
The Random-Query Model and the1

Memory-Bounded Coupon Collector2

Ran Raz3

Department of Computer Science, Princeton University, United States4

ranr@cs.princeton.edu5

Wei Zhan6

Department of Computer Science, Princeton University, United States7

weizhan@cs.princeton.edu8

Abstract9

We study a new model of space-bounded computation, the random-query model. The model is based10

on a branching-program over input variables x1, . . . , xn. In each time step, the branching program11

gets as an input a random index i ∈ {1, . . . , n}, together with the input variable xi (rather than12

querying an input variable of its choice, as in the case of a standard (oblivious) branching program).13

We motivate the new model in various ways and study time-space tradeoff lower bounds in this14

model.15

Our main technical result is a quadratic time-space lower bound for zero-error computations in16

the random-query model, for XOR, Majority and many other functions. More precisely, a zero-error17

computation is a computation that stops with high probability and such that conditioning on the18

event that the computation stopped, the output is correct with probability 1. We prove that for any19

Boolean function f : {0, 1}n → {0, 1}, with sensitivity k, any zero-error computation with time T20

and space S, satisfies T · (S + log n) ≥ Ω(n · k). We note that the best time-space lower bounds for21

standard oblivious branching programs are only slightly super linear and improving these bounds is22

an important long-standing open problem.23

To prove our results, we study a memory-bounded variant of the coupon-collector problem that24

seems to us of independent interest and to the best of our knowledge has not been studied before. We25

consider a zero-error version of the coupon-collector problem. In this problem, the coupon-collector26

could explicitly choose to stop when he/she is sure with zero-error that all coupons have already been27

collected. We prove that any zero-error coupon-collector that stops with high probability in time T ,28

and uses space S, satisfies T · (S + log n) ≥ Ω(n2), where n is the number of different coupons.29

2012 ACM Subject Classification Theory of computation → Models of computation30

Keywords and phrases random-query model, time-space trade-offs, branching programs31

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.2032

Funding Ran Raz: Research supported by the Simons Collaboration on Algorithms and Geometry,33

by a Simons Investigator Award and by the National Science Foundation grant No. CCF-1714779.34

Wei Zhan: Research supported by the Simons Collaboration on Algorithms and Geometry, by a35

Simons Investigator Award and by the National Science Foundation grant No. CCF-1714779.36

1 Introduction37

In this paper, we introduce a new model for studying time-space tradeoff lower bounds for38

computation, the random-query model. The model is based on a branching program. Roughly39

speaking, a branching program of length T and width 2S , over input variables x1, . . . , xn, is40

a directed (multi) graph with vertices arranged in T + 1 layers containing at most 2S vertices41

each. Intuitively, each layer represents a time step and each vertex represents a memory42

state of the program. In layer-0 of the program, there is only one vertex, called the start43

vertex. Each leaf of the program is labelled by an element from {0, 1} that we think of as44

the output of the program on that leaf.45

© Ran Raz and Wei Zhan;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 20; pp. 20:1–20:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ranr@cs.princeton.edu
mailto:weizhan@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 The Random-Query Model and the Memory-Bounded Coupon Collector

In a standard branching program, every non-leaf vertex v in the program is labeled by an46

input variable xv and has 2 outgoing edges, labeled by 0 and 1, going into vertices in the47

next layer. Intuitively, xv is the input variable read by the vertex v. The program is called48

oblivious if all the vertices in the same layer read the same input variable. Given a branching49

program, the input x1, . . . , xn defines a computation-path, by starting from the start vertex50

and following in each step the edge labeled by the value of the corresponding input variable.51

The program outputs the label of the leaf reached by the computation path.52

In the random-query model, every non-leaf vertex v in the program has 2n outgoing53

edges, labeled by each element of {1, . . . , n} × {0, 1} exactly once. Given such a program54

and input x1, . . . , xn, the computation-path starts from the start vertex and follows in each55

step the edge labeled by (i, xi), where i ∈ {1, . . . , n} is random. (Intuitively, the program56

reads a random index i ∈ {1, . . . , n}, together with the input variable xi). As before, the57

program outputs the label of the leaf reached by the computation path.58

1.1 Motivation59

We have various motivations to study the new model. First, it seems to us an interesting60

