

[34] V. King, J. Saia, and M. Young. 2011. Conflict on a communication channel. In Proceedings of the 30th ACM Symposium

on Principles of Distributed Computing (PODC’11). 277–286. DOI:https://doi.org/10.1145/1993806.1993855

[35] D. R. Kowalski and A. Pelc. 2005. Broadcasting in undirected ad hoc radio networks. Distrib. Comput. 18, 1 (2005),

43–57. DOI:https://doi.org/10.1007/s00446-005-0126-7

[36] D. R. Kowalski and A. Pelc. 2009. Leader election in ad hoc radio networks: A keen ear helps. In Proceedings of the

36th International Colloquium on Automata, Languages and Programming (ICALP’09). 521–533. DOI:https://doi.org/

10.1007/978-3-642-02930-1_43

[37] E. Kushilevitz and Y. Mansour. 1998. An Ω(D log(N /D)) lower bound for broadcast in radio networks. SIAM J.

Comput. 27, 3 (1998), 702–712. DOI:https://doi.org/10.1137/S0097539794279109

[38] M. Kutyłowski and W. Rutkowski. 2003. Adversary immune leader election in ad hoc radio networks. In Proceedings

of the 11th European Symposium on Algorithms (ESA’03). Springer, 397–408.

[39] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P. Dutta, D. Sylvester, and D. Blaauw. 2013. A

modular 1 mm3 die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy

harvesting. IEEE J. Solid-State Circ. 48, 1 (2013), 229–243.

[40] K. Nakano and S. Olariu. 2000. Energy-efficient initialization protocols for single-hop radio networks with no collision

detection. IEEE Trans. Parallel Distrib. Syst. 11, 8 (2000), 851–863. DOI:https://doi.org/10.1109/71.877942

[41] K. Nakano and S. Olariu. 2000. Randomized initialization protocols for ad hoc networks. IEEE Trans. Parallel Distrib.

Syst. 11, 7 (2000), 749–759. DOI:https://doi.org/10.1109/71.877833

[42] C. C. Newport. 2014. Radio network lower bounds made easy. In Proceedings of the 28th International Symposium on

Distributed Computing (DISC’14). 258–272. DOI:https://doi.org/10.1007/978-3-662-45174-8_18

[43] J. Polastre, R. Szewczyk, and D. Culler. 2005. Telos: Enabling ultra-low power wireless research. In Proceedings of the

4th International Symposium on Information Processing in Sensor Networks (IPSN’05). 364–369. DOI:https://doi.org/10.

1109/IPSN.2005.1440950

[44] J. Schneider and R. Wattenhofer. 2010. What is the use of collision detection (in wireless networks)? In Proceed-

ings of the 24th International Symposium on Distributed Computing (DISC’10). 133–147. DOI:https://doi.org/10.1007/

978-3-642-15763-9_14

[45] K. M. Sivalingam, M. B. Srivastava, and P. Agrawal. 1997. Low power link and access protocols for wireless multimedia

networks. In Proceedings of the 47th IEEE Conference on Vehicular Technology, Vol. 3. 1331–1335. DOI:https://doi.org/

10.1109/VETEC.1997.605397

[46] D. E. Willard. 1986. Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15,

2 (1986), 468–477. DOI:https://doi.org/10.1137/0215032

Received September 2018; accepted June 2019

ACM Transactions on Algorithms, Vol. 15, No. 4, Article 49. Publication date: October 2019.

https://doi.org/10.1145/1993806.1993855
https://doi.org/10.1007/s00446-005-0126-7
https://doi.org/10.1007/978-3-642-02930-1_43
https://doi.org/10.1007/978-3-642-02930-1_43
https://doi.org/10.1137/S0097539794279109
https://doi.org/10.1109/71.877942
https://doi.org/10.1109/71.877833
https://doi.org/10.1007/978-3-662-45174-8_18
https://doi.org/10.1109/IPSN.2005.1440950
https://doi.org/10.1109/IPSN.2005.1440950
https://doi.org/10.1007/978-3-642-15763-9_14
https://doi.org/10.1007/978-3-642-15763-9_14
https://doi.org/10.1109/VETEC.1997.605397
https://doi.org/10.1109/VETEC.1997.605397
https://doi.org/10.1137/0215032