model in its own right. The standard model of space-bounded computation is not always61

fully convincing in all settings, as it is not clear why would a machine be able to store for62

free the n input variables, while at the same time have a very restricted (typically, of size63

much smaller than n) additional memory. Moreover, in various situations the random-query64

model seems to be the natural one to use. Consider for example the following situation:65

you are at a party and you want to know if the majority of the participants prefer coffee or66

tea. (Assume that you know the number of participants in the party, that that number is67

odd and that you know all participants (or they are labeled 1, . . . , n)). Assume that at each68

time step you meet a random participant and she/he tells you their preference. How long69

would it take to figure out if the majority prefers coffee or tea if your memory is bounded?70

Another example may be a distributed setting where n players have one input variable each71

and they keep sending these input variables to a central player who needs to compute a72

Boolean function of all of them. However, the input variables arrive to the central player in73

an arbitrary order.74

Second, we study time-space lower bounds for the random-query model in order to make75

progress in proving time-space lower bounds for standard (oblivious) branching programs.76

Time-space lower bounds for branching programs have been studied in numerous works (see77

for example [3, 1, 2, 5, 6]). Currently, the best time-space lower bounds for any explicit78

function are only slightly super linear and improving these lower bounds has been a very79

important and long standing open problem in computational complexity. In section 5, we80

show that various extensions of our results would imply such strong time-space lower bounds.81

Roughly speaking, our time-space lower bounds for the random-query model are proved for82

the case where the indices i1, i2, i3, . . . of the input variables read by the program at time83

steps 1, 2, 3, . . . are mutually independent random variables, while in order to extend these84

lower bounds to standard branching programs one needs to generalize the proofs to the case85

where some of these indices are known to be the same. Interestingly, the key component of86

our proof, Theorem 2, does apply to the more general case where some of the indices are87

known to be the same. However, the main results do not.88

Third, the new model is related to several other problems that have been studied recently.89

First, it is related to the recent line of works on proving time-space lower bounds for learning90

(see for example [16, 18, 14, 11, 12, 15, 13, 4, 8, 7, 17, 9]). Indeed, computing a function91

f : {0, 1}n → {0, 1} in the random-query model is equivalent to the task of distinguishing92

R. Raz and W. Zhan 20:3

between the following two families of distributions (which is a learning task1): For x ∈ {0, 1}n,93

let Dx be the distribution of the random variable (i, xi), where i ∈ {1, . . . , n} is uniformly94

distributed. The task is to distinguish between a distribution taken from {Dx}x:f(x)=0 and a95

distribution taken from {Dx}x:f(x)=1, from a stream of independent samples. Second, the96

random-query model is similar to a recently studied model of streaming complexity, where97

a source of i.i.d samples of edges of a graph is considered [10]. In particular, [10] studied98

approximation algorithms for the maximum matching problem in that model. The main99

difference from our model is that they studied the space needed for approximate computation100

in the case where the number of samples is smaller than the number of input variables, while101

we study time-space tradeoffs for exact computation in the case where the number of samples102

may be much larger than the number of input variables.103

Finally, it turns out that in the zero-error case, the random-query model is closely related104

to a memory-bounded variant of the coupon-collector problem, a problem that seems to be105

of independent interest and to the best of our knowledge has not been studied before. In our106

variant of the problem, the coupon collector gets a stream of random elements from the set107

{1, . . . , n} and needs to stop when she is sure with zero-error that all elements of {1, . . . , n}108

have already passed. The question is what is the time T needed when the memory size of109

the coupon collector is bounded by S.110

1.2 Our Results111

In Theorem 5, we prove that any algorithm for the zero-error coupon-collector problem that112

runs in time T and space S satisfies T · (S + logn) ≥ Ω(n2). This result is essentially tight.113

In Theorem 6, we prove that in the random-query model, any zero-error computation of114

XOR or Majority (or any other function with sensitivity Ω(n)) that runs in time T and space115

S satisfies T · (S + logn) ≥ Ω(n2). The results for XOR and Majority are essentially tight116

(See Remarks 8 and 9 for the discussions on tightness). More generally, in the random-query117

model, any zero-error computation of a function with sensitivity k that runs in time T and118

space S satisfies T · (S + logn) ≥ Ω(n · k).119

A very interesting open problem is to prove similar time-space lower bounds for the120

random-query model in the bounded-error case, rather than the zero-error case (Conjecture 1).121

In Theorem 2, we prove time-space lower bounds for a special type of branching programs122

called set-labeled branching programs, in the random-query model. Intuitively, a set-labeled123

branching program is a branching-program for the coupon-collector problem, such that each124

vertex in the program “remembers” a set of coupons that must have been collected if that125

vertex was reached.126

1.3 Paper Organization127

The paper is organized as follows. In section 3, we prove the tight time-space lower bound128

for set-labeled branching programs, in the random-query model. In section 4, we reduce129

zero-error computation tasks in the random-query model, including the coupon-collector130

problem and function evaluation, to set-labeled branching programs, and hence prove tight131

time-space lower bounds for both problems. In section 5, we illustrate how lower bounds in132

the random-query model with special input distribution imply lower bounds for oblivious133

branching programs.134

1 Technically it is a testing task, which is easier than learning.

ITCS 2020

20:4 The Random-Query Model and the Memory-Bounded Coupon Collector

2 Preliminaries135

For an integer n, we use [n] to denote {1, 2, . . . , n}. For any set A and an n-tuple x ∈ An, we136

use xi to denote the i-th element of x. For any x ∈ {0, 1}n, let x(i) be the vector that is the137

same as x but with the i-th coordinate flipped. Given a boolean function f : {0, 1}n → {0, 1},138

let s(f, x) be the sensitivity of f at x, that is the number of coordinates i ∈ [n] such that139

f(x(i)) 6= f(x), and let s(f) = maxx s(f, x) be the sensitivity of f .140

2.1 Coupon-Collector Problem141

The classical coupon-collector problem asks how large T should be, so that a uniformly142

random T -tuple in [n]T contains every element of [n] with high probability. Generalizing the143

goal to a subset A ⊆ [n], we have the following answer:144

I Proposition 1. Given any subset A ⊆ [n], for a uniformly random i ∈ [n]T , the probability145

that A * {i1, . . . , iT } is at most n(1 + log |A|)T−1.146

The proof follows directly from the fact that the expected waiting time for every element in147

A to appear is n
∑|A|
j=1 j

−1 ≥ n(1 + log |A|), and Markov’s inequality.148

In this paper, we consider a zero-error version of the coupon-collector problem. In this149

problem, the coupon collector could explicitly choose to stop when she is sure with zero-error150

that every element in A has already been collected. The results in this paper show that with151

bounded memory, the zero-error coupon-collector cannot stop within few (say, O(n log |A|))152

turns with high probability, in contrast to the proposition above.153

2.2 Random-Query Model154

In the random-query model, at each step t ∈ N+ a uniformly random index it ∈ [n] is155

provided. When the problem specifies an input x ∈ {0, 1}n, at each step t the value of the156

bit xit ∈ {0, 1} is also given along with the random index it. In this paper, we consider two157

cases for the joint distribution of the indices:158

Independent The indices i1, i2, . . . are mutually independent.159

Recurring The only dependencies allowed among i1, i2, . . . are equalities. More formally,160

there is a partition p : Z+ → Z+, such that it = i′p(t) for every t ∈ Z+, where i′1, i′2, . . .161

are mutually independent and uniformly random over [n].162

For the rest of the paper, we refer to the two cases as independent distribution and recurring163

distributions. Notice that the independent distribution is a special case of the recurring ones.164

The recurring distributions are closely related to oblivious branching programs; see Section 5165

for a detailed discussion.166

2.3 Computational Models167

The computational models we consider are based on branching programs. A branching168

program of length T and width 2S is a directed (multi) graph with vertices arranged in T + 1169

layers containing at most 2S vertices each. Denote the set of vertices in the i-th layer by Li,170

for i = 0, 1, . . . , T . In L0 there is only one vertex, called the start vertex. Every vertex in LT171

has out-degree 0, and is called a leaf. The outgoing edges from every non-leaf vertex in Li172

only go to vertices in Li+1, for every i < T .173

A simple branching program is one such that every non-leaf vertex has n outgoing edges,174

labeled with each element in [n] exactly once. We consider two types of simple branching175

programs:176

R. Raz and W. Zhan 20:5

A set-labeled branching program is a simple branching program, where every vertex v is177

labeled with a set H(v) ⊆ [n], satisfying the following soundness condition: if an edge178

from vertex u to vertex v is labeled with i ∈ [n], it must hold that H(v) ⊆ H(u) ∪ {i}.179

The start vertex must be labeled with ∅.180

A branching program for the coupon-collector problem is a simple branching program181

such that every leaf is labeled with either ‘accept’ or ‘reject’.182

When the indices i1, . . . , iT ∈ [n] are given, the computation path in a simple branching183

program starts from the start vertex, and at step t follows the edge labeled with it until184

reaching a leaf v, and outputs the label of v.185

Given a function f : {0, 1}n → {0, 1}, a branching program computing f is one such that186

every non-leaf vertex has 2n outgoing edges, labeled with each element in [n]×{0, 1} exactly187

once. Every leaf v in the program is labeled with an output f̃v ∈ {0, 1,�}. When an input188

x ∈ {0, 1}n and the indices i1, . . . , iT ∈ [n] are given, the computation path in the branching189

program starts from the start vertex, and at step t follows the edge labeled with (it, xit)190

until reaching a leaf v, and outputs f̃v.191

In the random-query model where the indices i1, . . . , iT are given according to a specified192

distribution, we define the success of every type of branching program as follows:193

We say that a set-labeled branching program succeeds on A ⊆ [n], if the probability that194

the output of the branching program H(v) ⊇ A is at least 1/2.195

For the coupon-collector problem, we say the branching program collects A ⊆ [n] with196

zero-error, if the probability that the branching program outputs ‘accept’ is at least 1/2,197

and conditioned on outputting ‘accept’, the probability that {i1, . . . , iT } ⊇ A is 1.198

For computing a function f , we say that the branching program computes f with error ε, if199

for every x ∈ {0, 1}n, the probability that the output of the branching program f̃v = f(x)200

is at least 1− ε. We say that the branching program computes f with zero-error, if for201

every x ∈ {0, 1}n, the probability that the output of the branching program f̃v ∈ {0, 1}202

is at least 1/2, and the probability that f̃v = 1− f(x) is zero.203

3 Lower Bounds for Set-Labeled Branching Programs204

In this section, we prove the following theorem:205

I Theorem 2. Under the random-query model with any recurring distribution, for any set206

A ⊆ [n], any set-labeled branching program of width 2S ≥ |A| that succeeds on A must have207

length at least n|A|
8S for sufficiently large n.2208

Fix such a set-labeled branching program. We first prove an upper bound on the209

probability of the computation path reaching two given vertices:210

I Lemma 3. For any two vertices u, v in a set-labeled branching program, where u ∈ Li,211

v ∈ Lj and i < j. Under the random-query model with any recurring distribution,212

Pr[reaching u ∧ reaching v] ≤
(
j − i
n

)|H(v)\H(u)|
.213

2 Notice that by definition, a branching program of width 2S < |A| is also a branching program of width
|A|. Therefore for smaller widths, the theorem still holds, but with an additional log|A| overhead on S.
Theorems 5 and 6 work similarly.

ITCS 2020

20:6 The Random-Query Model and the Memory-Bounded Coupon Collector

Proof. Let p : Z+ → Z+ be the partition for the recurring distribution. Let ` = |{p(k) |214

i < k ≤ j}|. The indices received from the random queries between layer i and layer j are215

uniformly distributed over [n]`. Let G be the random variable that represents the set of216

indices received between layer i and layer j. By the soundness requirement of set-labeled217

branching programs, if the computation path reaches u and then v, the set G corresponding218

to this path must satisfy H(v) ⊆ H(u) ∪G. Therefore,219

Pr[reaching u ∧ reaching v] ≤ Pr[H(v) ⊆ H(u) ∪G] = Pr[H(v) \H(u) ⊆ G].220

If ` < |H(v) \H(u)| then the above probability is zero. Otherwise by (over)counting the221

positions where the elements of |H(v) \H(u)| appear and the union bound we have222

Pr[H(v) \H(u) ⊆ G] ≤ `!
(`− |H(v) \H(u)|)! · n

−|H(v)\H(u)|
223

≤
(
`

n

)|H(v)\H(u)|
224

≤
(
j − i
n

)|H(v)\H(u)|
.225

226

J227

I Remark 4. For the independent distribution, the above argument yield:228

Pr[reaching v | reaching u] ≤
(
j − i
n

)|H(v)\H(u)|
.229

The weaker result in Lemma 3, however, holds more generally for any recurring distribution.230

It is also strong enough for proving Theorem 2.231

Proof for Theorem 2. Suppose the length of the set-labeled branching program is T . Define232

the weight of a vertex v as W (v) = Pr[reaching v]. For a set of vertices A, let W (A) =233 ∑
v∈AW (v). Since the leaves are all in LT , for every 0 ≤ i ≤ T we have W (Li) = 1. The234

fact that the branching program succeeds on A ⊆ [n] translates to:235 ∑
v∈LT

A⊆H(v)

W (v) ≥ 1/2. (1)236

We divide the branching program into |A|2S stages, each consists of a consecutive part of237

the layers. For every 0 ≤ k ≤ |A|2S , let ik be the smallest index of a layer Li such that238

∑
v∈Li

|H(v)|≥2kS

W (v) ≥ kS

|A|
.239

By (1) we know such a layer must exist. Now the k-th stage consists of the layers from Lik240

to Lik+1−1. Let241

Ak = {u ∈ Lik | |H(u)| ≥ 2kS}, Bk = {u ∈ Lik−1 | |H(u)| < 2kS}.242

By the definitions of ik, we know that W (Ak) ≥ kS/|A|, W (Bk) > 1− kS/|A|.243

R. Raz and W. Zhan 20:7

Now we show that every stage contains at least (n/3−1) layers. Suppose for contradiction244

that for some k, it holds that ik+1− ik < n/3− 1. For any two vertices u ∈ Bk and v ∈ Ak+1,245

by Lemma 3 we have246

Pr[reaching u ∧ reaching v] ≤
(
ik+1 − ik + 1

n

)|H(v)\H(u)|
< 3−2S .247

Therefore, applying the union bound gives:248

Pr[reaching Lik−1 ∧ reaching Lik+1]249

≤Pr[reaching Lik−1 \ Bk] + Pr[reaching Lik+1 \ Ak+1] + Pr[reaching Bk ∧ reaching Ak+1]250

≤1−W (Bk) + 1−W (Ak+1) +
∑
u∈Bk
v∈Ak+1

Pr[reaching u ∧ reaching v]251

<
kS

|A|
+ 1− (k + 1)S

|A|
+ 2S · 2S · 3−2S < 1.252

253

The second last step is because there are at most 2S vertices in each layer, and the last step254

is because 2S ≥ |A|. However, since the computation path must pass through both Lik−1255

and Lik+1 , the probability above must be 1, which is a contradiction.256

Thus we conclude that, for n large enough, ik+1 − ik ≥ n/3− 1 ≥ n/4. Therefore,257

T ≥
∑

0≤k<|A|/2S

(ik+1 − ik) ≥ n|A|
8S258

J259

4 Lower Bounds for Zero-error Computations under Independent260

Distribution261

I Theorem 5. Under the random-query model with the independent distribution, for any set262

A ⊆ [n], any branching program for the coupon-collector problem of width 2S ≥ |A| which263

collects A with zero-error must have length at least n|A|
8S for sufficiently large n.264

Proof. We show that for such a branching program, we can assign each vertex v with a265

label H(v) ⊆ [n] so that the branching program is set-labeled. Let P (v) be the collection266

of directed paths from the starting vertex to v. For every directed path p let h(p) be the267

collection of indices labeled on the edges of p. Then we define H(v) = ∩p∈P (v)h(p).268

The starting vertex is clearly labeled with the empty set. To check the soundness, consider269

an edge e from vertex u to vertex v labeled with i. For every path p ∈ P (u), the concatenation270

pe is a path in P (v), and h(pe) = h(p) ∪ {i}. Therefore H(v) ⊆ ∩p∈P (u)h(pe) = H(u) ∪ {i}.271

Notice that every path from the starting vertex to a leaf corresponds to a collection of272

indices i1, . . . , iT , that are given with probability n−T > 0 under the independent distribution.273

Since the branching program collects A with zero-error, for every path to an ‘accept’ leaf it274

must holds A ⊆ {i1, . . . , iT }, so every ‘accept’ leaf v is now labeled with H(v) ⊇ A. Therefore,275

as a set-labeled branching program it succeeds on A. By Theorem 2 we know the length of276

the branching program is at least n|A|
8S for sufficiently large n. J277

I Theorem 6. Let f : {0, 1}n → {0, 1} be a boolean function with sensitivity s(f). Under278

the random-query model with the independent distribution, any branching program of width279

2S ≥ n which computes f with zero-error must have length at least n·s(f)
8S for sufficiently280

large n.281

ITCS 2020

20:8 The Random-Query Model and the Memory-Bounded Coupon Collector

Proof. Suppose there is a branching program P of width 2S and length T that computes f282

with zero-error. Let x ∈ {0, 1}n be an input such that s(f) = s(f, x), and let A = {i ∈ [n] |283

f(x) 6= f(x(i))}. We show below that from P, one can extract a simple branching program284

P ′ for the coupon-collector problem of width at most 2S and length T , which collects A with285

zero-error. Since |A| = s(f), by Theorem 5 we know T ≥ n·s(f)
8S for sufficiently large n.286

We construct P ′ inductively to simulate P on input x. For vertex v in P we use v′ to287

denote its corresponding vertex in P ′. The start vertex v′0 in P ′ corresponds to the start288

vertex v0 in P. If in P there exists an edge from u to v labeled with (i, xi), and u′ is in P ′,289

then add v′ to P ′ (if v′ is not already there), and add an edge from u′ to v′ labeled with i.290

Finally, for every leaf v′ in P ′, label v′ with ‘accept’ if f̃v = f(x), otherwise label v′ with291

‘reject’.292

First notice that under the independent distribution, the probability of reaching a vertex293

v′ in P ′ is exactly the same as the probability of reaching v in P with the input x. Since the294

probability that P outputs f(x) on input x is at least 1/2, the probability that P ′ outputs295

‘accept’ is also at least 1/2.296

We now show that conditioned on reaching a leaf v′ in P ′ labeled with ‘accept’, it must297

hold that A ⊆ {i1, . . . , iT }. Suppose not, then for some index i ∈ A there is a path p′ from298

the start vertex to v′ where no edge is labeled with i. Consider the corresponding path p in299

P . On input x(i), the computation follows the path p with non-zero probability and outputs300

f̃v = f(x) 6= f(x(i)), which contradicts the zero-error property of P. That concludes the301

proof that P ′ collects A with zero-error. J302

For the large class of functions with sensitivity Ω(n), Theorem 6 provides the quadratic303

time-space lower bound:304

I Corollary 7. Let f be a boolean function on n-bits with sensitivity Ω(n) (For instance, AND,305

XOR, Majority, s-t connectivity, etc.). Under the random-query model with the independent306

distribution, any branching program of width 2S ≥ n which computes f with zero-error must307

have length Ω(n2/S).308

I Remark 8. Theorem 6 is tight up to logarithmic factors, in the sense that for every309

m ≤ n, the function x1 ⊕ · · · ⊕ xm can be computed with zero-error within S space and310

O(nmS−1 logn) steps. We briefly sketch the algorithm here: Equally partition [m] into311

O(mS−1) parts, each of size O(S). For each part P , use O(n logn) steps to record the values312

xi for all indices i ∈ P . If any i ∈ P does not appear within these O(n logn) steps, output313

�. Otherwise compute the partial parity
⊕

i∈P xi, and accumulate the partial parities.314

As the lower bound in Theorem 6 is derived directly from Theorem 5 and further from315

Theorem 2, variants of the above algorithm also imply that Theorems 2 and 5 are tight up316

to logarithmic factors.317

Similar to the case in the coupon-collector problem, the zero-error guarantee is crucial318

to Theorem 6, since for instance, the n-bit AND function can be computed with constant319

error by a branching program of length O(n) and width O(1). However, when specified to320

the parity function, the best trade-off seems to be still quadratic even in the bounded-error321

setting. We propose the following conjecture:322

B Conjecture 1. Under the random-query model with the independent distribution, any323

branching program of length T and width 2S which computes x1 ⊕ · · · ⊕ xn with error 1/3324

must satisfy TS = Ω̃(n2).325

I Remark 9. Besides the algorithm mentioned above, there is another essentially different326

algorithm for computing parity (which actually computes the Hamming weight) with bounded327

R. Raz and W. Zhan 20:9

error: Equally partition [n] into O(S/ logn) parts. For each part P , record the number of steps328

t when a pair (i, xi) such that i ∈ P and xi = 1 is received, and finally approximate the partial329

sum
∑
i∈P xi with the integer closest to tn/T . By Chernoff bound, T = O(n2S−1 log2 n) is330

enough so that the approximation of each part is wrong with probability O(n−1).331

Notice that this algorithm does not work in the zero-error setting. While the previous332

algorithm corresponds directly to a set-labeled branching program, it is not clear whether333

this approximation algorithm is related to set-labeled branching programs or not.334

5 Oblivious Branching Programs and Random-Query Model335

The random input model with recurring distributions is closely related to oblivious branching336

programs. In this section, we present two potential directions to prove strong lower bounds337

for oblivious branching programs, both via proving lower bounds in the random-query model.338

Let SURJn,m : [n]m → {0, 1} be the surjectivity function: SURJn,m(i) = 1 if and only339

{i1, . . . , im} = [n].340

I Theorem 10. For any m ≥ 2n(logn+ 1), any deterministic oblivious branching program341

computing SURJn,m is also a branching program for the coupon-collector problem that collects342

[n] with zero-error under some recurring distribution.343

Proof. Suppose at level t− 1 the oblivious branching program reads ip(t), for some function344

p : Z+ → [m]. Use p as the partition in the recurring distribution in the random-query345

model, then the computation of the branching program for the coupon-collector problem346

is exactly the same as in the oblivious branching program with a uniformly random input347

i ∈ [n]m. Proposition 1 shows that the probability of SURJn,m(i) = 1 is at least 1/2. As the348

deterministic oblivious branching program always outputs correctly, as a branching program349

for the coupon-collector problem it succeeds with zero-error. J350

For any function f : {0, 1}n → {0, 1} and m ≥ n, let f∗ : [n]m × {0, 1}m → {0, 1} be a351

partial function defined as follows: f∗(i, y) is well-defined for i ∈ [n]m and y ∈ {0, 1}m, if352

and only if SURJn,m(i) = 1, and whenever ij = ik it must hold yj = yk. When f∗(i, y) is353

well-defined, the value of f∗(i, y) is f(yj1 , . . . , yjn
), where for every ι ∈ [n], jι is some j ∈ [m]354

such that ij = ι.355

I Theorem 11. Given any function f : {0, 1}n → {0, 1}. For any m ≥ 3n(logn + 1), if356

there is a deterministic oblivious branching program computing f∗ of length T and width 2S357

(on the inputs where f∗ is well-defined), then there is a branching program of the same length358

and width, that computes f with error 1/3 in the random-query model under some recurring359

distribution.360

Proof. Add dummy levels to the oblivious branching program to double the length, such361

that if originally at level t the branching program reads either ij or yj , now it reads ij at362

level 2t and yj at level 2t + 1. The oblivious branching program now can be regarded as363

the one of length T and width 2S that at each level t reads a pair (ip(t), yp(t)), for some364

function p : Z+ → [m]. Use p as the partition in the recurring distribution. For any fixed365

x ∈ {0, 1}n, the computation in the random-query model on input x is exactly the same as366

in the oblivious branching program with a uniformly random i ∈ [n]m, and input y ∈ {0, 1}m367

defined as yj = xij . For such i and y, f∗(i, y) is well-defined if and only if SURJn,m(i) = 1,368

and Proposition 1 indicates the probability that f∗(i, y) is well-defined is at least 2/3. Since369

whenever f∗(i, y) is well-defined, the deterministic oblivious branching program correctly370

ITCS 2020

20:10 The Random-Query Model and the Memory-Bounded Coupon Collector

outputs f(yj1 , . . . , yjn) = f(x), as a branching program under the random-query model it371

computes f with error 1/3. J372

As a corollary, if in the random-query model we were able to prove a time-space lower373

bound that holds under any recurring distribution, either for the zero-error coupon-collector374

problem, or for any bounded-error computation, we would immediately have the same lower375

bound (up to logarithmic factors) on deterministic oblivious branching programs.376

References377

1 Miklós Ajtai. Determinism versus non-determinism for linear time rams (extended abstract).378

In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May379

1-4, 1999, Atlanta, Georgia, USA, pages 632–641, 1999. doi:10.1145/301250.301424.380

2 Miklós Ajtai. A non-linear time lower bound for boolean branching programs. In 40th Annual381

Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York,382

NY, USA, pages 60–70, 1999. doi:10.1109/SFFCS.1999.814578.383

3 László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols, pseudorandom generators384

for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, 1992. doi:385

10.1016/0022-0000(92)90047-M.386

4 Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning finite387

functions from random evaluations, with applications to polynomials. In Conference On388

Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, pages 843–856, 2018.389

5 Paul Beame, T. S. Jayram, and Michael E. Saks. Time-space tradeoffs for branching programs.390

J. Comput. Syst. Sci., 63(4):542–572, 2001. doi:10.1006/jcss.2001.1778.391

6 Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower392

bounds for randomized computation of decision problems. J. ACM, 50(2):154–195, 2003.393

doi:10.1145/636865.636867.394

7 Yuval Dagan and Ohad Shamir. Detecting correlations with little memory and communication.395

In Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, pages396

1145–1198, 2018.397

8 Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for398

learning. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,399

STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 990–1002, 2018. doi:10.1145/400

3188745.3188962.401

9 Sumegha Garg, Ran Raz, and Avishay Tal. Time-space lower bounds for two-pass learning. In402

34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,403

NJ, USA, pages 22:1–22:39, 2019. doi:10.4230/LIPIcs.CCC.2019.22.404

10 Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient405

approximation to maximum matching size from uniform edge samples. CoRR, abs/1907.05725,406

2019.407

11 Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In408

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC409

2017, Montreal, QC, Canada, June 19-23, 2017, pages 1067–1080, 2017. doi:10.1145/3055399.410

3055430.411

12 Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded412

learning. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam,413

The Netherlands, 7-10 July 2017, pages 1516–1566, 2017.414

13 Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic lower bounds415

for space bounded learning. In 9th Innovations in Theoretical Computer Science Conference,416

ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 28:1–28:20, 2018. doi:417

10.4230/LIPIcs.ITCS.2018.28.418

https://doi.org/10.1145/301250.301424
https://doi.org/10.1109/SFFCS.1999.814578
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.1145/636865.636867
https://doi.org/10.1145/3188745.3188962
https://doi.org/10.1145/3188745.3188962
https://doi.org/10.1145/3188745.3188962
https://doi.org/10.4230/LIPIcs.CCC.2019.22
https://doi.org/10.1145/3055399.3055430
https://doi.org/10.1145/3055399.3055430
https://doi.org/10.1145/3055399.3055430
https://doi.org/10.4230/LIPIcs.ITCS.2018.28
https://doi.org/10.4230/LIPIcs.ITCS.2018.28
https://doi.org/10.4230/LIPIcs.ITCS.2018.28

R. Raz and W. Zhan 20:11

14 Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.419

In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-420

11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 266–275, 2016.421

doi:10.1109/FOCS.2016.36.422

15 Ran Raz. A time-space lower bound for a large class of learning problems. In 58th IEEE423

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,424

October 15-17, 2017, pages 732–742, 2017. doi:10.1109/FOCS.2017.73.425

16 Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning426

and estimation. In Advances in Neural Information Processing Systems 27: Annual Conference427

on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,428

Canada, pages 163–171, 2014.429

17 Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear430

regression with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium431

on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 890–901,432

2019. doi:10.1145/3313276.3316403.433

18 Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical434

queries. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York,435

USA, June 23-26, 2016, pages 1490–1516, 2016.436

ITCS 2020

https://doi.org/10.1109/FOCS.2016.36
https://doi.org/10.1109/FOCS.2017.73
https://doi.org/10.1145/3313276.3316403

	Introduction
	Motivation
	Our Results
	Paper Organization

	Preliminaries
	Coupon-Collector Problem
	Random-Query Model
	Computational Models

	Lower Bounds for Set-Labeled Branching Programs
	Lower Bounds for Zero-error Computations under Independent Distribution
	Oblivious Branching Programs and Random-Query Model

